Rainfall infiltration factor (RIF) as per GEC ‘97 and terrain conditions.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1197",leadTitle:null,fullTitle:"Nuclear Power Plants",title:"Nuclear Power Plants",subtitle:null,reviewType:"peer-reviewed",abstract:"This book covers various topics, from thermal-hydraulic analysis to the safety analysis of nuclear power plant. It does not focus only on current power plant issues. Instead, it aims to address the challenging ideas that can be implemented in and used for the development of future nuclear power plants. This book will take the readers into the world of innovative research and development of future plants. Find your interests inside this book!",isbn:null,printIsbn:"978-953-51-0408-7",pdfIsbn:"978-953-51-6164-6",doi:"10.5772/1672",price:139,priceEur:155,priceUsd:179,slug:"nuclear-power-plants",numberOfPages:352,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2dc38ebb65a80cc09472e81652798560",bookSignature:"Soon Heung Chang",publishedDate:"March 21st 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1197.jpg",numberOfDownloads:38174,numberOfWosCitations:23,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:26,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:59,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 20th 2011",dateEndSecondStepPublish:"May 18th 2011",dateEndThirdStepPublish:"September 22nd 2011",dateEndFourthStepPublish:"October 22nd 2011",dateEndFifthStepPublish:"February 21st 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"121375",title:"Dr.",name:"Soon Heung",middleName:null,surname:"Chang",slug:"soon-heung-chang",fullName:"Soon Heung Chang",profilePictureURL:"https://mts.intechopen.com/storage/users/121375/images/3435_n.jpg",biography:"Soon Heung Chang has been a professor in the Department of Nuclear and Quantum Engineering at KAIST since 1982, teaching courses in nuclear reactor safety and nuclear power plant design, and the President of the Korean Nuclear Society. In addition to it, he served as Provost at KAIST, Commissioner for Korea Nuclear Safety Commission, and Member for International Nuclear Safety Advisory Group, IAEA. He is a frequent plenary speaker, a lead consultant for many large initiatives and author of numerous journal articles. Prof. Chang is also the Chairman of the Board of Directors of Handong University. He holds a Ph.D. in Nuclear Engineering from MIT.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Korea Advanced Institute of Science and Technology",institutionURL:null,country:{name:"Korea, South"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"769",title:"Power Engineering",slug:"engineering-energy-engineering-power-engineering"}],chapters:[{id:"33365",title:"Analysis of Emergency Planning Zones in Relation to Probabilistic Risk Assessment and Economic Optimization for International Reactor Innovative and Secure",doi:"10.5772/18109",slug:"analysis-of-emergency-planning-zones-in-relation-to-probabilistic-risk-assessment-and-economic-optim",totalDownloads:2550,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Robertas Alzbutas, Egidijus Norvaisa and Andrea Maioli",downloadPdfUrl:"/chapter/pdf-download/33365",previewPdfUrl:"/chapter/pdf-preview/33365",authors:[{id:"10917",title:"Dr.",name:"Robertas",surname:"Alzbutas",slug:"robertas-alzbutas",fullName:"Robertas Alzbutas"},{id:"51253",title:"Dr.",name:"Egidijus",surname:"Norvaisa",slug:"egidijus-norvaisa",fullName:"Egidijus Norvaisa"},{id:"51254",title:"Dr.",name:"Andrea",surname:"Maioli",slug:"andrea-maioli",fullName:"Andrea Maioli"}],corrections:null},{id:"33366",title:"Evolved Fuzzy Control System for a Steam Generator",doi:"10.5772/34497",slug:"evolved-fuzzy-control-system-for-a-steam-generator",totalDownloads:2004,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Daniela Hossu, Ioana Făgărăşan, Andrei Hossu and Sergiu Stelian Iliescu",downloadPdfUrl:"/chapter/pdf-download/33366",previewPdfUrl:"/chapter/pdf-preview/33366",authors:[{id:"86128",title:"Prof.",name:"Ioana",surname:"Fagarasan",slug:"ioana-fagarasan",fullName:"Ioana Fagarasan"},{id:"100418",title:"Prof.",name:"Daniela",surname:"Hossu",slug:"daniela-hossu",fullName:"Daniela Hossu"},{id:"108280",title:"Prof.",name:"Andrei",surname:"Hossu",slug:"andrei-hossu",fullName:"Andrei Hossu"},{id:"108281",title:"Prof.",name:"Sergiu Stelian",surname:"Iliescu",slug:"sergiu-stelian-iliescu",fullName:"Sergiu Stelian Iliescu"}],corrections:null},{id:"33367",title:"Deterministic Analysis of Beyond Design Basis Accidents in RBMK Reactors",doi:"10.5772/34501",slug:"deterministic-analysis-of-beyond-design-basis-accidents-in-rbmk-reactors",totalDownloads:3172,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Eugenijus Uspuras and Algirdas Kaliatka",downloadPdfUrl:"/chapter/pdf-download/33367",previewPdfUrl:"/chapter/pdf-preview/33367",authors:[{id:"100443",title:"Dr.",name:"Algirdas",surname:"Kaliatka",slug:"algirdas-kaliatka",fullName:"Algirdas Kaliatka"}],corrections:null},{id:"33368",title:"Cross-Flow-Induced-Vibrations in Heat Exchanger Tube Bundles: A Review",doi:"10.5772/35635",slug:"cross-flow-induced-vibrations-in-heat-exchanger-tube-bundles-a-review",totalDownloads:11797,totalCrossrefCites:5,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Shahab Khushnood, Zaffar Muhammad Khan, Muhammad Afzaal Malik, Zafarullah Koreshi, Muhammad Akram Javaid, Mahmood Anwer Khan, Arshad Hussain Qureshi, Luqman Ahmad Nizam, Khawaja Sajid Bashir, Syed Zahid Hussain",downloadPdfUrl:"/chapter/pdf-download/33368",previewPdfUrl:"/chapter/pdf-preview/33368",authors:[{id:"105262",title:"Dr.",name:"Shahab",surname:"Khushnood",slug:"shahab-khushnood",fullName:"Shahab Khushnood"}],corrections:null},{id:"33369",title:"The Gap Measurement Technology and Advanced RVI Installation Method for Construction Period Reduction of a PWR",doi:"10.5772/33531",slug:"the-gap-measurement-technology-and-advanced-rvi-installation-method-for-construction-period-reductio",totalDownloads:2372,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Do-Young Ko",downloadPdfUrl:"/chapter/pdf-download/33369",previewPdfUrl:"/chapter/pdf-preview/33369",authors:[{id:"96024",title:"Dr.",name:"Do-Young",surname:"Ko",slug:"do-young-ko",fullName:"Do-Young Ko"}],corrections:null},{id:"33370",title:"Strategic Environmental Considerations of Nuclear Power",doi:"10.5772/36028",slug:"strategic-environmental-considerations-of-nuclear-power",totalDownloads:1655,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Branko Kontić",downloadPdfUrl:"/chapter/pdf-download/33370",previewPdfUrl:"/chapter/pdf-preview/33370",authors:[{id:"106823",title:"Dr.",name:"Branko",surname:"Kontić",slug:"branko-kontic",fullName:"Branko Kontić"}],corrections:null},{id:"33371",title:"Investigation on Two-Phase Flow Characteristics in Nuclear Power Equipment",doi:"10.5772/38404",slug:"investigation-on-two-phase-flow-characteristics-in-nuclear-power-equipment",totalDownloads:2822,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Lu Guangyao, Ren Junsheng, Huang Wenyou, Xiang Wenyuan, Zhang Chengang and Lv Yonghong",downloadPdfUrl:"/chapter/pdf-download/33371",previewPdfUrl:"/chapter/pdf-preview/33371",authors:[{id:"117087",title:"Dr.",name:"G.Yao",surname:"Lu",slug:"g.yao-lu",fullName:"G.Yao Lu"}],corrections:null},{id:"33372",title:"Analysis of Primary/Containment Coupling Phenomena Characterizing the MASLWR Design During a SBLOCA Scenario",doi:"10.5772/36494",slug:"analysis-of-primary-containment-coupling-phenomena-characterizing-the-maslwr-design-during-a-sbloca-",totalDownloads:2555,totalCrossrefCites:3,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Fulvio Mascari, Giuseppe Vella, Brian G. Woods, Kent Welter and Francesco D'Auria",downloadPdfUrl:"/chapter/pdf-download/33372",previewPdfUrl:"/chapter/pdf-preview/33372",authors:[{id:"108548",title:"Dr.",name:"Fulvio",surname:"Mascari",slug:"fulvio-mascari",fullName:"Fulvio Mascari"},{id:"110521",title:"Prof.",name:"Giuseppe",surname:"Vella",slug:"giuseppe-vella",fullName:"Giuseppe Vella"},{id:"110525",title:"Prof.",name:"Brian",surname:"Woods",slug:"brian-woods",fullName:"Brian Woods"},{id:"110527",title:"Dr.",name:"Kent",surname:"Welter",slug:"kent-welter",fullName:"Kent Welter"},{id:"110529",title:"Prof.",name:"Francesco",surname:"D'Auria",slug:"francesco-d'auria",fullName:"Francesco D'Auria"}],corrections:null},{id:"33373",title:'Radiobiological Characterization Environment Around Object "Shelter"',doi:"10.5772/38969",slug:"radiobiological-characterization-environment-around-object-shelter-",totalDownloads:1910,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Rashydov Namik, Kliuchnikov Olexander, Seniuk Olga, Gorovyy Leontiy, Zhidkov Alexander, Ribalka Valeriy, Berezhna Valentyna, Bilko Nadiya, Sakada Volodimir, Bilko Denis, Borbuliak Irina, Kovalev Vasiliy, Krul Mikola, Petelin Grigoriy",downloadPdfUrl:"/chapter/pdf-download/33373",previewPdfUrl:"/chapter/pdf-preview/33373",authors:[{id:"25919",title:"Dr.",name:"Namik",surname:"Rashydov",slug:"namik-rashydov",fullName:"Namik Rashydov"},{id:"67528",title:"MSc.",name:"Valentyna",surname:"Berezhna",slug:"valentyna-berezhna",fullName:"Valentyna Berezhna"},{id:"67547",title:"MSc.",name:"Volodimir",surname:"Sakada",slug:"volodimir-sakada",fullName:"Volodimir Sakada"},{id:"67911",title:"Dr.",name:"Olga",surname:"Seniuk",slug:"olga-seniuk",fullName:"Olga Seniuk"},{id:"67912",title:"Prof.",name:"Leontiy",surname:"Gorovyy",slug:"leontiy-gorovyy",fullName:"Leontiy Gorovyy"},{id:"67913",title:"Dr.",name:"Alexander",surname:"Zhidkov",slug:"alexander-zhidkov",fullName:"Alexander Zhidkov"},{id:"67923",title:"Dr.",name:"Valeriy",surname:"Rybalka",slug:"valeriy-rybalka",fullName:"Valeriy Rybalka"},{id:"67925",title:"Ph.D.",name:"Iryna",surname:"Borbulyak",slug:"iryna-borbulyak",fullName:"Iryna Borbulyak"},{id:"69311",title:"Prof.",name:"Olexander",surname:"Kliuchnikov",slug:"olexander-kliuchnikov",fullName:"Olexander Kliuchnikov"},{id:"69315",title:"MSc.",name:"Vasiliy",surname:"Kovalev",slug:"vasiliy-kovalev",fullName:"Vasiliy Kovalev"},{id:"69320",title:"MSc.",name:"Mikola",surname:"Krul",slug:"mikola-krul",fullName:"Mikola Krul"},{id:"69322",title:"MSc.",name:"Georgy",surname:"Petelin",slug:"georgy-petelin",fullName:"Georgy Petelin"},{id:"137595",title:"Prof.",name:"Nadiya",surname:"Bilko",slug:"nadiya-bilko",fullName:"Nadiya Bilko"},{id:"137596",title:"Dr.",name:"Denis",surname:"Bilko",slug:"denis-bilko",fullName:"Denis Bilko"}],corrections:null},{id:"33374",title:"Radiochemical Separation of Nickel for 59Ni and 63Ni Activity Determination in Nuclear Waste Samples",doi:"10.5772/36073",slug:"radiochemical-separation-of-nickel-for-59ni-and-63ni-activity-determination-in-nuclear-waste-samples",totalDownloads:3297,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Aluísio Sousa Reis, Júnior, Eliane S. C. Temba, Geraldo F. Kastner and Roberto P. G. Monteiro",downloadPdfUrl:"/chapter/pdf-download/33374",previewPdfUrl:"/chapter/pdf-preview/33374",authors:[{id:"106993",title:"Dr.",name:"Aluísio",surname:"Reis Jr.",slug:"aluisio-reis-jr.",fullName:"Aluísio Reis Jr."},{id:"107449",title:"MSc.",name:"Eliane",surname:"Temba",slug:"eliane-temba",fullName:"Eliane Temba"},{id:"107450",title:"MSc.",name:"Geraldo",surname:"Kastner",slug:"geraldo-kastner",fullName:"Geraldo Kastner"},{id:"107451",title:"Dr.",name:"Robeto",surname:"Monteiro",slug:"robeto-monteiro",fullName:"Robeto Monteiro"}],corrections:null},{id:"33375",title:"AREVA Fatigue Concept - A Three Stage Approach to the Fatigue Assessment of Power Plant Components",doi:"10.5772/37029",slug:"areva-fatigue-concept-a-three-stage-approach-to-the-fatigue-assessment-of-power-plant-components",totalDownloads:2019,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jürgen Rudolph, Steffen Bergholz, Benedikt Heinz and Benoit Jouan",downloadPdfUrl:"/chapter/pdf-download/33375",previewPdfUrl:"/chapter/pdf-preview/33375",authors:[{id:"110905",title:"Dr.",name:"Jürgen",surname:"Rudolph",slug:"jurgen-rudolph",fullName:"Jürgen Rudolph"},{id:"111091",title:"Dr.",name:"Steffen",surname:"Bergholz",slug:"steffen-bergholz",fullName:"Steffen Bergholz"},{id:"111092",title:"Dr.",name:"Benedikt",surname:"Heinz",slug:"benedikt-heinz",fullName:"Benedikt Heinz"}],corrections:null},{id:"33376",title:"Phase Composition Study of Corrosion Products at NPP",doi:"10.5772/34288",slug:"phase-composition-study-of-corrosion-products-at-npp",totalDownloads:2024,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"V. Slugen, J. Lipka, J. Dekan, J. Degmova and I. Toth",downloadPdfUrl:"/chapter/pdf-download/33376",previewPdfUrl:"/chapter/pdf-preview/33376",authors:[{id:"99519",title:"Prof.",name:"Vladimir",surname:"Slugen",slug:"vladimir-slugen",fullName:"Vladimir Slugen"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1073",title:"Wireless Power Transfer",subtitle:"Principles and Engineering Explorations",isOpenForSubmission:!1,hash:"539623d2f9a1dca563421e451940e4e1",slug:"wireless-power-transfer-principles-and-engineering-explorations",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/1073.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5413",title:"Thermoelectrics for Power Generation",subtitle:"A Look at Trends in the Technology",isOpenForSubmission:!1,hash:"d81a819e53a5ff35501b9876d5f6b1ab",slug:"thermoelectrics-for-power-generation-a-look-at-trends-in-the-technology",bookSignature:"Sergey Skipidarov and Mikhail Nikitin",coverURL:"https://cdn.intechopen.com/books/images_new/5413.jpg",editedByType:"Edited by",editors:[{id:"16374",title:"Dr.",name:"Mikhail",surname:"Nikitin",slug:"mikhail-nikitin",fullName:"Mikhail Nikitin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3177",title:"Wind Power",subtitle:null,isOpenForSubmission:!1,hash:"9a5f2db2003e1dfb3beb19541b2faf87",slug:"wind-power",bookSignature:"S M Muyeen",coverURL:"https://cdn.intechopen.com/books/images_new/3177.jpg",editedByType:"Edited by",editors:[{id:"122699",title:"Prof.",name:"S. M.",surname:"Muyeen",slug:"s.-m.-muyeen",fullName:"S. M. Muyeen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3589",title:"ICT - Energy - Concepts Towards Zero",subtitle:"Power Information and Communication Technology",isOpenForSubmission:!1,hash:"52d111bb721e0d749c1cee6c8b6d8ab8",slug:"ict-energy-concepts-towards-zero-power-information-and-communication-technology",bookSignature:"Giorgos Fagas, Luca Gammaitoni, Douglas Paul and Gabriel Abadal Berini",coverURL:"https://cdn.intechopen.com/books/images_new/3589.jpg",editedByType:"Edited by",editors:[{id:"168209",title:"Dr.",name:"Giorgos",surname:"Fagas",slug:"giorgos-fagas",fullName:"Giorgos Fagas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3724",title:"Distributed Generation",subtitle:null,isOpenForSubmission:!1,hash:"9383c05ece5ed76feff7645f261830ba",slug:"distributed-generation",bookSignature:"D N Gaonkar",coverURL:"https://cdn.intechopen.com/books/images_new/3724.jpg",editedByType:"Edited by",editors:[{id:"112984",title:"Dr.",name:"Dattatraya",surname:"Gaonkar",slug:"dattatraya-gaonkar",fullName:"Dattatraya Gaonkar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3660",title:"Nuclear Power",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"nuclear-power",bookSignature:"Pavel Tsvetkov",coverURL:"https://cdn.intechopen.com/books/images_new/3660.jpg",editedByType:"Edited by",editors:[{id:"10023",title:"Dr.",name:"Pavel V.",surname:"Tsvetkov",slug:"pavel-v.