This table is used for KC identification and major surface receptors and moleculars involved in the function in human, mouse, and rat.
\r\n\tEqually important are the consequences deriving from the extraordinary nature of the present times. The COVID-19 pandemic and the restrictive measures to contain the infection (lockdown and "physical distancing" in primis) have revolutionized the lives, and a distortion/modification of habits, rhythms, arrangements will continue to be necessary.
\r\n\tGovernments have implemented a series of actions to mitigate the spread of infections and alleviate the consequent pressure on the hospital system. On the other hand, the Covid-19 pandemic has caused a series of other cascading effects that will probably be much more difficult to mitigate and which expose to complex consequences. The past two years have brought many challenges, particularly for healthcare professionals, students, family members of COVID-19 patients, people with mental disorders, the frail, the elderly, and more generally those in disadvantaged socio-economic conditions, and workers whose livelihoods have been threatened. Indeed, the substantial economic impact of the pandemic may hinder progress towards economic growth as well as progress towards social inclusion and mental well-being.
\r\n\t
\r\n\tAlthough in all countries the knowledge on the impact of the pandemic on mental health is still limited and mostly derived from experiences only partially comparable to the current epidemic, such as those referring to the SARS or Ebola epidemics, it is likely that the demand for intervention it will increase significantly in the coming months and years. The extraordinary growth of scientific research in the field of neuroscience now offers the possibility of a new perspective on the relationship between mind and brain and generates new scenarios in understanding the long wave of the pandemic and in the prospects for treatment. Moreover, the pandemic also has led to opportunities to implement remote monitoring and management interventions.
\r\n\t
\r\n\tOverall this volume will address the complex relationship existing between COVID-19, mental health, acquired knowledge, and possible interventions taking a highly multidisciplinary approach; from physiological and psychobiological mechanisms, and neuromodulation through medical treatment, psychosocial interventions, and self-management.
Kupffer cells (KCs), as the largest population mononuclear phagocytes in the body, account for 80–90% of the total number of natural macrophages and 20% of the liver nonparenchymal cells [1]. They form a self-renewing pool of organ-resident macrophages independent of the myeloid monocyte compartment and derive from resident stem cells which originate from the fetal yolk sac before [2–4]. Other studies also found that KCs derived from embryonic progenitors colonize the tissues before birth [5–11], but with the growth of mouse, bone marrow-derived monocytes will fill up additional macrophage niches that become available, competing with the resident population. This situation occurs in the liver and spleen, but not in the brain and lung [12].
\nKCs have a characteristic morphology with amoeboid lamellipodia and an irregular surface containing many microvilli [13], located at the luminal side of liver sinusoidal endothelium or the lamellipodia extended into the Disse space through the fenestrae. This is an ideal position for their main function in the liver. This state can filter the blood that enters the liver from both the portal vein and the hepatic artery, which is an important part of the cellular immunity system of the mammalia (Figure 1). So, the structure of KCs plays a role in the mutual coordination and influence of liver parenchymal cells and other nonparenchymal cell functions and makes up these cells’ important versatile constituents of the liver [14–16]. Now, according to the function of KCs, they could be distinguished as two groups: the one with higher phagocytosis capacity and the other with preference toward cytokines and chemokines production [17, 18]. Some studies found that there were large KCs in rats. They are localized in the periportal zone and have increased phagocytosis and increased production of biological mediators. These large KCs can be identified by the expression of CD163, also described as ED2 antigen, which is a scavenger receptor [19]. KCs (Table 1) can also be identified by the expression of CD68 (ED-1); they were called small KCs in rats. The general macrophage marker F4/80 or by ED-1 was expressed on the surface of mice KCs, which is present in all KCs regardless of their location [20]. In mice, KCs can be distinguished from monocytes among the F4/80+ cells as Ly6C low CD11b low-cell population [21, 22]. Additionally, macrophages are functionally grouped into two classes, M1 and M2. M1 (termed classically activated) macrophages are pro-inflammatory and could produce pro-inflammatory cytokines and chemokines, while the M2 (termed alternatively activated) macrophages are suppressive and involved in cellular repair [23]. According to this situation, KCs as one kind of macrophages also have these functions and play a fundamental role in homeostasis and diseases [24]. KCs also have a unique KCs gene Clec4f to distinguish with other macrophage; Clec4F has been previously described as a KCs-specific marker [25–27].
Origin | Marker | PRR | PAMP DAMP | Immunogenic | Polarization of macrophages | ||
---|---|---|---|---|---|---|---|
Rat | Derived from the fetal yolk sack and embryonic progenitors colonize the tissues. Liver-resident Express Clec4F gene | CD68/ED1 CD163/ED2 | Scavengers receptors (CDl3, CD14, CDl5, CD68, CD163) Mannose receptors Fc receptors (CD64, CD32, CDl6) Complement receptor (CR1, CR3, CR4) I region-associated antigen | TLR1-TLR9 NLR | MHC-II CD80 CD86 PDL-1 (CD274) | M1 | Pro-inflammatory antitumoral |
Mouse | F4/80 CD68 CD11blow | TLR1-TLR9 NLR RLR | M2 | Anti-inflammatory Immune suppressive protumoral | |||
Human | CD68 CD14 | TLR2 TLR3 TLR4 NLR |
This table is used for KC identification and major surface receptors and moleculars involved in the function in human, mouse, and rat.
Schematic representation of the liver microanatomical structure and Kupffer cell localization in lower magnification.
Pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) were two kinds of PRRs to express on the surface of KCs. They included multiple families, such as Toll-like, RIG-like, and NOD-like receptors (TLR, RLR, and NLR, respectively), and C-type lectin receptors (CLR) [31]. Mouse KCs can express TLR1-TLR9, all of which appear to be functional [32]. Human KCs, so far, have only been described to express TLR2, TLR3, and TLR4 [33, 34]. Furthermore, in the
KCs likely derived from infiltrating monocytes express MHC-II antigens and costimulatory molecules (CD80 and CD86), which can present foreign antigens to the reactive T cells, induced T cell responses, and thus conferred tolerance to induce regulatory T cells in immune response [28]. IL-10 and PDL-1 (also known as CD274) participated in the immune tolerance, which reduce the antigen-presenting capacity of KCs by downregulating the expression of MHC molecules and costimulators, but without strongly affecting the scavenger function of KCs.
\nKCs not only can interact with T cells but can also interact with many cellular components in the liver. For instance, KCs can initiate the recruitment of other monocytes to the liver in case of injuries, which is important for liver regeneration, and they also interact with hepatic stellate cells (HSCs) to play a role in liver diseases and repair [43, 44]. TLR4 signal on KCs indirectly silences patrolling NK cells by MYD88-dependent IL-10 secretion, whereas TLR2 or TLR3 induces IL-18 and IL-1β, leading to NK-cell activation in liver inflammation [45]. Traditionally, M1 macrophage phenotype is marked by the release of pro-inflammatory cytokines like TNF-κ, IL-1, and IL-12. Alternative activation of M2 phenotype is more heterogeneous, as different stimuli are main to release anti-inflammation cytokines (such as IL-10). Typically, the increased expression of arginase 1, the secretion of immune-modulatory cytokines (such as IL-10 and TGF-κ), and the involvement in tissue repair phase are considered as indicators of M2 macrophage differentiation. Different origin of the cells together with the functional plasticity of macrophages can explain the phenotypic and functional heterogeneity of KCs observed upon different triggers of liver pathology [46, 47]. On the basis of these concepts, in the next sections, we summarize the role of KCs to various diseases involving the liver, in particular infectious disease, fatty liver disease, liver fibrosis and cirrhosis, ischemia and reperfusion (I/R) injury, liver cancer as well as liver transplantation immunology (Figure 2).
KCs interact with other cells in liver diseases and have the bidirectional function.
KCs and the sinusoidal endothelial cells are the first barriers for pathogens to enter the liver via the portal vein [48]. Their endocytic capacity, the expression of different PRRs, MHC, and costimulatory molecules, and the ability to produce a variety of physiologically active substances (mediators of the inflammatory process) when they were stimulated make them as the potent immune cells that aim to either pathogen clearance or persistence. The liver is constantly exposed to non–self-protein which is derived from nutrients or microbiota, and bacterial endotoxins would trigger immune response to induce inflammation. These pathogens may activate KCs that lead to produce anti-inflammation cytokines and chemokines for the inhibition of pathogen replication, or recruit and activate other immune cells to liver to participate in the inflammation reaction. So the inflammation process is a multifactor and multicell interaction to participate in. In this process, KCs can recruit other immune cells such as monocytes into the liver, which are then polarized into regulatory IL-10+IL-12−DCs by hepatocyte growth factor [49], macrophage colony-stimulating factor (M-CSF) [50], through inducing activation of the signal of STAT3 and SMAD, then blocking NF-κB [51], and then producing anti-inflammation cytokines. At the same time, stimulation of the body-wide DCs response by the administration of Fms-related tyrosine kinase 3 ligand (Flt3L), granulocyte colony-stimulating factor (G-CSF), or granulocyte-macrophage colony-stimulating factor (GM-CSF) reverses endotoxin-related immunoparalysis that probably over produces unprimed myeloid cells, which in turn are capable of developing into TNF-IL-12-DCs after stimulation with LPS and other pathogens [52]. This approach may effect on patients with acute-on-chronic liver failure to overcome immunoparalysis [53].
\nNK cells are important during liver inflammation, TLR2 or TLR3 signal on KCs are activated to induce cytokines IL-18 and IL-1β production, then lead to NK cells activation to immune responses [54]. The chemokine CXCL16 secretion from KCs could guide the CXCR6+ NKT-cell trafficking in the liver to regulate immune responses during microbial infection, and KCs might interact with patrolling NKT cells via glycolipid receptors such as CD1d to produce pro-inflammation cytokines IL-4, IFN-γ, and then provide cytotoxic activity [55–57]. When KCs were activated, they become immunogenic to induce CD8 T cells activation, and the generation of efficient CLT response [58, 59]. Thus, during liver infection, KCs support the development of antimicrobial T cell responses. Besides CD8 T cells responses, recent studies describe that naive CD4 T cells also could be activated in the murine liver disease [60].
