Aeroelasticity phenomena arise when structural deformations induce changes on aerodynamic forces due to airplane structures that are not completely rigid. The additional aerodynamic forces cause an increase in the structural deformations, which leads to greater aerodynamic forces in a feedback process. These interactions may become smaller until reaching a condition of equilibrium or may diverge catastrophically if resonance occurs. Flutter is an instability aeroelasticity phenomenon which is the most difficult to predict. In this chapter, a numerical method and an experimental method were realized to predict aeroelastic response and characteristic parameters of a wing structure. The numerical method was firstly developed based on the interaction between computational fluid dynamic and computational structural dynamic methods using a coupling system, fluid–solid interaction (FSI), in the ANSYS software. Then, an experiment was set up in suitable conditions to study aeroelasticity characteristics with the goal of comparing the numerical results with the experimental results on the same wing structure at low speed. After that, a developed code based on immersed boundary method (IBM) was realized to predict aeroelasticity response and characteristic parameters of the wing structure. AGARD 445.6 wing model was chosen for this developed procedure at high speed. Obtained results were compared to other numerical and experimental results.
Part of the book: Aerodynamics