-tsvetkov",fullName:"Pavel V. Tsvetkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"62",title:"Power Quality",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"power-quality",bookSignature:"Andreas Eberhard",coverURL:"https://cdn.intechopen.com/books/images_new/62.jpg",editedByType:"Edited by",editors:[{id:"18782",title:"Mr.",name:"Andreas",surname:"Eberhard",slug:"andreas-eberhard",fullName:"Andreas Eberhard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3076",title:"Advances in Wind Power",subtitle:null,isOpenForSubmission:!1,hash:"7fd7c5d70cbc111f7a84a512c2189d48",slug:"advances-in-wind-power",bookSignature:"Rupp Carriveau",coverURL:"https://cdn.intechopen.com/books/images_new/3076.jpg",editedByType:"Edited by",editors:[{id:"22234",title:"Dr.",name:"Rupp",surname:"Carriveau",slug:"rupp-carriveau",fullName:"Rupp Carriveau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"477",title:"Nuclear Power",subtitle:"Control, Reliability and Human Factors",isOpenForSubmission:!1,hash:null,slug:"nuclear-power-control-reliability-and-human-factors",bookSignature:"Pavel Tsvetkov",coverURL:"https://cdn.intechopen.com/books/images_new/477.jpg",editedByType:"Edited by",editors:[{id:"10023",title:"Dr.",name:"Pavel V.",surname:"Tsvetkov",slug:"pavel-v.-tsvetkov",fullName:"Pavel V. Tsvetkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3073",title:"Power Quality Issues",subtitle:null,isOpenForSubmission:!1,hash:"41be446d0a7e208798819a2e31c44960",slug:"power-quality-issues",bookSignature:"Ahmed Zobaa",coverURL:"https://cdn.intechopen.com/books/images_new/3073.jpg",editedByType:"Edited by",editors:[{id:"39249",title:"Dr.",name:"Ahmed F.",surname:"Zobaa",slug:"ahmed-f.-zobaa",fullName:"Ahmed F. Zobaa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"57158",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11606",leadTitle:null,title:"Asteraceae - Characterization, Recent Advances and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tAsteraceae has several species of economic and medicinal importance. The latest Asteraceae research has opened up new opportunities for crop improvement. This book will discuss the advances in biotechnology, genetic diversity, molecular breeding, genotyping, association mapping studies, comparative and functional genomics, and epigenomics in Asteraceae. The book will also discuss biotic and abiotic stresses, transcriptomics, proteomics, and metabolomics approaches in Asteraceae, as well as the potential uses of Asteraceae in phytoremediation and pharmaceuticals. Current research trends, future research directions, and challenges will be highlighted. This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, students, and scientists.
",isbn:"978-1-83962-690-6",printIsbn:"978-1-83962-689-0",pdfIsbn:"978-1-83962-716-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"910ecf8411098a42bb250c87a978f1b9",bookSignature:"Dr. Mohamed A. El-Esawi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11606.jpg",keywords:"Biotechnology, Genetic Diversity, Molecular Breeding, Genotyping, Epigenomics, Biotic Stresses, Abiotic Stresses, Transcriptomics, Omics, Proteomics, Economy, Applications in Agriculture",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 14th 2022",dateEndSecondStepPublish:"June 23rd 2022",dateEndThirdStepPublish:"August 22nd 2022",dateEndFourthStepPublish:"November 10th 2022",dateEndFifthStepPublish:"January 9th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"11 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. El-Esawi received his Ph.D. degree in Plant Genetics and Molecular Biology from the Dublin Institute of Technology, Ireland, after which he joined the University of Warwick, United Kingdom; University of Sorbonne, France; and University of Leuven (KU Leuven), Belgium as a visiting research fellow. He is currently a visiting research fellow at the University of Cambridge, holder of four registered patents and various awards and grants. His h index is 30.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi",profilePictureURL:"https://mts.intechopen.com/storage/users/191770/images/system/191770.jpeg",biography:"Dr. Mohamed A. El-Esawi is a visiting research fellow at the University of Cambridge, United Kingdom, and Associate Professor of Molecular Genetics, Botany Department, Faculty of Science, Tanta University, Egypt. Dr. El-Esawi received his BSc and MSc from Tanta University, and his Ph.D. degree in Plant Genetics and Molecular Biology from Dublin Institute of Technology, Technological University Dublin, Ireland. After obtaining his Ph.D., Dr. El-Esawi joined the University of Warwick, United Kingdom; University of Sorbonne, France; and University of Leuven (KU Leuven), Belgium as a visiting research fellow. His research focuses on plant genetics, genomics, molecular biology, molecular physiology, developmental biology, plant-microbe interaction, and bioinformatics. He has authored several international peer-reviewed articles, book chapters, and books, and has participated in more than sixty conferences and workshops worldwide. Dr. El-Esawi is currently involved in several biological science research projects.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"9",institution:{name:"Tanta University",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418641",firstName:"Iva",lastName:"Ribic",middleName:null,title:"M.Sc.",imageUrl:"https://mts.intechopen.com/storage/users/418641/images/16830_n.png",email:"iva.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66470",title:"Mining of Minerals and Groundwater in India",doi:"10.5772/intechopen.85309",slug:"mining-of-minerals-and-groundwater-in-india",body:'Minerals and their exploitation had been carried out since centuries by two major methods, namely, surface mining methods and underground mining methods. In both these methods, groundwater role is important as well as advocated because mining has influence on hydrology. While permitting mining, the disturbance to the hydrological regime should be minimum or as less as possible.
It is beyond doubt that for food security, human health, energy, and ecosystem, groundwater is absolutely important for the entire world [1].
This groundwater is continually being put under increasing stress because of the industrialization, growing needs of the population, and its improper use as a resource. Its mismanagement has led to uncalled water scarcity in present time and also threatened us with water pollution problems. Groundwater science and its accurate estimation for the mining areas are a bit cumbersome because the dynamics of groundwater keep on changing as excavation size is changed. Therefore, the role of groundwater in mining of minerals assumes special emphasis which is analyzed and discussed as a separate chapter in this book. This knowledge, though very exhaustive, will be certainly helpful for the mining areas and mega-sized mining/mineral sector in improving the quality of human life.
While dealing with water problems of mines, three keywords must always be remembered as they are extremely important, namely, mine water (MW), groundwater (GW), and surface water (SW). Our focus in this chapter has been kept on mine water and its analysis with respect to the two principal methods of mining, that is, opencast mine and underground mine only. Besides these principal methods, other methods are not covered, though other novel methods and technologies of mining do exist, for example, solution method, mechanical method, aqueous extraction methods (hydraulic mining), etc.
The MW analysis automatically covers SW and GW, as mine water is either/or a combination of both for all mineral types (categorized as fuel minerals, that is, coal and lignite; metallic minerals, that is, iron ore, bauxite, etc.; nonmetallic minerals, that is, limestone, dolomite, etc.; and minor minerals, that is, sand, building materials, etc.) and their extraction from earth called “mining of minerals.”
In this introductory paragraph, it is apt to highlight some basic points of groundwater to deal mining of minerals, scientifically. “Groundwater” in surface mines is found below the water table and covered by a layer of soil and/or rock. Groundwater is always present at below ground level and indirectly available at the mine pit as “base flow.” It gets intercepted while excavating mineral(s) in open mines. Availability of groundwater in open-pit mines and underground mine workings has number of differing dimensions of basic hydrology influenced by site-specific geology. Thus, it requires basic knowledge of water flow and water movement (Darcy’s law). Groundwater of mining area occurs in aquifers which are of different categories, namely, unconfined aquifers, semi-confined aquifers, and confined aquifers. The groundwater is contained either in the rock pore spaces or rock fractures/cracks depending on the rock types. Compared to the surface water, it is generally considered to be less easily contaminated, but this does not infer that groundwater is safe from pollution perspective. The groundwater can become contaminated where polluted runoff seeps through the ground to the water table or flows down through fractures or cracks in bedrock (seepages). Wherever surface water bodies are fed from groundwater sources, water contamination may be present in both, though isolated by ground cover. In addition, groundwater often contains dissolved minerals as a result of prolonged contact with rocks containing minerals of different types and varieties which can alter its quality, for example, the presence of arsenic, nitrates, and fluoride [2, 3, 4, 5, 6] in aquifers has been reported, and this is an indication for this. The depth of the groundwater at which it is present in and around the mine area is a one major point of observation as well as concern for mine water-related issues.
To understand groundwater-related problems of mine, hydrological and geological setup of the area is first studied. With reference to any mine or the mining area, hydrogeological setup encompasses aquifer characteristics, that is, nature, type, parameters, etc.; all local and regional geological details; and plans for mining and total picture of hydrology, drainage, discharge, etc. The approach for scientific investigation, to search solution, usually includes field monitoring (pre-monsoon and post-monsoon monitoring), instrumental survey (e.g., Resistivity Image Profiling Survey and GPR Survey, etc.), groundwater modeling, and mine planning, that is, drainage, dewatering, etc. Mine being a production enterprise (unit) requires its assessment from industrial perspective; hence, this chapter makes no pretense of neither mining engineering nor of hydrology but explains to the reader the interrelation of mining process with water in general and groundwater in particular.
Here, it is equally important to describe briefly what
Water in mines, that is, “mine water,” usually refers to the water contained in the mined-out open area or dug-out area generated as a result of mining of mineral. This excavated area is in open-pit form and contains surface water as well as groundwater. In the case of underground mine, the water encountered is principally groundwater. To address technical issues, it is always better to consider them as two entities, that is, surface water and groundwater (Figure 1), though difficult, to categorize in the case of surface mine.
Problem and issues of water in mines.
The principal source of mine water is the “rainfall,” and other possible sources could be enumerated as:
Intersection of water table during mining
Seepage water
Nearby major water bodies in and around the mining area
Nearby mine workings, may be surface or underground
Incessant rainfall/heavy downpour
Mine water, a valuable commodity, is also a form of industrial wastewater (effluent) which can be a disaster in mining areas or a boon to ease the water scarcity problem locally. Both SW and GW are considered at all stages of the mining operation starting from planning to extraction to restoration stage. Different aspects of water covered include collection and handling of hydrological data, control of runoff, magnitude of water, diversion of water channels in mines, (if any), erosion and sediment control, dewatering, different water pollution forms as observed in mines, and water management. As said above that the interrelationship of water and mine is complex and far reaching, the solution should be practical to ensure the efficient running of mining operation while adequately protecting the environment.
It has been observed that water pollution in mines is common and well described but their scientific importance is often ignored while managing the mine production. The reasons for this are enumerable. It is desirable that every mine’s water, if present, is turned into a useful asset. In some situations water management at mine is neither environmentally friendly nor comparatively easier to manage, for example, acid mine/rock drainage (AMD/ARD), and its management is a costly affair compared to higher TDS water in a limestone quarry. Therefore, sincere attempts have to be made to ensure that AMD pollution and high TDS hard water are treated properly. Similarly, elemental concentration must be checked within permissible limit.
When water comes in contact with exposed mineral at the mine (either at pit or in underground), the potential for water contamination increases manifold. In order to reduce and minimize the water pollution requiring treatment, various control techniques are available. On case-to-case basis and looking at the type of mineral mined, the mine water pollution are dealt for different solutions, for example, heavy metal contamination into water, thereby raising pollution levels are quite frequent in the case of metallic mines.
Mine water control techniques and their selection strategies are cost based and site-specific. It should be carefully selected to prevent the release of contaminated water into the environment. From area to area, one or combination of more than one method may be applied for the pollution control. With high rates of precipitation in an area, significant emphasis must be placed on drainage and its combinations in varying topographies, whereas the mine environment in arid regions with little water availability must choose
The topic of pollution is so vast and varied that its description in limited pages is beyond the scope of this chapter. Therefore, readers are advised to consult specific literature related with the problem.
