Elastography methods used for the liver.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"7690",leadTitle:null,fullTitle:"Tunnel Engineering - Selected Topics",title:"Tunnel Engineering",subtitle:"Selected Topics",reviewType:"peer-reviewed",abstract:"This volume presents a selection of chapters covering a wide range of tunneling engineering topics. The scope was to present reviews of established methods and new approaches in construction practice and in digital technology tools like building information modeling. The book is divided in four sections dealing with geological aspects of tunneling, analysis and design, new challenges in tunnel construction, and tunneling in the digital era. Topics from site investigation and rock mass failure mechanisms, analysis and design approaches, and innovations in tunnel construction through digital tools are covered in 10 chapters. The references provided will be useful for further reading.",isbn:"978-1-78985-466-4",printIsbn:"978-1-78985-465-7",pdfIsbn:"978-1-78985-914-0",doi:"10.5772/intechopen.77496",price:119,priceEur:129,priceUsd:155,slug:"tunnel-engineering-selected-topics",numberOfPages:294,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"c0c03565105a25fb6cfe85f83885afe3",bookSignature:"Michael Sakellariou",publishedDate:"March 18th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7690.jpg",numberOfDownloads:14387,numberOfWosCitations:1,numberOfCrossrefCitations:11,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:14,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:26,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 29th 2019",dateEndSecondStepPublish:"March 14th 2019",dateEndThirdStepPublish:"May 13th 2019",dateEndFourthStepPublish:"August 1st 2019",dateEndFifthStepPublish:"September 30th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"16550",title:"Dr.",name:"Michael",middleName:null,surname:"Sakellariou",slug:"michael-sakellariou",fullName:"Michael Sakellariou",profilePictureURL:"https://mts.intechopen.com/storage/users/16550/images/system/16550.jpg",biography:"Michael Sakellariou is a professor emeritus of Geomechanics and Engineering Structures at the National Technical University of Athens (NTUA). He studied Civil Engineering and Rural and Surveying Engineering at NTUA. He holds an MSc in Engineering Rock Mechanics from Imperial College London, and he obtained his PhD in Applied Mechanics from NTUA (1989). In his professional career, he was collaborator of engineering companies in major infrastructure projects. His teaching experience covers engineering mechanics, continuum mechanics, geotechnical engineering, soil mechanics and foundations, and engineering materials at undergraduate and postgraduate levels. His interests cover experimental mechanics, analytical and computational methods in geotechnical engineering, application of artificial intelligent and GIS in geotechnical engineering, structures monitoring using optical fiber sensors, and tectonic fault stress analysis.",institutionString:"National Technical University of Athens",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"National Technical University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"284",title:"Civil Engineering",slug:"technology-civil-engineering"}],chapters:[{id:"70990",title:"Engineering Geology and Tunnels",doi:"10.5772/intechopen.90462",slug:"engineering-geology-and-tunnels",totalDownloads:1881,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Currently, knowledge and understanding of the role of geological material and its implication in tunnel design is reinforced with advances in site investigation methods, the development of geotechnical classification systems and the consequent quantification of rock masses. However, the contribution of engineering geological information in tunnelling cannot be simply presented solely by a rock mass classification value. What is presented in this chapter is that the first step is not to start performing numerous calculations but to define the potential failure mechanisms. After defining the failure mechanism that is most critical, selection of the suitable design parameters is undertaken. This is then followed by the analysis and performance of the temporary support system based on a more realistic model. The specific failure mechanism is controlled and contained by the support system. A tunnel engineer must early assess all the critical engineering geological characteristics of the rock mass and the relevant mode of failure, for the specific factors of influence, and then decide either he or she will rely on a rock mass classification value to characterise all the site-specific conditions. Experiences from the tunnel behaviour of rock masses in different geological environments in Alpine mountain ridges are presented in this chapter.",signatures:"Vassilis Marinos",downloadPdfUrl:"/chapter/pdf-download/70990",previewPdfUrl:"/chapter/pdf-preview/70990",authors:[{id:"298713",title:"Associate Prof.",name:"Vassilis",surname:"Marinos",slug:"vassilis-marinos",fullName:"Vassilis Marinos"}],corrections:null},{id:"68534",title:"Advanced Geological Prediction",doi:"10.5772/intechopen.88406",slug:"advanced-geological-prediction",totalDownloads:1056,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Due to the particularity of the tunnel project, it is difficult to find out the exact geological conditions of the tunnel body during the survey stage. Once it encounters unfavorable geological bodies such as faults, fracture zones, and karst, it will bring great challenges to the construction and will easily cause major problems, economic losses, and casualties. Therefore, it is necessary to carry out geological forecast work in the tunnel construction process, which is of great significance for tunnel safety construction and avoiding major disaster accident losses. This lecture mainly introduces the commonly used methods of geological forecast in tunnel construction, the design principles, and contents of geological forecast and combines typical cases to show the implementation process of comprehensive geological forecast. Finally, the development direction of geological forecast theory, method, and technology is carried out. Prospects provide a useful reference for promoting the development of geological forecast of tunnels.",signatures:"Shaoshuai Shi, Xiaokun Xie, Siming Tian, Zhijie Wen, Lin Bu, Zongqing Zhou, Shuguang Song and Ruijie Zhao",downloadPdfUrl:"/chapter/pdf-download/68534",previewPdfUrl:"/chapter/pdf-preview/68534",authors:[{id:"249088",title:"Dr.",name:"Shaoshuai",surname:"Shi",slug:"shaoshuai-shi",fullName:"Shaoshuai Shi"},{id:"296501",title:"Dr.",name:"Xie",surname:"Xiaokun",slug:"xie-xiaokun",fullName:"Xie Xiaokun"},{id:"302553",title:"Prof.",name:"Zhijie",surname:"Wen",slug:"zhijie-wen",fullName:"Zhijie Wen"},{id:"302554",title:"Prof.",name:"Siming",surname:"Tian",slug:"siming-tian",fullName:"Siming Tian"},{id:"302555",title:"Prof.",name:"Zongqing",surname:"Zhou",slug:"zongqing-zhou",fullName:"Zongqing Zhou"},{id:"302556",title:"Dr.",name:"Shuguang",surname:"Song",slug:"shuguang-song",fullName:"Shuguang Song"}],corrections:null},{id:"70869",title:"Topics of Analytical and Computational Methods in Tunnel Engineering",doi:"10.5772/intechopen.90849",slug:"topics-of-analytical-and-computational-methods-in-tunnel-engineering",totalDownloads:936,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this chapter, a selection of tunneling topics is presented, following the evolution of methods and tools from analytical to computational era. After an introductory discussion of the importance of elasticity and plasticity in tunneling, some practical topics are presented as paradigms to show the successful application of them in achieving a solution. The circular and horseshoe tunnel sections served as the basis of the elastic analysis of deep tunnels. Practical aspects such as influence zone and elastic convergences in both cases are examined. In the case of circular tunnels, the estimation of plastic zone formation is discussed for a selection of strength criteria. After a detailed discussion of the influence of surface proximity, the elastic and plastic analysis of shallow tunnels is examined in some detail. The presentation is completed by a short presentation of computational methods. An overview of recent developments and a classification of the methods are presented, and then some problems for the case of anisotropic rocks have been presented using finite element method (FEM). The last topic is the application of artificial intelligence (AI) tools in interpreting data and in estimating the relative importance of parameters involved in the problem of tunneling-induced surface settlements. In the conclusions a short discussion of the main topics presented follows.",signatures:"Michael G. Sakellariou",downloadPdfUrl:"/chapter/pdf-download/70869",previewPdfUrl:"/chapter/pdf-preview/70869",authors:[{id:"16550",title:"Dr.",name:"Michael",surname:"Sakellariou",slug:"michael-sakellariou",fullName:"Michael Sakellariou"}],corrections:null},{id:"69298",title:"Impact of Tunnels and Underground Spaces on the Seismic Response of Overlying Structures",doi:"10.5772/intechopen.89338",slug:"impact-of-tunnels-and-underground-spaces-on-the-seismic-response-of-overlying-structures",totalDownloads:801,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Depending on the circumstances, the design and construction of tunnels and underground spaces may be very challenging. In the case of an underground project located at a relatively shallow depth in an urban area, the design and construction will probably be more demanding since there is a potential interaction between the underground project and the overlying pre-existing structure(s) that are founded at the ground surface, such as buildings, bridges, etc. This interaction is generally related to the (usually differential) settlements at the ground surface due to the excavation and the consequent distress of the overlying structures. Nevertheless, in areas that are characterized by seismicity, this interaction may be more complicated, since, apart from the aforementioned static interaction, various phenomena of soil dynamics and dynamic interaction may take place, dominating thus the seismic excitation, response, and distress of the overlying structure(s). The current chapter deals with this interesting topic of geotechnical earthquake engineering. After a literature review, some indicative numerical analyses have been performed in order to determine the impact of the main parameters involved. Although the problem is generally complex and multi-parametrical, the numerical results are indicative of the dynamic interaction between the underground project, the ground, and the overlying structure(s).",signatures:"Prodromos Psarropoulos",downloadPdfUrl:"/chapter/pdf-download/69298",previewPdfUrl:"/chapter/pdf-preview/69298",authors:[{id:"298007",title:"Dr.",name:"Prodromos",surname:"Psarropoulos",slug:"prodromos-psarropoulos",fullName:"Prodromos Psarropoulos"}],corrections:null},{id:"70605",title:"Designing a Tunnel",doi:"10.5772/intechopen.90182",slug:"designing-a-tunnel",totalDownloads:2692,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Designing a tunnel is always a challenge. For shallow tunnels under cities due to the presence of buildings, bridges, important avenues, antiquities, etc. at the surface and other infrastructures in the vicinity of underground tunnels, parameters like vibrations and ground settlements must be tightly controlled. Urban tunnels are often made in soils with very low values of overburden. Risks of collapse and large deformations at the surface are high; thus negative impact on old buildings are likely to occur if appropriate measures are not taken in advance, when designing and constructing the tunnel. For deep tunnels with high overburden and low rock mass properties, squeezing conditions and excessive loads around the excavation can jeopardize the stability of the tunnel, leading to extensive collapse. The aim of the chapter is to give details on advance computational modelling and analytical methodologies, which can be used in order to design shallow and deep tunnels and to present real case studies from around the world, from very shallow tunnels in India with only 4.5 m overburden to a deep tunnel in Venezuela with extreme squeezing conditions under 1300 m overburden.",signatures:"Spiros Massinas",downloadPdfUrl:"/chapter/pdf-download/70605",previewPdfUrl:"/chapter/pdf-preview/70605",authors:[{id:"295762",title:"Dr.",name:"Spiros",surname:"Massinas",slug:"spiros-massinas",fullName:"Spiros Massinas"}],corrections:null},{id:"67810",title:"Transit-Oriented Development Interactions on Existing Metro Systems: The Need for the Design of Adequate Structural Monitoring System and the Experience from International Projects",doi:"10.5772/intechopen.86923",slug:"transit-oriented-development-interactions-on-existing-metro-systems-the-need-for-the-design-of-adequ",totalDownloads:1004,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Contemporary metro transport systems present unrivaled efficiency for the commuting population. The development of the urban environment is interwoven with the metro transit systems. The transit-oriented development (TOD) is an upcoming topic in the design of the contemporary and of the future city and metro system alike. It entails the development of a microcell of the city centered around the metro station. Typically, bulky TOD buildings rise over and around the station and tunnel. The structural engineering aspect of these mega projects is highly complex. Major part of the complexity is due to complicated interactions between the oversite building and the underlying tunnel or station with its track-rail system. A significant number of issues arise, like methods to bridge over the tunnel or station, structural isolation, induced displacements to the track-rail system, tunnel movements and impact to tracks, vibration induction to the TOD building, and a plenitude of similar problems. It is highly important to design a structural monitoring system that will provide a validation tool of the structural-dynamic performance of the closed system TOD-tunnel/station. The distilled experience from international projects is presented.",signatures:"Evangelos