\nThe interaction of KCs with membrane-bound as well as soluble mediators expressed by infiltrating immune cells probably leads to further regulation of KCs function. Several studies have reported the involvement of adhesion molecule vascular endothelial growth factor-1 (VEGF-1), which is expressed by KCs, in liver inflammation. In common with endothelial cells which express both VCAM-1 and VEGF-Rs, KCs also could express several antigens that functionally regulate the bioactivities of KCs, including cytokine activation and production, cytoskeleton rearrangement, survival, and chemotaxis in liver inflammation [61–68]. The infiltration of neutrophils is commonly seen in all types of liver disease, especially in liver inflammation [69]. Neutrophils also could activate KCs and endothelial cells, leading to upregulation of cellular adhesion molecules such as ICAM-1, VCAM-1, or VAP-1 to induce neutrophils infiltration and endocytose the microbe [70]. Furthermore, KCs might play a dual effect in liver inflammation, and pathogens may exploit the tolerogenic capacities of KCs to evade immunity and may have evolved to inhibit the immunogenic functions of KCs. Then, we provide examples of the various roles of KCs in bacterial, viral, and parasitic infection.
\nKupffer cells act as sentinels capturing antigens and pathogens and are key contributors of host defense against enteroinvasive bacteria [5].
When liver infection with
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) are blood-borne viruses, when infected by them can result in chronic liver disease with an increased risk for liver fibrosis/cirrhosis, hepatic failure, and liver cancer [83, 84]. Studies suggested that hepatic macrophages played an important role in viral hepatitis. KCs have a beneficial antiviral effect on the early phase after infection. During systemic viral infection, liver resident KCs are essential for the efficient capture of the virus and preventing viral replication. The next involves fast induction of an antiviral status in KCs by producing IFN-γ and prevents viral spread to neighboring hepatocytes [85, 86]. Activated KCs express high levels of immunogenic MHC II and can thereby activate virus-specific CD4+ T cells in liver; CD4+ T cells also can produce IFN-γ in response to antigen exposure. At the same time, under an antiviral status, this might enhance the phagocytic capacity of KCs, which might additionally contribute to control virus replication [87, 88]. Some studies make use of a short-term LCMV-Cl13 infection in mice to examine phenotypic and functional changes in inflammatory monocytes and F4/80-high-Kupffer cells instead of virus infection animal models; these cells are the first innate immune cells to encounter a viral pathogen in liver. They observed F4/80-high-Kupffer cells, which maintain their endocytic activity and increase the expression of several pro- and anti-inflammatory cytokines and chemokines after LCMV infection. KCs from LCMV-infected mice clearly show the induction of pro- and anti-inflammatory cytokines and chemokines, including TNF, IL-6, IL-10, MCP, CXCL-10, and others. The active uptake of LCMV by KCs limits viral spread and immunopathology [89, 90].
\nIn human body, when they are infected by HBV particles and HBs, the virus induces IL-1β, IL-6, IL-18, CXCL8, and TNF production by human CD68+ KCs via NF-кB activation leading to NK cell activity and then NK cells produce IFN-γ, which plays an important role in antiviral immunity.
\nKCs have two functional AIM2 and NLRP3 inflammasomes, and that AIM2 production of IL-1β and IL-18 is essential for IL-8 transcription as well as activating liver and peripheral blood NK cells, respectively [91, 92]. Some studies demonstrated that rat ED1+-adherent KCs exposed to HBV virus hardly expressed IL-1β, IL-6, or TNF, but produced the immunoregulatory cytokine TGF-β, because hepatitis B surface Ag blocks IRF7 binding to the AIM2 promoter. Targeting AIM2 prevents the recognition of dsDNA expressed by the HBV, and that the limited innate response observed upon HBV infection may be due to viral-mediated immune evasion [93, 94]. Another link between hepatic inflammation and disease in patients with chronic HCV was attributed to IL-1β secretion following the activation of the NLRP3 inflammasome in liver macrophages (CD68+/CD14+) [95].
\nChronic infection associated with hepatitis B virus (HBV) is a major cause of liver fibrosis and cirrhosis. The activation of NADPH oxidase during the phagocytosis of HBV particles, and signal transducers and activators of transcription-3 (STAT-3) binding to elements in the TGF-β promoter may also be involved to increase TGF-β production. So KCs could produce the pro-fibrogenic/anti-inflammatory cytokine TGF-β rather than the pro-inflammatory cytokines IL-6, IL-1, and TNF-α. This may partly explain why overt liver fibrosis is still present when chronic hepatitis B virus infection occurs with minimal (or no) necroinflammation [93, 96, 97]. KCs in the HBs-Tg mice expressed higher level of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Depletion of KCs, neutralization of IL-12, or specific silencing of CD205 on KCs significantly inhibited CpG-oligodeoxynucleotides (CpG-ODN)-induced liver injury and NKT cells activation in the HBs-Tg mice. These data CD205-expressing KCs respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas-signaling pathway in HBs-Tg mice [98].
\nHCV infection also could make KCs and liver-infiltrating lymphocytes the major sources of TGF-protein, leading to liver fibrosis [99]. The cellular protein, glucose-regulated protein 94 (GRP94), which is directly mediated by NF-κB activation to interact with HCV E2, plays an important role in TGF-protein induction, suggesting that GRP94 is a potential target for the development of drugs that prevent hepatic fibrosis caused by HCV infection. Moreover, TGF plays a pivotal role in the generation of Treg cells from precursor cells, such that a GRP94-inhibiting drug would also likely boost immunity against HCV infection by blocking the induction of Treg cells, which direct the immune tolerance against HCV [100, 101].
\nKCs with heme are metabolized and detoxified by heme oxygenase-1 (HMOX1) to carbon monoxide (CO), biliverdin, and free iron (which induces ferritin). The HMOX1 and metabolites of heme besides possessing anti-inflammatory and antioxidant properties have been noted to have antiviral effects in hepatitis C-infected cell lines. Additionally, these substances have been shown to enhance the response to IFN-α by restoring interferon-stimulated genes (ISGs) [102].
\nOnly few studies on HEV-infected animals and humans have been published. But through immunohistochemistry, HEV antigens were detected mainly in KCs and liver sinusoidal endothelial cells, partially associated with hepatic lesions and infiltrates of CD3-positive cells. Since KCs and liver sinusoidal endothelial cells have antigen-presenting functions, they may also play a role in the host defense mechanisms and immunopathogenesis [103, 104].
\nIn contrast to HBV and HCV, infection of HAV is self-limiting and does not induce chronic infectious disease. HAV reaches hepatocytes via KCs that bind complexes of HAV- and HAV-specific IgA antibodies via the Fcα receptor [105], and subsequently transfer the virus to hepatocytes. Different from HBV and HCV, HAV requires the disruption of host cell membranes to release its progeny. These dying hepatocytes may provide DAMP, which can be recognized by KCs and other intrahepatic immune cells, leading to the activation of these cells that can overcome viral immune escape and liver-intrinsic tolerogenic mechanisms [106].
Infection by the Echinococcus larval stages (larval echinococcoses) can affect humans [107], which are thus accidental to be intermediate hosts. Intermediate host infection occurs after the ingestion of eggs (passed out with the definitive host feces), which hatch releasing oncospheres that penetrate the intestinal wall, and then are carried by blood or lymph to organs. Lectins are central players in innate immune to pathogens. A screen among lectins known to be expressed in mammalian macrophages identified only the mouse Kupffer cells receptor (KCR; CLEC4F) as a lectin able to bind the
Infection by the protozoan parasite
KCs also represent the port of liver entry for Plasmodium and Leishmania, which parasitize KCs and then infect other liver cells [113]. Parasites enter into the skin after a mosquito bite, and the rapid migration of sporozoites allows them to escape clearance by local tissue phagocytic cells and to enter lymphatics and blood vessels. Via the blood, sporozoites rapidly reach the liver and, after gliding on HSPG in liver sinusoids, they use circumsporozoite protein (CSP) and thrombospondin-related anonymous protein (TRAP) to bind to KCs.
\nKCs are the potent target of
KCs have been implicated in various liver diseases with different etiologies that are associated with metabolic complications, such as over-nutrition, and may lead to fatty liver disease. Nonalcoholic fatty liver diseases (NAFLDs) are a series of disorders that include nonalcoholic fatty liver (NAFL), steatosis with inflammation, and nonalcoholic steatohepatitis. NAFLD could cause insulin resistance and is known to increase morbidity and mortality, particularly due to an increased cardiovascular risk [119–121]. KCs, liver-resident macrophages, display a critical mediator in the development of NAFLD. PAMPs and DAMPs are well known to be able to activate various Toll-like receptors (TLR) such as TLR2, 4, and 9 present on KCs, by recruiting MyD88 and engaging MAP kinases and activating NF-κB signaling, and could be responsible for the inflammatory reaction at different disease stages. Obese and steatotic patients corroborate the observation highlighting an increased CD68 mRNA of KCs with obesity, and upregulation of many other genes such as chemoattractant protein-1 (MCP-1), which is also named chemokine ligand 2 (CCL2). So CCR2-deficient animals show decreased steatosis. Soluble CD163 would also correlate with nonalcoholic fatty liver disease activity and fibrosis. Deletion of ED2-positive KCs by GdCl3 or clodronate attenuates pro-inflammatory and profibrogenic cytokines release, thereby protecting fatty livers from progression to NAFLD [122–125].