Water discharge from a mine is often controlled by effective drainage around. In India, water discharged from mines are governed by general discharge standards/limits framed by the Ministry of Environment, Forest and Climate Change (MOEFCC) Govt. of India [7]. These effluent discharge standards of India containing about 33 pollutant parameters are framed under the Environment (Protection) Rule, 1986 (under Schedule VI).
Discharge of mine water into natural drainage system without any treatment is also an issue to be reckoned in mining geohydrology. In order to avoid the degradation of downstream water channels by excessive suspended sediments from mine, all runoff leaving the mining area should be routed through “sedimentation pond” where the suspended solid can be reduced to acceptable limits. Factors to be considered during design and construction of sedimentation pond include hydrology, its location in mine, construction material and its cost, maintenance/cleanout operations, and applicable legislative requirement [8].
In mining areas, either dendritic pattern or parallel drainage pattern is often present (Figure 2).
Drainage patterns commonly encountered at mining sites.
Intercepting and diverting surface water (rainwater, runoff water, stream water, snowmelt water, etc.) from entering the mine site are the first step to tackle water accumulation in a pit. Since surface mining causes land disturbance including the removal of vegetation, increased runoff, erosion, and sediment, every attempt should be made to control the mine water discharge. Proper relief and gradient together with adequate slope design are helpful in capturing drainage water which can control runoff and erosion of soil as well as sediments. Topography and watershed details of the project area are equally important from drainage and discharge angle. For the mine water discharge, the knowledge of flow direction together with reduced level (RL/MRL) detail helps in planning. Small seasonal nallahs/streams with first-, second-, and third-order drainage pattern are observed in the mining region. Drainage map of the studied mine area is generally drawn covering core zone or CZ (5 km radius) and buffer zone (BZ) of the mine lease (10 km radius). Together with drainage and the watershed area details, an assessment about the seepage from the pit, mine dumps and tailing dams, etc. in nearby area can be made. Such analysis provides the basis for delineating control measures of seepage flow and water management.
In mine-related studies, generally the term
Several techniques of “control and treatment” are available to manage groundwater, for example, zero-level discharge. As a basic rule of thumb, if one has to control and treat water in a mining area, the approach should be to keep pollution contained in the mine itself. Their control beyond the mine boundaries is neither economical nor manageable. Depending on the problem encountered, groundwater infiltration or discharge should be handled and aquifer contamination be avoided, for example, oxidation and leaching of mine drainage produce high iron and sulfate concentrations and low pH in groundwater.
For the sustainable development of mining areas, the main source of pollution should be traced, and by applying chemical and bacteriological methods of treatment, water pollution shall be dealt or treatment methodology applied. The cost of treatment and risk involved must be checked for viability of adopted measures deployed to control pollution. To control mine water discharge and treat it for pollution abatement,
Intelligent mine water management (IMwM) (courtesy: Christian Wolkersdorfer, IMWA).
As depicted in Figure 3,
Mine water hydrogeology
Mine water geochemistry
Qualitative analysis of mine water
Quantitative estimation of mine water
Water-related mine design (tailing pond, etc.) and dewatering planning
Mine water utilization and end use of mine water (extracting values from mine water)
Mine water pollution (from tailing, dumps) and mine water discharge
Mine water monitoring and treatment
Microbiology of mine waters and bio-leaching
Stable isotopes in mine waters (tracer test, etc.)
Mine water management (approach, strategies, and social conflicts)
Mine closure, remediation, and follow-up care
Mine water limnology/pit lakes
Geotechnical issues related to mine water (destabilization of slope/slope failure)
Mine water modeling (three-dimensional or two-dimensional)
Process simulation tools related to mine water
Water policy issues in mining
Mine water regulation
Mine water and climate change
Best mining practices (BMP) to curb and contain mine water pollution, groundwater lowering, radius/area of influence, groundwater recharge, induced infiltration, cone of depression, water table lowering, mine drainage, consequences of dewatering and management, etc. are all covered in it.
Recycling concept rationally articulated for comprehensive short-term as well as long-term planning is very useful for water control, treatment, and management provided their effective implementation is done in field.
Mining of minerals often leads to various environmental impacts [10] including water [11, 12]. The analysis of impact(s) can be done by comparing present scenario with past or pre-mining scenario [13] and evaluated as either positive or negative or the combination of both. These are analyzed with respect to the core zone, 5 km radius area (or alternatively consisting of the active mining area alone), and buffer zone, consisting of 10 km radius area. The likely impacts of open-pit mining could be in terms of:
Drawdown, that is, lowering of water table
Water quality deterioration, that is, water pollution
When water is discharged from the pit mine which has intercepted water table, firstly the “collected water” is discharged, and then water from phreatic surface (water table) is sucked, and a “cone of depression” is formed with its axis at the lowest point at the sump bottom having lowest RL. If discharging is done for more time period, this cone of depression continues to enlarge, and pronounced effect is noticed. In technical terminology this is what is referred as “drawdown.” Figure 4 explains this drawdown principle in general for a discharge through pit or dug well as applies in hydraulics. If more than one point of water discharge or drawdown exists in a pit mine and kept overlapped, the lowering of water level takes place rapidly, and quarry bottom can be dried with faster speed (Figure 5).
Cone of depression and radius of influence (courtsey: Dr. Yohannes Yihdego, Australia).
Interference between discharging wells (courtsey: D.K. Todd).
In respect of drawdown, two different kinds of situations come across in an open-pit mine: firstly, when the mine is working above the water table and, secondly, when the mine is working below the water table. Water (or drawdown) does not pose any problem in the former case, whereas in the latter case, lowering of water table may be the impact of mining. As a general principle, drawdown is usually in excess of 65% of unconfined aquifer thickness [14]. Such drawdown varies from rock type to rock type. Therefore, this statement cannot be taken as a thumb rule.
While analyzing the impact of mining on nearby villages, that is, adjacent to pit, the water-level records or fluctuations (in open dug well/borewell or piezometer) in pre-monsoon and post-monsoon season are taken into account. Because India has monsoonal climate and maximum rainfall occurs during June to September months, pre and post monsoon philosophy is considered best. On the basis of field observations, that is, rock, formations, and aquifer conditions, the impact is assessed of that study area, for example, GW in hard rocks will be present in the fractures/cracks/and fissures in small quantity while compact soft sandstone rocks contain significant groundwater quantity in rock pores and interstices. The continuity of cracks in aquifer determines the water availability even though stratum has impervious characteristics. Therefore, in such situations drawdown by pumping will be observed as local impact only. Another impact of mining that could be natural also is defined in terms of “radius of influence.”
It is often asked how to estimate or quantify the impact of mining on groundwater regime? This question can be scientifically and effectively answered by estimating the influence radius or radius of influence (Ro/Re). The importance of Ro/Re with respect to a mine is that it demarcates a visually assessable picture of impact in terms of a measurable distance and should be kept constant/or minimum as far as possible.
Radius of influence (Ro) in technical terminology is the impact area, spread around the mine due to groundwater extraction or use. It is calculated using Eqs. (1) and (2) given in the below figure.
Ro is directly proportional to “draft magnitude” and “average rainfall” that occurs in an area. Here, the GW extraction is limited to mines only and as an industrial unit which otherwise could be for irrigational, agricultural, or domestic purpose also. For a “single pit” in an open mine, an equivalent radius of influence (Re) is calculated, whereas “Ro” is determined for multiple/concentric pits.
The operative staff, for all practical purposes, can judge the cone of depression, drawdown conditions, and radius of influence in the mine based on their field experience.
Besides groundwater lowering, water quality implications (in the form of pollution) are a major impact issue of mining on environment globally. The pollutants (or traces of heavy metals) are released into the groundwater by geogenic sources through weathering of the geologic formations [15] and anthropogenic sources. Contamination in groundwater because of anthropogenic sources, for example, agricultural fields and use of fertilizer/pesticides, sewages and solid wastes, return flow due to irrigation, etc., is most often noticed and is far-far larger than the water-level lowering impact mentioned above. The water quality implications and environmental impacts are described/covered in appropriate section of this chapter in a scattered manner. It is so because number of cross-connecting factors of land and water has to be looked into for quality evaluation (Sections 2 and 5.2).
When mine becomes deep or excessive watery conditions are encountered in underground mines or when mine is located in the vicinity of a major water body and intensive seepage through strata (more than normal) occurs, then scientific mining and planning for groundwater management becomes essential. At varying locations, different mining and differing groundwater conditions are observed, for example, when mine is located adjacent to sea/in coastal areas, when aquifer encountered is confined and water table is under pressure, etc. In all these situations, mine planning for mineral extraction below the water table has to be carried out differently taking into account the water hydrology. World over, the depth denomination differs from country to country for an open surface mine, operating in pit form (Box 1). But in general and in practical sense, all mines below water table are likely to encounter water or watery condition whether it is an open-pit mine or an underground mine.
Deep mine or deep mining is simply mining underground, in which the miner and/or machinery work beneath a cover of soil or rock. There is no fixed norm for mine to become “deep” or “shallow.” As a rule of thumb, exploitation of fuel minerals (coal/lignite/brown coal) at depths exceeding 300 m depth can be considered as deep mine, whereas for metallic or nonmetallic mineral deposits of modest mineral value, this norm may be taken as 350 m approximately.
When open-pit mine is deepened beyond a certain depth, “economic stripping ratio” comes into picture and the underground mining originates in which gaining access to the mineral deposit is by means of vertical shafts, inclined shafts, drift mining, or by other means. The value of mineral exploited, that is, cost of mineral production from mine (ROM cost), govern its excavation depth. For a higher value mineral and lower value mineral, such norms are staggering differently.
Planning for mining below ground level has to consider the effect of deepening of pit. Therefore, an interdisciplinary approach intermingling both planning and engineering aspects is needed. Considering the constraints posed by the dynamics of groundwater, that is, spatial variability, hydrogeological data and its availability, socio-economic conditions, demographic profile of the area, etc., its quantitative estimation is done. In Indian condition, Groundwater Estimation Committee (GEC-1997) methodology seems practical for calculating water quantity. On this basis, planning of mining below ground level and water management through engineering approach yields desired output. To plan a mine for industrial purpose, obtaining groundwater abstraction permission is necessary. Such statutory compliance, particularly groundwater permission in mining, makes the water management easier [16]. In India and until now, it was mandatory for all new industries to apply for groundwater extraction clearance, but now it is mandatory to obtain these clearance for old as well as new industry (http://times of india.indiatimes.com/articleshow/49832855.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst). This has initiated the need and emphasized for estimation of groundwater quantity and its management.
To do the planning as per the approved mining plan, excavation depth (RL/MRL) and the lowest MRL up to which mining will reach in the future have to be designed scientifically. Depth-wise RL, pit dimensions, and water quantity (Q) are then needed for assessment. It may be noted that the excavated area dimensions keep on changing as per the
Geohydrological evaluation of the mine area is extremely helpful for the groundwater assessment and futuristic planning of the mine area. In addition to the GW and SW, seepage water is also accounted for in mine’s planning. Seepage water appears through mine walls in open pits, and field observations for seepage flow are generally recorded during post-monsoon season. To get the total water quantity of mine pit, it is simply added to the SW and GW quantity.
By groundwater modeling and simulation methodology, groundwater-level decline (maps, etc.) and the groundwater quantity can be estimated [17]. To understand the groundwater resource position in a mining area, water table depth below ground level and aquifer types are extremely important. If these are known and utilized correctly, the planning for mining will be easier. A general trend indicating rate of groundwater discharge/rate of outflow with time is illustrated below (Figure 6). The help of graph can be taken to know the availability of water during different months in a year, which varies from 200% (100% for surface water and 100% for groundwater) to as low as 55%.
Rate of groundwater discharge (or rate of outflow) with time
As a part of mine planning, operation, and execution, following methodology is helpful for mining
Based on topo sheet of the area, a
Observe the flow pattern of surface water in and around the mine area.
Determine the groundwater flow and its direction using hydrogeological map of the area. Such maps are also available with state/federal groundwater authorities.
Calculate total water quantity which includes SW + GW+ seepage water.
Find out the “area of influence” in measurable parameters, and assess the real field conditions.
Execute planning of mine, keeping in mind the drainage, flow direction, water quantities, influenced area, and ground elevations of various nodal points of mine lease area.
Make “dewatering plans and scheme” in totality and not patch-wise. Sump design with “desilting arrangements” and suitable “pumps and pumping system” are a part of dewatering plan and scheme [18]. Their design should be based on engineering considerations and technical intricacies.
Decide the network of drains and drainages, its location, elevation, etc. for proper water outflow of water based on drainage pattern of the area. Make use of surveying for finalization.
Keep check on:
Runoff inside the pit
Slope erosion and control (including stabilization by natural vegetation, etc.)
Sediment/silt load accumulation in sump/sedimentation pond, etc.
Water quality and its deterioration at mine level
Periodical maintenance/observation
Prepare a “master plan” and implement it in practice.
Mine water in the mining areas comes across two broad issues, namely, water quantity and water quality. In most of the mines and in different parts of the world, both quality and quantity of groundwater resources are required for management, for statutory compliance, and for planned extraction of minerals from the mine [19, 20, 21, 22, 23].
The groundwater resources have both static and dynamic dimension. But essentially it is a dynamic resource which is replenishable (annually or periodically) through precipitation. It is static in “saturated zone” and dynamic in the upper unsaturated zone (upper part of the water table) where water-level fluctuation is recorded. Near accurate estimation of groundwater resources is possible by adopting a set of the steps and formula framed for the purpose. A brief about Indian methodology for groundwater estimation is given in this chapter below for reader’s knowledge and understanding. This may be noted that from country to country, such estimation procedure or methodology may differ.
To estimate groundwater extraction in an open mining pit, two broader approaches are possible. First is “planned depletion approach” (sustainable yield method), and second is “safe yield approach.” “Safe yield approach of assessment” is based on groundwater recharge that takes place in an area or region, and recharge is calculated using
India with its vast areal extent, long coastline, and large deltaic tracts forming a linear strip around peninsula is characterized by diversified geological, climatological, and topographic setup. Discontinuous aquifers of varying yield potentials occupy 2/3 area of the country, and as said above most of the mine area lies in hard-rock terrain. Thus, GEC ‘97 methodology and its norms for hard-rock areas [24] remain applicable for evaluation and assessment of groundwater. By understanding the behavior and characteristics of rocks, the water quantity as well quality in the mining area can be estimated. Steps and formulas of GEC ‘97 methodology and the calculation for open-pit mine (surface mine only) are shown below.