Astreinidis",downloadPdfUrl:"/chapter/pdf-download/67810",previewPdfUrl:"/chapter/pdf-preview/67810",authors:[{id:"295208",title:"Dr.",name:"Evangelos",surname:"Astreinidis",slug:"evangelos-astreinidis",fullName:"Evangelos Astreinidis"}],corrections:null},{id:"67958",title:"Innovative Concepts in TBM Tunnels",doi:"10.5772/intechopen.87965",slug:"innovative-concepts-in-tbm-tunnels",totalDownloads:1240,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Tunnel boring machine (TBM) tunnels are increasingly used in the construction of transport infrastructure, allowing for reduction of the environmental impact and cost and time of construction. Despite these advantages, TBM tunnels still face major challenges such as further cost reduction, the structural safety under earthquakes, and the improvement of safety during operation in the case of traffic tunnels (rail and road tunnels). To overcome these challenges, three innovative and very cost-effective concepts for the construction of TBM tunnels were recently developed by the author: the tunnel of improved seismic behavior (TISB) concept for improving structural safety of tunnels on soft ground in seismic areas and the tunnel multi-floor (TMF) and tunnel multi-gallery (TMG) concepts for road and rail tunnels, respectively, which allow an even greater cost reduction and improvement of safety in operation. In this paper these concepts are presented as well as their application in some specific cases, emphasizing the obtained added value.",signatures:"Silvino Pompeu-Santos",downloadPdfUrl:"/chapter/pdf-download/67958",previewPdfUrl:"/chapter/pdf-preview/67958",authors:[{id:"294864",title:"Dr.",name:"Silvino",surname:"Pompeu-Santos",slug:"silvino-pompeu-santos",fullName:"Silvino Pompeu-Santos"}],corrections:null},{id:"68148",title:"Design of Immersed Tunnel and How We Research Submerged Floating Tunnel",doi:"10.5772/intechopen.88169",slug:"design-of-immersed-tunnel-and-how-we-research-submerged-floating-tunnel",totalDownloads:1152,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter begins with the discussion of the immersed tunnel design, concerning its reason of existence, historical review, general design, transverse and longitudinal design, the interaction, and the critical issues. The discussion is founded on the author’s 10 year experience in building the Hong Kong-Zhuhai-Macao Bridge (HZMB) immersed tunnel as a site design engineer. The experience of building immersed tunnel is transferable to build the submerged floating tunnel, which has never been built. In author’s opinion, the submerged floating tunnel (SFT) technique will be the next generation of IMT technique. In the second part of this chapter, the author proceeds to discuss the strategy of SFT research and the latest development in CCCC SFT Technical Joint Research Team.",signatures:"Wei Lin, Ming Lin, Haiqing Yin and Xiaodong Liu",downloadPdfUrl:"/chapter/pdf-download/68148",previewPdfUrl:"/chapter/pdf-preview/68148",authors:[{id:"294918",title:"Mr.",name:"Wei",surname:"Lin",slug:"wei-lin",fullName:"Wei Lin"},{id:"308878",title:"Dr.",name:"Haiqing",surname:"Yin",slug:"haiqing-yin",fullName:"Haiqing Yin"},{id:"308879",title:"Dr.",name:"Xiaodong",surname:"Liu",slug:"xiaodong-liu",fullName:"Xiaodong Liu"},{id:"308937",title:"Mr.",name:"Ming",surname:"Lin",slug:"ming-lin",fullName:"Ming Lin"}],corrections:null},{id:"68102",title:"Digital Construction Strategies and BIM in Railway Tunnelling Engineering",doi:"10.5772/intechopen.87942",slug:"digital-construction-strategies-and-bim-in-railway-tunnelling-engineering",totalDownloads:2491,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Technology has been a strong driver for industrial efficiency in the twenty-first century. Rapid growth in infrastructure projects such as tunnels is synonymous with both disruptive and supportive technologies that automate operations. The sector has rapidly risen to the challenge from buyers demanding a more digitalised experience when looking to (re)design new tunnels. Currently there are projects in the United Kingdom, Greece and Italy investing in tunnels for their transport networks to help commuters to travel quicker. We could argue that construction has evolved because the tunnels developed nowadays are expected to last for several generations but such an argument is count intuitive. Think of having to spend billions of pounds for a tunnel that does not provide an enhanced travel experience and in a few years’ time requiring a major investment to remodel in order to operate it. This chapter discusses what, why and how digital construction can add value during the lifecycle of a tunnel.",signatures:"Georgios Kapogiannis and Attwell Mlilo",downloadPdfUrl:"/chapter/pdf-download/68102",previewPdfUrl:"/chapter/pdf-preview/68102",authors:[{id:"296272",title:"Dr.",name:"Georgios",surname:"Kapogiannis",slug:"georgios-kapogiannis",fullName:"Georgios Kapogiannis"},{id:"302733",title:"Mr.",name:"Attwell",surname:"Mlilo",slug:"attwell-mlilo",fullName:"Attwell Mlilo"}],corrections:null},{id:"68331",title:"BIM and Advanced Computer-Based Tools for the Design and Construction of Underground Structures and Tunnels",doi:"10.5772/intechopen.88315",slug:"bim-and-advanced-computer-based-tools-for-the-design-and-construction-of-underground-structures-and-",totalDownloads:1138,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Technology and digitalization are continuously producing changes in sectors and fields of human activities. Infrastructure industry needs this support in various and extensive ways, since it affects involved parties and society overall. Even though many individual branches have been transformed, design and construction show some kind of reluctance on encouraging and implementing comprehensive digitalization. A major reason is the significantly high complexity of infrastructure projects and the extended chains of work procedures and activities that are produced. All those are applying through the whole time scale of buildings’ existence. Considering that safety and durability remain always the ultimate goal, every new method and concept shall be exhaustively tested, in order to prove its value and efficiency. The current chapter aims to define and prove technology contribution all along the infrastructure sector, concentrating in tunnels and underground structures. Since evolution is proceeding in accelerated rates, future perspectives are also analyzed to provide broader visions and set indicative standpoints for potential and incentives.",signatures:"Panayotis Kontothanasis, Vicky Krommyda and Nikolaos Roussos",downloadPdfUrl:"/chapter/pdf-download/68331",previewPdfUrl:"/chapter/pdf-preview/68331",authors:[{id:"296644",title:"Dr.",name:"Panagiotis",surname:"Kontothanasis",slug:"panagiotis-kontothanasis",fullName:"Panagiotis Kontothanasis"},{id:"305011",title:"MSc.",name:"Vicky",surname:"Krommyda",slug:"vicky-krommyda",fullName:"Vicky Krommyda"},{id:"305130",title:"MSc.",name:"Nikolaos",surname:"Roussos",slug:"nikolaos-roussos",fullName:"Nikolaos Roussos"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5915",title:"Granular Materials",subtitle:null,isOpenForSubmission:!1,hash:"4d72e38daa75721701686e2007b9defc",slug:"granular-materials",bookSignature:"Michael Sakellariou",coverURL:"https://cdn.intechopen.com/books/images_new/5915.jpg",editedByType:"Edited by",editors:[{id:"16550",title:"Dr.",name:"Michael",surname:"Sakellariou",slug:"michael-sakellariou",fullName:"Michael Sakellariou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8412",title:"Sustainable Construction and Building Materials",subtitle:null,isOpenForSubmission:!1,hash:"dec13857a884f2b52b887e8751e4c37f",slug:"sustainable-construction-and-building-materials",bookSignature:"Sayed Hemeda",coverURL:"https://cdn.intechopen.com/books/images_new/8412.jpg",editedByType:"Edited by",editors:[{id:"258282",title:"Prof.",name:"Sayed",surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9989",title:"ISBS 2019",subtitle:"4th International Sustainable Buildings Symposium",isOpenForSubmission:!1,hash:"a34ca3367e8af39c3718aca2f3557efe",slug:"isbs-2019-4th-international-sustainable-buildings-symposium",bookSignature:"Arzuhan Burcu Gültekin",coverURL:"https://cdn.intechopen.com/books/images_new/9989.jpg",editedByType:"Edited by",editors:[{id:"143644",title:"Dr.",name:"Arzuhan",surname:"Gültekin",slug:"arzuhan-gultekin",fullName:"Arzuhan Gültekin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"7225",title:"Dam Engineering",subtitle:null,isOpenForSubmission:!1,hash:"a845c7ddd9193f56a6bc91bc22bc503d",slug:"dam-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/7225.jpg",editedByType:"Edited by",editors:[{id:"79083",title:"Prof.",name:"Hasan",surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72877",slug:"erratum-synthesis-techniques-and-applications-of-perovskite-materials",title:"Erratum - Synthesis Techniques and Applications of Perovskite Materials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72877.pdf",downloadPdfUrl:"/chapter/pdf-download/72877",previewPdfUrl:"/chapter/pdf-preview/72877",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72877",risUrl:"/chapter/ris/72877",chapter:{id:"70923",slug:"synthesis-techniques-and-applications-of-perovskite-materials",signatures:"Dinesh Kumar, Ram Sagar Yadav, Monika, Akhilesh Kumar Singh and Shyam Bahadur Rai",dateSubmitted:"March 12th 2019",dateReviewed:"May 13th 2019",datePrePublished:null,datePublished:"June 10th 2020",book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"298428",title:"Dr.",name:"Ram Sagar",middleName:null,surname:"Yadav",fullName:"Ram Sagar Yadav",slug:"ram-sagar-yadav",email:"ramsagaryadav@gmail.com",position:null,institution:null},{id:"302651",title:"Dr.",name:"Dinesh",middleName:null,surname:"Kumar",fullName:"Dinesh Kumar",slug:"dinesh-kumar",email:"dineshiitbhu@gmail.com",position:null,institution:null},{id:"302652",title:"Ms.",name:"Monika",middleName:null,surname:"Kanwal",fullName:"Monika Kanwal",slug:"monika-kanwal",email:"monikavbspu@gmail.com",position:null,institution:null},{id:"302653",title:"Dr.",name:"Akhilesh Kumar",middleName:null,surname:"Singh",fullName:"Akhilesh Kumar Singh",slug:"akhilesh-kumar-singh",email:"aksingh.mst@iitbhu.ac.in",position:null,institution:null},{id:"302654",title:"Prof.",name:"Shyam Bahadur",middleName:null,surname:"Rai",fullName:"Shyam Bahadur Rai",slug:"shyam-bahadur-rai",email:"sbrai49@yahoo.co.in",position:null,institution:null}]}},chapter:{id:"70923",slug:"synthesis-techniques-and-applications-of-perovskite-materials",signatures:"Dinesh Kumar, Ram Sagar Yadav, Monika, Akhilesh Kumar Singh and Shyam Bahadur Rai",dateSubmitted:"March 12th 2019",dateReviewed:"May 13th 2019",datePrePublished:null,datePublished:"June 10th 2020",book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"298428",title:"Dr.",name:"Ram Sagar",middleName:null,surname:"Yadav",fullName:"Ram Sagar Yadav",slug:"ram-sagar-yadav",email:"ramsagaryadav@gmail.com",position:null,institution:null},{id:"302651",title:"Dr.",name:"Dinesh",middleName:null,surname:"Kumar",fullName:"Dinesh Kumar",slug:"dinesh-kumar",email:"dineshiitbhu@gmail.com",position:null,institution:null},{id:"302652",title:"Ms.",name:"Monika",middleName:null,surname:"Kanwal",fullName:"Monika Kanwal",slug:"monika-kanwal",email:"monikavbspu@gmail.com",position:null,institution:null},{id:"302653",title:"Dr.",name:"Akhilesh Kumar",middleName:null,surname:"Singh",fullName:"Akhilesh Kumar Singh",slug:"akhilesh-kumar-singh",email:"aksingh.mst@iitbhu.ac.in",position:null,institution:null},{id:"302654",title:"Prof.",name:"Shyam Bahadur",middleName:null,surname:"Rai",fullName:"Shyam Bahadur Rai",slug:"shyam-bahadur-rai",email:"sbrai49@yahoo.co.in",position:null,institution:null}]},book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10545",leadTitle:null,title:"Rare Diseases",subtitle:"Diagnostic and Therapeutic Odyssey",reviewType:"peer-reviewed",abstract:"A rare disease is any disease or condition that affects a small percentage of the population. Many rare conditions are life-threatening or chronically debilitating, and unfortunately do not have appropriate treatments, rendering them incurable. In recent years, there has been substantial development in the area of rare disease research and its clinical applications, for instance, rare disease biology and genomics, epidemiology and preventions, early detection and screening, and diagnosis and treatment. In this context, this book consolidates the recent advances in rare disease biology and therapeutics, covering a wide spectrum of interrelated topics, and disseminates this essential knowledge in a comprehensible way to a greater scientific and clinical audience as well as patients, caregivers, and drug and device manufacturers, especially to support rare disease product development. Chapters cover such diseases as Felty’s syndrome, Löfgren’s syndrome, mesothelioma, epidermolysis bullosa, and more. This book is a valuable resource not only for medical and allied health students but also for researchers, clinical and nurse geneticists, genetic counselors, and physician assistants.",isbn:"978-1-83969-412-7",printIsbn:"978-1-83962-930-3",pdfIsbn:"978-1-83969-413-4",doi:"10.5772/intechopen.92919",price:119,priceEur:129,priceUsd:155,slug:"rare-diseases-diagnostic-and-therapeutic-odyssey",numberOfPages:150,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"f995dac5c8617b8c00f0df3d6142155d",bookSignature:"Mani T. Valarmathi",publishedDate:"September 22nd 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10545.jpg",keywords:null,numberOfDownloads:1425,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfDimensionsCitations:3,numberOfTotalCitations:6,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 26th 2020",dateEndSecondStepPublish:"December 28th 2020",dateEndThirdStepPublish:"February 22nd 2021",dateEndFourthStepPublish:"May 13th 2021",dateEndFifthStepPublish:"July 12th 2021",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Dr. Mani T. Valarmathi has had extensive experience in research on various types of stem cells. He is a member of the Society for Stem Cell Research, American Association for Cancer Research, American Society for Investigative Pathology, American Chemical Society, European Society of Cardiology, American Society of Gene & Cell Therapy, American Heart Association.