\nMore recently, it was shown that over-expression of CD14, a coreceptor of TLR4, in KCs of mice with high-fat diet (HFD)-induced steatosis increased the hypersensitivity to low-dose LPS [126]. TLR4 in KCs mediates the progression of simple steatosis to NAFLD, by inducing ROS-dependent activation of X-box–binding protein-1 [127]. When KCs are activated by LPS through TLR4, they display an M1 TNF-expressing pro-inflammatory phenotype and increase triglyceride accumulation, decrease fatty acid oxidation and insulin responsiveness of hepatocytes. KC-derived TNF production seems to be central in NAFLD development, when silencing liver TNF or using TNFR1/2-deficient mice attenuating liver steatosis compared with wild-type mice [128, 129].
\nNOD-like receptors of KCs (NLRs) are intracellular PRRs that are part of the inflammasomes briefly mentioned above. Inflammasomes are multiprotein complexes that through NLRs sense intracellular danger signals and initiate an activation cascade of events that culminate with autoactivation of caspase 1 and cleavage of promoting IL-1κ and IL-18 production. By controlling the release of these important inflammatory cytokines, inflammasomes play an important role in the inflammatory process underlying NAFLD [130].
\nInterestingly, it was recently shown that IL-10 released by activated KCs stimulated apoptotic death of pro-inflammatory cells [131]. This mechanism mediated resistance to hepatocyte steatosis and subsequently death. Fatty liver disease mechanism caused by excessive alcohol consumption is similar as NAFLD. In the same way, the depletion of KCs in mice also attenuates alcohol-induced diseases. Then it demonstrated a central role of KCs in fatty liver diseases [132].
Fibrogenesis development has many pathological factors, such as inflammation derived from Kupffer cells, angiogenesis, and hepatic stellate cell (HSC) activation, and interacts with each other, leading to collagen deposition. Cirrhosis is the most advanced stage of fibrosis, with septa and nodule formation being the most notable features [133]. KCs or resident hepatic macrophages carry out an important role in modulating inflammation in liver fibrosis development. KCs produce reactive oxygen species, a variety of pro-inflammatory cytokines, such as TNF-α, IL-1β, and macrophage inflammatory protein (MIP)-1, which could provoke HSC activation to produce pro-fibrotic cytokines TGF-β and platelet-derived growth factor (PDGF) and subsequently contribute to hepatic injury [134, 135].
\nThe accumulation of circulating Ly6Chi monocytes within the liver is greatly dependent on CCR2/CCL2 and CCL1/CCR8 axis, in the pathogenesis process, KCs also express multiple chemokines and matrix metalloproteinases (MMP-9, -12, and -13) that recruit immune cells and promote extracellular matrix degradation, thus favoring the resolution of fibrosis [136]. Then, senescent hepatocytes and NF-κB-inducing kinase (NIK) activation in hepatocytes lead to the release of numerous chemokines. These chemokines can influence the migration or activation state of macrophages that in turn induce hepatocyte apoptosis. Accordingly, the NIK in vivo triggers massive liver inflammation and hepatocyte apoptosis leading to liver fibrosis. The fact that on the basis of above experiments KCs depletion using clodronate reversed NIK-induced damage [137, 138].
\nSome studies indicate that activating CX3CR1 on KCs increases their IL-10 expression and reduces their TNF and TGF-β [139], IL-10 is a potent anti-inflammatory mediator that has been shown to inhibit the production of TNF-α and IL-1 and to suppress the activation of NF-κB. IL-10 reduces macrophage production of nitric oxide (NO) and reactive oxygen intermediates, and also reduces the expression of adhesion molecules and chemokines [140, 141]. Thus, fractalkine (the ligand of CX3CR1) represents a negative feedback on the extension of liver inflammation through affecting KCs.
\nAn antifibrotic effect of liver macrophages was also demonstrated when macrophage infiltration was blocked during the induction of fibrogenesis in rats. Delta-like ligand 4 (Dll4) is a kind of antifibrotic factor. It was expressed in patients’ KCs and liver sinusoidal endothelial cells.
Liver ischemia reperfusion (I/R) injury refers to the paradoxic aggravation of ischemic liver resulting from the return of blood flow and oxygen delivery, which is encountered frequently in a variety of clinical situations, including liver transplantation, trauma, hepatic resection, or hypovolemic shock. If hepatic I/R injury progresses out of control, it can lead to liver failure, systemic inflammatory response syndrome, and multiple organ failure, and lastly leading to death [144, 145]. Oxidative stress is the major contributor for I/R-induced injury, so the therapeutic strategies to antioxidants have gained interest. In I/R injury, KC activation is presumed to occur first, resulting in generation of reactive oxygen species (ROS) and preinflammatory cytokines such as TNF-α, IL-1β, nitric oxide, and chemokines, which contribute to hepatocyte death, endothelial damage and recruitment, and activation of leukocytes [146].
\nKCs secrete CCL2 to promote CCR2-expressing neutrophil recruitment from the bone marrow and subsequent infiltration into the liver during I/R [147], and secrete matrix metalloproteinases (MMPs) to increase graft dysfunction [148]. In this process, platelets could be adherent to the KCs, which reflect the activation of KCs and lead to leukocyte accumulation affecting sinusoidal perfusion, causing liver failure [149].
\nLarge amounts of endotoxin contact KCs through the portal circulation following IR after liver transplantation. The LPS first binds to CD14, triggering KCs activation, then integrates with TLR4, and further increases the expression of CD14, the activation signals are transduced into cytoplasm, resulting in NF-κB nuclear translocation and cytokines such as TNF-α and IL-6 release, harming the liver graft. TLR4 knockout mice are protected from endothelial overactivation in the absence of KCs after IR injury [150]. At the same time, endoplasmic reticulum (ER) stress of KCs in evoking liver inflammation following reperfusion contributed to the conversion of natural Tregs to Th17 cells due to IL-6 release, resulting in liver injury [151]. Whereas the inhibition of high-mobility group box 1 production by KCs after I/R in rats could prevent liver injury [152], suppression of TNF-α–mediated apoptotic signaling by glutathione (GSH) pretreatment can attenuate hepatic I/R injury in young and aged rats [153].
\nIn IR injury, activated KCs could produce pro-inflammation cytokine IL-18, blocking of IL-18 by IL-18-binding protein may inhibit KCs activation, resulting in a reduction of KC-derived harmful stimuli, then ameliorates I/R injury [154]. KCs also could protect liver grafts against liver-transplant–induced I/R injury. The protection appears to be mediated by the release of anti-inflammatory IL-10 and the production of antioxidant heme oxygenase by KCs [41, 155]. The IL-10 secreted by KCs controls pro-inflammatory mediators released from LSEC in response to LPS challenge, KCs depletion has also been shown to impair hepatic IL-10 production after partial hepatectomy. Pretreatment with IL-10 protects steatotic livers undergoing I/R, and that active KCs retain a hepatoprotective role in the steatotic environment [156, 157].
\nHeme oxygenase-1 (HO-1) is a rate-limiting enzyme of heme degradation, exerts antioxidative, antiapoptotic, anti-inflammatory, and vasoactive effects through its byproducts or itself. HO-1 and its byproducts (CO, biliverdin, and iron ion) induction could protect the graft from IR injury after liver transplantation in several experimental studies [158]. Our study also has the same results. Our results of immunofluorescence also demonstrated that preconditioning with Nodosin perfusion induced HO-1 expression mainly in KCs at 24 h after transplantation [159] (Figure 3). HO-1 upregulation in KCs plays a protective role in modulating immune responses of I/R-injured tissues, or reducing apoptosis induced directly by TNF-α [160]. Preincubation of KCs with CO upregulated heat-shock protein 70 (HSP70) and inhibited ROS generation. CO-pretreated liver grafts showed less upregulation of TNF-α and inducible nitric oxide synthase messenger RNA (mRNA), reduced expression of pro-apoptotic B cell lymphoma 2-associated X protein mRNA, cleaved caspase-3, and poly(adenosine diphosphate ribose) polymerase. So, pretreatment of donors with CO ameliorates LT-associated I/R injury with increased hepatic HSP70 expression, particularly in the KCs population [161].
Immunofluorescence double staining for cellular localization of heme oxygenase 1 (HO-1) expression in the rat liver after nodosin perfusion. Liver sections are stained for HO-1 (green) and the Kupffer cell marker ED2 (red). Colocalization of these two colors can be recognized by the yellow color. (a) Control group; (b)
Liver transplantation is an effective treatment for advanced liver diseases, but immune rejection is a major obstacle after transplantation. KCs not only can engulf and kill pathogenic microorganisms, rid of endotoxin, but also have effects of antigen presentation, secretion of cytokines, and immune regulation. They can express high levels of MHC and costimulatory molecules and are capable of activating naive T cells [17]. At the same time, they could be activated by antigen to produce T1 cytokines IL-2, IL-1, IL-6, TNF-α, and IFN-γ. They interact with the recipient T cells that migrate into the graft and play an important role in immune response [162]. Furthermore, the replacement of KCs by recipient bone marrow-derived cells (BMDCs) was observed in the liver graft, and functional inhibition of KCs by GdCl3 abrogated prolonged survival. Analysis of mRNA expression levels in liver grafts showed a shift of the Th1/Th2 balance toward reducing rejection in the BMC groups. So replacement of KCs by recipient BMDCs may play an important role in this mechanism of inhibiting rejection [163].
\nAfter liver transplantation, the reduction of B7 expression in donor KCs could suppress the activation of recipient T lymphocytes and secretion of IL-2 via the CD28/B7 costimulatory pathway and may induce immune tolerance [164]. The cytokines TNF-α expression in KCs is a marker of activated KCs after transplantation and it may be a good target for reversing acute rejection post transplantation [165]. GdCl3 depletion of KCs also plays a protective role in liver transplantation through suppressing bile duct cell apoptosis, including decreasing expression of ALT, ALP, TBIL, and TNF-α, and suppressing Fas-FasL-Caspase signal transduction [166].