(A) Groundwater calculation
GW quantity available is that quantity which is likely to be experienced in the form of pit water either as punctured water table (groundwater) or in the form of seepage water from the footwall (FW)/hang wall (HW) sides of mine pit walls (see point C of this section below).
(
Method 1: infiltration method
Maximum feasible groundwater quantity
Method 2: specific yield method
Maximum feasible groundwater quantity
Average groundwater quantity within lease hold area in a year
Considering, 365 days in a year, quantity in a day can be worked out
Groundwater development/groundwater utilization for mine area
Groundwater development can be assessed and estimated by the established procedure of GEC ‘97. An assessment about the stage of groundwater development is helpful in knowing the overall groundwater scenario of the study area.
The stage of groundwater development in a given sub-unit is defined as the current annual gross groundwater draft for all uses (C) in that sub-unit expressed as a percentage of the net annual groundwater availability (B) in that sub-unit (GEC ‘97). Thus, if stage of groundwater development is “A,” this can be calculated as follows:
Similarly, for a mine area GW utilization = output/input (in percentage) = total discharge through mine/net groundwater availability
Category | Stage of GW development | Water table trend/level |
---|---|---|
Safe | ≤70% | No water table falling trend |
Semi-critical | >70% ≤ 90% | Falling water table trend |
Critical | 90–100% | Falling water table trend |
Overexploited | >100% | Falling water table trend |
The sub-unit for the purpose of assessment can be a lease area of mine or a command/non-command area. Having known the GW development/utilization in the mining area, the same can be compared with the standard regional norms. Based on this, the very purpose of evaluation and assessment of groundwater analysis can be categorized as “safe” or “critical.”
According to the availability, the current stage of development, and water table fluctuation trend, its allocation for various uses in future, that includes domestic and industrial uses, can be made.
Groundwater recharge or total annual replenishable recharge (TARR) (unit—m3/TCM/MCM)
This is the maximum feasible recharge per annum (Rc or Rc\'), and usually referred as total annual replenishable recharge (TARR) is calculated by two methods as per the formula given below.
Method 1: rainfall infiltration method
Method 2: specific yield method
Note:
(A) For alluvial terrain of India | ||||
---|---|---|---|---|
S.no. | Geographical location/formations | RIF as a fraction | ||
Recommended value | Minimum value | Maximum value | ||
1. | Indo-Gangetic plains and inland areas | 0.22 | 0.20 | 0.25 |
2. | East coast | 0.16 | 0.14 | 0.18 |
3. | West coast | 0.10 | 0.08 | 0.12 |
(B) For hard-rock terrain of India | ||||
---|---|---|---|---|
S.no. | Rock types | RIF as a fraction | ||
Recommended value | Minimum value | Maximum value | ||
1. | Weathered granite, gneiss, and schist with low clay content | 0.11 | 0.10 | 0.12 |
2. | Weathered granite, gneiss, and schist with significant clay content | 0.08 | 0.05 | 0.09 |
3. | Granulite facies like charnockite, etc. | 0.05 | 0.04 | 0.06 |
4. | Vesicular and jointed basalt | 0.13 | 0.12 | 0.14 |
5. | Weathered basalt | 0.07 | 0.06 | 0.08 |
6. | Laterite | 0.07 | 0.06 | 0.08 |
7. | Semi-consolidated sandstone | 0.12 | 0.10 | 0.14 |
8. | Consolidated sandstone, quartzite, limestone(except cavernous limestone) | 0.06 | 0.05 | 0.07 |
9. | Phyllites, shale | 0.04 | 0.03 | 0.05 |
10. | Massive poorly fractured rock | 0.01 | 0.01 | 0.03 |
Rainfall infiltration factor (RIF) as per GEC ‘97 and terrain conditions.
Groundwater recharge may also take place through other point/line sources namely tanks, ponds and river/nala. Thus, recharge through different sources includes:
Recharge through irrigation
Recharge through stagnant water bodies namely ponds and tanks etc.
Recharge through water-filled small-sized pits or spread of water
Recharge through return flow
This can be estimated for the catchment area and command/non-command area as the case may be using GEC ‘97 methodology. Its descriptive details can be referred from [25]. With increasing focus on sustainable development of groundwater resources, augmentation of water conservation structures, with the aim of increasing groundwater recharge, can be implemented in the field. The water conservation structures include percolation tank, check dam, nalla-bund, etc. Recharge through such planned/proposed recharge structure can then be calculated by knowing average water spread area, seepage factor, and water containment days.
Draft calculation/estimation (unit—m3/TCM/MCM per year)
“Draft” means consumption. In mining case study, which is an industrial setup, three types of drafts are considered prominent in estimation/calculation, namely, “domestic draft,” “draft through mine discharge,” that is, pumped out water quantity from pit, and “industrial water draft” for mineral processing (consumption). To estimate domestic draft, total population of the study area and sources of groundwater abstraction must be known. For such calculation all villages and human settlements in the core zone (CZ) and buffer zone (BZ) area are considered which covers 10 km radius area around the pit center. Thus, domestic draft/year (considering groundwater as the only sources).
(B) Surface water calculation
In general, surface water (SW) quantity, that is, W2, is calculated on per day basis because surface water quantity differs from season to season. This quantity is dependent on rainfall/precipitation (during wet season of monsoon). For estimation purpose, maximum rainfall occurred (i.e., worst-case scenario) or average rainfall for 10 years or more can be considered. Separate estimation should be done/shown for peak rainfall period indicating number of days and either the lease area or catchment area as the case may be is considered for calculation.
Surface water quantity (W2)
In India, where monsoonal climatic condition exists, the maximum surface water quantity in a mining pit will be available for a period of 92 days (3 months approximately) in a year, that is, during monsoon and post-monsoon period of July to September end only. In summer season, quantity of water present in pit as well as in lease area will be minimum and always less than the quantity during monsoon period (Table 2).
S.no. | Period/month | Total number of days | Availability of water quantity | Remarks | |
---|---|---|---|---|---|
Surface water | Ground water | ||||
1. | January to February | 59 days | Less than moderate | Present as base flow |
|
2. | March to June | 122 days | Minimum | Present as base flow | |
3. | July to September | 92 days | Maximum | Maximum | |
4. | October to November | 61 days | Less than maximum (but ample) | Maximum | |
5. | December | 31 days | Moderate | Present as base flow |
Quantity-wise surface water availability over different periods in a year
Important notes:
(C) Seepage water calculation
Normally, seepage water in mine pits occurs as a result of interconnection of pit wall with water body located either in vicinity or at a distance. Capillary action with aquifer also leads to the seepage on pit walls even at upper elevation. If less seepage is observed, the same can be ignored, and seepage water quantity can be taken as “nil.” For more seepages, the calculations are based on the general principle of water outflow from the seeped surface area in a recorded time. It is simply added to the SW and GW quantity to obtain total water quantity. Thus, seepage water quantity
(D) Water balance
When GW, SW, and seepage water quantity is known, the water balance of the assessment area is calculated as follows:
Estimated GW quantity for different case studies using GEC ‘97
Having discussed the groundwater quantity for an open-pit mine, an obvious question arises. Whether groundwater calculation for underground mine (Qu/g) is also estimated in the same way? Its answer is no. The approach for estimating groundwater quantity with respect to an underground mine is sharply different. Q for an u/g mine is full of uncertainties and based on the actual field conditions encountered. Such field conditions are many, either created or naturally encountered, for example, extent of underground mine development affects the creation of void’s underground, this in turn has a close connection with groundwater movement in encountered aquifers.
Secondly, depth of underground workings from surface has linkages with groundwater recharge occurring in that particular area, which in turn is related with local rainfall. Obviously, rock types, its porosity, and hydrological characteristics have key role in groundwater movement. Similarly, geological features such as faults, folds, unconformities, lineaments, etc. reflect their own dominance in groundwater quantity as well as movement. Thus, both rock type (different formations) and geology, for either open-pit mine or an underground mine, have tremendous importance. Its detailed study and engineering judgment can help one to estimate the groundwater quantity approximately, if not exactly. Thus, approach for estimating Qu/g must incorporate study of borehole litho-logs of the mine/area and other related parameters, namely, rainfall, recharge, aquifer and its characteristics, extent of underground mine development, and working depth. Based on groundwater movement principles (Darcy’s law), runoff and recharge relationship of surface water and general estimation formulas as applied in GEC ‘97 methodology Qu/g for quantitative can be estimated. Further, this may be noted that the
Here, it is important to reaffirm that in the paragraph above, author has clearly showed how the groundwater quantity can be calculated and how it is related with several factors. This water quantity calculation is helpful at the planning stage and operational stage of the project for “dewatering planning and related aspects.” One can also know the
The qualitative assessment of groundwater samples (or surface water samples) from the mining area and surrounding areas is required to infer water quality (WQ) and thereby knowing its suitability for various uses. The mine water vary greatly in terms of concentrations of various chemical constituents, as water quality is likely to be affected with mine site parameters which are specific in nature.
Various studies on interrelationship between water quality, geology, and mining activities have been carried out in Indian mines [11, 15, 21, 31, 32, 33]. Similar studies and attempts are in vogue with reference to the different mines around the world, and their list is exhaustive.
Water quality assessment can be done either by field method(s) or by laboratory method(s). Their related aspects, that is, quality parameters and its selection for analysis, characterization, field sampling, water storage before and after lab analysis, periodical monitoring of quality for drawing inference, etc., require in-depth description parameter-wise [34]. For this, standard operating procedure (SOP) can be applied [35], and available literature on the specific subject can be referred for the details. Their elaborate description (field and laboratory method) has not been described in this chapter because ample of literature is available on the water quality and its assessment, even some of it is described by other authors in this book itself.
As regards water quality in mines, the following comes into the reader’s mind—(i) the water quality of surface channels flowing in the mining area; (ii) the mine pit water quality; (iii) dump/spoil bank water quality; and (iv) tailing ponds/impoundments water quality. Depending on the type of mineral excavated, the quality issues are to be recognized and assessed, for example, acid mine drainage problems are a severe water quality issue in the case of coal mines. The elemental analysis (pH, TDS, total hardness, etc.) is needed for limestone and dolomite mine, whereas lead-zinc, copper, iron ore, and bauxite mines (mines of metallic minerals/ore) require attention toward heavy metal constituent’s analysis.
Inseparable surface water and groundwater and its pollution can be assessed or evaluated qualitatively. Some important water quality parameters and major possible water contaminants and pollution indicators for mining and allied industry are shown in Tables 4 and 5. Having determined the value of each parameters, may be either low/high or within permissible limit/outside permissible limit, the scientific explanation of pollution status can be given. For each of the studied case, the pollution parameters that accounts are different and as according to the water usages. It is also recognized that the mine water quality, which is present in the mine or in the surrounding areas around the mine sites; in shallow aquifers and deep aquifers of mine sites, though not comparable with one another but governed by the same scientific principles/groundwater chemistry. Chosen WQ parameters are hence critical for valuation.
Physical | Chemical | Biological | Radiological |
---|---|---|---|
Color | pH | Virus | Uranium |
Odor | Acidity/alkalinity | Bacteria ( | |
Temperature | Hardness | Algae | |
Turbidity | Ammonia (free) | Other nuisance organisms | |
Foam and froth | Nitrates | ||
BOD/COD | Human-related inorganic constituents | ||
Calcium | Arsenic | Lead | |
Magnesium | Asbestos | Zinc | |
Chlorides | Barium | Nickel | |
Sulfates | Cadmium | Nitrate | |
Phosphates | Chromium | Selenium | |
Sodium | Cyanide | Silver | |
Potassium | Fluoride | Sodium | |
Redox potential | Iron | Mercury | |
Conductivity | Hardness |
Some important water quality parameters
TDS | Sulfates (SO42−) | Fluoride |
COD | Arsenic | Phosphates (PO42−) |
BOD | Bicarbonates | Zinc |
Carbon (organically linked) | Iron | Copper |
Hydrogen (organically linked) | Manganese | Lead |
Nitrogen | Sodium | Mercury |
Detergents | Potassium | Temperature |
Oxygen | Calcium | pH |
Nitrates (NO3−) | Magnesium | Conductivity |
Nitrites (NO2−) | Total hardness | Redox potential |
Ammonia (NH4+) | Chlorides | |
H2S (in dissolved form) |
Main possible groundwater contaminants and pollution indicators in mining and allied industry
By knowing the water quality, one can easily trace back the source(s) of pollution, and management measures can be taken accordingly. Further, it is helpful and suggestive to know the background history also for proper assessment of WQ. Advances in instrumentation, modern computational technology, and improved management techniques are able to reduce many negative impacts arising out of water quality pollution.
It is found that the pH of the mine water fluctuates both ways from the normal range of 7 and the total hardness (TDS) parameter also varies considerably depending on the prevailing hydrological regime and the variation in lithology. These parameters mainly decide the mine water suitability for domestic, irrigation, and other miscellaneous uses. The anion and the cation chemistry (dominated by HCO3−/SO4− concentration and Ca2+ and Na2+ ions, respectively) and hydro-chemical facies (Mg-Ca-HCo3 and Mg-Ca-HCO3-Cl, etc.) knowledge can put forward the water chemistry mechanism for its various uses [36]. By knowing parametric values of various chemical parameters, sodium absorption ratio and residual sodium carbonate and acidity/salinity of mine water can be determined or assessed.
Thus, in brief, it is learnt that assessment of water quantity and quality is a pre-requisite for planning and development of mine. Mining of minerals at shallow depth can be done without adversely affecting the groundwater; however, when mine/mining goes deep, that is, below water table, the need to check its quantity, availability, and scientific management arises. Both quality and quantity assessment parameters are since field-based; a minor departure in filed values is possible. Nearly (±) 20% departure from actual scenario is generally observed and admissible. By overcoming field measurement difficulties and adopting standard operating procedure (SOP), near accurate evaluation of groundwater can be done.
For the mining industry as a whole, clear and transparent “corporate policy” provides a direction for the implementation of plan and programs in respect of water. This effectively controls the cost component as well and expresses the desire of the organization to achieve the aims fixed toward the improvement of water management. If any organization policy recommends for better water utilization and sound water management, then it is also essential that companies must have ingenuity for its effective implementation. Commonly, policies do exist in developing countries, but the desire for their implementation is often lacking. This is particularly the case in small- and medium-sized companies in “unorganized sectors” having lacks of financial resources. One of the difficulties, mining companies or the mine management focuses in regard to policy formulation are also the lack of proper equipment, machinery, expert knowledge, or financial resources for executing the policy. Adequate funds are essential for the implementation of plans and ideas. Furthermore, the organization policy and the national water policy should be in tune with each other [37].