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",biography:"Mani T. Valarmathi is currently Director of Research and Development at Religen Inc., a life science company in Pennsylvania, USA. He began his scientific career as a cancer geneticist but soon became captivated with the emerging and translational fields of stem cell biology, tissue engineering, and regenerative medicine. After obtaining a bachelor’s degree in Chemistry from the University of Madras, Chennai, Tamil Nadu, India, he obtained an MBBS in Medicine and Surgery and an MD in Pathology from the same university. Dr. Valarmathi also holds a Ph.D. in Medical Biotechnology from the All-India Institute of Medical Sciences, New Delhi, India. Over the past two decades, he has had extensive experience in research on various types of stem cells, focused on creating bioengineered human 3D vascularized tissues constructs for implantation purposes. At present, much of his research is directed towards developing innovative molecular genetic testing for precision and genetic medicine. He is a member of many prestigious national and international professional societies and scientific organizations, including the International Society for Stem Cell Research (ISSCR), Tissue Engineering and Regenerative Medicine International Society (TERMIS), American Association for Cancer Research (AACR), American Society for Investigative Pathology (ASIP), American Society for Clinical Pathology (ASCP), American Chemical Society (ACS), European Society of Cardiology (ESC), International Society for Heart Research (ISHR), American Society of Gene & Cell Therapy (ASGCT), and American Heart Association (AHA).",institutionString:"Religen Inc. | A Life Science Company, United States of America",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"193",title:"Pathology",slug:"medicine-pathology"}],chapters:[{id:"77924",title:"Introductory Chapter: Rare Diseases - Ending the Diagnostic Odyssey and Beginning the Therapeutic Odyssey",slug:"introductory-chapter-rare-diseases-ending-the-diagnostic-odyssey-and-beginning-the-therapeutic-odyss",totalDownloads:88,totalCrossrefCites:0,authors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}]},{id:"75856",title:"Felty’s Syndrome",slug:"felty-s-syndrome",totalDownloads:232,totalCrossrefCites:0,authors:[{id:"343107",title:"Dr.",name:"Vadim",surname:"Gorodetskiy",slug:"vadim-gorodetskiy",fullName:"Vadim Gorodetskiy"}]},{id:"76028",title:"Löfgren’s Syndrome",slug:"l-fgren-s-syndrome",totalDownloads:219,totalCrossrefCites:0,authors:[{id:"349572",title:"M.D.",name:"Shiyu",surname:"Wang",slug:"shiyu-wang",fullName:"Shiyu Wang"},{id:"349574",title:"Dr.",name:"Shaleindra",surname:"Singh",slug:"shaleindra-singh",fullName:"Shaleindra Singh"}]},{id:"75678",title:"Childhood Langerhans Cell Histiocytosis: Epidemiology, Clinical Presentations, Prognostic Factors, and Therapeutic Approaches",slug:"childhood-langerhans-cell-histiocytosis-epidemiology-clinical-presentations-prognostic-factors-and-t",totalDownloads:242,totalCrossrefCites:0,authors:[{id:"327637",title:"Prof.",name:"Milen",surname:"Minkov",slug:"milen-minkov",fullName:"Milen Minkov"},{id:"339409",title:"Dr.",name:"Katharina",surname:"Sterlich",slug:"katharina-sterlich",fullName:"Katharina Sterlich"}]},{id:"77229",title:"The Immune System of Mesothelioma Patients: A Window of Opportunity for Novel Immunotherapies",slug:"the-immune-system-of-mesothelioma-patients-a-window-of-opportunity-for-novel-immunotherapies",totalDownloads:175,totalCrossrefCites:0,authors:[{id:"343763",title:"Ph.D.",name:"Massimiliano",surname:"Mazza",slug:"massimiliano-mazza",fullName:"Massimiliano Mazza"},{id:"343765",title:"Dr.",name:"Fabio",surname:"Nicolini",slug:"fabio-nicolini",fullName:"Fabio Nicolini"}]},{id:"76441",title:"Therapy Development for Epidermolysis Bullosa",slug:"therapy-development-for-epidermolysis-bullosa",totalDownloads:251,totalCrossrefCites:1,authors:[{id:"55757",title:"Dr.",name:"Verena",surname:"Wally",slug:"verena-wally",fullName:"Verena Wally"},{id:"55760",title:"Dr.",name:"Ulrich",surname:"Koller",slug:"ulrich-koller",fullName:"Ulrich Koller"},{id:"344925",title:"Dr.",name:"Christina",surname:"Gruber",slug:"christina-gruber",fullName:"Christina Gruber"},{id:"344926",title:"Dr.",name:"Josefina",surname:"Piñón Hofbauer",slug:"josefina-pinon-hofbauer",fullName:"Josefina Piñón Hofbauer"},{id:"348350",title:"Dr.",name:"Iris",surname:"Gratz",slug:"iris-gratz",fullName:"Iris Gratz"}]},{id:"76183",title:"Surgical Treatment of Wounds Using Stem Cells in Epidermolysis Bullosa (EB)",slug:"surgical-treatment-of-wounds-using-stem-cells-in-epidermolysis-bullosa-eb-",totalDownloads:219,totalCrossrefCites:2,authors:[{id:"29426",title:"Dr.",name:"Piotr",surname:"Fiedor",slug:"piotr-fiedor",fullName:"Piotr Fiedor"},{id:"348603",title:"Dr.",name:"Magdalena",surname:"Nita",slug:"magdalena-nita",fullName:"Magdalena Nita"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",isOpenForSubmission:!1,hash:"c215f02d4268e4b7cccdaea141ec8647",slug:"stromal-cells-structure-function-and-therapeutic-implications",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7870",title:"Muscle Cells",subtitle:"Recent Advances and Future Perspectives",isOpenForSubmission:!1,hash:"64634d90d737661d1e606cac28b79969",slug:"muscle-cells-recent-advances-and-future-perspectives",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/7870.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:"Evolving Challenges and Next Frontiers",isOpenForSubmission:!1,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:"breast-cancer-evolving-challenges-and-next-frontiers",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9135",title:"Rare Diseases",subtitle:null,isOpenForSubmission:!1,hash:"607a44edc1c494df4d5d126af71ca89c",slug:"rare-diseases",bookSignature:"Zhan He Wu",coverURL:"https://cdn.intechopen.com/books/images_new/9135.jpg",editedByType:"Edited by",editors:[{id:"226446",title:"Dr.",name:"Zhan He",surname:"Wu",slug:"zhan-he-wu",fullName:"Zhan He Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9076",title:"Recent Advances in Wound Healing",subtitle:null,isOpenForSubmission:!1,hash:"5e10a897612bf74c88669ab634de6459",slug:"recent-advances-in-wound-healing",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/9076.jpg",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9630",title:"Pathology",subtitle:"From Classics to Innovations",isOpenForSubmission:!1,hash:"db04399d79a9737879c193b39166d09f",slug:"pathology-from-classics-to-innovations",bookSignature:"Ilze Strumfa and Guntis Bahs",coverURL:"https://cdn.intechopen.com/books/images_new/9630.jpg",editedByType:"Edited by",editors:[{id:"54021",title:"Prof.",name:"Ilze",surname:"Strumfa",slug:"ilze-strumfa",fullName:"Ilze Strumfa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"75463",title:"Sustainable Use of Biochar in Environmental Management",doi:"10.5772/intechopen.96510",slug:"sustainable-use-of-biochar-in-environmental-management",body:'Agricultural waste has been widely studied for at least 6 decades now [1]. This waste stream continues to increase in line with agricultural production [2]. This has negative impacts on the environment (soil, water and air) and human health [1]. Though agriculture accounts for 21% of global greenhouse emissions [1], it is its solid waste that is most obvious and an immediate environmental problem. Meanwhile, the world is fighting for zero solid waste [3]. Some uses of agriculture waste include; the fertilisation of farms through animal manure, the use of agriculture solid waste as adsorbents (ie, for heavy metal remediation), production of biochar from agricultural waste, use of agricultural waste as animal feed and as heating (energy) sources. Renewable energy (biofuels) can also be produced from agriculture waste [4]. The reduction in the quantity or total elimination of agricultural solid waste is an important consideration in the promotion of environmental health. One viable method to safely reduce agricultural solid waste is to convert them into biochar.
Biochar is a carbon-rich by-product produced from the thermochemical conversion of biomass feedstock under partial or total absence of oxygen (pyrolysis) [5]. Principally, biochar is produced through various thermochemical conversion methods such as low pyrolysis, fast pyrolysis, and gasification, under different process parameters [6]. Biochar production and application has increased significantly recently. Significant attention has been given to biochar in relation to agriculture, climate, energy and environment [7]. The adsorption capability of biochar can largely be accrued to its surface chemistry, specific area, and pore structure [8]. Humans over the years have used biochar for various activities due to its naturally occurring characteristics like surface functional groups, thermal recalcitrance, cation exchange capacity, calorific value, specific surface area, porosity, electrical conductivity, volatile contents, fixed carbon and pH [8]. These properties have been traversed for numerous beneficial application such as the amendment of soil [8]. Due to the continuous increase in food insecurity, greenhouse gases emissions and environmental safety demands, biochar in recent years have been linked to the development of sustainable agriculture and soil management as well as carbon sequestration [9].
Biochar application has proven to be a very favourable method for simultaneously solving the numerous multipronged issues. The bioavailability of toxic metals in water and soil can be reduced using biochar, hence, biochar aids in subsiding toxic metal pollution as well as enhancing the quality of contaminated water and soil [9]. Biochar is capable of removing inorganic and organic contaminants due to its intrinsic properties and characteristics such as high cation exchange capacity, non-carbonised fraction, coupled with high surface area and oxygen-rich functional groups on surface [10].
The emission of greenhouse gases poses a great challenge to the industrial world we have today [11]. This has greenhouse gas emissions have a significant adverse impact on the environment including air pollution and inducing climate change [12]. Industrialisation is required for human perpetuity and development hence pollutants generated through the processes cannot stopped, however, it can be reduced by replacing toxic substances and polluting compounds with less toxic substances that has both political and economic feasibilities [13]. There is the need to manage and protect soil, water and air sustainably during large scale agricultural practices and massive industrial activities. This can be done through the use of biochar which is carbonaceous product of biomass pyrolysis.
Biochar has been widely known for its ability to serve as remediator of contaminant, plays a vital role climate change mitigation and bioenergy production. Biochar could have an important effect on soil biological and nutritional properties as well as greenhouse emissions. It is evident that most of the Sustainable Development Goals (SDGs) can be achieved through biochar application and production. It has been proven that biochar could be a sustainable solution for numerous problems that is putting the earth at risk, hence, much research needs to be carried out on the production and application of biochar as one of the most important and beneficial steps to take.
Most agricultural solid waste can be converted into biochar [14, 15] and there are different methods for the production of biochar from this waste stream. These include hydrothermal carbonisation [16], gasification and pyrolysis [15]. However, pyrolysis is the most used method for the production of biochar [14]. This involves the irreversible thermal decomposition of organic substances at higher temperatures under anoxic conditions. Biochar from pyrolysis can be used as an energy source [17] and for soil quality improvements. With the production and use of biochar from agricultural waste, a circular economy within the agricultural industry can be realised. Besides biochar, pyrolysis also produces volatile liquids and could either be slow, fast, flash and intermediate pyrolysis [18]. Slow pyrolysis is usually carried out below the temperature of 450 °C [18], at atmospheric pressure [15] and takes several hours to complete. A heating rate of 17 °C min−1 may be used [19]. The main product of slow pyrolysis is char [18]. Traditional Kilns and special reactors (ie, Elsa barrel pyrolyser) are used for slow pyrolysis. The source of feedstock for biochar production can influence its quality in terms of environmental safety and sustainable use. Thus feedstocks (wastewater sludge, municipal and industrial solid wastes, etc) which are potential sources of pollutants (heavy metals, PAHs, PCBs, etc) should be avoided. Biochar from these feedstocks can therefore serve as secondary pollutants [20] and require further treatment before use.
The characteristics and application of a substance is determined by the composition and structure of that substance. According to literature the composition of biochar is made up of elements such as carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulphur (S), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), and silicon (Si). Carbon takes up more 60% of the biochar contents followed by H and O. The ash contains mainly the mineral elements [21]. The C found in biochar is aromatic carbon which are in irregular piles or stack of stable aromatic rings [22]. Different variants of carbon compounds most likely consists of alcohols, fatty acids, phenols, esters, humic acid and fulvic acid. Relatively, humic acid and fulvic acids are found in fresh biochar, livestock manure biochar and low temperature pyrolytic biochar [23]. Biochars within a C-N heterocyclic structure have nitrogen to be largely present on the surface and the available N is very low in biochar [9]. Phosphorus is relatively low in biochar. The availability of P greatly varies, and has a negative correlation with carbonisation temperature. This differences may be as a result of high pH value and phosphates containing Ca and Mg formed during carbonisation processes [24, 25]. The contents of K, Ca, Mg, and Na is largely dependent on the type of biochar. Low-valence metal ions such as K and Na are more available than the high-valence metal ions such as Al, Ca, and Mg in biochar. In general, the elemental composition and activity of biochar are related to raw materials, conditions of carbonisation process and pH [24].