\nKCs not only play a role in immune response directly but also activate the immature DCs or recruit immature DCs to liver to mature DCs to take part in immune response, by producing pro-inflammation cytokines and chemokines. Then, mDCs could express costimulatory molecules highly and present antigen to T cells [167, 168].
\nRecently, it has found that KCs can induce T lymphocyte apoptosis and play an important role in the regulation of liver transplantation tolerance. They also could produce high levels of Th2 cytokines IL-10 and TGF-β and low levels of IL-12 to protect the graft [169]. Although KCs can promote immature DCs to mature DCs as immunogenic APCs, they are frequently accompanied by an upregulation of PD-L1 [170], release of IL-10 and TGF-β [171], prostaglandin E2 (PGE2) [172], IDO [173, 174] and/or arginase [175], which inhibit DC-mediated T cell activation within the sinusoids, and the presentation of high-affinity peptide by KCs results in the deletion of CD8+ T cell tolerance. Furthermore, they promote the suppressive capacity of Tregs (CD4+CD25+FoxP3+ T cells) toward hepatic antigens to induce tolerance [176]. KCs could also recruit TH17 cells and also γδ T cells are facilitated by CCR6 and possibly also CCR4 via CCL17, CCL22, and CCL20. A broad variety of chemokine receptors have been linked to Treg cell migration (e.g., CCR1, CCR4, CCR5, and CCR6) showing a functional tolerance [28]. KCs mediate CD8+ T cells apoptosis by expressing Fas ligand (FasL), which can ligate Fas on CD8+ T cells [177]. V-set and Ig domain-containing 4 (VSIG4, CRIg, or Z39Ig), a newly identified B7-related cosignaling molecule, exclusive expression on liver KCs is a complement receptor for C3b and iC3b and a coinhibitory ligand that negatively regulates T-cell immunity, VSIG4+ KCs play a critical role in the induction and maintenance of liver T- and NKT-cell tolerance [178]. So, KCs have a dual effect after liver transplantation immunology
Persistent hepatic inflammation resulting from hepatitis B or C virus infections (HBV or HCV, respectively), NAFLD, or alcohol abuse is a hallmark feature of chronic liver diseases and appears to be an essential prerequisite of hepatocarcinogenesis. The results of this activation involve the production of multiple inflammatory cytokines, ROS, growth control mediators, various chemokines, which orchestrate the interaction between parenchymal and nonparenchymal liver cells, especially KCs to be activated in the process of hepatic carcinogenesis. They are also involved in the enhancement of clonal expansion of preneoplastic cells, then leading to neoplasia [179]. In diethylnitrosamine-induced HCC in mice, pro-inflammatory activation of KCs during the early stages of chemical-induced carcinogenesis is important in tumor development. Then, the antitumor effects of KCs are widely studied, such as to release TNF-α and iNO to recruit cytotoxic T cells and NK cells, to induce apoptosis of cancer cells and phagocytose cancer cells [180]. And some studies demonstrated that the expression of TREM-1 by mouse KCs plays a crucial role in their activation upon the recognition of necrotic hepatocytes and tumor cells [181]. Activated KCs suppress tumor cells through the ADCC pathway via FcγRIII (CD16) and directly or indirectly by cytokines. The existence of CD16a in KCs and that the activation of KCs, which mainly resulted in CD16a expression, then via NK cells, mediated ADCC reactions to induce NK cell cytotoxicity to tumor cells.
\nThe activated KCs kill target cells directly by swallowing and releasing lysosomal enzyme, NO, and peroxidase; they also cooperate to resist tumor cells by secreting cytokines including TNF-α, IL-1, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF) [182, 183]. IL-6 is highly produced by KCs, it has been related with tumor progression and angiogenesis in several tumors, and it is overproduced in HCC. So decreasing the IL-6 production by KCs inhibits hepatocellular carcinoma growths [184]. KCs derived from male but not female SART1+/− mice produced increased levels of the hypoxia inducible factor (HIF-1)-dependent chemokine (RANTES) and cytokine promoting oxidative damage and inflammation, driving progression to hepatocellular carcinoma. Reventing inappropriate HIF-1 activation in male mice, as a novel therapeutic target for hepatocellular carcinoma [185, 186].
\nKCs play an essential function in the host tumoral surveillance system. Their strategic position in liver allows them to discriminate and remove neoplastic cells that develop in liver. Besides primary liver cancer, liver metastases are frequently observed, especially in gastrointestinal malignancies. The metastatic cells migrate via the bloodstream into the portal circulation, and they are entrapped in the liver sinusoids [187]. KCs play an important role in tumor growth, angiogenesis, and metastasis through the production of a number of growth factors (PDGF-β, vascular endothelial growth factor (VEGF), TGF-β, and EGFR ligands), cytokines (IL-6, TNFα, and IL-10), chemokines (CCL17, CCL22, CCL24, CXCL12, and IL-8), as well as other soluble factors (MMPs, osteopontin, and cyclooxyganse-2). In the liver, CEA binds with heterogeneous nuclear RNA-binding protein M (hnRNP M) receptor on KCs and causes activation and production of pro- and anti-inflammatory cytokines including IL-1, IL-10, IL-6, and TNF-α. These cytokines affect the upregulation of adhesion molecules on the hepatic sinusoidal endothelium and protect the tumor cells against cytotoxicity by nitric oxide (NO) and other reactive oxygen radicals. This activation is the key to the role of CEA in liver metastasis. A large number of clinical studies have shown correlations between serum CEA levels and advanced colorectal cancer, in particular, in the presence of liver metastasis [188].
\nKCs were found to have promoted tumor invasion and exacerbated the metastasis and they are responsible for the accumulation of liposomes. In the metastatic hepatic cancer, KCs taking up liposomes were significantly increased, and PEGylated can reverse this result through a reduction in tumor-supportive KCs [189]. Primary pancreatic tumor cells release exosomes that contain migration inhibitory factor (MIF) into the blood circulation. These PDAC-derived exosomes are selectively taken up by liver KCs, leading to the MIF-dependent production of fibrotic cytokines by KCs. These fibrotic cytokines, particularly TGF-β, activate liver HSCs to produce fibronectin. Deposition of fibronectin in the liver leads to the formation of a fibrotic microenvironment that promotes the recruitment of bone marrow-derived cells. These sequential events establish a premetastatic niche, which permits the survival and proliferation of disseminated PDAC cells and the formation of metastases in the liver [190]. Some studies demonstrated that KCs could help metastatic cancer cells extravasate from vessel via CXCL12/CXCR4 pathway.
\nKCs in liver can interact with myeloid-derived suppressor cells (MDSCs) and cause their upregulation of PD-L1, a negative T cell costimulatory molecule, and ultimately lead to tumor immunosuppression in accordance with further tumor progression and metastasis. They can suppress CD8+ T cells function via B7-H1/programmed death-1 interactions, which diminishes antitumor effect of CD8+ T cells. The metastatic tumor cells entering the liver from portal vein triggered KCs and mediated also upregulation of vascular endothelial cell adhesion receptors, such as E-selectin to help metastatic tumor cells arrest and extravasate [191–193]. KCs themselves are controversial, in metastatic colon tumors, the cytokines produced by KCs (IL-12 and IFN-α) are indeed important for the activation of NK cells and NKT cells and for preventing tumor liver metastases, depletion of KCs by gadolinium chloride or clodronate liposomes increased the number of liver metastasis in some reports [194]. Other studies have demonstrated that KCs induce Fas expression in colon cancer cells and malignant glioma cells leading to Fas-mediated apoptosis and death in the presence of tumor-infiltrating lymphocytes or TNF-α [195].
Kupffer cells have various functions in liver injury and repair. KCs, as liver-resident macrophages, localize within the lumen of the liver sinusoids and are adherent to the endothelial cells that compose the blood vessel walls. They are the first immune cells in the liver that come in contact with the gut bacteria, gut bacterial endotoxins, and microbial debris derived from the gastrointestinal tract that have been transported to the liver via the portal vein. They also interact with other hepatic cells to play an essential role in the host defense. They are responsible for the development of liver diseases including infectious disease, fatty liver disease, liver fibrosis and cirrhosis, ischemia and reperfusion injury, liver transplantation immunology as well as liver cancer. But KCs express various phenotypes to have various functions. Because of the highly overlapping characteristics of these cells, their functions are controversial. The complex roles of KCs in both protective and harmful responses make the liver diseases treatment interesting but difficult. So, further efforts should therefore focus on regulatory mechanisms in specific subpopulations of KCs differentiation and function.
The authors thank the National Natural Science Foundation of China (grant nos. 81270555 and 81470897) and the Program for New Century Excellent Talents in University (grant no. NECT-13-0422) for their support.
Auditory Evoked Potentials (AEP) are electric potentials from the auditory nervous system that can be evoked by presenting abrupt acoustic stimuli to the ear. Registration of the electric potential as a function of time after stimulus presentation shows a reproducible pattern of waves that occur at specific time points after stimulus onset. The time between stimulus onset and occurrence of an extreme value of a wave is called latency. As can be appreciated from Figure 1, responses span a time window of several orders of magnitude ranging from several milliseconds to a second. This wide range can be divided into three time-windows reflecting different latency ranges. Registrations within these different time-windows are generally called Auditory Brainstem Response (ABR) for short time-windows up to 8 ms, Middle Latency Auditory Evoked Potentials (MLAEP) from 8 ms up to approximately 40 ms, and Long Latency Auditory Evoked Potentials (LLAEP) for time-windows of 40 ms and longer. In this chapter we will focus on short latency ABR responses.
Impression of registration of an auditory evoked potential. The abscissa shows latency in ms after stimulus onset on a logarithmic scale. The ordinate shows the amplitude of the electric potential in μV.