It should be emphasized here that water policy usually focuses on water in general and not in particular on mine water. This becomes especially complicated when the water policies and the mineral resources policies are managed by different departments or regulatory bodies in developed and developing countries. Deficiencies in certain aspects of groundwater-related policies particularly on the management aspects and its core issues can be addressed as well as enforced by the industry, regulators, and stakeholders through policy perspective.
Before I discuss extraction of value from the mine water, let me clarify that it is beyond doubt that water is everybody’s concern; it is apparent that water in general or water from mine (s) should not be wasted and has to be properly utilized as well as conserved. Different aspects of water utilization and conservation are commonly dealt in books, but how to earn or extract value from water is dealt very sparingly.
This idea is purported in my mind from the International Mine Water Association (IMWA) annual conference held in Leipzig, Germany, in 2016 wherein special attention is given on the topic of “extracting value from mine water” and lectures were invited from world over. It is understood that it will be a rare situation in which extracted values can pay for all of the costs of water treatment; however, it would be good to extract value from the mine water and this can partially defray the costs of water treatment and both short-term and long-term gain can be made.
Nearly all mines whether surface or underground are situated in far-flung
Coal quality improvement by coal washing at the pithead washery or in an installation closer to the mine
For ore cleaning and in metallurgical process
For construction-related civil works in mines/plants
For haul road wetting to suppress dust
Irrigation/agricultural uses of mine water after quality analysis
For miscellaneous uses by mine/plant colonies, gardening, etc.
S. no | Name of coal mine | Purpose | Details | Remarks |
---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) |
1. | Saoner Underground Mine | Recharge of water channels/rivulet and improvement in water level | Not available | For miscellaneous uses. Boregaon village is the beneficiary |
2. | Bhatadi Mine | Recharging of water table | 5.66 million LPD | Reuse of mine water in Chandrapur district |
3. | Padmapur Mine | Recharging of water table and reuse of mine water | 2.46 million LPD | Chandrapur district |
4. | Kamptee O/C Mine | To provide potable water to Kanhan township from the mine water discharge. Also for irrigation uses | Discharge of mine water; 47 lakhs; 3.5 km pipeline from mine to filter plant | “K2K”: Kamptee to Kanhan Project, Oct 2015 Water filtration plant in Kanhan Municipal area; 800 people benefitted |
5. | AB Incline, Pipla and Silewara Mine | For irrigation uses by pipelines | Mine water discharge | Recharging of canal system for agriculture (2 km long); 350 farmer families benefitted |
6. | Adasa Underground Mine | Mine water for irrigation | — | Angewada and patkakhedi villages; recharge of water table |
7. | Bhanegaon Opencast Mine | For recharge of wells and river recharging | Uses in irrigation and agriculture for cultivation | Bina and Bhanegaon villages |
8. | Murpar Underground Mine | Pumped out for supply to village pond | 3500 GPM water; 50 ha land irrigated | Around 2000 population benefited |
9. | Wani North | Recharge of water table through groundwater augmentation, that is, desilting and deepening of water bodies and villages ponds, etc. | 48 lakhs; under CSR activities of company | Jalyukt Abhiyan of the Maharashtra Government for Nagpur and Chandrapur district in India |
Mine water uses at WCL coal mines: extracting value
Source: WCL, Nagpur
The value addition from the mine water can be easily and effectively implemented into practice through corporate social responsibility (CSR) scheme of the mining company concerned. In the mines and mining industry, corporate social responsibility assumes a highlighted importance. Some noted examples of value addition are:
Putki-Ballihari colliery of Bharat Coking Coal Limited (BCCL) in India has 400 L of mine water treatment pilot plant for miscellaneous uses by villagers which help in extracting value from mine water and water conservation both.
In the course of coal mining, Western Coalfields Limited (WCL) mines tap a huge quantity of underground mine water (basically groundwater) out of which a small portion is utilized for its day-to-day functions, namely, coal washing, dust suppression in transport routes, domestic uses, etc. (Table 6). A major quantum of water went unutilized. Now these practices are being changed slowly, and water is being utilized for various developmental activities in nearby areas, for example, recharging canals, wells, and rivers, providing water for irrigation, and providing potable water to local people. WCL is using water from mines to help people combat water scarcity in and around mining areas. In many mining regions, thus converting mine water into potable water is one useful value addition by which number of mines can be benefited. Such initiative also helps mining company to develop strong societal bond between mine management and local population.
A packaged drinking water plant (RO plant of Coal Neer) at Patansaongi mine is yet another example of extracting values from the mine water (see facing figure) by the coal mining company WCL.
In one of the cement plant that uses coal for firing cement kiln, a thought to pre-wash coal using mine water was attempted to get the benefit of less coal consumption and low ash generation at source. The operational efficiency of kiln/plant can thus be enhanced considerably with less coal consumption and more energy use. Various captive mines of cement plant, owned by private companies, can get commercial benefits from this idea by making effective use of mine water within their industrial areas and for a selected specific purpose.
Some other ways to extract values from water available in mine are:
Both treated/non-treated mine water can be supplied/sold by company at a cost for the miscellaneous uses to local users. In an arid region, for example, Rajasthan, India, this may bring great value.
In captive mines of nearly all companies/cement plants, etc., “water charges” are paid to the government by the industrial organizations to make use of fresh groundwater for their industrial operations, for example, cooling, colony supply and other miscellaneous uses, etc. The fresh water use can be replaced with mine water, and a considerable value addition from mine water is possible.
Immense value can be extracted, had underground mine water is made as potable. If treated using cost-effective techniques, conferring to the drinking water quality standards [38, 39], the potable mine water can also help in removing water crisis of the area too.
In brief, to extract the value from the mine water, a number of novel and innovative ideas are available, but practical methods as per local requirement are extremely useful. The abovementioned examples are simply a curtain raiser and not to be seen as the ultimate for value extraction from the mine water.
Groundwater is a resource first. Its management at mine level and as mine water is a major challenge. To preserve and protect groundwater in mining areas from overexploitation and to manage it properly, the approach should be site-specific and engineering-oriented. Mining industry worldwide manages it through dewatering/pumping economically and properly. Both quality and quantity of groundwater and the intricate relationships between physical, chemical, and biological processes within mine deposits are a key to the development of effective strategies for water management. Application of “preventive approach” along with artificial recharge techniques and water conservation measures can remove the water management bottlenecks to a large extent. Hence, an approach to deal groundwater effectively works out better at different levels of management. The entire water management chain should be understood by all levels of management, that is, at corporate, at site, and at operations management level, and it has to be a “bottom-up approach rather than a top-down approach.”
Looking at operational stage of surface mines (pit mine) which are working below the water table, the puncturing of water table results into the accumulation of water on dip side of the open mines. Due to heavy precipitation in limited period (downpour), such water accumulation problems lead to the hampering of normal mine production. Similarly watery underground mines have multistage pumping needs. Sustainable water management at mine sites has close linkages with production; hence to improve water management in the mining environment, the following areas need attention:
Corporate policy with respect to water management
Planning and machinery used, that is, pumps and pumping
Mine drainage
Water quantity
Water quality and pollution
Ore processing, tailings, and waste disposal
Clear and transparent policy and sound water management give a direction to the implementation plan and programs economically and as per the desire of the organization. Improvement in water management practices periodically and practically is imperative for GW management.
Planning and machinery used involve the site conditions and stage of operations, in the chain of water management. It requires innovative thinking so that planning is practical in implementation and percentage utilization of machinery is maximum. Routine condition monitoring (RCM) for routine maintenance of equipment and machinery should be cost-effective for proper water management in general.
Mine drainage can pose a serious threat to water quality and mine productivity. The importance of this issue becomes more critical as demand for resources grow. When complex metallic ore deposits are mined, the geochemical evaluation of mine drainage water becomes important in pollution evaluation as well as deciding prevention strategies. Their economical remediation is possible to an extent through proper mine drainage system.
Undoubtedly, in ore processing, tailings, and waste disposal, methods and procedures are key areas of focus in the pollution abatement strategies. Therefore, to deal with it, attention toward the “best practices in water management” is needed. Practically, for improving water management in the mining environments, approaches should be:
Long-term and short-term costs of water treatment: Mine water management involves its treatment too. The mine water and its treatment involve a sizable long-term and short-term costs of water treatment. If the cost economics are understood correctly, it can be applied in curbing the overall cost of mineral production. Mine water is valuable in terms of its quantity and ease in extracting it for bulk reuse, if available in open-pit mine. The “pit water” may or may not confer to the prescribed quality standards, either for irrigational or miscellaneous uses, but certainly able to meet out the water scarcity in an area. Therefore, its treatment is sought after, though considered as not economical. In the case of underground mines, how the mine water increases overall cost of mineral production (Box 2) needs to be understood?
Local solutions are always cost-effective in mining activity because most of the time it requires crude solutions (and not very precise) on site-specific basis.
Mine water presence in excess requires pre-draining that adds to the cost of pumping; more expensive construction prevents the use of preferred methods and equipments. Overall it puts additional burden on cost of mineral production. If underground mine is watery, it requires use of more expensive explosive. “Timber support,” if used in underground mines, are not good if mine has wet conditions. Alternate wetting and drying of timber cause timber decay and endanger mine safety. The mine water washes weak ground from underground openings, for example, sand, silt, gravel, clay, etc. are washed easily causing reduced safety for wall, roof, etc.
In the case of underground mine water, if one knows the effect of water on surrounding underground environment, its value can be assessed both directly and indirectly, for example, water is hazardous in mine shaft because wetness corrodes hoist ropes, steel girders, ladders, planks, shaft timber, etc.; mine water and wetness add to the maintenance of underground equipments, reduce effectiveness of lubricant, increase corrosion, cause scaling in pipes, lead to rusting in wet exposed metallic surfaces, etc.; mine water may add to miner’s discomfort due to continuous wetness of protective clothes and bring illness (a form of indirect cost). Increased electrical hazards are the anticipated effect of mine water on mine safety underground.
Preventive water management (PWM): impact of mining on groundwater and its imprints should be kept controlled. Through this approach and in the mine catchment area, this can be done by preventive water management. Plans for PWM should be such so that attention is paid to both quality and quantity aspects as they are to be managed with the ultimate goal of achieving an ecological balance. Some key points as regards with this approach are:
Preventive approach has the ability to remove or add the nutrients from soil/land (through surface water) because land, soil, and water are an integrated part of natural water system. By this approach soil/land quality can be made sustainable, for example, (a) nitrogen compounds are broken down and phosphate is fixed for agricultural land use in plain profile land areas with adequate water. (b) By allocating proper land use profiles with the land use activities for each catchment area, an improvement in overall land quality is achievable. (c) Designing of suitable land use pattern within the mine lease area or catchment areas is a step forward toward mitigation and preventive care.
Adequate drainage pattern of mine/project area commensurate with the natural drainage.
Effective local runoff arrangement of rainwater for GW infiltration into the soil and in hard-rock areas.
Widening of watercourses, cleaning of silt from pond/tank beds or open ditches and raising the drainage level of water channels thereby increasing groundwater recharge and the water storage capacity.
The description given above explains that how management of water can be done economically and effectively with practically implementable water management practices. Since underground mine water management is sharply different from open-pit water management, technical knowledge of mining engineering can be an added advantage. However, it would be good to extract value from the mine water, as doing so can partially recover the water treatment costs and both short-term and long-term gain can be made. It is also understood that proper water treatment and management with respect to mines can bring a stage/situation in which groundwater will turn into a useful commodity for that particular mine which is scientifically managed and evaluated.
In mining sector, which is prospective, very large, and capital intensive too, scientific approach toward groundwater management should be applied to curb and restrict groundwater overexploitation and maintain basic groundwater equation, that is, more recharge, less draft. To tackle water problem in both mine types, the following solutions are noteworthy:
Best management practice (BMP): Number of solutions for open-pit as well as underground mines can be solved through case study experiences available internationally. Some
Sometimes BMP is also referred as “best practice mining” or “best mining practice.” In brief, BMP does not refer to any designed/formulated method but implies to “the continuous improvement of mining and management practices to maintain maximum performance for achieving an acceptable level of environmental protection.” In doing so, it is necessary to incorporate and integrate economic, environmental, and social considerations into the mining operations in a practical way.
Mining involves mostly excavation, loading, and transportation operations. The most environment-unfriendly among these is the “transportation” and “dust generation by transportation.” By adopting BMP the stress on environment is reduced because BMP emphasizes curtailing unscientific practices and avoiding shortcuts. Effective surface water utilization is the best management practice (BMP) for optimum use of rain-fed water resources. Similarly, pollution control measure as applicable to large-sized public sector mines, that is, preventive approach, control at source, and zero liquid discharge (ZLD), is a solution through BMP.
Integrated water resource management (IWRM): This becomes relevant when addressing water availability, water security, and water access for all users. IWRM involves the coordination of stakeholders in the water use of a site, an area or region to ensure economic and social development together with maintaining the ecosystem balance. Based on IWRM and stakeholders’ experiences, water policy can be made sound, and balanced decisions in response to specific water challenges, being faced by the industrial company, can be taken. It is always desirable that cooperation between community, authorities, and organizations be maintained and public participation in water management be encouraged.
Thus, IWRM is an interdisciplinary approach to devise and implement efficient, equitable, and sustainable solutions to water and development problems. This approach is open and flexible and brings together decision-makers across the various sectors that impact water resources. IWRM principle ensures that water is sufficient for industrial operation and all users too. These days companies are concerned about continued water access in light of increasing scarcity. Their response is to maximize their efficiencies and limit their inputs. IWRM also involves “standardized water reporting,” which is a low priority issue for the operating mines or industry. The issue with water reporting is that of hiding impacts of mine water-related issues with communities and regulatory authorities. Money/financial obligations are the principle cause for this hiding. Beyond this there exists a need to comply national environmental laws/regulations, which should be complied and put into practice. Some of the barriers to IWRM in the past were the lack of hydrological data and models which have been overcome these days by the scientific studies. IWRM together with BMP (best mining and management practices) is capable to yield desired water resource management results as expected.
Sustainable groundwater exploitation policy: Area/states which are mineral-rich and having number of operative mines should formulate and frame a sustainable groundwater exploitation policy for mines separately in line with the “National Water Policy.” For groundwater protection, practically applicable regulatory framework [42] should be in place and enforced strictly for solving water problems.
Reliable mine water technology: Open-pit mine water management contains number of lacunas, and these can be reduced by bridging the gaps in water use and reuse, for example, surface mining operations in water-stressed and water-critical areas. Since maximum mineral production is achieved from surface mines, industrial attempt should be such so that reduced water consumption philosophy be adopted for excavation and ancillary industrial operations. This also makes mine water sufficient. Reliable mine water technology [43] is yet another option for tacking mine water problem.