Biochar’s mineral component has been given less attention as compared to carbon. Current studies suggested that minerals biochar can significantly impact biochar attributes, hence affecting its use either directly or indirectly. According to literature Mg, Ca, K, and P in biochar can become a direct source of mineral nutrients thus promoting plant growth attributes and anions including CO32−, OH−, SO42− and PO43− leached from biochar are largely significant in eliminating toxic metals through the formation of metal precipitates [26]. Mineral components and carbon of biochar contribute significantly to the removal of toxic metals from solutions [26]. Biochar contain sulphur are much more efficient in making complex surfaces and could be useful in heavy metal removal from contaminated water. The porosity and surface area of biochars are important physical features which affects the adsorption of heavy metals capability from water. In terms of environmental application, molar ratios (i.e. O/C and H/C) are important factors that plays significant roles in determining interface interactions between the surface of the biochar and target matrices [27]. The meso-porous and macro structure of biochars derived from plants are known to be reliant on the intrinsic makeup of the feedstock, which is very vital for determining pollutant adsorptive and water-holding capacity in soil and solution systems [28]. A well-developed pore structure of biochars that consist of stable aliphatic chain structure, and high mineral content [29], have the potential to control water pollution, mitigate greenhouse gas emissions, and remediate soils [30]. The potential to utilise biochar for various applications is related to its properties.
Biochar with high porosity and plenty of liming and fertiliser-related elements (such as N, P and K) is preferred for improving soil properties [31]. A study conducted by [32] also indicated that the innate minerals of biomass could affect biochar properties significantly through interaction with its organic contents during pyrolysis process. However, removal of these intrinsic minerals before the pyrolysis process could significantly increase the optimum pyrolysis temperature (370 vs. 350 °C) required for the conversion of the biomass into biochar, as compared to untouched biomass. Interestingly, about 30.1% of C content of biomass could be secluded into biochar when there are no inherent biomass materials, simultaneously, lower amounts of low-molecular-weight organic compounds would be emitted during pyrolysis [32]. Therefore, the type and amount of minerals in biomass must be optimised according to the intended environmental application of biochar.
The continuous increase in the world population has cause an accompanying increase in anthropogenic polluting activities. This situation has caused several problems including global increments in atmospheric temperatures, droughts, floods, acid rains and increments in the spread of diseases. Effective and affordable solutions to these problems are yet to be arrived at. Biochar has been found to possess the potential to directly and indirectly alleviate the occurrences and effects of these problems. It uses are broad and includes the removal of pollutants (organic and inorganic) from wastewater [33]. Biochar have used been to remove antibiotics from wastewaters. Heavy metals (Cu, Pb, Ni, Cd) [34] and nutrients (nitrogen and phosphorus) [35] in wastewater have also been removed with biochar. Biochar can be used to either replace or augment sand filters in wastewater treatment because of its ability to remove particulate matter and pollutants such as pathogens [16]. It has also been used for chemical oxygen demand (COD) removal efficiency of 74 ± 18% was recorded in a treatment process [36].
The environment or surrounding systems are often degraded by contaminants discharged from residential, commercial and industrial sources. Literature reveals that soil and water media are more affected by both organic and inorganic contaminants in an ecosystem which is largely the cause of anthropogenic activities. Over the years, there is a rapid increase in technological advancement in soil and water remediation. One of the most paramount technologies is the reduction of bioavailable contaminants which would in turn lead to a significant decrease in the accumulation of toxic substance in plants and animals.
Materials that are carbonaceous have been adopted as sorbents for organic and inorganic contaminants in soil and water for a very long time now [37]. The multi-functional properties of biochar showed the potential as a sorbent for organic and inorganic contaminants in soil and water. The greatest concern of organic contaminants such as pesticides, herbicides, polycyclic aromatic hydrocarbons, dyes, and antibiotics have been a concern due to its toxicity and accumulative properties [38]. In the soil medium, biochar has been used for heavy metal sequestration [39, 40]. In this process, heavy metals are immobilised not removed and maybe converted into hydroxide, carbonate, and phosphate precipitates [40]. Sequestration of pesticides from polluted soils [15] and carbon sequestration (climate change mitigation measure) have also been achieved in soils amended with biochar [15]. In recent years biochar has become a focus for most researchers in the field of soil environment due its increasing potential to serve as carbon sinks, reducing greenhouse gas emissions, reducing the pressure on the burning of stray and finally remediating contaminated soil.
Properties of biochar such carbonaceous materials, degree of aromatization, elemental composition, pH, pore structure, surface chemistry, etc., plays vital roles in its ability to adsorb organic pollutants [41]. Biochar therefore reduces CO2 emissions into the atmosphere [39]. The indiscriminate exploitation of natural resources and the rapid growth of environmental destruction resulting from anthropogenic activities have already posed a burden on efforts to sustain natural environment. Biochar’s uses also includes the neutralisation of acidic soils and this is because of its calcium and magnesium carbonate contents [39] and ability to elevate pH [40]. Reducing acidity may however negatively affect acid loving worms and fungi in the soil environment [42]. Moreover, biochar can be used to enhance the biodegradation of organic pollutants because of the availability of suitable surfaces for microbial attachments [40] and the introduction of nutrients such as N, P and K [20]. In anaerobic digesters, biochar has been used to limit the effect of NH4+ [43] and may as well be used as buffering agents in these digesters [44].
Biochar has also been found to have many uses in air quality improvements. It has been used to control the release of air pollutants like NO2 and NO which respectively presents greenhouse effects and localised ozone formations [45]. For instance, biochar has been used to achieve a 67% NO removal from soils [46]. This is achieved through biochar’s ability to reduce the bioavailability of nitrogen to soil microorganisms for their metabolic activities [47]. The removal of gaseous mercury has also been achieved using biochar [48]. Several research reports show that, biochar surfaces are usually negatively charge thus have high affinity for positively charged metal ions [48] including Hg2+. Removal efficiency usually depend on biochar properties (surface and elemental properties), feedstock and pyrolysis conditions under which biochar was prepared [48]. Though biochar can be used to reduce CO2 emissions, it has low affinity for CO2 and thus requires modifications for effective CO2 capture [48]. One modification method is impregnating biochar with nitrogen and this improves biochar removal of CO2 of up to 55% [49]. For H2S gas, biochar has been used to achieve as high as 95% removal efficiency from a biogas production process [50]. It was shown that H2S removal is better in the presence of hydroxide and carboxylic functional groups [51]. Other gases that have been removed with biochar include; ammonia and toluene [52], ozone [53], benzene [54], methyl tert- butyl ether and [55]. Though agriculture wastes are abundant for the production of biochar, it is however necessary to practice the sustainable utilisation of biochar (Figure 1). This is particularly necessary because biochar production consume energy and may release pollutants (gaseous and particulate matter). Sustainable utilisation of biochar includes the reuse of biochar, production biochar from feedstock which are less likely to contain pollutants and the use of calculated/optimised quantities in field applications.
An illustration showing a pathway for the sustainable utilisation of biochar.
It is having been demonstrated in numerous studies, the excellent performance of biochar in the removal of organic contaminants as well as inorganic contaminants. Generally, the adsorption of inorganic contaminants by biochar depends on biochar surface properties, contaminant type and pH. Phosphate adsorption in biochar is decreased by high aqueous pH values. The effect of P on the remediation of Cd by biochar was studied by [56]. The adsorbed P remains bioavailable, allowing the formulation of slow release of P fertilisers. Leaching of P in agricultural soil could be minimised by 89.25% by introducing biochars imbued with Mg whilst the availability of P of the surface at the same time is increased by 3.5 folds as compared to the soil without biochar [57].
Recent studies have been demonstrated the use of biochar for water treatment and purification have gained a lot of attention. Xiao et al. [58] indicated that micro-nano-engineered nitrogenous cow bone biochar (pyrolysed at 600 °C) was created which was able to adsorb 165.7, 287.6 and 558.9 mg/g of Cd(II), Cu(II), and Pb from water, respectively. Also a different study demonstrated the adsorption of ammonium from water using ball mining bamboo biochar where the adsorption was even more than three folds as compared to pristine biochar (7.0 vs. 22.9 mg/g) [59]. Toxic metals in soil medium can be remediated just like how toxic metal remediation in water medium is being remediated using biochar. For instance, calcium-based magnetic biochar minimised the bioavailability of Cd and As in soil through the transformation of thew metals into fractions that are stable [60]. The pH and cation exchange capacity of the soil increases due to the addition of porous biochar which lead to Cd remediation. The remediation of Pb and Cd polluted soil was also performed using thoil-modified biochar and the maximum adsorption capacities recorded were 61.4 mg/g and 45.1 mg/g, respectively [61]. Addition of biochar into soil may indirectly remediate toxic metals via the enrichment of microorganisms that are capable of remediating toxic metals [62].
Besides the removal of inorganic contaminant by biochar, it has the potential to remove hazardous organic compounds such as dyes, antibiotics, pesticides, oils, phenolics, polynuclear aromatics and persistent organic pollutants. The type of contaminant and biochar surface properties dictates how organic compounds are adsorbed. The mechanism for adsorbing organic compounds can be classified as pore-filling, p–p interaction, electrostatic attraction, cation exchange, hydrophobic interactions, complexes adsorption, and partition uncarbonised fraction [63]. Biochars engineered have been greatly used to remove organic contaminants. A typical example is the improvement of levofloxacin removal by cerium trichloride-treated biochar [64]. The treatment of cerium could be correlated with increasing the O-containing functional groups on the surface of biochar. Also, the structure of CeO2 mesoporous, hence, its adsorption capacity as biochar can be improved [64]. In order to improve the surface area and the sizes of each pores, the surface polarity was also increased due to higher presence of O-functional groups [65]. The availability of these functional groups enhances the sorption organic contaminants via the bind of H2 and complexation between biochar and organic compounds [66].
Biochars that are engineered are also good at adsorbing biological contaminants from water. For instance, developing wood biochar through H2SO4 oxidation and the resulting increase in surface area of the biochar and also resulting in an improved retention of
Biochar engineering increases its efficiency in pesticides removal. In a successful field experiment, steam activated (800 °C for 45 min) almond shell biochar that was slowly pyrolyzed at 650 °C for 1 h under N2 was used for the removal of dibromo chloropropane from well waters [72]. Biochar can also be used for the adsorption of solvents from water. Trichloroethylene, for example, has been eliminated from water using biochars developed from soybean stover [73]. The pyrolysis temperature is the major determinant of biochar adsorption capacity. Specifically, the highest adsorption capacity for trichloroethylene (32.02 mg/g) by the biochar was produced at the highest temperature (700 °C) depicted [73]. Biochar can be employed in water purification processes via the development of hybrid techniques such as permeable reactive barriers, biochar-augmented biofilters and biochar-based membrane filtration [74]. In general, the removal capacity of biochars can be greatly enhance or improved through bioengineering can be achieved via hybridisation techniques.
Agricultural lands are now degrading due to continuous farming leading to nutrient mining and decreased soil organic matter levels. Reduced levels of soil fertility in agricultural fields are nowadays becoming the prime concern for cultivating crops. The waning of soil on agricultural fields remains until improved management practices improve them. Soil health is the basis of the vital and supportable food system. Nutrient cycling and release and nutrient uptake are usually disturbed as the agricultural land is continuously cultivated, which affects the natural supplies of vital nutrients for plant development to decline and inhibits the growth rate of crops of farm soils. Biochar improves soil health, improves soil fertility, improves crop yields, and sequester carbon depending on the application rates, type of feedstocks, and temperature.
The incorporation of biochar into the soil improves plant health and crop productivity which been linked to four main mechanisms. The first mechanism is in connection with the capability of the biochar to stimulate beneficial microbes in the rhizosphere [75]. As a source of reduced carbon compounds and by increasing the availability of micronutrients, biochar provide beneficial sites to microbial populations [76] and other plant-growth-promoting microbes [77]. However, increase in microbial biomass resulting from microbial growth following biochar application has been reported to be as a result of the; effect of nutrient and water retention, creation of active surfaces that provided optimal habitat for microorganisms, weak alkalinity and partial inhibition of destructive and simultaneous support for beneficial microorganisms [78].