Figure 2 shows the results of a PubMed search with terms “auditory” and “potential” and “brain stem” and “human” (the latter both in text and as mesh term). It can be appreciated that the first paper mentioning “auditory potential” was published in 1948, but it was not until the early 1970s that the subject generated a substantial number of publication year by year. In the early 1970s, Jewett and Williston [1] introduced labeling of vertex-derived positive extremes of the ABR waves with roman numerals. They also established that these waves are far-field potentials from subcortical structures, providing indirect evidence that wave I is volume-conducted from the eight cranial nerve. Furthermore, they concluded that “waves I through VI have sufficient reliability to be worthy of establishing clinical and experimental norms”. This makes them, and particularly wave V, suitable for objective audiometry based on wave occurrence and latency. Picton et al. [2] extended ABR nomenclature by introducing the prime for the vertex-negative extreme following a positive extreme. Thus V′ identifies the vertex-negative extreme following vertex-positive extreme V. In this chapter, we will refer to the vertex-positive extremes as peaks. The first intracranial recordings in humans were, to our knowledge, reported by [3, 4]. In the first study, potentials were recorded from the intracranial part of the auditory nerve in patients undergoing operations for cranial nerve disorders. The results indicated that the auditory nerve gives rise to the first two of the peaks in the scalp-recorded ABR and not to only the first peak. The latter study concluded on the basis of in-depth recordings during brain surgery that waves II and III are primarily generated within the pons, with possible contributions from the auditory nerve. Waves IV and VI originate from the pons and the medial geniculate body respectively. In Section 2 we will discuss the sources of the ABR more extensively.
Number of publications with search terms “auditory” and “potential*’ and “brainstem” (solid line) and “auditory” and “potential*” and “brainstem” and “audiometry” (dashed line). The term “Human” was used as a search term both in full text and as a Mesh term.
Clinical application of ABRs includes identification of the site of lesion in retrocochlear hearing loss, establishing functional integrity of the auditory nerve, and objective audiometry. With the advent of Magnetic Resonance Imaging (MRI) for the detection of acoustic neuroma, the clinical use of ABR for this purpose has declined. ABR remains an important tool, however, for establising neural functional integrity in cases of suspected auditory neuropathy and objective audiometry in newborns. Section 3 will give an overview of all aspects of clinical ABR measurements.
Many countries have established Universal Newborn Hearing Screening Programs for the identification of children with permanent congenital hearing loss. Outcomes of these programs include a lower age of identification, lower age of provision of amplification, and better speech production and perception [5]. Infants who do not pass newborn hearing screening are referred for diagnostic audiological assessment to determine the degree and type of hearing loss, and hearing loss configuration. Hearing thresholds in newborns are typically estimated by using ABR for objective audiometry because behavioral techniques such as Visual Reinforcement Audiometry (VRA) or Conditioned Play Audiometry (CPA) are not feasible at a very young age. Another application of ABR is the detection of ototoxicity in young children that are treated with cisplatin for cancer or (concomitantly) with aminoglycosides or glycopeptides antibiotics for infections. Section 4 will discuss the application of frequency-specific stimuli for objective audiometry in these patient groups. Finally, in Section 5 we will discuss an example of the application of binaural ABR measurements as an objective measure of directional hearing ability.
The structures that contribute with their stimulus-evoked electrical activity to the ABR are the auditory nerve, cochlear nucleus, superior olive complex, and the lateral lemniscus. These structures will be briefly described with respect to their physiological responses and function.
Comprehensive overviews are provided for instance in [6]. Since the ABR is often used, both in the clinic and in animal experiments, to assess hearing loss caused by damage in the cochlea, that structure is included.
Sound reaches the cochlea via the outer ear canal, tympanic membrane, and middle-ear ossicles. The sensory organ in the cochlea, known as the organ of Corti, is located on the basilar membrane, which stretches from the base near the footplate of the stapes to the apex. Due to gradients of its mechanical properties from base to apex the basilar membrane functions as a frequency filter bank and it is tonotopically organized: it maximally vibrates to high frequencies of the sound at the base and to low frequencies towards the apex, and each place along the basilar membrane corresponds to a frequency it is most sensitive to, a characteristic frequency (CF). Vibrations start at the base and travel towards the apex, a phenomenon known as the traveling wave. Consequently, cochlear responses occur faster after stimulus onset to high frequencies than to low frequencies.
In the organ of Corti, two types of sensory hair cells are distinguished: inner and outer hair cells (IHCs and OHCs, respectively), which are arranged in four rows in the ratio 1:3 and which differ distinctly in function. The IHCs act as mechano-electrical transducers passing through the acoustical information to the nerve, and the OHCs act as amplifiers, increasing detection sensitivity by 40–50 dB and increasing frequency selectivity. In both types of hair cells, acoustical vibrations are converted to electrical potentials. In IHCs these receptor potentials trigger action potentials in the nerve. For that purpose, each IHC is innervated by 10–20 afferent auditory nerve fibers, which are myelinated and which systematically vary in spontaneous rate (SR) and the threshold at their CF [7], the latter allowing for a wide dynamic range to be encoded. In the OHCs, the receptor potentials trigger the cells to contract and expand, and this motility is thought to amplify the basilar membrane vibrations, in particular at low sound levels. Irrespective of the mechanisms, OHC loss leads to a threshold shift of 40–50 dB and deterioration of frequency tuning. Each OHC is innervated by a single unmyelinated afferent fiber, and it shares this fiber with several other OHCs. These fibers have very high thresholds (>90 dB SPL). The great majority of the afferent auditory nerve fibers (~95%) receive input from the IHCs. An auditory nerve of a young normal-hearing subject contains about 35.000 fibers.
Action potentials that are generated at the IHC synapse are propagated along the auditory nerve to the cochlear nucleus (CN). The nerve branches to three divisions of the nucleus: anterior ventral cochlear nucleus (AVCN), posterior ventral cochlear nucleus (PVCN), and dorsal cochlear nucleus (DCN). The AVCN contains for the large part bushy cells which show similar responsiveness as the auditory nerve fibers. Their onset response latencies are ~0.6 ms longer than that of the nerve fibers [8]. Notably, the timing of the action potentials is more precise than that of the auditory nerve, i.e., when stimuli are presented repetitively, the action potentials have a very similar latency. The PVCN contains, among other cell types, multipolar cells which show so-called chopper responses with longer latencies than the bushy cells. The frequency tuning in AVCN and PVCN is similar to that in the auditory nerve. The DCN has a complex circuitry of various cell types including inhibitory interneurons. Consequently, many DCN neurons show frequency tuning that is characterized by excitatory responses to limited frequency-sound level combinations, and inhibitory responses to a wide range of frequencies and levels.
The bushy cells in the AVCN project to the superior olivary complex (SOC), which is the first station along the auditory pathway to combine input from both ears [9]. Specifically, the spherical bushy cells send their precise phase-locked action potentials to both ipsi- and contralateral medial superior olive (MSO) and to the ipsilateral lateral superior olive (LSO); globular bushy cells project to the contralateral medial nucleus of the trapezoid body (MNTB) from where inhibitory input is delivered to the LSO. Receiving well-timed input from both ears, neurons in the MSO are tuned to interaural time differences (ITD), and receiving ipsilateral excitatory and contralateral inhibitory input LSO neurons are sensitive to interaural level differences (ILD).
The next station in the auditory brainstem is the lateral lemniscus (LL), which globally can be distinguished in a ventral nucleus (VNLL) processing monaural information and a dorsal nucleus (DNLL) processing binaural information. The VNLL receives input from the contralateral CN, and the DNLL receives input from ipsilateral MSO and bilateral LSO.
Monaural and binaural pathways from each of the above-described brainstem nuclei converge in the inferior colliculus (IC). It allows the IC to process several auditory features including basic spectrotemporal features [10] and 2-dimensional spatial information [11].
The ABR waveform is commonly described as consisting of five peaks. Peaks III and V typically dominate peak II and IV, respectively, and are the ones to be best observed in daily practice in a clinic or laboratory. Peak I appears more prominently in animals than in humans, where it fades faster with decreasing stimulus level than peaks III and V (see also Section 3.6). Electrical activity from the auditory nerve and brainstem nuclei contributes to the ABR. A first-order approach to understand which neural population corresponds to which peak, is to consider the sequence of nuclei in the pathway. The inter-peak interval of approximately 1.0 ms agrees with the axonal conduction time and synaptic delay between the generation of action potentials at two successive neurons. Indeed, as summarized by [12] for the human ABR partly based on intraoperative recordings, peak I reflects the activity of the auditory nerve, peak III that of the CN, peak IV the SOC, and peak V the LL. Peak II is generated by the central part of the auditory nerve, likely where it branches to the three CN divisions. In smaller mammals used in auditory research like gerbils, mice, and guinea pigs, rather four than five peaks are distinguished with peak IV being analogous to peak V of the human ABR [12]. A fifth peak would then reflect responses in IC, as a correspondence to IC evoked potentials in mice indicated [13]. Based on a series of careful lesion and modeling studies of click-evoked ABRs in cats, [14] linked peak I to the auditory nerve, II to the globular bushy cells in AVCN, III to spherical bushy cells and cells driven by globular cells, IV to MSO principal cells, and V to cells driven by MSO principal cells.
In a secondary approach, one should consider that the early stations besides contributing to early peaks can also contribute to later peaks. We consider the ABR evoked by the most commonly used stimulus, a broadband click. As a consequence of the traveling wave mechanics, the click response latency in the auditory nerve is shortest for high-CF neurons and increases with decreasing CF [15], which leads one to conclude that high-CF fibers contribute to wave I [14]. The low-CF fibers with longer latencies and multi-peaked responses (with inter-spike intervals of 1/CF) therefore may contribute to later waves. In particular for high click levels, the high-CF fibers show second firings about 1 ms after the first action potential, an interval that is related to the neural refractoriness [16], and notably, similar to the ABR inter-peak interval. The same notion applies to the CN bushy cells, i.e. those with lower CFs have longer click latencies and may contribute to later peaks.