Recycling, conservation, and recharge: Promotion and encouragement for mine water recycling/reuse, water conservation, and groundwater recharge can remove water crisis in and around the mining site. In this regard, sub-categorization of water as “surface water” and “groundwater” will provide better solution. By addressing the impressive technical solutions related to water pollution, positive results can be achieved.
To curb the overexploitation (excessive withdrawal of groundwater from aquifer) for industrial purpose, imposition of tax or
Rainwater harvesting (RWH), the most popular method of groundwater recharge, is the best solution to reduce dependence on groundwater. Implementation of these techniques and optimization of innovative alternates of RWH need to be encouraged according to the mine needs and requirements to provide solution locally.
U/G versus surface mine: Underground (U/G) mines and surface mine’s water-related problems are different. Therefore, solution to tackle water problem in underground mines are also typically different. Some encountered conditions of underground mines are:
Condition (i): sudden inrush of water or heavy water seepage from surface water body to underground mine workings in proximity, leading to inundation
Condition (ii): underground mining near “perched water table” (an accumulated/stored water underground)
Condition (iii): unprecedented or accidental connection of underground mine workings with aquifer containing infinite amount of water or water under pressurized conditions
Underground mines either operative or abandoned when filled with water pose a problem of “mine inundation.” Many times such inundated waterlogged areas lead to mine disasters and also hamper normal mineral production in underground mines. The worst ever disaster caused by mine inundation in India was at “Chasnala Colliery” in the state of Bihar, India, in the year 1975 wherein 372 persons were drowned underground. Underground galleries approached the waterlogged old workings of an abandoned mine and faulty prediction of mine development had caused this accident to happen. The safest procedure to deal with inundation in mines is never to take the position of old working “for granted” until they have actually been proved by proper survey. No mine working which has approached within a distance of 60 m of any disused or abandoned working, whether in the same mine or in an adjoining mine, shall be extended further to endanger safety.
In underground mining, the mining operation near water bodies [44] assumes significant importance from research point of view. This is principally due to the uncertainty involved. Behavior of the surface water bodies (water head), intervening strata over the mine workings, its location (in the buffer zone/core zone of the mine lease area), and in between distances, plays considerable role and hence assumes significant importance. Therefore, geological, mining, and hydrological parameters must be looked while evaluating the real field situation, for example, topographical features such as hills/valley(ies) or ravines land, etc. should be considered. For solutions one must observe, examine, and check the proximity of old underground mine workings, whether the area is dry/damp or seeping in (heavy/low). It is possible that the workings of adjacent mine may not be filled with water but the barrier pillar and its thickness are important and must be maintained as per the statutory requirement or the existing guidelines framed for the purpose.
To search solutions for water problem of underground mines, due consideration should be given for water impoundments (stagnant water bodies) on surface as well. Seasonal or perennial streams, standing water bodies, and sea vicinity to the mine are important for pressure head created by the surface water or impoundments. Similarly, underground mining should not come closer to active oil and gas well (150 ft. minimum).
Groundwater during mining of minerals causes problems related to environmental impact, most commonly
Mine, being an important mineral production enterprise and groundwater as a valuable resource being continually under stress, has to be assessed scientifically from industrial perspective. The water management measures shall be identified beforehand and remedial measures be kept in place. To augment water level, artificial recharge of groundwater by rainwater harvesting, creation of pit lakes/water lagoons, and recharge through abandoned tube wells are some easy and economical measures. Needless to say the basic principle of sustainability, that is, conserving for future generation, must be adhered.
Hernias penetrating the anterior abdominal wall are considered the ventral hernias, and the majority of these are formed by the inguinal, femoral and umbilical hernia. Rare varieties include the lumbar and Spigelian hernias. The Spigelian hernias, principally acquired, has an incidence ranging from 0.1–2% of all abdominal wall hernias [1, 2]. These hernias occur through a well-defined defect in the Spiegel’s fascia of the anterior abdominal wall adjacent to the semilunar line, which corresponds anatomically to the lateral edge of the rectus abdominis muscle. These hernias, therefore, are also known as the “spontaneous lateral ventral hernia” or “hernia of the semilunar line”. Commonly it occurs at the lower part of the abdomen, below the umbilicus where the posterior rectus sheath is deficient.
The semilunar line, originally named the “linea semilunaris spigelii” (the line of Spiegel), is named after the Flemish anatomist and surgeon, Adrian van der Spiegel (1578–1625) who first described the anatomical and surgical significance of well-known linea semilunaris [1]. He defined it as the line of transition between the muscle and aponeurosis of transversus abdominis muscle, extending from the ninth costal cartilage to the pubic tubercle with a lateral convexity sometimes easily described as the lateral border of the rectus sheath. Although, Spiegel first described the linea semilunaris, it was not until more than hundred years later the Spigelian hernia was first described clinically by another Flemish anatomist and surgeon Josef Thaddaei Klinkosh in the year 1764, setting forth the surgical significance of this line [3]. He described it as a ventral hernia developing at the site of linea spigelii, and distinctively coined the name Spigelian hernia.
The Spigelian line marks the transition from transverse abdominis muscle to aponeurosis. The part of this aponeurosis that lies lateral to the rectus abdominis muscle is called Spigelian fascia/aponeurosis. Hence Spigelian aponeurosis is limited medially by the lateral edge of the rectus muscle and laterally by the semilunar line. Thus, anatomically the Spigelian fascia is the medial part of the transversus aponeurosis between the lateral border of the rectus sheath and semilunar line and stretches from the tip of the 9th costal cartilage until the pubic tubercle. The Spigelian hernia can occur at any point through this fascia.
The crescentic shape and wide variability in the width of Spigelian aponeurosis craniocaudally predispose to the specific site of these hernia formations (Figure 1). The Spigelian line in the cranial part of the abdominal wall lies close to the rectus abdominis muscle, and hence the Spigelian aponeurosis is very narrow in this zone, due to the presence of more muscular three flat muscles of the abdominal wall attaching to the lateral border of the rectus sheath. Thereby the muscular fibres and aponeurosis of the external and internal oblique muscles overlap the narrow Spigelian aponeurosis. This is probably the main reason why these hernias are uncommonly found above the umbilicus. It is also seen that the fibres of the internal oblique and transverse abdominis muscle run at an angle to each other above the umbilicus thereby providing additional strength and preventing hernia formation. More commonly these hernias are located in an approximately 6 cm transverse imaginary zone extending from the interspinal line to 6 cm superior to it. The Spigelian fascia is widest here with the greatest abdominal circumference and highest intra-abdominal pressure. Due to its etiological significance, this belt is aptly known as the Spigelian hernia belt [4].
Schematic diagram showing the Spigelian fascia and Spigelian hernia belt.
The size of the hernia orifices usually ranges from 0.5 to 2 cm in diameter. It has a well-defined, firm edge and is round to oval in shape (Figure 2). This well-defined, fibrous, inelastic edge is believed to increase the risk of incarceration and leads to a condition akin to Richter’s hernia formation [5, 6, 7, 8, 9]. In the beginning, these hernias are usually limited to the Spigelian aponeurosis on the axial plane, but when their size increases, these can dissect the fibres of transverse abdominis muscles laterally as its medial extension is limited by the rectus muscle and sheath, and create a bigger defect in the anterior abdominal wall. Another probable reason for its lateral position is because that the external oblique aponeurosis covers the Spigelian aponeurosis in its whole length and creates a potential space between the muscle layers. This provides enough space for the herniated sac to expand and take the route of least resistance laterally and is thus palpable more lateral than the actual location of the hernia orifice. This usually conforms to a mushroom-shaped appearance of these hernias on palpation.
Schematic diagram showing herniation through the Spigelian hernia. Note the hernial sac is obscured under the external oblique aponeurosis.
In most patients, due to the presence of the tough external oblique aponeurosis, a small Spigelian hernia may go unnoticed. For the Spigelian hernia to be palpable clinically, it needs to penetrate both the transverse abdominis, internal oblique muscles and further glide in between the two oblique muscles. Further, the dissection of the internal oblique is determined by the fact whether the internal oblique muscle ventral to Spigelian aponeurosis is aponeurotic or muscular. In the event the hernial sac encounters an aponeurotic layer in its way, the hernia sac will tend to lie between the transversus abdominis and the internal oblique muscles. Although, the aponeurosis of the internal oblique muscle strengthens the Spigelian fascia, more often than not it is the internal oblique muscle belly rather than the aponeurosis that covers the Spigelian fascia, thereby reducing the reinforcement. In cases when the hernial sac grows and dissects the two innermost muscle layers, the hernia may become palpable clinically. Most commonly these are palpable below the level of the umbilicus as the fibres of the transversus abdominis and internal oblique muscles run parallel to each other in this area, thus reducing the resistance further. Above the umbilicus, these muscle fibres form a criss-cross configuration providing additional support and resistance and thereby decreasing the chance of a Spigelian hernia to be palpable but at the same time increasing the chance for incarceration.
It was usually believed that Spigelian hernias tend to occur through small defects in the transversus abdominis aponeurosis where it was penetrated by the perforating vessels and nerves [10, 11]. These were also thought to occur at the junction of the semilunar line and semicircular line of Douglas as the majority of cases were described below the umbilicus in the region of the line of Douglas. This observation was attributed to the fact that not only Spigelian fascia is broadest here but also the lack of posterior rectus sheath represents the inherent weakness of this zone, and also due to fibres of transversus aponeurosis that runs parallel to the internal oblique. This concept was first challenged by Webber et al., who demonstrated that approximately 45% of Spigelian hernias occurred above the arcuate line [12]. Interestingly, although most of these hernias can occur in the Spigelian hernia belt below the umbilicus for the aforementioned reasons [13, 14], the defect may still lie above the arcuate line. The hernia sac usually consists of the peritoneum, preperitoneal fat and occasionally transversalis fascia. The hernial content can be small bowel or omentum but can include any organ depending on its location. The size of the neck has been reported to vary from as small as 0.5 cm to as large as 6 cm [15].
These hernias can be congenital or acquired. Congenital cases develop through the weak areas in the aponeurosis of the abdominal muscles formed during their development in the mesenchyme of the somatopleure originating from the invading and fusing myotomes of the anterior abdominal wall and are usually associated with cryptorchidism [14, 16]. The congenital variety presents in the younger age, is usually small and mostly remains subclinical. Adult hernias are usually acquired. The perforating vessels were believed to create the area of weakness in the Spigelian fascia which was enhanced by herniation of preperitoneal fat, although this is now considered of minor importance [17]. Spigelian fascia is widest below the umbilicus and potentially weakest. Besides, the abdominal girth is wider below the umbilicus and in accordance with the Laplace’s law, wall tension will be greater. Furthermore, transversus abdominis and internal oblique muscles in the upper part of the abdomen extent medially into the posterior rectus sheath and strengths the Spigelian fascia. The natural progression of the disease ranges from younger patients usually presenting with a smaller fascial defect with preperitoneal tissue being the most common content. However, with increasing age, elderlies are vulnerable to the development of larger defects with peritoneal contents constituting the main sac content [18].
Besides the anatomical factors, hernia formation can be predisposed by stretching of the abdominal wall by factors that increase the intraabdominal pressure such as chronic cough, chronic obstructive pulmonary disease, obesity, ascites, pregnancy. It has also been described as a complication of chronic ambulatory peritoneal dialysis [19, 20].
Besides these, scarring from previous abdominal surgeries, paralysis of the anterior abdominal wall may weaken the Spigelian aponeurosis and create an area of weakness [21].
It has also been reported that the creation of pneumoperitoneum during laparoscopic surgeries can predispose to herniation through a pre-existing weakness in the Spigelian fascia [22].
The true prevalence of Spigelian hernia remains elusive as the majority of these cases are asymptomatic. A recent study showed that on ultrasonographic examination of 785 anterior abdominal wall hernias, only 1.4% of patients had Spigelian hernias indicating the rarity of the condition [23]. In another study, 2% of incidental Spigelian defect was identified during laparoscopic procedure further affirming the uniqueness of this hernia [24]. Spigelian hernias are slightly more common in females, occur mostly on the right side and usually affect people in their fourth to the seventh decades of life [25, 26, 27]. However, the laterality of these hernias is a contentious issue and as in other studies, left side location has shown predominance [28, 29]. Nevertheless, the underlying reasons are unknown and laterality remains inconsequential to its management.
The majority of these hernias are asymptomatic and accordingly the diagnosis is difficult, especially when these are of smaller size. The intraparietal location with overlying tough external oblique aponeurosis and thick subcutaneous fat mask their detection during a clinical examination. However, in patients who present with symptoms, these may range from nonspecific abdominal pain to a palpable lump or a visible mass in the abdominal wall to dangerous features of incarceration with or without features of strangulation. The characteristic of pain depends on the size and contents of the hernia. This may be a dull, sharp, or even burning type. However, one symptom is usually constant, and the pain is aggravated with increased intraabdominal pressure and often after a heavy meal, exercise, walking and running, and is relieved with rest and lying down. Nonetheless, the occult nature of these hernias predisposes them to incarceration and the risk of strangulation requiring emergency laparotomy is up to 24% [30, 31, 32] which is way above the 5-year strangulation risk of umbilical hernia (4%) and inguinal hernia (2.5%) [33, 34].
In cases of a visible lump, it is delineated when the anterior abdominal wall is made taut and the patient is in the upright position, but disappears when the patient lies down. With the increase in size, the lump tends to expand laterally and caudally between the layers of two oblique muscles. Therefore, at times, the patient may present with a non-specific bulge without a definite well-demarcated palpable lump which may be due to a typical T-shaped hernial sac causing elevation of the intact external oblique aponeurosis. The diagnosis of hernia can be affirmed if the swelling can be reduced, but reappears in the upright position and especially with the manoeuvres that increase intraabdominal pressure such as coughing, straining or a Valsalva manoeuvre, and disappears on lying down.
Palpation of the hernia defect in most cases is difficult as these defects are small and are masked by the tough external oblique aponeurosis and subcutaneous fat. However, an attempt should be made to palpate the abdominal wall after making the musculature taut to identify any local tenderness indicating the point of the hernial orifice, which may be the only sign in case of occult or a subclinical Spigelian hernia. This may be attributed to the fact that reinforcing manoeuvres that increase intraabdominal pressure pushes out the preperitoneal fat or a hernial sac through the defect. Palpation of these structures against the inelastic margin of the hernial orifice and stimulation of stretch receptors located in the parietal peritoneum produce distinct point tenderness which is more of somatic pain in nature and hence is easily localised [35]. Although, not pathognomonic, this examination has high sensitivity and can help in screening patients with occult herniation. Sometimes, patients report extreme tactile hyperesthesia which is located just medial to the hernia defect. This is generally believed to be caused by mechanical irritation of the perforating branch of the corresponding intercostal nerve (Valleix phenomena) and this sign can aid in clinical diagnosis of a subclinical herniation [36]. For patients presenting with abdominal pain but no visible lump, radiological investigations like ultrasonogram and/or CT-scan of the abdomen can be of foremost importance. Furthermore, in cases where the diagnosis remains elusive even after radiological investigations, a diagnostic laparoscopy may be of help [28].