Secondly, the high water retention capacity of biochar leads to enhancement of water regime of the soil, and this is of special advantage to sandy soil area where the biochar will lessen the leaching away of moisture, thereby reducing water loss, whilst it reduces the risk of water-logging in clay soil by promoting water drainage [79]. The third mechanism is related to the capability of biochar to adsorb and neutralise phytotoxic organic molecules such as anthropogenic, xenobiotics and natural allelopathic compounds. This detoxifying ability is directly associated with the increases of specific surface area that occur during pyrolysis [10]. Increase in soil pH is the fourth mechanism, which is significantly beneficial to acidic soils [80].
Applying biochar to infertile soil reduces the bulk density and enhances the soil’s total pore volume and water holding capacity to retain and mobilise nutrients to the soil-root system [81]. Primarily, biochar has a marginal effect on compaction. Still, on a long-term scale, with the ageing of biochar, modification is projected [82]. The application of biochar significantly influences several chemical properties such as pH, electrical conductivity (EC), cation exchange capacity (CEC), organic carbon, availability of nutrients. The use of biochar in the soil decreases soil acidity by enhancing soil pH as it is alkaline [9]. It also helps increase CEC, organic C, and exchangeable cations (such as Ca, K, Mg) [83]. By enhancing soil pH and CEC, it increases the availability of nutrients to plants. Soil fertility is improved by biochar treatment, primarily through two mechanisms: nutrients (like K, P, many micronutrients) and the soil or nutrient retention from other sources, including nutrients from the soil itself. Biochar shows a net positive effect on crop growth by increasing nutrient elements’ availability (C, N, P, Ca and Mg) as it absorbs and slowly releases fertilisers [84]. Higher CEC of biochar treated soil binds cations to retain nutrients on biochar surface, humus, and clay rather than leached, making them further accessible for plants’ uptake. Naturally, aged biochar generally shows a higher negative charge that promotes more soil aggregation and nutrient availability than fresh biochar or artificially old biochar [82]. The rise in plant-available water by biochar proposes that biochar could reduce irrigation frequency in croplands, mainly in low water areas. Biochar’s positive effect on upsurging water holding capacity can be more extensive in sandy soils with lower micro-porosity and a smaller specific surface area than clayey soil.
Various life forms, including fungi, bacteria, nematodes, protozoa, earthworms, arthropods, indicate good healthy soil. Biochar addition has different influences on abundance, activity, and soil biological communities’ multiplicity than fresh organic matter [76]. Research shows that biochar treatment results in higher microbial respiration by enhancing soil biodiversity and creating pores for soil microbes due to the complex aromatic structure, absence of carbon in biochar, and higher biochar stability than other fresh organic matters. Biochar can act as a habitat for microorganisms as it has a highly porous nature, and it can alter enzyme activity on or around biochar particles. Besides, by providing a more favourable habitat to microorganisms, it can modify soil’s physical and chemical environment [76]. Moreover, microbial biomass and composition can also be affected by biochar addition. The pores of biochar can physically protect soil microorganisms. The buffering capacity of biochar that can resist changes in pH helps maintain favourable pH and abate pH instabilities in biochar particles supporting increasing microbial growth in micro-habitats [85].
The addition of biochar to soil sequester carbon and retain nutrients, thus promoting soil health and fertility and agronomic benefits. Moreover, nutrient availability also varies with the physico-chemical properties of biochar and the type of feedstock materials. Generally, biochar produced from feedstocks like manures and animal products is considered rich in nutrients related to those made from plant materials, mostly from hardwoods [86]. Biochar and other aromatic black carbons persist in soil for a more extended period and retain cations than any other organic carbon form. The ageing of biochar retains more cations than fresh biochar. Continuous fertilisers in the soil cause nutrient leaching from the soil that can deplete soil fertility, increase soil acidity, reduce crop yield and most notably deprive soil and environmental health. Higher absorption of cations and anions (like phosphate) due to biochar to soil restrict excess nutrients’ leaching. Besides, biochar decreases the leaching of nutrients like N, P, Mg, Ca, nitrate and ammonium from soil [87].
Biochar provides sites that can hold nutrients and other organic compounds as it exhibits natural oxidation through the formation of functional groups [82]. Biochar particles are highly associated with clay and silt-sized minerals, and oxidised biochar particles may be bound to soil minerals, in so doing decreasing the potential of its decomposition [88]. This association enhances the ability of soil-biochar-complex to adsorb organic compounds available in the soil whereas the biochar also interrelate directly with organic matter of soil by sorption [89]. Largely, amending soils with biochar helps to restore the health of the soils by increasing organic matter content and water holding capacity, balancing its pH, and re-establishing microbial populations. It also results in easing compaction, allowing the establishment of vegetation, recreation of ecological function of soils, decreasing bioavailability of toxic pollutants, leachability and mobility of contaminants, as well as improve soil drainage compared to the traditional remediation techniques [90]. The positively charged particles in biochar after pyrolysis are usually transmuted into oxides, hydroxides, and carbonates (ash) which behave as liming agents when incorporated into soil. Biochar is composed of low density material that The incorporation of biochar enhances reduction in soil bulk density as result of the composed low density material, thereby increasing root penetration, water infiltration, soil aeration and aggregate stability [87].
Amending soils with biochar enhances biological nitrogen fixation. The nitrogen available in the biochar is usually higher than that of the soil due to the high carbon/ nitrogen (C/N) ratio of the biochar, and the resulting N immobilisation [76]. The incorporation of biochar in the soil results in the combination of factors related to soil nutrient availability and simulation of plant microbe interaction, along with increases in nitrogen/nutrient levels. Rondon et al. [91] reported an enhanced biological N-fixation in leguminous crops in soils amended with biochar. The increase in the availability of major plant nutrients due to biochar application is as a result of the release of some small amounts of nutrients that would be available to soil biota [92].
Biochar promotes plant productivity and yield through a number of mechanisms. It changes the physical conditions of plants. The dark colour of biochar alters the thermal dynamics and facilitates rapid germination of plants, allowing more time for growth compared with soils that are not amended with biochar [93]. Amendment of soils with biochar must be done based on extensive field testing since there are no specific recommended application rates. Chan et al. [94] opined that incorporation of 5–50 tonnes of biochar per hectare, with proper nutrient management gave positive effects on crop yields. Poultry litter biochar has been reported to improve the yield of corn, cowpea and radishes by 140, 100 and 96% respectively [94]. Field incorporation of biochar below 30 tonnes/ha has been reported to increase crop productivity for legume crops (30%), vegetables (29%) and grasses (14%) compared to corn (8%), wheat (11%) and rice (7%) [95]. Additionally, incorporation of biochar produced from wastewater sludge resulted in 64% increased production of cherry tomatoes above the control soil conditions at the rate of 10 tons/ha [96]. According to [97] sawdust and rice husk biochar significantly improved uptake of N, P and K by maize plants, and also significantly enhanced plant height, number of leaves, fresh and dry weight of cobs of maize.
The ever increasing desire to increase agricultural efficiency in terms of producing maximum crop yields and produce is only achievable if pest and disease agents affecting crop productions are effectively monitored. Interventions such as cultural, biological, chemical and regulatory measures are the main approaches to plant disease management. The chemical method, since its adoption over a century ago, had assumed a position of significance and preferred over the existing cultural method as a result of its effectiveness in the management of diseases and pests. The availability, stability and quick-action, relatively low cost of the chemicals and ease with which they can be used, limits the harm done to crops. With the apprehension of the havoc, however, caused by continuous and persistent use of chemicals either by misuse or abuse, with the consequent degradation of ecological community of most of the farm sites based on their effects on both the target and non-target organisms, has led to the destruction of beneficial organisms and the natural predator in the eco-system. The normal functioning of the ecosystem is obstructed if the organisms develop resistance to the chemicals used, thus resulting in pests evolution. Consequently, agricultural workers suffer occupational exposure to pesticides whilst the general population is exposed to pesticides pollution principally through the food chain and drinking water contaminated with pesticide residues which are carcinogenic [98].
Biochar can satisfy the following targets: achieving food security by enhancing crop productivity, promoting soil health and quality by improving soil properties, avoiding land degradation, reduction of greenhouse gas emissions minimises climate change, and adsorbing hazardous elements onto its surface. The conversion of
The process of biochar production transforms the easily oxidised carbon fractions present in organic residues into more stable forms [5] that can persist in soils for years [103]. The incorporation of biochar reduces the emissions of greenhouses gases [104] and can be considered as a climate change mitigation strategy [105]. On the other side of the coin, required quantities of this conditioner to improve soil productivity might be less comparable with compost or other organic amendments on the long run. Consequently, biochar also known as “the black diamond” is offered as a promising soil amendment of high economic and environmental value [106]. However, several environmental traits should be taken into consideration whilst using this amendment. The primary one to consider is the production process. During the pyrolysis process of biochar, significant emissions of CO2 occur and this probably may raise the levels of greenhouse gases in atmosphere [107]. The second important issue has to do with the degradation of biochar in the soil. Under warm climatic conditions, biochar degradation is reported to be relatively high [6] and therefore, further emissions of greenhouse gases might take place from biochar-amended soils. The third relates to ethylene production, which is a by-product of the pyrolysis process of biochar [108]. Ethylene is increased considerably in biochar-amended soils to subdue several soil microbial processes [82]. Soil biota not only affects the physical and chemical properties of soil but also improves plant health [80]. Several researches have established the positive influences of amending soils with biochar on increasing crop productivity. Soils Amended with biochar have been proven to significantly improve macro- and micro-nutrients availability [6], even though many biochar additives have an alkaline nature [76]. Furthermore, amending soils with biochar reduces nitrate (NO3) loss through leaching as well as the gaseous loss through release of nitrous oxide [92], which can positively boost plant growth [93].
However, the effects of amending soils with biochar are not always the similar and depend mainly on the features of the biochar used such as grain size and pyrolysis temperature. Fine biochar decreases soil hydraulic conductivity (EC), whilst the coarse biochar (particles were coarser than sand) did not affect the hydraulic conductivity of soils [95]. In addition, the pyrolysis temperature for the production of the biochar has a significant effect on ash content, pH, EC, and basic functional groups as well as carbon stability, which increases in biochar with increasing pyrolysis temperature [109]. Another positive influence of biochar as a soil conditioner is related to its ability to mitigate salinisation of arable lands [110]. It is noted that biochar plays positive significant influence on regulating the contaminants present in water and soils [111]. Conversely, many contaminants such as atrazine and acetochlor that are sorbed on biochar [107] may also originate from biochar [112] and this may reduce its efficacy [98]. Although biochar plays important positive roles on environmental sustainability, there is a stream of knowledge regarding the recommended application rates to soils to evade its negative potential effects on the environment.
The chapter explored the possibility of using biochar from agricultural wastes as a suitable alternative for the remediation of environmental pollutants, soil conditioning and the long-term biochar application in the environment. Agricultural wastes biochar can ensure environmental safety and sustainability. Minerals biochar can significantly impact biochar attributes therefore, the type and amount of minerals in biomass must be optimised for the intended environmental application. Biochars have made substantial breakthroughs in reducing greenhouse gases emissions, reducing soil nutrient leaching, sequester atmospheric carbon into the soil, increasing agricultural productivity, and reducing bioavailability of environmental contaminants. Biochar has been widely known for its ability to serve as remediator of contaminant, plays a vital role climate change mitigation and bioenergy production. The incorporation of biochar into the soil improves plant health and crop productivity.
The authors are very grateful to the editors and anonymous reviewers for their suggestions and comments for improving the book chapter quality.
The authors declare no conflict of interest.
Chronic liver disease is a major health problem worldwide. This situation is generated by a wide range of chronic liver injuries such as chronic viral hepatitis, chronic alcohol abuse, non-alcoholic fatty liver disease, autoimmune hepatitis, primary biliary cirrhosis, and other less frequent causes. Regardless of the liver disease etiology, a common pathway of fibrosis is set up, which progresses and leads to liver cirrhosis that may be complicated by portal hypertension, liver failure, and hepatocellular carcinoma.
The evaluation of patients with chronic liver disease must be as simple as possible, cost efficient, and easily repeatable. While the liver biopsy is still considered the gold standard for liver fibrosis evaluation, due to its shortcomings (invasiveness, potential complications, inter-/intra-observer variability, sampling error) [1, 2, 3] scientific and practical interest has focused on the development of noninvasive techniques for the diagnosis of liver fibrosis.
Elastography can be used to assess liver fibrosis noninvasively. It measures the tissue behavior when mechanical stress is applied, either using ultrasound (ultrasound-based elastography) or magnetic resonance (magnetic resonance elastography).
Ultrasound elastography is perhaps the most important breakthrough in the evolution of ultrasound in the last 20 years. The basic idea behind liver elastography is that the elasticity of the tissue examined offers information on liver health. A stiffer liver tissue usually indicates the presence of chronic liver disease.
Mainly, most liver ultrasound elastography techniques are based on the principle of measuring the speed of the shear wave that propagates through the liver which is influenced by the stiffness of the tissue. The speed of the shear wave is proportional to the tissue stiffness. Basically, the stiffer the liver, the faster the shear wave will propagate through the liver.