The following factors determine the extent to which a neural population contributes to the ABR: the number of responding neurons, the discharge probabilities of the individual neurons, the discharge latencies, the synchronization of discharges between neurons, the synchronization of the individual neuron, and the unit response (UR). How action potentials of a neural population shape an ABR wave is illustrated in Figure 3 by the compound action potential (CAP), which reflects the auditory nerve response, thus analogous to wave I of the ABR. The CAP is mathematically described as the convolution of the compound discharge latency distribution (CDLD) and the UR, a concept introduced by [18]. An example of a CAP with corresponding CDLD and UR is shown in Figure 3, along with the convolution equation.
Example of CAP and corresponding CDLD, which is constructed based on the CAP and depicted UR using the convolution equation. The UR is modeled after experimental guinea pig data [
The CDLD is the sum of the discharge probabilities of all responding auditory nerve fibers, which are typically recorded by poststimulus time histograms (PSTHs) acquired by presenting the stimulus a few 100 times. The discharge probability is the ratio of discharges and the number of stimuli. The synchronization is high when to each stimulus presentation the latency is very similar, thus resulting in a peaky PSTH, and the synchronization is low when the discharges are spread. The click-evoked PSTH in Figure 3 has a latency of about 2.0 ms with some discharges at 1.8 ms and some at 2.3 ms; the second peak reflects second discharges of the neuron. The CDLD will be relatively narrow when the PSTHs of the responding neurons have the same latency, and broad when the latencies vary among neurons. The latter applies to the auditory nerve since fibers with a low SR have typically longer latency than the fibers of high SR [15]. The UR is the potential at the recording electrode that results from a single action potential. Obviously, it determines both the size and shape of the AEP waveform, and it depends mostly on the distance of the electrode from the neural population. Generally, the UR depends on specific electrode configurations, the tissue between electrode and neurons, which includes electrodes at the skin, and skull characteristics. It is the factor that is most difficult to assess; for the CAP, it has been assessed by recording the potential at the CAP-recording site around the occurrence of action potential [17, 19, 20]. Each neuron may have its UR depending on the neuron’s location and morphometry. For the auditory nerve it can be assumed that the UR does not vary significantly with CF and SR [17], an assumption that generally works well when using the UR to predict CAPs [21, 22, 23]. The neural populations in the brainstem, however, will have URs that vary greatly between nuclei [14].
As an approximation, the CAP amplitude is proportional to the number of responding neurons (N in equation in Figure 3). Figure 4 shows amplitudes of CAPs evoked by an electrical current pulse as a function of the number of auditory nerve fibers in guinea pigs.
Amplitudes of CAPs to electrical pulse stimulation (eCAPs) as a function of packing density of spiral ganglion cells. Data are acquired in 97 guinea pigs that are normal-hearing or ototoxically deafened with varying duration of deafness (2–14 weeks). Electrical pulses used were biphasic pulses with a phase duration of 50 μs and inter-phase gap of 30 μs and alternating polarity. Current levels are maximal, i.e., at or near saturation. The packing density reflects the number of surviving neurons. For methodological details see Ramekers et al. [
Most of these guinea pigs have been deafened and consequently, the number of neurons, quantified by packing density of the cell bodies in Rosenthal’s canal at different durations of deafness, varied widely [25]. Using an electrical stimulus, synchronization is expected to be large, and the great majority of surviving neurons are expected to respond, creating an ideal condition to test the convolution approximation. Indeed, the CAP amplitude significantly increases with the neural packing density, however, the amplitude varies enormously among guinea pigs, and the variance is only explained for 36% by the packing density. This outcome confirms that the number of responding neurons is an important factor, but at the same time it underscores the unreliability of amplitude as a measure of auditory evoked potentials including the ABR.
How do responses with different latencies add up? To address that question again the CAP provides a good illustration as shown in Figure 5.
Illustration of summing of two waveforms with varying latencies. In the left column, the latency difference between the first and second contribution is 0.6 ms, and in the right column, the latency difference is 0.4 ms. The size of the contributions is unchanged. The resulting waveforms (bottom row) differ greatly in that the left one shows a clear second peak, whereas the right one shows only one peak. The waveforms here show CAPs, but the principle applies to ABRs as well.
The example shows two CAP contributions, with a ratio second/first of 0.25, and a latency difference of CDLD of 0.6 ms (left column) and 0.4 ms (right column). The difference of 0.2 ms has enormous consequences for the resulting waveforms. The left waveform shows two distinct waves (N1, P1, N2, P2) but the right waveform shows a merged P1-P2 while the N2 has vanished. It illustrates an often occurring phenomenon of ABRs that waves appear as merged components, therefore not showing the classical 5 waves.
The URs of the various brainstem nuclei are crucial for how the potentials add up. As the URs depend on recording sites, the effect of changing electrode sites is demonstrated in Figure 6 showing click-evoked ABRs in a normal-hearing guinea pig, first with skin needles as electrodes, second with screws implanted in the skull as electrodes. For the different click levels, the waveforms show clear differences.
Click-evoked ABRs recorded from normal-hearing guinea pigs. Clicks consisted of monophasic pulses of 20 μs with alternating polarity, presented at a rate of 10.1/s. The levels indicate dB attenuation relative to ~110 dB pe SPL. Subcutaneous needle electrode configuration: Active electrode behind the ipsilateral pinna, reference electrode on the skull, rostral to the brain, and ground electrode in the hind limb. Transcranial screw electrode configuration: active electrode 1 cm posterior to bregma, and the reference electrode 2 cm anterior to bregma; as ground electrode a subcutaneous needle electrode in the hind limb was used. For methodological details see [
ABR waveforms vary with degree and types of hearing loss. We discuss two different types of common pathologies with respect to the consequences for the click-evoked ABR, OHC loss in basal cochlear regions, and synaptopathy.
OHC loss in basal cochlear regions, for instance, caused by ototoxic medication, noise trauma, aging, or any combination of these, leads to high-frequency hearing loss and to degradation of frequency tuning, which both have consequences for click-evoked responses of the auditory nerve. First, the latency increases with decreasing click level will be larger than normal, since for the lower levels the neurons from apical regions, which have late responses because of the traveling wave delay, will dominate the contributions to the ABR. Second, the difference in auditory nerve responses between rarefaction and condensation clicks (see Section 3.4 on stimulus polarity), which is negligible in normal ears, will increase in particular with respect to latency. Basal neurons in regions of OHC loss show decreased sensitivity for high frequencies and increased sensitivity for low frequencies [26], which can be characterized as double frequency tuning, leading to click responses with short latencies typical for high-CF click responses and latency differences between rarefaction and condensation clicks reminiscent of low-CF responses [27]. While this polarity asymmetry occurs at high click levels, at low levels the dominating low-CF responses will cause a latency difference in responses between the rarefaction and condensation polarity. Third, shallow frequency tuning may lead to increased synchronization [27], which can be explained by considering the click response as an impulse response of which the frequency tuning is the Fourier transform.
In animals, it has been demonstrated that aging leads to loss of neurons because of damage to the IHC synapses while the IHC itself remains functional [7]. Exposure to noise also when not leading to IHC loss augments this cochlear synaptopathy. The amplitude of wave I of the ABR has been found to be strongly correlated to the survival of IHC synapses in mice [28] reminiscent of the correlation between eCAP amplitude and neural survival in Figure 4. In humans, neural degeneration also occurs with increasing age, and speech perception has been shown to be affected by the neural loss as quantified in a post-mortem histological analysis [29]. The low-SR neurons, which have high thresholds, are especially vulnerable for synaptopathy and therefore the ratio of wave I amplitudes at high and low stimulus levels is regarded as a measure of synaptopathy. Carcagno and Plack [30] underscored the use of this ABR measure as they found a decrease in the wave I ratio with age. Alternatively, the ratio of wave I and wave V amplitudes is sometimes used.
For clinical ABR measurements, an acoustical stimulus is presented to the patient and electrodes mounted to the skin of the head record the neural responses. Generally, short-duration stimuli are used, and the response is acquired in a time-window of about 10–20 ms starting at stimulus onset. High-quality recordings require good contact between skin and recording system. Therefore, electrodes should be applied to the skin carefully to minimize the electric impedance between electrode and skin. Many different types of electrodes are available, both disposable and non-disposable. The quality of the electrodes and their application is of utmost importance for a high ABR recording quality. Essential is that inter-electrode impedance is kept below 5 kΩ, preferably below 3 kΩ. If this cannot be achieved, then at least the interelectrode impedances should be symmetric, for instance all-around 8 kΩ, as will be explained below. Inter-electrode impedance should be kept stable during the ABR assessment, so well-fixated electrodes are required.
For single-channel ABR-recording, one electrode (the so-called active electrode) is attached to the skin, generally at the midline of the head somewhere between forehead and nape. The ABR amplitude is higher when its position is closer to the vertex. A second electrode (also called the reference electrode) is attached at ear level, for instance, close to the upper border of the mastoid plane. The position of the third (ground) electrode is not very critical. Often, an off-midline location on the forehead is chosen (see Figure 7), but for a single-channel recording, the ear-level position at the contralateral ear can also be used. In that case, when changing stimulation side, the reference and ground electrode should be exchanged.
Measurement setup for a single channel ABR measurement with an electrode on the midline, an electrode at ear level, and a grounding electrode off mid-line on the forehead.
ABR-potentials are also extremely small in comparison to other (interfering) potentials picked up by the electrodes. Therefore, high recording quality requires knowledge about the possible origins of these interferences and methods to reduce their strengths.