These hernias are most commonly located in the interparietal plane with no visible or palpable mass as discussed above, and only 50% of cases could be diagnosed clinically before any surgical intervention [17]. Their tendency to masquerade other clinical conditions presenting with abdominal pain requires a high index of clinical suspicion.
The most common symptoms are mild pain aggravated by coughing, straining, exercising and being relieved by lying down. Although, occasionally a lump may be noted, the diagnosis is often missed unless the patient presents with partial bowel obstruction. The clinical examination alone is believed to be 100% sensitive with a PPV of 36% when compared with operative findings [35].
The diagnostic imaging mainly aims at identifying the hernia defect, sac and its content.
It is a poor modality for diagnosing these hernias. It can neither aid in demonstrating the defect nor the content, especially the omentum or preperitoneal fat. However, in cases in which the sac contains a portion of the small or large bowel, barium studies can be of help. Besides, for diagnosing the complications of these hernias such as intestinal obstruction, a conventional x-ray can be used.
It is considered the investigation of choice and is usually the first-line imaging modality often used. It should be performed in patients presenting with obscure pain in the abdomen with or without a lump and is helpful both in clinical and subclinical hernias. It helps in the identification of a hernia defect, sac, and its content. It has the additional advantage of providing real-time scanning images by changing the patient’s position and performing manoeuvres that increase the intraabdominal pressure and precipitates any fascial defects or herniation of fat or viscus.
Using a 3.5 MHz transducer, the examination is first performed with the patient in the supine position and the abdominal wall relaxed. A screening USG is performed for intraabdominal viscera to rule out any potential intraabdominal pathology as a cause of pain. Next a higher denomination transducer, typically 5 MHz is used for the parietal wall structures. Scanning is begun at the lateral end of the rectus muscle with parasagittal sweeps. This helps in visualising the rectus muscle. In longitudinal scans, echogenic strips can be visualised, the deepest of which is the parietal layer, more superficial are the layers of the ventral wall. The hernia defect is seen as a disruption of these echogenic strips (Figure 3). The visualisation of the defect and the interparietal location of the sac represent the typical Spigelian hernia with omentum as its content. In difficult cases, the patient may be instructed to increase intraabdominal pressure through Valsalva manoeuvre, which may demonstrate the fascial disruption, and herniation of preperitoneal fat or abdominal viscus. In correlation with the operative findings, a real-time USG scan is believed to have a sensitivity of 90% and PPV of 100% [35].
Dynamic USG of the abdominal wall showing a Spigelian hernial sac (1.6 cm) penetrating through the Spigelian fascia, seen here as a broken line in the muscle-fascial plane. The right rectus muscle is marked as “R” in yellow.
It is considered as effective as the USG for demonstration of the hernial orifice. Additionally, it provides better information of abdominal wall resistance. Overall, the CT scan has a sensitivity and PPV of 100% each when compared with operative findings [35]. But, the USG is easier to perform, is a clinic procedure, is less expensive and can help in the dynamic analysis of the patient for which it is an excellent screening tool for the lesion. In cases where USG gives inadequate or equivocal information, a CT scan should be added.
On many occasions, the preoperative diagnosis may remain obscure until surgical exploration is performed. In a study by Weiss et al., approximately 50 percent of cases are diagnosed on exploration [37].
Therefore, for diagnosing Spigelian hernias, a dynamic USG and CT scan are useful when used in tandem with the clinical examination. In cases of uncertainty, diagnostic laparoscopy can be used in a symptomatic patient.
Depending on its location, a Spigelian hernia may mimic intra-abdominal pathologies which can present with pain such as acute appendicitis, twisted ovarian cyst, tubo-ovarian pathologies, mesenteric lymphadenitis, biliary colic, peptic ulcer pain, pancreatic pain or mesenteric ischemia [35]. Many times one may confuse it with any other disease entity of the abdominal parietal wall too. If the hernia is palpable at the location of pain and if it is reducible, the diagnosis is easy. In instances when the lump is palpable in a typical location but not reducible, the differential diagnoses include hematoma of rectus abdominis muscle, lipoma, chronic abscess, lymphadenopathy, other ventral hernias, solid tumours of the abdominal wall such as a desmoid tumour [35]. In cases where it is not palpable and the patient presents with non-specific pain or if a mass is present in the ventral wall, which is irreducible, the first step is directed towards identifying the nature of the swelling by a dynamic USG. If a Spigelian hernia is suspected, the attempt should be made to localise the hernial orifice. USG can help in differentiating hematoma, abscess, lipoma or seroma. Myotendinitis of rectus abdominis or external oblique muscle can mimic the tenderness present in subclinical cases. In cases where the defect is not found, and diagnosis is obscured, patients should be worked up and investigated for gastrointestinal and genitourinary disorders. An abdominal CT scan reinforces the diagnosis or helps in excluding the differential diagnoses, particularly whether the pain arises from the intra-abdominal pathologies or from the parietal abdominal wall. It is important to keep in mind that in a difficult clinical situation where the diagnosis is elusive or when a subclinical Spigelian hernia is suspected, every effort should be made to rule out an intra-abdominal pathology first. In the pursuit of diagnosing a suspected Spigelian hernia, an important intra-abdominal pathology should not be missed.
Spigelian hernias are the subgroup of primary ventral hernias and the European Hernia Society (EHS) classification system is most commonly used for their classification [38]. However, Webber et al. (2017) have described three clinical stages which reflect the natural history of the condition and provide universality for their management (Table 1) [12].
Stages | Anatomy | Clinical Feature | Treatment |
---|---|---|---|
I | Defect: <2 cm Content: interstitial fat only with no peritoneal component | Intermittent, well-localised pain but no palpable swelling | Open surgery: they are not visible laparoscopically |
II | Defect: 2–5 cm Content: peritoneal component present | Palpable swelling | Laparoscopy/Open repair |
III | Defect: >5 cm | Large hernia with distortion the of abdominal wall | Open repair |
Clinical stages of Spigelian hernia.
Operative management of these hernias is advisable as the risk of strangulation or incarceration has been reported up to 25% [39]. Initially open anterior approach with primary closure of the defect or mesh placement in cases where primary closure was not possible was advised. With the technical progress of laparoscopy, its use in the diagnosis and repair of Spigelian hernias has made it the method of choice [40]. It provides the benefits of minimally invasive surgery like reduced post-operative pain, less chance of infection, shorter hospital stays, reduction in morbidity and better cosmesis. However, according to the recent EHS guidelines, it is suggested that Spigelian hernia should be repaired with mesh. The approach, either open or laparoscopic may depend on the surgeon’s expertise, because the strength of recommendation is weak as limited comparative data is available [41]. A randomised trial comparing 11 conventional and 11 laparoscopic repairs in elective Spigelian hernia surgery revealed significant advantages for laparoscopic repair in terms of morbidity (wound complications) and hospital stay [42].
The most popular laparoscopic repairs are the Intraperitoneal Onlay Mesh (IPOM) technique (35%), Total Extraperitoneal Patch (TEP) approach (30%), Transabdominal Preperitoneal (TAPP) approach (22%), and laparoscopic suturing techniques [43, 44]. The TEP repair of Spigelian hernia offers the advantage of avoiding breach in the peritoneal layer as it accesses only through the preperitoneal space. Although, studies have failed to demonstrate the superiority of the extraperitoneal approach over intraperitoneal repair, the intraperitoneal laparoscopic Spigelian hernia repair is considered the gold standard because of its technical advantages [45].
A transverse incision is placed over the lump and the external oblique is incised in its direction to expose the peritoneal sac which can simply be inverted (Figure 4). The hernia defect can be closed with sutures but in cases of larger defect, a mesh should be used which is placed either in preperitoneal space or above the fascia.
Open surgical repair of a subclinical Spigelian hernia containing protrusion of preperitoneal fat only (sacless).
Once the hernial sac contents are reduced, the preperitoneal flap is raised and dissected for 5 cm around the hernial defect. The mesh is placed in the extraperitoneal space and the peritoneal flap is closed. The TAPP provides the opportunity to explore the abdominal cavity, although a potential drawback may be the possibility of intraperitoneal adhesions after the surgery, the chances of which, however, are almost similar to that of other laparoscopic surgery. At times, difficulty in the closure of the peritoneal flap may be encountered because of the thin and fragile peritoneum in this location [45].
The extraperitoneal space is created by open access and a balloon is used to create and enlarge the working space. The hernial sac is identified and closed. A large mesh is used to cover the hernia defect and is fixed to the abdominal wall. Although, this approach prevents access to the intraperitoneal cavity for inspection of any concomitant pathology, it reduces the risk of adhesions [46] besides possible benefit to explore and treat the concomitant direct inguinal hernia [47]. TEP repair is expensive due to the price of balloon dissector, technically challenging with a longer learning curve [48] and can be used only if the hernia is located below the arcuate line [49].
Intraperitoneal access is gained using either closed or open techniques. The hernial site is identified and port placement is done in the form of an arc or a circle with the centre at the defect site which should be at least 10 cm away. The contents are reduced and a coated mesh is fixed to obtain an overlap of at least 5 cm around the defect. It provides the opportunity to explore the abdominal cavity and therefore is helpful in emergency conditions with the incarcerated hernia [50, 51]. It is also believed to be the easiest to learn and safe to perform [52]. Nonetheless, the main limitation to this technique is the risk of hematoma formation and nerve entrapment after tack or stapler application. The use of fibrin sealant in place of tacks provides the solution [53].
The use of robotics on ventral wall hernias are easier due to a 360-degree rotation, camera use, surgical forceps and excellent visualisation of the defect. The placement of sutures also makes the procedure easier. The postoperative pain score reported is also lower [54]. Although, robotic-assisted Spigelian hernia surgery provides technical advantage and reliability, further studies with longer follow-ups are required for conclusive analysis [55].
Postoperative complications include seroma and hematoma formation, surgical site infection, abdominal viscera injury, mesh infection, and recurrence. Nerve entrapment during mesh-tacker placement can lead to abdominal pain syndromes [55].
Spigelian aponeurosis extends caudally up to the pubic tubercle and is found medial to the inferior epigastric artery within the Hasselbach’s triangle. Hernias penetrating the fascia transversalis here are conveniently called the low Spigelian hernias. These hernias usually contain preperitoneal fat but occasionally the bladder may also be involved.
Direct inguinal hernias are located at a similar triangle and may therefore cause diagnostic confusion. Differentiating these hernias from the direct inguinal hernia is important because the risk of incarceration is higher. Due to a small but well-defined hernia orifice, hernioplasty is easier to perform with a lesser chance of recurrence. Digital palpation with the little finger in the inguinal canal in standing position and Valsalva manoeuvre touches the first phalanx in case of low Spigelian hernia and the middle one in direct inguinal hernia. This technique has been proposed to distinguish between these two hernias, but can be uncomfortable and even painful for the patient. The diagnosis can be confirmed by radiological investigation and final assessment is best done intraoperatively [56]. Although, very rare, if both the hernias are found it is most likely due to weakness of Spigelian fascia around the insertion of rectus abdominis [45].
The diagnosis of a small Spigelian hernia is extremely challenging, given its rarity combined with nonspecific pain symptoms. Secondly, often due to its intramural location, its detection by palpation can be extremely difficult. Therefore, a great deal of clinical intelligence is invested in its preoperative diagnosis and the ignorance of its existence can cumulate to catastrophic complications of strangulation. Often only a point tenderness corresponding to the site of the defect is the only finding on palpation of the abdominal wall after making the muscles taut [57]. These hernias are small and often may contain only the preperitoneal fat protrusion through the fascial defect (Figure 4), which is something similar to the sacless epigastric hernia. As mentioned previously, only less than half of the cases are detected preoperatively. Therefore, patients presenting with non-specific pain in the abdomen should alert the astute clinician for the possibility of a Spigelian hernia. Once the diagnosis is established, treatment is elementary with surgery being the treatment of choice in symptomatic cases.
Spigelian hernias are notoriously difficult to diagnose. If these are visible and palpable, diagnosis is straight forward. But if the hernia is subclinical, it is difficult to diagnose, and only radiological investigations such as a dynamic USG or CT-scan of the abdomen wall can pick up the lesion. A strong clinical suspicion helps to diagnose the occult variety, which presents as non-specific abdominal pain, otherwise about 50% remain undiagnosed until surgery. Due to the high risk of incarceration and strangulation, these hernias should be operated early. Open conventional surgery has been largely replaced by laparoscopic mesh hernioplasty.
Authors declare no conflict of interest.