The value of ultrasound-based elastography for staging chronic liver disease has been established by numerous studies [4, 5, 6, 7]. Moreover, its value for evaluating and predicting chronic liver disease complications (portal hypertension, hepatocellular carcinoma) has been also proven in different studies [8, 9, 10].
The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) and the World Federation of Societies for Ultrasound in Medicine and Biology (WFUMB) have issued guidelines and recommendations on the clinical use of ultrasound-based elastography and describe in detail their basic principles [11, 12, 13].
This chapter focuses on the basic principles of elastography, which is an important aspect for every clinician or practitioner who is performing or learning liver elastography. Moreover, clinical features such as the examination techniques of different liver elastography methods and the factors that influence the liver elastography results are described and discussed.
Elastography assesses tissue elasticity, which is the tendency of tissue to resist deformation with an applied force or to resume its original form after removal of the force. Elastography can be considered a type of remote palpation that allows the measurement and display of the biomechanical properties in a tissue that acts against the shear deformation. Shear deformation is generated by applying a force either to a single location or broadly across the body surface. A force can be applied by vibrating the body surface that produces a natural internal physiological motion or using the ultrasound transducer to create focused acoustic radiation force at controlled depths [13, 14].
All ultrasound-based elastography methods use ultrasound to measure the tissue shear deformations resulting from an applied force. The type of force applied can be quasi-static or dynamic. Quasi-static forces do not allow the acquiring of images that are quantitative for tissue properties. Dynamic forces allow the quantification of the tissue properties. They include impulses that can be produced mechanically at the body surface or by acoustic radiation force impulse at controlled depths.
According to the EFSUMB guidelines [11], elastography techniques can be classified according to how the displacement data are shown. Three options are available as follows:
Display of displacement without further processing. This type of displacement is used in acoustic radiation force impulse (ARFI) imaging, which allows a quantitative measurement (units of μm), and the image displayed is scaled between bright (soft tissue) and dark (hard tissue). This technique is not used for liver elastography measurements.
Display of tissue strain or strain rate, which is calculated from the spatial gradient of displacement or velocity. This type of displacement works according to Hooke’s law, which states that E = σ/ε, where stress is the applied force per unit area and strain is the change in length of the tissue divided by its original length. If the stress (not known in strain module) is assumed to be the same for all image locations, an image of strain can be thought of as an inverse relative to Young’s modulus map. Strain is a quantitative measurement (%) and image brightness is typically scaled between bright (soft) and dark (hard).
Display of shear wave speed, which is calculated by measuring the arrival time of a shear wave at different locations in the tissue. This is possible only when the force is applied dynamically. Shear wave speed may be displayed in units of m/s. Alternatively, it may be converted to either Young’s modulus E or shear modulus G, which are expressed in units of kilopascal (kPa). These elastography techniques are called shear wave elastography (SWE) and include transient elastography (TE), point shear wave elastography (pSWE), and multidimensional shear wave elastography (2D-SWE and 3D-SWE).
For liver applications, elastography methods that display the shear wave speed are the most commonly used in practice, followed by strain and displacement imaging (for liver lesions), which are less frequently used. The elastography methods integrated into clinical practice for the liver are described in Table 1.
Strain/displacement techniques | Strain elastography |
---|---|
Shear wave elastography techniques | Transient elastography Point shear wave elastography Multidimensional shear wave elastography (2D-SWE and 3D-SWE) |
Elastography methods used for the liver.
Strain elastography is the most widely implemented elastography method on commercial systems; however, it is the least used technique for liver applications. The force used in strain elastography is either produced with the ultrasound probe or due to the internal physiological motion. The axial displacement images are calculated using radiofrequency echo correlation tracking or Doppler processing, which converts the axial displacement images into strain images [14, 15]. Excitation with manual pressure measures elasticity in superficial tissues. A disadvantage of this excitation method is that manual stress is not efficiently transmitted to deeper tissues. Excitation from natural physiologic motion, such as cardiac pulsation and respiration, is another mechanism of generating tissue stress. Deep organs, such as the liver or the kidney, can be assessed with this method [14, 15].
Strain elastography is a semi-quantitative method for tissue elastic property analysis, which has not demonstrated high accuracy for liver applications.
TE has been designed only for liver elasticity measurement. It uses an automated piston, which is also a disk-shaped ultrasound transducer, that applies a low-frequency (50 Hz) mechanical push to the body surface with controlled applied force [16]. A transient shear wave is created that propagates into the tissue. The shear wave propagation velocity is proportional to tissue stiffness, which increases with fibrosis [17]. TE measures tissue stiffness over a 1 cm diameter and 4 cm length region of tissue, which is 100 times larger than those evaluated with liver biopsy. The transient shear wave deformation is propagated at a constant speed, for 4 cm, and measured by a straight line automatically displayed in a displacement M-mode shown in the result (Figure 1) [11]. If the pulse is not transmitted and recorded successfully, the software does not provide a reading. Transient elastography is marketed under the trade name FibroScan®. Stiffness values are presented in kPa. Controlled attenuation parameter (CAP) is a technology that quantifies liver steatosis by measuring the energy loss as the sound wave passes through the medium. Total attenuation at 3.5 MHz is expressed in dB/m, and steatosis is estimated using the same radiofrequency data as elastography, in the same location that stiffness is measured [18]. A schematic representation of the basic principle of TE is presented in Figure 2.
Transient elastography (TE) and controlled attenuation parameter (CAP) with the Fibroscan® device. Sample display showing the echo M-scan on the left, single-line amplitude A-scan in the middle, and the displacement M-mode after a vibration-controlled impulse push on the surface on the right. Numeric values for CAP are displayed on the left side (db/m) and for TE on the right side (kPa).
Schematic representation of the principle of transient elastography. A mechanically induced impulse at the tissue surface with an A-mode transducer produces an axial shear wave pulse. The measured shear wave speed is proportional to the fibrosis.
Applying an ARFI at a controlled depth within a tissue generates a shear wave that propagates away from the pushing beam’s axis and focal point (Figure 3). Its average speed of propagation from the focal point positioned on one lateral boundary of a measurement region of interest (ROI) to another on the opposite lateral boundary of the ROI may be measured by detecting its time of arrival at that point, relative to that of the ARFI [14]. Ultrasound imaging is used to guide placement of the ROI; however, no elasticity images are produced (Figure 4). First introduced by Siemens, pSWE is available on different commercial systems from different vendors (e.g., Philips, Samsung, Hitachi, Esaote). The results can be expressed either in m/s or in kPa.
Schematic representation of the principle of point shear wave elastography (pSWE). An ultrasound-induced focused radiation force impulse is produced at a controlled depth generating a lateral shear wave in a region of interest (ROI). The measured shear wave speed represents tissue stiffness.
Point shear wave elastography (pSWE) implemented on virtual touch quantification (VTQ) from Siemens (4a), ElastPQ from Philips (4b), and S-Shearwave from Samsung (4c). A region of interest (ROI) is placed 1–2 cm below the liver capsule for liver stiffness assessment.
In this technique, acoustic radiation force impulse is used to create tissue displacement at multiple points (Figure 5). By placing the ARFI focus at multiple sequential locations and, at each, detecting the shear wave speed and arrival time, quantitative images of the shear wave speed can be produced [13, 14]. A large quantitative color-coded elasticity map (elastogram) is presented, which can be overlaid on the B-mode image or displayed separately, side by side (Figure 6). In addition to the visual impression of the elastogram against a color scale, a quantitative measurement can be obtained by placing smaller ROIs (measurement boxes) inside the elastogram. The result of one measurement is displayed usually as the mean and standard deviation either in m/s as shear wave propagation speed or in Young’s modulus in kPa (Figure 6).
Schematic representation of the principle of 2D shear wave elastography (2D-SWE). Multiple ultrasound-induced ARFI lines create transverse shear waves that produce quantitative images of their speed.
2D shear wave elastography (2D-SWE) implemented by SuperSonic imagine (6a) and General Electric (6b). The elastogram, which is superimposed on the B-mode image, is placed 1–2 cm below the liver capsule. A circular ROI is placed inside the elastogram for tissue stiffness measurements. A color-coded scaled quality map (6b left image) can be available for guiding the measurement placement. The result is expressed in kPa and m/s.
This technique is available on multiple ultrasound systems including SuperSonic Imagine, GE Healthcare, Canon, Philips, Siemens, Mindray.
All elastography methods follow an evaluation technique that enables a good approach toward the liver parenchyma. The patients will be positioned in a supine position with their right arm in maximal abduction in order to widen the intercostal spaces thus offering a better view of the right liver lobe. The measurements from the left liver lobe are not recommended due to higher values and significant variability. A minimum training is required that one may perform liver stiffness measurements, and the acquisition itself will take usually less than 5 minutes. Patients should be in fasting condition (for at least 3 hours) and rest for a minimum of 10 minutes prior to the evaluation. When scanning for the ultrasound section, large vessels and artifacts should be avoided in both A-mode (TE) and B-mode image (pSWE and 2D-SWE) as well as deep inspiratory movements [12, 19, 20]. A dedicated ultrasound gel is used as an interface between the probe and the patient’s skin.
For the TE technique, the transducer is placed between the 9th and 11th right intercostal spaces in order to penetrate at least 4 cm thickness of liver parenchyma. The device offers an A-mode image that will assist the examiner to choose the best section into the liver. TE probe will transmit a mechanical impulse to the liver through a special piston (cylinder-shaped) that will apply a controlled force and thus will generate an elastic share wave. The probe is able to detect the velocity of the shear wave propagation into the liver reflecting the liver stiffness. Measurements are expressed in kilopascals with a range between 1.5 and 75 kPa. If the system detects errors in the acquisition process, it will automatically discard the measurement. At the end of the examination, the median of 10 measurements is displayed as well with the quality parameters (IQR, SR) [12, 19, 20]. For more accurate evaluations, manufacturers provided M, XL, and S probes that are recommended in order to overcome the confounding factor of obesity and thoracic circumference variations [20]. Studies demonstrated that at least 100 measurements are needed for training for one to achieve reliable results and 500 for expert level [21, 22]. It is also a reproducible method with an excellent intra- and interobserver agreement [23].
pSWE is a different method integrated into an ultrasound machine that evaluates liver fibrosis by noninvasive means. The acoustic “push” of the probe will generate share waves that will be transferred to liver parenchyma. Being an ultrasound-assisted method, ultrasound experience plays an important role in performing reliably the technique; even so, the reproducibility of the method is excellent [20, 24]. Using this technique, ascites is not a barrier for liver stiffness measurement. The probe, as in TE, should be placed in the right intercostal spaces in order to depict full liver tissue, without large vessels or other structures. Following, ROI should be set at depths between 1 and 6 cm beneath the liver capsule, ideally at 1–2 cm or 2–3 cm [25]. Special attention should be given to breathing oscillations and to cardiac cycles, patients should hold their breath for a few seconds during the acquisition, and the operator should choose a fair distance from the heart when selecting the ultrasound section and the ROI. However, no elastogram is provided by pSWE. Ten valid measurements are recommended and the result (the median of the measurements) is shown in m/s or kPa. Quality parameters such as IQR/M and standard deviation (SD) are used to optimize the performance of the method [11, 26].
As in the other methods, 2D-SWE uses a section through the right live lobe free of large vessels and other structures that need a steady image in order to make the acquisition. Patients should hold their breath for 4 to 5 seconds or even longer so that the high frame rate should record the tissue displacement of the share wave propagation into the color-coded box. Tissue displacement by the share waves is displayed by a color-coded map; thus, the technique offers both quantitative and qualitative assessments of the tissue stiffness. The colored box should be positioned at least 1–2 cm below the liver capsule but not deeper than 7 cm into the liver parenchyma [27]. The ROI will express the results as the mean value and standard deviation in kPa or in m/s. The biggest advantage that this method is offering is the fact that it evaluates a larger area of the liver parenchyma (up to 10 cm2). Usually, stiffer tissue will be depicted in red and softer tissue in blue. The operator should obtain as many elastogram loops to which in post-processing will select the ROI for LSM acquisition on the most homogeneous elastogram [26]. A minimum ultrasound training (>300) is necessary to be able to achieve good elastograms [28]. Recommended quality criteria are the IQR/M and measurement depth < 5.6 cm as quality technical [11, 29]. The median of at least three measurements should be used when performing LSM, but the examiner can choose between 3 and 15 measurements [30, 31, 32]. Even though it is a reproducible method [33], the inter- and intra-observer agreement in patients might be slightly inferior to pSWE [34, 35].