As ABR-potentials are in the range of 0.002–2 μV, amplification by a factor of 10,000–100,000 is required before the signals can be processed and interpreted. To achieve the high amplification factor that is required, differential amplifiers must be used. This type of amplifier has three connectors, two for input to the amplification channel (so-called plus and minus inputs) and one ground connector. Commonly, the midline (active) electrode is connected to the plus input, and the ear-level (reference) electrode is connected to the minus input. The third (ground) electrode is connected to the ground connector. In multi-channel ABR-recording systems, different channels share the active and the ground electrode. For each extra channel, only a separate reference electrode is needed. Often an ipsilateral ear-level electrode is used as a reference electrode for channel 1 and a contralateral ear-level electrode is used as a reference electrode for channel 2.
A differential amplifier suppresses the contribution of potential variations that are (approximately) common to the plus and minus input connectors, thereby reducing their contribution to the amplifier’s output signal. The common-mode rejection ratio is the amplifier characteristic that reflects to what extent this suppression is successful. It should be at least 90 dB for high-quality ABR measurements. The common-mode rejection ratio degrades significantly when electrode impedances are too asymmetric, for instance, 2 kΩ for the reference electrode against 10 kΩ for the active electrode. So, inter-electrode impedance symmetry is essential for reaching a common-mode rejection ratio as high as is specified for the amplifier that is used.
Overloading the amplifier is unavoidable in ABR recording. Activation of head and neck muscles, for instance, may produce potential variations (EMG potentials) between the plus and minus connectors of 10–50 mV. To avoid overloading the first stage amplifier with an amplification factor of say 1000, the amplifier’s output signal should be able to vary up to 10–50 V without saturating. Such a large output dynamic range of the amplifier requires a high power-supply voltage to avoid too many overloads. If the power supply of the amplifier cannot accommodate these high output levels, the output signal will saturate at its maximum or minimum extreme values and stay at that level for a time. Saturation generally occurs a little below the power-supply voltage. For instance, with a power supply voltage of 15 V, just below +15 V or −15 V.
One of the most important characteristics of the amplifier is its behavior when it recovers from overloads. This behavior is never listed in the specifications of the amplifier because the specifications only describe the normal functioning of the amplifier and not how it behaves after an overload. Some amplifiers show recovery behavior that makes them unfit for ABR recording, especially when the recovery potential waveform is a damped resonant. We advise to check this behavior of the amplifier, by using a single overloading pulse as the input signal.
Every ABR measurement system uses an analog bandpass filter in the input stage to suppress all non-ABR-related content of the input signal. Depending on the slopes of the passband, appropriate high pass and low pass cut-off frequencies should be selected. The steeper the slope in dB/oct, the lower the value of the high pass cut-off frequency should be. For a slope of 24 dB/oct, the high pass cut-off frequency should be as low as 10–15 Hz. A quadrupling of that range is allowed for each halving of the slope. For example, for 6 dB/oct filter slope, the high pass cut-off frequency should be set at 160–240 Hz. The low pass cut-off frequency is less critical, as long as it is above 2 kHz for a slope of 6 dB/oct, with a quadrupling per doubling of the slope. After analog-to-digital conversion that occurs at some point in the signal processing, various filter designs can be used providing such filtering uses linear phase filters. In addition to amplification and filtering, four other methods are used to suppress the interfering potentials as much as possible to improve the quality of the ABR-recording: averaging, artifact-rejection, windowing, and alternating the stimulus polarity.
Most of the interfering potentials are not synchronous with stimulus onset but start randomly at a certain time point after stimulus onset. Consequently, at a specific time-point after stimulus onset, the measured electric potential amplitude consists of the ABR amplitude (signal) at that time-point and the sum of randomly distributed interfering potential amplitudes (noise). The first component (signal) is very weak compared to the second (noise). The signal, however, is causally related to the stimulus, while the noise varies randomly in amplitude and sign. By averaging the responses of many repeated fixed-level stimulus presentations, the values of the noise potential amplitudes tend to cancel each other, resulting in an average value of zero. The average of the ABR component, however, is not zero and its relative contribution increases with the increasing number of stimulus presentations. When calculating the average value after 1000–2000 stimulus presentations, the ABR component is generally stronger than the noise component and the ABR waveform emerges from the noise. For higher ABR amplitudes, commonly at higher stimulation levels, the number of averaged single-stimulus responses can be lower than at lower stimulation levels to arrive at the same ABR signal-to-noise ratio.
Averaging the response of multiple stimulus presentations increases the signal-to-noise ratio drastically. The signal-to-noise ratio can be improved even more by a non-linear filter process called Artifact Rejection (AR). This process imposes a lower and upper limit on the electrode potential values that are accepted as valid measurements during a single registration at a fixed stimulus level. The idea is that if this value is exceeded during that registration, the response is dominated by interference and does not reflect the auditory nerve and brainstem responses. The upper and lower limit values are commonly set symmetrically as + and − a specific voltage value called the AR level. If any of the values in the sequence exceeds the AR level, the whole sequence is rejected for averaging. ABR systems in general allow the setting of the AR levels in μV, so for instance +/− 15 μV. For good quality ABR recording the AR level should be somewhere between 15 and 25 μV. Some ABR systems allow specification of the number of times that the AR levels may be exceeded before rejecting the whole sequence. For good-quality ABR recordings this number should be low, close to zero. Other signal averaging systems do not use stimulus amplitude as an AR criterion, but the AR rate. For instance, say that to have arrived at 1500 accepted responses for averaging, 1650 stimuli had to be presented. In other words, the responses to 1500 stimuli were accepted and the responses to 150 stimuli were rejected. In that case, the rejection count was 150, and the rejection rate was 150/1650. Setting an AR rate instead of absolute response amplitude levels for AR may result in accepting averages that are dominated by a few contaminated responses with high potential amplitudes, for example of myogenic origin. In terms of statistics, this approach may lead to a higher type II error probability (i.e. the mistaken acceptance of a false null hypothesis). Therefore, we advise against the use of such averaging systems for clinical ABR assessment.
In unweighted averaging, every accepted response sequence after a stimulus presentation contributes equally to the average value after say 1500 stimulus presentations. In weighted averaging, however, each accepted response sequence is assigned a weight. This weight is calculated by some paradigm. For example, the weight could be determined by one over the variance of the sequence. This results in a final average with a larger contribution of the sequences with less interference (=lower variance). Manufacturers of ABR measurement systems generally do not specify the specific paradigm used in their system. Combining weighted averaging with AR is sometimes called Bayesian AR. This procedure uses weighted averaging for stimuli that are still within specified AR limits, assigning less weight to responses with higher amplitude. Responses with amplitudes that lie outside the AR limits are still rejected.
To get a grip on the always present interference, one needs to know the origins of interfering potentials. The interfering noise can be synchronous to (or in sync with) the stimulus or not. In the first case, averaging does not help to reduce the amplitude of the interfering components. Furthermore, the interfering components can be of the physiologic origin or not.
Interfering potentials with a physiologic origin are potentials generated within the patient’s body, e.g. by muscles, the brain, the eyes. Muscle activations are the most powerful source. Due to the differential type of amplification, only muscles at the head cause significant interference. Their interference comes in two different kinds. (1) In sync with the stimulus, caused by the (strong) auditory stimulation used with the ABR recording. The muscles involved are located postauricular (the muscles that can move the pinna) and in the neck (the sternocleidomastoid muscle). (2) Not-in-sync with the stimulus, caused by muscle activation at the level of head and neck, with muscles of the neck and jaw as major sources. The brain is also a source of interfering potentials, albeit normally much weaker than myogenic potentials in the ABR-frequency band. All brain activity not related to the auditory system causes interfering potentials. The eye is also a weak source of interference in the ABR-frequency band.
Non-physiological interference can be introduced by the recording and stimulation system itself, by other (medical) devices coupled to the patient, and by irradiation from external sources. The ABR-system can introduce interference by (1) the auditory stimulator used for eliciting the ABR, the so-called stimulus-artifact, or (2) error or poor electrical design of the system.
Generally, the stimulator contains an electrodynamic loudspeaker that generates an electromagnetic wave resulting from its coil movements. This waveform mirrors the electrical stimulus waveform (more specifically, convolved by the stimulator’s impulse response). If this coil is close to electrodes or their leads an artefactual potential variation is introduced by electromagnetic induction. Obviously, this interfering potential is in sync with the stimulus and is not reduced in strength by averaging.
The most frequent causes of error are mains interference caused by ground loops originating in the amplifier and are caused by poor design of its power supply. For instance, the power supplies of the stimulus amplifier and the physiologic amplifier should be completely independent. If not, the supply voltage of the physiologic amplifier can suffer a dip when a strong stimulus is presented. Due to the extremely high amplification factor of the physiologic amplifier, even a very small dip can cause a significant output signal variation. This may incorrectly be interpreted as input signal variation. Another example: in a multi-channel recording system the power supplies of the amplifiers of different channels should be independent and mutually completely decoupled to keep the common-mode-rejection factors independent.
Coupling of the patient to other medical equipment, like a heart-lung monitor in the intensive care unit or operation theater, often causes ground loops confounding the physiologic amplifiers’ function with mains interference. The patient, the electrode wiring, and the pre-amplifier are also antennas that pick up the electromagnetic fields from the environment by induction. There is a multitude of possible sources, like radio broadcasting, wireless telephones, pagers, automatic doors, etc.
Identification of the origins of the interfering signals requires inspection of the raw amplified electrode signal during the averaging process. This can be done by observing a free-running registration that is in sync with stimulus presentation.
When the difference in skin-electrode impedance is high for different electrodes (inter-electrode impedance), non-physiological interferences generate higher interfering potentials in the ABR measurement system. Therefore, keeping inter-electrode impedances below 5 kΩ and preferably below 3 kΩ, helps to reduce the interference induced by stimulus artifact and electromagnetic irradiation. If this interference is still too strong, it helps to lower the inter-electrode impedances even further down to under 1 kΩ.