Nil.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11457",title:"Forest Degradation Under Global Change",subtitle:null,isOpenForSubmission:!0,hash:"8df7150b01ae754024c65d1a62f190d9",slug:null,bookSignature:"Dr. Pavel Samec",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",editedByType:null,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"400",title:"Molecular Genetics",slug:"human-genetics-molecular-genetics",parent:{id:"54",title:"Human Genetics",slug:"human-genetics"},numberOfBooks:23,numberOfSeries:0,numberOfAuthorsAndEditors:872,numberOfWosCitations:926,numberOfCrossrefCitations:447,numberOfDimensionsCitations:1115,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"400",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7204",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription Toward the Establishment of Novel Therapeutics",isOpenForSubmission:!1,hash:"10030057b2e2dee7d800ff27658c3a69",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-toward-the-establishment-of-novel-therapeutics",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/7204.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5784",title:"Antibody Engineering",subtitle:null,isOpenForSubmission:!1,hash:"2c8c3e133140fbc7f563918285e7c3c2",slug:"antibody-engineering",bookSignature:"Thomas Böldicke",coverURL:"https://cdn.intechopen.com/books/images_new/5784.jpg",editedByType:"Edited by",editors:[{id:"176804",title:"Dr.",name:"Thomas",middleName:null,surname:"Böldicke",slug:"thomas-boldicke",fullName:"Thomas Böldicke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6435",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription From General Aspects",isOpenForSubmission:!1,hash:"8573c44c537def5c800a0f6d4ed844d6",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-from-general-aspects",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/6435.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5986",title:"The Role of Matrix Metalloproteinase in Human Body Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"ef3e8940d7f0b229028d6fb71b1e0927",slug:"the-role-of-matrix-metalloproteinase-in-human-body-pathologies",bookSignature:"Francesco Travascio",coverURL:"https://cdn.intechopen.com/books/images_new/5986.jpg",editedByType:"Edited by",editors:[{id:"172239",title:"Dr.",name:"Francesco",middleName:null,surname:"Travascio",slug:"francesco-travascio",fullName:"Francesco Travascio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1907",title:"Reviews on Selected Topics of Telomere Biology",subtitle:null,isOpenForSubmission:!1,hash:"5f4f25ba706645403bab2aa721a0809b",slug:"reviews-on-selected-topics-of-telomere-biology",bookSignature:"Bibo Li",coverURL:"https://cdn.intechopen.com/books/images_new/1907.jpg",editedByType:"Edited by",editors:[{id:"109879",title:"Dr.",name:"Bibo",middleName:null,surname:"Li",slug:"bibo-li",fullName:"Bibo Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2518",title:"Binding Protein",subtitle:null,isOpenForSubmission:!1,hash:"6e70c7a9b0007d8f78ae4f3effba9664",slug:"binding-protein",bookSignature:"Kotb Abdelmohsen",coverURL:"https://cdn.intechopen.com/books/images_new/2518.jpg",editedByType:"Edited by",editors:[{id:"144861",title:"Dr.",name:"Kotb",middleName:null,surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2569",title:"Protein Phosphorylation in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8c0b00cb583f566e77b3e553b1aa5920",slug:"protein-phosphorylation-in-human-health",bookSignature:"Cai Huang",coverURL:"https://cdn.intechopen.com/books/images_new/2569.jpg",editedByType:"Edited by",editors:[{id:"142646",title:"Dr.",name:"Cai",middleName:null,surname:"Huang",slug:"cai-huang",fullName:"Cai Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3141",title:"Apoptosis and Medicine",subtitle:null,isOpenForSubmission:!1,hash:"42aa17cdb57c3b0a54443cc3dadddaaf",slug:"apoptosis-and-medicine",bookSignature:"Tobias M. Ntuli",coverURL:"https://cdn.intechopen.com/books/images_new/3141.jpg",editedByType:"Edited by",editors:[{id:"96243",title:"Dr.",name:"Tobias",middleName:"Mzwele",surname:"Ntuli",slug:"tobias-ntuli",fullName:"Tobias Ntuli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1718",title:"Aneuploidy in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"b2c4e59fabd635fa42cd091424282d83",slug:"aneuploidy-in-health-and-disease",bookSignature:"Zuzana Storchova",coverURL:"https://cdn.intechopen.com/books/images_new/1718.jpg",editedByType:"Edited by",editors:[{id:"104429",title:"Dr.",name:"Zuzana",middleName:null,surname:"Storchova",slug:"zuzana-storchova",fullName:"Zuzana Storchova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1722",title:"DNA Sequencing",subtitle:"Methods and Applications",isOpenForSubmission:!1,hash:"388e3ad9966db34d099c45bd8212c45c",slug:"dna-sequencing-methods-and-applications",bookSignature:"Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/1722.jpg",editedByType:"Edited by",editors:[{id:"97021",title:"Dr.",name:"Anjana",middleName:null,surname:"Munshi",slug:"anjana-munshi",fullName:"Anjana Munshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"688",title:"Genetics and Pathophysiology of Essential Hypertension",subtitle:null,isOpenForSubmission:!1,hash:"1ab6d01a10ecba39a51b34a584125df8",slug:"genetics-and-pathophysiology-of-essential-hypertension",bookSignature:"Madhu Khullar",coverURL:"https://cdn.intechopen.com/books/images_new/688.jpg",editedByType:"Edited by",editors:[{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1967",title:"Molecular Interactions",subtitle:null,isOpenForSubmission:!1,hash:"522b62bf32423a57eeceb0bf150e5a66",slug:"molecular-interactions",bookSignature:"Aurelia Meghea",coverURL:"https://cdn.intechopen.com/books/images_new/1967.jpg",editedByType:"Edited by",editors:[{id:"104880",title:"Prof.",name:"Aurelia",middleName:"Gh",surname:"Meghea",slug:"aurelia-meghea",fullName:"Aurelia Meghea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:23,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"38236",doi:"10.5772/50129",title:"Extrinsic and Intrinsic Apoptosis Signal Pathway Review",slug:"extrinsic-and-intrinsic-apoptosis-signal-pathway-review",totalDownloads:11207,totalCrossrefCites:42,totalDimensionsCites:80,abstract:null,book:{id:"3141",slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Zhao Hongmei",authors:[{id:"146795",title:"Dr.",name:"Zhao",middleName:null,surname:"Hongmei",slug:"zhao-hongmei",fullName:"Zhao Hongmei"}]},{id:"38806",doi:"10.5772/48277",title:"Bacterial Two-Component Systems: Structures and Signaling Mechanisms",slug:"bacterial-two-component-systems-structures-and-signaling-mechanisms",totalDownloads:5331,totalCrossrefCites:14,totalDimensionsCites:31,abstract:null,book:{id:"2569",slug:"protein-phosphorylation-in-human-health",title:"Protein Phosphorylation in Human Health",fullTitle:"Protein Phosphorylation in Human Health"},signatures:"Shuishu Wang",authors:[{id:"141519",title:"Dr.",name:"Shuishu",middleName:null,surname:"Wang",slug:"shuishu-wang",fullName:"Shuishu Wang"}]},{id:"18826",doi:"10.5772/24355",title:"Transgenic Plants for Enhanced Phytoremediation – Physiological Studies",slug:"transgenic-plants-for-enhanced-phytoremediation-physiological-studies",totalDownloads:6535,totalCrossrefCites:17,totalDimensionsCites:29,abstract:null,book:{id:"342",slug:"genetic-transformation",title:"Genetic Transformation",fullTitle:"Genetic Transformation"},signatures:"Paulo Celso de Mello- Farias, Ana Lúcia Soares Chaves and Claiton Leoneti Lencina",authors:[{id:"56835",title:"Dr.",name:"Ana",middleName:null,surname:"Chaves",slug:"ana-chaves",fullName:"Ana Chaves"},{id:"58429",title:"Prof.",name:"Paulo Celso",middleName:"De",surname:"De Mello-Farias",slug:"paulo-celso-de-mello-farias",fullName:"Paulo Celso De Mello-Farias"},{id:"58430",title:"Dr.",name:"Claiton",middleName:"Leoneti",surname:"Lencina",slug:"claiton-lencina",fullName:"Claiton Lencina"}]},{id:"30368",doi:"10.5772/31612",title:"Sex Chromosomes and Meiosis in Spiders:A Review",slug:"sex-chromosomes-and-meiosis-of-spiders-a-review",totalDownloads:5515,totalCrossrefCites:12,totalDimensionsCites:28,abstract:null,book:{id:"723",slug:"meiosis-molecular-mechanisms-and-cytogenetic-diversity",title:"Meiosis",fullTitle:"Meiosis - Molecular Mechanisms and Cytogenetic Diversity"},signatures:"Douglas Araujo, Marielle Cristina Schneider, Emygdio Paula-Neto and Doralice Maria Cella",authors:[{id:"83860",title:"Dr.",name:"Marielle",middleName:null,surname:"Schneider",slug:"marielle-schneider",fullName:"Marielle Schneider"},{id:"87916",title:"Dr.",name:"Douglas",middleName:null,surname:"Araujo",slug:"douglas-araujo",fullName:"Douglas Araujo"},{id:"88846",title:"Dr.",name:"Doralice",middleName:null,surname:"Cella",slug:"doralice-cella",fullName:"Doralice Cella"},{id:"88939",title:"BSc",name:"Emygdio",middleName:null,surname:"Paula-Neto",slug:"emygdio-paula-neto",fullName:"Emygdio Paula-Neto"}]},{id:"16933",doi:"10.5772/24319",title:"Mutation Patterns Due to Converging Mitochondrial Replication and Transcription Increase Lifespan, and Cause Growth Rate-Longevity Tradeoffs",slug:"mutation-patterns-due-to-converging-mitochondrial-replication-and-transcription-increase-lifespan-an",totalDownloads:2427,totalCrossrefCites:11,totalDimensionsCites:28,abstract:null,book:{id:"267",slug:"dna-replication-current-advances",title:"DNA Replication",fullTitle:"DNA Replication - Current Advances"},signatures:"Hervé Seligmann",authors:[{id:"118814",title:"Dr.",name:"Herve",middleName:null,surname:"Seligmann",slug:"herve-seligmann",fullName:"Herve Seligmann"}]}],mostDownloadedChaptersLast30Days:[{id:"58467",title:"Generation of Antibody Diversity",slug:"generation-of-antibody-diversity",totalDownloads:3163,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Because of the huge diversity, the immunoglobulin repertoire cannot be encoded by static genes, which would explode the genomic capacity comprising about 20,000–25,000 human genes. The immunoglobulin repertoire is provided by the process of somatic germ line recombination, which is the only controlled alteration of the genomic DNA after meiosis. It takes place in mammalian B lymphocyte (B cells) precursors in the bone marrow. The genome germ line sequence of undeveloped B cells is organized in gene segments and compromise V (variable), D (diversity), and J (joining) gene segments constituting the variable domain of the heavy chain and only V and J genes for building up the variable domain of the light chain. The rearrangement of the variable region follows a strict order. The following processes that participate in the generation of antibody diversity were summarized—allelic, combinational, and junctional diversity, pairing of IgH and IgL, and receptor editing—which all together produce the primary antigen repertoire (pre-antigen stimulation). When a B cell encounters a foreign antigen, affinity maturation and class switch are induced. Thereby the antibody repertoire increases. The resulting secondary immunoglobulin repertoire reveals in humans at least 1011 specificities for different antigens.",book:{id:"5784",slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Oliver Backhaus",authors:[{id:"177685",title:"M.Sc.",name:"Oliver",middleName:null,surname:"Backhaus",slug:"oliver-backhaus",fullName:"Oliver Backhaus"}]},{id:"21711",title:"Screening of Bacterial Recombinants: Strategies and Preventing False Positives",slug:"screening-of-bacterial-recombinants-strategies-and-preventing-false-positives",totalDownloads:28495,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"375",slug:"molecular-cloning-selected-applications-in-medicine-and-biology",title:"Molecular Cloning",fullTitle:"Molecular Cloning - Selected Applications in Medicine and Biology"},signatures:"Sriram Padmanabhan, Sampali Banerjee and Naganath Mandi",authors:[{id:"46458",title:"Dr.",name:"Sriram",middleName:null,surname:"Padmanabhan",slug:"sriram-padmanabhan",fullName:"Sriram Padmanabhan"},{id:"136523",title:"Prof.",name:"Sampali",middleName:null,surname:"Banerjee",slug:"sampali-banerjee",fullName:"Sampali Banerjee"},{id:"136524",title:"Prof.",name:"Naganath",middleName:null,surname:"Mandi",slug:"naganath-mandi",fullName:"Naganath Mandi"}]},{id:"38236",title:"Extrinsic and Intrinsic Apoptosis Signal Pathway Review",slug:"extrinsic-and-intrinsic-apoptosis-signal-pathway-review",totalDownloads:11198,totalCrossrefCites:42,totalDimensionsCites:80,abstract:null,book:{id:"3141",slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Zhao Hongmei",authors:[{id:"146795",title:"Dr.",name:"Zhao",middleName:null,surname:"Hongmei",slug:"zhao-hongmei",fullName:"Zhao Hongmei"}]},{id:"19294",title:"Lagging Strand Synthesis and Genomic Stability",slug:"lagging-strand-synthesis-and-genomic-stability",totalDownloads:3372,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"346",slug:"dna-repair-on-the-pathways-to-fixing-dna-damage-and-errors",title:"DNA Repair",fullTitle:"DNA Repair - On the Pathways to Fixing DNA Damage and Errors"},signatures:"Tuan Anh Nguyen, Chul-Hwan Lee and Yeon-Soo Seo",authors:[{id:"45828",title:"Dr.",name:"Yeon-Soo",middleName:null,surname:"Seo",slug:"yeon-soo-seo",fullName:"Yeon-Soo Seo"},{id:"46800",title:"Ph.D.",name:"Tuan Anh",middleName:null,surname:"Nguyen",slug:"tuan-anh-nguyen",fullName:"Tuan Anh Nguyen"},{id:"57602",title:"Dr.",name:"Chul-Hwan",middleName:null,surname:"Lee",slug:"chul-hwan-lee",fullName:"Chul-Hwan Lee"}]},{id:"57802",title:"Control of Ribosomal RNA Transcription by Nutrients",slug:"control-of-ribosomal-rna-transcription-by-nutrients",totalDownloads:1621,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"The ribosome is a unique machine for protein synthesis in organisms. The construction of ribosomes is exceedingly complex and consumes the majority of the cell materials and energy. The materials for ribosome production are supplied by nutrients. Therefore, the production of ribosomes is restricted by environmental nutrients, and cells need mechanisms to control ribosome production in order to reconcile demands for cell activities with available resources. Transcription of ribosomal RNA is an essential step in ribosome biogenesis. It strongly affects the total amount of ribosome production, and thus rapidly growing cells have an elevated level of ribosomal RNA transcription. Ribosomal RNA transcription is controlled by many mechanisms, including the efficiency of preinitiation complex formation for RNA polymerase I (Pol I) and epigenetic marks in ribosomal RNA genes. These are affected by cell cycle progression, signal transduction pathways, cell-damaging stresses, nutrients such as glucose, and the metabolites. Recent studies also suggest that the epigenetic marks, acetylation and methylation, may be not only controlled by nutrients but also function as reservoirs for biological resources in chromatin. Further studies would provide information about the mechanisms cells use to adjust production of cellular components to available resources and clues for developing novel anti-cancer treatments.",book:{id:"7204",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-toward-the-establishment-of-novel-therapeutics",title:"Gene Expression and Regulation in Mammalian Cells",fullTitle:"Gene Expression and Regulation in Mammalian Cells - Transcription Toward the Establishment of Novel Therapeutics"},signatures:"Yuji Tanaka and Makoto Tsuneoka",authors:[{id:"219040",title:"Prof.",name:"Makoto",middleName:null,surname:"Tsuneoka",slug:"makoto-tsuneoka",fullName:"Makoto Tsuneoka"},{id:"219221",title:"Dr.",name:"Yuji",middleName:null,surname:"Tanaka",slug:"yuji-tanaka",fullName:"Yuji Tanaka"}]}],onlineFirstChaptersFilter:{topicId:"400",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"