SE, offered by the Hitachi system (HI-RTE) [36], uses a regular ultrasound transducer that has embedded the SE module in it. It needs a good echoic window for the SE system to work properly; thus, a good ultrasound section is mandatory. The probe will generate echo signals under mild tissue compression and by this will produce a real-time elasticity image by overlapping a colored map on the B-mode image [37, 38]. It has all the advantages of the B-mode imaging and the examination approach will be as for the rest of the techniques with the patient in dorsal decubitus with the right arm in maximal abduction and a short breath hold when the acquisition is made, ascites and high BMI not being a contraindication for this method. However, the method is mainly used as a qualitative evaluation. Results will be displayed as blue for stiffer tissue and in red for soft tissue. Several methods have been developed in order to quantitatively assess tissue stiffness such as Elastic Ratio, Elastic Index, Elasticity Score, and Liver Fibrosis Index but without a proven consistency. The examiner must have ultrasound skills and special training is necessary for ROI setting and probe adjustment for homogeneous compression/relaxation index [20, 38]. Even though experience plays a role in SE, studies [39, 40] demonstrated that SE has a good and very good intra- and inter-observer variability and is a reproducible method.
When measuring liver stiffness with ultrasound-based elastography, we have to acknowledge some factors that can influence the results. Some of the factors are related to a physiological state, and some are linked to pathology. Hepatic inflammation with a threshold of ASAT and/or ALAT >5 times the normal value, hepatic congestion, cholestasis, acute hepatitis, and infiltrative liver disease are known to increase liver stiffness [20]. It is also known that food intake and physical activity can falsely increase LSM; thus, a minimum of 2 hours fasting and resting for 10 minutes before the examination are recommended [20, 41, 42]. Confounding factors of the SWE according to their method are depicted in Figure 7.
Associated confounding factors in ultrasound-based liver elastography.
Besides BMI, TE results can be influenced by increased transaminase, cholestasis, hepatic congestion, infiltrative liver disease, food intake, and heavy alcohol consumption. Several limitations of TE that are worth mentioning are the contraindication of LSM in patients with ascites and the lack of B-mode imaging [26, 46].
Ultrasound-based liver elastography confounding factors are described in Figure 7.
Ultrasound elastography comprises a set of techniques that noninvasively measure tissue stiffness. In this chapter, we have provided a brief introduction into the physical concepts of liver elastography and discussed several aspects important for clinical practice. In conclusion, elastography techniques that measure the shear wave speed are the most appropriate for liver applications. The liver elastography examination technique is standardized and co-founding factors need to be taken into consideration before performing liver stiffness measurements.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"10"},books:[{type:"book",id:"11490",title:"Advances in Plate Tectonics",subtitle:null,isOpenForSubmission:!0,hash:"412f2e209ff259650a5a1c7df151e3a7",slug:null,bookSignature:"Dr. Gaurav D. Chauhan, Dr. Subhash Bhandari and Dr. M. G. Thakkar",coverURL:"https://cdn.intechopen.com/books/images_new/11490.jpg",editedByType:null,editors:[{id:"239938",title:"Dr.",name:"Gaurav",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11487",title:"Floods - Understanding Existing and Emerging Risk Drivers in a Climate Change Context",subtitle:null,isOpenForSubmission:!0,hash:"c829bdd1a2a84b4b2c31ce5eaab865e2",slug:null,bookSignature:"Dr. Tiago Miguel Ferreira and Associate Prof. Haiyun Shi",coverURL:"https://cdn.intechopen.com/books/images_new/11487.jpg",editedByType:null,editors:[{id:"450075",title:"Dr.",name:"Tiago Miguel",surname:"Ferreira",slug:"tiago-miguel-ferreira",fullName:"Tiago Miguel Ferreira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11488",title:"GIS and Spatial Analysis",subtitle:null,isOpenForSubmission:!0,hash:"fbb625cf1556787cd00be17e7137a5dc",slug:null,bookSignature:"Ph.D. Jorge Rocha, MSc. Eduardo Gomes, Dr. Inês Boavida-Portugal and Dr. Cláudia M. Viana",coverURL:"https://cdn.intechopen.com/books/images_new/11488.jpg",editedByType:null,editors:[{id:"145918",title:"Ph.D.",name:"Jorge",surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11491",title:"Current Perspectives on Applied Geomorphology",subtitle:null,isOpenForSubmission:!0,hash:"f9f0fe8910dc02818cad71316650d297",slug:null,bookSignature:"Prof. António Vieira",coverURL:"https://cdn.intechopen.com/books/images_new/11491.jpg",editedByType:null,editors:[{id:"103627",title:"Prof.",name:"António",surname:"Vieira",slug:"antonio-vieira",fullName:"António Vieira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",subtitle:null,isOpenForSubmission:!0,hash:"f1043cf6b1daae7a7b527e1d162ca4a8",slug:null,bookSignature:"Dr. Carmine Massarelli and Dr. Claudia Campanale",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",editedByType:null,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11840",title:"Arid Environment - Perspectives, Challenges and Management",subtitle:null,isOpenForSubmission:!0,hash:"4c2e03f295fbc697350f0bf3bf89a14f",slug:null,bookSignature:"Associate Prof. Murat Eyvaz, Dr. Ahmed Albahnasawi, M.Sc. Ercan Gürbulak and MSc. Mesut Tekbaş",coverURL:"https://cdn.intechopen.com/books/images_new/11840.jpg",editedByType:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11847",title:"Gas Reservoirs",subtitle:null,isOpenForSubmission:!0,hash:"c1265f50efcf19c17e039c277f57e1a7",slug:null,bookSignature:"Dr. Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/11847.jpg",editedByType:null,editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11489",title:"Satellite Systems - Applied Geodesy and Earth Observation",subtitle:null,isOpenForSubmission:!0,hash:"7c21d1a8ed9ad6be081d2e74d977d2bc",slug:null,bookSignature:"Dr. Bihter Erol",coverURL:"https://cdn.intechopen.com/books/images_new/11489.jpg",editedByType:null,editors:[{id:"75478",title:"Dr.",name:"Bihter",surname:"Erol",slug:"bihter-erol",fullName:"Bihter Erol"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11492",title:"Space Exploration - Advances in Research",subtitle:null,isOpenForSubmission:!0,hash:"2204ff2e64bffb84a4bf1b74bb38bfa1",slug:null,bookSignature:"Dr. Hector Pérez-de-Tejada",coverURL:"https://cdn.intechopen.com/books/images_new/11492.jpg",editedByType:null,editors:[{id:"345070",title:"Dr.",name:"Hector",surname:"Pérez-de-Tejada",slug:"hector-perez-de-tejada",fullName:"Hector Pérez-de-Tejada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11844",title:"Quartz - From Mineral Deposits to Industry",subtitle:null,isOpenForSubmission:!0,hash:"02ae4594c55841890c13fee4aea6574c",slug:null,bookSignature:"Dr. Carlos Leal Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/11844.jpg",editedByType:null,editors:[{id:"461236",title:"Dr.",name:"Carlos",surname:"Leal Gomes",slug:"carlos-leal-gomes",fullName:"Carlos Leal Gomes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"349",title:"Agrobiology",slug:"agrobiology",parent:{id:"41",title:"Plant Biology",slug:"agricultural-and-biological-sciences-plant-biology"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:136,numberOfWosCitations:154,numberOfCrossrefCitations:98,numberOfDimensionsCitations:277,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"349",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9684",title:"Cassava",subtitle:"Biology, Production, and Use",isOpenForSubmission:!1,hash:"1dfb68fa31006e91fa3995d804e361c1",slug:"cassava-biology-production-and-use",bookSignature:"Andri Frediansyah",coverURL:"https://cdn.intechopen.com/books/images_new/9684.jpg",editedByType:"Edited by",editors:[{id:"210767",title:"Dr.",name:"Andri",middleName:null,surname:"Frediansyah",slug:"andri-frediansyah",fullName:"Andri Frediansyah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8954",title:"Biostimulants in Plant Science",subtitle:null,isOpenForSubmission:!1,hash:"ac0eb3328820cca42cb7d6cdbfca4ec2",slug:"biostimulants-in-plant-science",bookSignature:"Seyed Mahyar Mirmajlessi and Ramalingam Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/8954.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,isOpenForSubmission:!1,hash:"02f39c8365ba155d1c520184c2f26976",slug:"nitrogen-fixation",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",editedByType:"Edited by",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7206",title:"Corn",subtitle:"Production and Human Health in Changing Climate",isOpenForSubmission:!1,hash:"0140cb7a425a230a388fcece870e62b2",slug:"corn-production-and-human-health-in-changing-climate",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/7206.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1958",title:"Phytochemicals as Nutraceuticals",subtitle:"Global Approaches to Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"7a4d422838dabdc758119a7dfc6e7a54",slug:"phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/1958.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32901",doi:"10.5772/27843",title:"Plant Polyphenols as Antioxidants Influencing the Human Health",slug:"plant-polyphenols-as-antioxidants-influencing-the-human-health",totalDownloads:6755,totalCrossrefCites:14,totalDimensionsCites:33,abstract:null,book:{id:"1958",slug:"phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health",title:"Phytochemicals as Nutraceuticals",fullTitle:"Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health"},signatures:"Sanda Vladimir-Knežević, Biljana Blažeković, Maja Bival Štefan and Marija Babac",authors:[{id:"71793",title:"Dr.",name:"Biljana",middleName:null,surname:"Blazekovic",slug:"biljana-blazekovic",fullName:"Biljana Blazekovic"},{id:"76049",title:"Prof.",name:"Sanda",middleName:null,surname:"Vladimir-Knežević",slug:"sanda-vladimir-knezevic",fullName:"Sanda Vladimir-Knežević"},{id:"76050",title:"MSc.",name:"Maja",middleName:null,surname:"Bival Štefan",slug:"maja-bival-stefan",fullName:"Maja Bival Štefan"},{id:"76054",title:"MSc.",name:"Marija",middleName:null,surname:"Babac",slug:"marija-babac",fullName:"Marija Babac"}]},{id:"32893",doi:"10.5772/26956",title:"Biological Oxidations and Antioxidant Activity of Natural Products",slug:"biological-oxidations-and-antioxidant-activity-of-natural-products",totalDownloads:6164,totalCrossrefCites:7,totalDimensionsCites:32,abstract:null,book:{id:"1958",slug:"phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health",title:"Phytochemicals as Nutraceuticals",fullTitle:"Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health"},signatures:"Xirley Pereira Nunes, Fabrício Souza Silva, Jackson Roberto Guedes da S. Almeida, Julianeli Tolentino de Lima, Luciano Augusto de Araújo Ribeiro, Lucindo José Quintans Júnior and José Maria Barbosa Filho",authors:[{id:"68388",title:"Dr.",name:"Xirley",middleName:null,surname:"Nunes",slug:"xirley-nunes",fullName:"Xirley Nunes"},{id:"70159",title:"Dr.",name:"Lucindo",middleName:null,surname:"Quintans-Júnior",slug:"lucindo-quintans-junior",fullName:"Lucindo Quintans-Júnior"},{id:"72113",title:"Prof.",name:"Jackson",middleName:"Roberto Guedes Da Silva",surname:"Almeida",slug:"jackson-almeida",fullName:"Jackson Almeida"},{id:"72114",title:"Dr.",name:"Julianeli",middleName:"Tolentino",surname:"Lima",slug:"julianeli-lima",fullName:"Julianeli Lima"},{id:"73341",title:"Prof.",name:"José Maria",middleName:null,surname:"Barbosa-Filho",slug:"jose-maria-barbosa-filho",fullName:"José Maria Barbosa-Filho"},{id:"76185",title:"Dr.",name:"Luciano",middleName:null,surname:"Ribeiro",slug:"luciano-ribeiro",fullName:"Luciano Ribeiro"},{id:"76187",title:"MSc.",name:"Fabrício",middleName:null,surname:"Silva",slug:"fabricio-silva",fullName:"Fabrício Silva"}]},{id:"32903",doi:"10.5772/30459",title:"Potato Peel as a Source of Important Phytochemical Antioxidant Nutraceuticals and Their Role in Human Health - A Review",slug:"potato-peel-as-a-source-of-important-phytochemical-antioxidant-nutraceuticals-and-their-role-in-huma",totalDownloads:8500,totalCrossrefCites:11,totalDimensionsCites:26,abstract:null,book:{id:"1958",slug:"phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health",title:"Phytochemicals as Nutraceuticals",fullTitle:"Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health"},signatures:"A. Al-Weshahy and V.A. Rao",authors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"},{id:"150485",title:"Dr.",name:"Amir",middleName:null,surname:"Al-Weshahy",slug:"amir-al-weshahy",fullName:"Amir Al-Weshahy"}]},{id:"69956",doi:"10.5772/intechopen.88829",title:"Biostimulants and Their Role in Improving Plant Growth under Abiotic Stresses",slug:"biostimulants-and-their-role-in-improving-plant-growth-under-abiotic-stresses",totalDownloads:2491,totalCrossrefCites:8,totalDimensionsCites:22,abstract:"Biostimulants are products that reduce the need for fertilizers and increase plant growth, resistance to water and abiotic stresses. In small concentrations, these substances are efficient, favoring the good performance of the plant’s vital processes, and allowing high yields and good quality products. In addition, biostimulants applied to plants enhance nutrition efficiency, abiotic stress tolerance and/or plant quality traits, regardless of its nutrient contents. Several researches have been developed in order to evaluate the biostimulants in improving plant development subjected to stresses, saline environment, and development of seedlings, among others. Furthermore, various raw materials have been used in biostimulant compositions, such as humic acids, hormones, algae extracts, and plant growth-promoting bacteria. In this sense, this chapter aims to approach the use of biostimulants in plant growth according to the raw material used in their compositions as well as their effects on plants subjected to abiotic stresses.",book:{id:"8954",slug:"biostimulants-in-plant-science",title:"Biostimulants in Plant Science",fullTitle:"Biostimulants in Plant Science"},signatures:"Ana Carolina Feitosa de Vasconcelos and Lúcia Helena Garófalo Chaves",authors:null},{id:"32894",doi:"10.5772/27308",title:"Antimicrobial and Antioxidant Activities of Some Plant Extracts",slug:"antimicrobial-and-antioxidant-activities-of-some-plant-extracts",totalDownloads:7022,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"1958",slug:"phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health",title:"Phytochemicals as Nutraceuticals",fullTitle:"Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health"},signatures:"Elita Scio, Renata F. Mendes, Erick V.S. Motta, Paula M.Q. Bellozi, Danielle M.O. Aragão, Josiane Mello, Rodrigo L. Fabri, Jussara R. Moreira, Isabel V.L. de Assis and Maria Lúcia M. Bouzada",authors:[{id:"69660",title:"Dr.",name:"Elita",middleName:null,surname:"Scio",slug:"elita-scio",fullName:"Elita Scio"},{id:"76248",title:"MSc.",name:"Rodrigo",middleName:null,surname:"Fabri",slug:"rodrigo-fabri",fullName:"Rodrigo Fabri"},{id:"76251",title:"MSc.",name:"Danielle",middleName:null,surname:"Aragão",slug:"danielle-aragao",fullName:"Danielle Aragão"},{id:"76253",title:"Ms.",name:"Renata",middleName:null,surname:"Mendes",slug:"renata-mendes",fullName:"Renata Mendes"},{id:"76256",title:"Mr.",name:"Erick",middleName:null,surname:"Motta",slug:"erick-motta",fullName:"Erick Motta"},{id:"76259",title:"Ms.",name:"Isabel",middleName:null,surname:"Assis",slug:"isabel-assis",fullName:"Isabel Assis"},{id:"76261",title:"Ms.",name:"Jussara",middleName:null,surname:"Moreira",slug:"jussara-moreira",fullName:"Jussara Moreira"},{id:"76262",title:"MSc.",name:"Maria Lucia",middleName:null,surname:"Bouzada",slug:"maria-lucia-bouzada",fullName:"Maria Lucia Bouzada"},{id:"76264",title:"Ms.",name:"Paula",middleName:null,surname:"Bellozi",slug:"paula-bellozi",fullName:"Paula Bellozi"},{id:"76266",title:"MSc.",name:"Josiane",middleName:null,surname:"Mello",slug:"josiane-mello",fullName:"Josiane Mello"}]}],mostDownloadedChaptersLast30Days:[{id:"69956",title:"Biostimulants and Their Role in Improving Plant Growth under Abiotic Stresses",slug:"biostimulants-and-their-role-in-improving-plant-growth-under-abiotic-stresses",totalDownloads:2499,totalCrossrefCites:8,totalDimensionsCites:22,abstract:"Biostimulants are products that reduce the need for fertilizers and increase plant growth, resistance to water and abiotic stresses. In small concentrations, these substances are efficient, favoring the good performance of the plant’s vital processes, and allowing high yields and good quality products. In addition, biostimulants applied to plants enhance nutrition efficiency, abiotic stress tolerance and/or plant quality traits, regardless of its nutrient contents. Several researches have been developed in order to evaluate the biostimulants in improving plant development subjected to stresses, saline environment, and development of seedlings, among others. Furthermore, various raw materials have been used in biostimulant compositions, such as humic acids, hormones, algae extracts, and plant growth-promoting bacteria. In this sense, this chapter aims to approach the use of biostimulants in plant growth according to the raw material used in their compositions as well as their effects on plants subjected to abiotic stresses.",book:{id:"8954",slug:"biostimulants-in-plant-science",title:"Biostimulants in Plant Science",fullTitle:"Biostimulants in Plant Science"},signatures:"Ana Carolina Feitosa de Vasconcelos and Lúcia Helena Garófalo Chaves",authors:null},{id:"69577",title:"Role of Fungi in Agriculture",slug:"role-of-fungi-in-agriculture",totalDownloads:1544,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Fungi are a group of eukaryotic organisms and source of food, organic acids, alcohol, antibiotics, growth-promoting substances, enzymes, and amino acids. They include microorganisms like molds, yeasts, and mushrooms. They live on dead or living plants or animals’ tissue. Fungi are very different from other living organisms; they are the primary decomposers of substances in the ecological system. Fungi are tremendous decomposer of organic waste material and most readily attack cellulose, lignins, gums, and other organic complex substances. Fungi can act also under a wide range of soil reaction from acidic to alkaline soil reactions. Fungi conjointly play a basic role in different physiological processes as well as mineral and water uptake, chemical change, stomatal movement, and biosynthesis of compounds termed biostimulants, auxins, lignan, and ethylene to enhance the flexibility of plants to ascertain and cope environmental stresses like drought, salinity, heat, cold, and significant metals.",book:{id:"8954",slug:"biostimulants-in-plant-science",title:"Biostimulants in Plant Science",fullTitle:"Biostimulants in Plant Science"},signatures:"Muthuraman Yuvaraj and Murugaragavan Ramasamy",authors:[{id:"280193",title:"Dr.",name:"Muthuraman",middleName:null,surname:"Yuvaraj",slug:"muthuraman-yuvaraj",fullName:"Muthuraman Yuvaraj"},{id:"289410",title:"Dr.",name:"Murugaragavan",middleName:null,surname:"Ramasamy",slug:"murugaragavan-ramasamy",fullName:"Murugaragavan Ramasamy"}]},{id:"62653",title:"Phytochemical Composition: Antioxidant Potential and Biological Activities of Corn",slug:"phytochemical-composition-antioxidant-potential-and-biological-activities-of-corn",totalDownloads:2149,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Corn seeds are used as a nutritional source for humans, and the stem and leaves are utilized as fodder for cattle throughout the world. Corn silk and corn cob are usually discarded as waste. This chapter highlights the nutritional as well as medicinal importance of various parts of corn plant. All parts of corn plant are good source of a variety of bioactive phytochemical compounds which possess antioxidant potential. The principal phytochemicals present in corn seed and corn silk include polyphenols, phenolic acids, flavonoids, anthocyanins, glycosides, carotenoids, and polysaccharides of biological importance, reducing compounds and some water-soluble vitamins. The presence of these phytochemicals makes corn a medicinal plant which shows various biological activities particularly the antioxidant, antimicrobial, antidiabetic, anti-obesity, antiproliferative, hepatoprotective, cardioprotective, and renal-protective activities. On the account of its high antioxidant potential, all parts of corn plant can be used for the management of oxidative stress and the treatment of various diseases.",book:{id:"7206",slug:"corn-production-and-human-health-in-changing-climate",title:"Corn",fullTitle:"Corn - Production and Human Health in Changing Climate"},signatures:"Haq Nawaz, Saima Muzaffar, Momna Aslam and Shakeel Ahmad",authors:[{id:"230900",title:"Mr.",name:"Haq",middleName:null,surname:"Nawaz",slug:"haq-nawaz",fullName:"Haq Nawaz"},{id:"244066",title:"Prof.",name:"Saima",middleName:null,surname:"Muzaffar",slug:"saima-muzaffar",fullName:"Saima Muzaffar"},{id:"263041",title:"Ms.",name:"Momna",middleName:null,surname:"Aslam",slug:"momna-aslam",fullName:"Momna Aslam"},{id:"263042",title:"Dr.",name:"Shakeel",middleName:null,surname:"Ahmad",slug:"shakeel-ahmad",fullName:"Shakeel Ahmad"}]},{id:"70950",title:"Role of Biofertilizers in Plant Growth and Soil Health",slug:"role-of-biofertilizers-in-plant-growth-and-soil-health",totalDownloads:1371,totalCrossrefCites:4,totalDimensionsCites:11,abstract:"Biofertilizers nowadays have been realised for shifting fortunes in agriculture. It has been proven successful technology in many developed countries while in developing countries exploitation of bioinoculants is hampered by several factors. Scientific knowledge on bioinoculants and its usage will pave way for its effective usage. At the same time overlooking the significance of ensuring and maintaining a high quality standard of the product will have negative impact. Hence a proper knowledge of bioinoculants and its functioning will pave way to tape the resources in a better way. Thus the chapter provide overview knowledge about different bacterial, fungal and algal biofertilizers, its associations with plants and transformations of nutrients in soil. Adopting a rational approach to the use and management of microbial fertilizers in sustainable agriculture thrive vast potential for the future.",book:{id:"8004",slug:"nitrogen-fixation",title:"Nitrogen Fixation",fullTitle:"Nitrogen Fixation"},signatures:"Murugaragavan Ramasamy, T. Geetha and M. Yuvaraj",authors:[{id:"289410",title:"Dr.",name:"Murugaragavan",middleName:null,surname:"Ramasamy",slug:"murugaragavan-ramasamy",fullName:"Murugaragavan Ramasamy"}]},{id:"67454",title:"Nitrogen Fertilization I: Impact on Crop, Soil, and Environment",slug:"nitrogen-fertilization-i-impact-on-crop-soil-and-environment",totalDownloads:1472,totalCrossrefCites:4,totalDimensionsCites:12,abstract:"Nitrogen (N) is a major limiting nutrient to sustain crop yields and quality. As a result, N fertilizer is usually applied in large quantity to increase crop production throughout the world. Application of N fertilizers has increased crop yields and resulted in achievement of self-sufficiency in food production in many developing countries. Excessive application of N fertilizers beyond crops’ demand, however, has resulted in undesirable consequences of degradation in soil, water, and air quality. These include soil acidification, N leaching in groundwater, and emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to global warming. Long-term application of ammonia-based N fertilizers, such as urea, has increased soil acidity which rendered to soil infertility where crops fail to respond with further application of N fertilizers. Another problem is the groundwater contamination of nitrate-N (NO3-N) which can be a health hazard to human and livestock if its concentration goes above 10 mg L−1 in drinking water. The third problem is emissions of N2O gas which is 300 times more powerful than carbon dioxide in terms of global warming potential. This chapter examines the effect of N fertilization on soil and environmental quality and crop yields.",book:{id:"8004",slug:"nitrogen-fixation",title:"Nitrogen Fixation",fullTitle:"Nitrogen Fixation"},signatures:"Upendra M. Sainju, Rajan Ghimire and Gautam P. Pradhan",authors:[{id:"214367",title:"Dr.",name:"Upendra",middleName:null,surname:"Sainju",slug:"upendra-sainju",fullName:"Upendra Sainju"},{id:"266570",title:"Prof.",name:"Rajan",middleName:null,surname:"Ghimire",slug:"rajan-ghimire",fullName:"Rajan Ghimire"},{id:"266571",title:"Prof.",name:"Gautam",middleName:null,surname:"Pradhan",slug:"gautam-pradhan",fullName:"Gautam Pradhan"}]}],onlineFirstChaptersFilter:{topicId:"349",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81188",title:"Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression",doi:"10.5772/intechopen.103958",signatures:"Kubra Acikalin Coskun, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al and Yusuf Tutar",slug:"structure-and-design-based-difficulties-in-recombinant-protein-purification-in-bacterial-expression",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yusuf",surname:"Tutar"},{name:"Nazlican",surname:"Yurekli"},{name:"Merve",surname:"Tutar"},{name:"Mervenur",surname:"Al"},{name:"Elif Cansu",surname:"Abay"},{name:"Kubra",surname:"Acikalin Coskun"}],book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:8,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"17",type:"subseries",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:3,paginationItems:[{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81188",title:"Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression",doi:"10.5772/intechopen.103958",signatures:"Kubra Acikalin Coskun, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al and Yusuf Tutar",slug:"structure-and-design-based-difficulties-in-recombinant-protein-purification-in-bacterial-expression",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yusuf",surname:"Tutar"},{name:"Nazlican",surname:"Yurekli"},{name:"Merve",surname:"Tutar"},{name:"Mervenur",surname:"Al"},{name:"Elif Cansu",surname:"Abay"},{name:"Kubra",surname:"Acikalin Coskun"}],book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"79353",title:"Protein Detection in Clinical Diagnosis and Management of Prevalent Neurodegenerative Diseases and Metabolic Disorders",doi:"10.5772/intechopen.101051",signatures:"Ohanube A.K. Goodluck, Obeta M. Uchejeso and Ikeagwulonu R. Chinaza",slug:"protein-detection-in-clinical-diagnosis-and-management-of-prevalent-neurodegenerative-diseases-and-m",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/278411",hash:"",query:{},params:{id:"278411"},fullPath:"/profiles/278411",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()