The stimulus artifact has the waveform of the convolution of the electrical stimulus waveform and the stimulator’s impulse response. With any waveform of the stimulus, there is first compression or reduction of the air pressure in the ear canal, the air is first condensed or first rarefied. The stimulus polarity is named accordingly: condensation or rarefaction. By alternating the electric stimulus polarity in the series of say 1500 stimuli used for one stimulation level, the alternating waveforms of the stimulus-artifact cancel each other from one stimulus to the next, because these are in anti-phase. At higher stimulation levels, however, the impulse response of the transducer might be somewhat asymmetric as to the phase, and therefore subsequent stimulus artifacts do not cancel exactly anymore. As a result, a stimulus artifact will remain present in the averaged response. This will occur specifically at levels close to the output limits of the transducer and with damaged transducers (after a drop to the floor for instance).
Increasing the number of averaged (accepted) responses increases the signal-to-noise ratio of the resulting ABR waveform. This only holds, however, for stationary noise. In clinical measurements, ABR interfering noise is in general very non-stationary in character. Therefore, averaging more than 2500 sweeps generally does not result in further improvement of the signal-to-noise ratio.
As myogenic potentials generate the strongest interference, the ABR-recording quality can be greatly improved by reducing muscle tension in the patient. This can be done by several conservative methods. (1) Placing the patient in a relaxing position in a special chair or on a bed, with special attention for a relaxed head position. (2) Keeping the patient’s head position in the midline. Asymmetric pre-tension of both sternocleidomastoid muscles may lead to an asymmetric and stronger muscle-artifact in sync with the stimulation. (3) Showing a (soundless and non-thrilling) video at a height that forces the patient to steer the eyes to the midline of the lower half of the view field. When such measures do not suffice, additional (medical) measures can be taken, of course with medical authorization and/or control. (1) Giving relaxing drugs to the patient (obviously with authorized control). Some drugs, like ketamine, are unfit however because they provoke abnormal brain activity with higher interference in the ABR-frequency band as a result. (2) Giving full anesthesia with muscle relaxation and ventilation. In that case, however, care must be taken that the anesthesia is deep enough. Light anesthesia causes an enhancement in the higher-frequency components of the EEG, resulting in enhanced interference in the ABR-frequency band.
To provide ABR-recordings with as much information as possible, the following procedures will help. (1) Make a two-channel recording at each stimulus level. (2) Create separate (sub)averages for different combinations of stimulus polarity, i.e. a (sub)average for condensation, rarefaction, and alternating polarity. (3) Create (sub)averages for test-retest measurements. (4) Record ABR responses at various levels of stimulation, spanning the (remaining) dynamic range of the auditory system for the side of stimulation, with five different levels if possible. (5) Present the different ABR recordings ordered vertically with the highest stimulus level on top. This creates an ABR pattern, that facilitates inspection of peak latency shift against stimulus intensity. If separate registrations for test-retest or condensation-rarefaction polarity are available, pairwise presentation per stimulus level is preferred. (6) Repeat steps 4–5 interactively during ABR assessment to arrive at the optimum result in the available time for assessment, “biding your time”. This way the next stimulation level to be measured can be chosen optimally.
In two-channel recordings, the active electrode of an amplification channel is commonly positioned at the midline of the head, e.g. the vertex, and the reference electrodes at ear-level. With the reference-electrode at the side of stimulation, the ipsilateral ABR is recorded. With the reference electrode at the ear opposite to the side of stimulation, the contra-lateral ABR is recorded. The ipsi- and contralaterally measured ABR waveforms differ in specific aspects that can help to identify the ABR waveform peaks I–V. The most important differences are (1) peak III has a somewhat shorter latency in the contra-laterally derived ABR-waveform; (2) peak V has a somewhat longer latency in the contra-laterally derived ABR-waveform. With the ipsilateral recording projected right above the contralateral one in the visual representation, a kind of trapezoidal shape is visible in the peaks III–V combination. This greatly helps identifying that combination, specifically if the peak I–II combination is difficult or impossible to identify, see Figure 8.
Example of the simultaneous presentation of ipsi- and contralateral registration of ABR-response, showing the trapezoidal shape of the peak III–V complex.
The ABR waveforms for condensation and rarefaction stimulus polarities are not identical. This can only be made visible when responses for different stimulus polarities are recorded separately. A major problem with measuring the ABR responses for different stimulus polarities in different measurement runs is that due to the non-stationary nature of noise, these responses are measured under different interfering noise conditions. This can be avoided by measuring ABR responses with an alternating stimulus-polarity and storing the corresponding responses in separate data buffers. This allows creating subaverages for condensation and rarefaction stimuli that are acquired in similar noise conditions. When data of the different buffers are summed, the alternated average is still visible, but it can be split into two separate parts. Projecting the one superimposed on the other (with a different color for example) makes the differences between responses from condensation and rarefaction stimulus polarities visible. One obvious difference that stands out is the form of the stimulus-artifact, which is of opposite polarity. Concomitantly, if the cochlear microphonic response is detectable within the stimulus artifact, it will also show different polarity. Major differences can also occur in the morphology of III–V peak complex in cases of (steep) high-frequency cochlear hearing loss, as was explained in Section 2.4. These differences can be so large that identification of the III–V complex is ambiguous in responses obtained with alternating stimulus polarity, while identification is straightforward in the responses obtained with condensation or rarefaction polarity separately.
Additional information can also be derived by creating separate data buffers for alternating test and retest registration to again obtain subaverages acquired in similar noise conditions. Projecting test-retest subaverages on top of each other in different colors enables quick visual inspection of the stability of the acquired ABR responses, to determine if the ABR peaks robustly rise above the residual noise floor (see Figure 9). This can not only be judged subjectively, but the two subaverages also allow for quantitative calculations of various measures of similarity.
An example of the presentation of test-retest subaverages. The upper registration shows a case with low test-retest reproducibility and the lower registration shows a case with high test-retest reproducibility.
In summary, sorting the single stimulus responses into four data buffers, subaveraging and making various combined or split views of the results, yields easily available information on the stability of the results and of the differences between condensation and rarefaction responses.
Preferably five or more responses for different stimulation levels are acquired to construct an ABR pattern. As measurement time is often precious, due to the requirement of the patient remaining in a relaxed condition, it is best to aim at first acquiring ABRs at higher stimulation levels and then at levels between 25 dB above and around the response threshold. In the lower-level range, the stimulus step size should be 10 or even 5 dB, while at levels far above threshold larger step sizes of 20 or even 25 dB can be used. Each succeeding stimulation level should be chosen as time-efficiently as possible. This can be achieved by constructing the ABR pattern each time acquisition at a specific stimulus level is completed. If a succeeding acquisition with a much lower stimulus level produces no ABR response, an educated guess should be made for the next higher level to be used.
The response threshold is defined as the lowest stimulation level at which reproducible response peaks (generally peak V) can be identified. At levels up to 20 dB above threshold and 5 dB below threshold, replication measurements are advised to confirm the presence or absence of response peaks. Note that for response threshold assessment, at least one acquisition must be obtained that shows no response peaks at all, preferably at a stimulation level just below (say 5 dB below) the lowest stimulation level that shows reproducible peaks in the response. Obviously, this is not necessary if response peaks are found at levels in the normal range of the response threshold, i.e. 0–20 dB(nHL). To enable good interpretation of the results for the various stimulation levels, it is very useful to order the recordings vertically according to decreasing stimulus levels, preferably in pairs of ipsi- and contralateral responses. This way of constructing the ABR pattern enables tracking of ABR peaks from high stimulus levels down to threshold, as is demonstrated in Figure 8.
The first step in ABR pattern interpretation is peak identification. The second step in the audiological use of the ABR pattern is determining its validity, i.e. whether the ABR pattern reflects the neural integrity of the auditory nerve and brainstem. The third step is determining the response threshold level. The fourth step is analyzing the relations between latency of the peaks and stimulus level.
First, identify peaks in the ABR pattern with equal or higher latency for decreasing stimulation level. At higher stimulation levels, say above 85 dB(nHL), peak latencies may be stable, at lower stimulation levels peak latencies increase with decreasing stimulation level. Commonly this increase is larger when the stimulation level approaches the response threshold. Identification of the peak I–III–V complex is commonly easiest, and even more so with 2-channel recording with the ipsilateral averaged response positioned above the contralateral averaged response as shown in Figure 8. A trapezoidal shape should be observable in this complex, which positively identifies the III–V complex. Reproducibility of amplitude and latency of a peak at a constant stimulation level is required for reliable peak identification. As explained above, a test-retest view of the response pattern is very helpful. Easy switching between the views on the overall average and test-retest sub-averages helps to achieve greater reliability of peak identification.
Next, the peak I–II complex should be identified. Commonly the complex is better identifiable in the ipsilateral recording than in the contralateral recording. At high stimulation levels, over 85 dB(nHL), peak I prevails in amplitude and peak II is visible as a kind of shoulder on the downslope of peak I. At lower stimulation levels peak II tends to prevail in amplitude and peak I is visible as a kind of shoulder on the upslope of peak II. The transition range is between 55 and 65 dB(nHL) in normal hearing. Below 55 dB(nHL) peak I is rarely visible, but peak II can be. Mistakenly identifying peak II as peak I, yields an abnormally short time interval between this peak I and peak V. Identification of the I–II complex can be difficult or impossible in cases of significant conductive hearing loss. Then one must rely on the identification of the III–V complex for interpreting the ABR results.
Before performing audiometry based on the ABR pattern, the neural integrity of the auditory nerve, which is the source of the measured peak I and II potentials, should be assessed. This can be done by measuring the inter-peak interval, i.e. latency differences between peaks. For adults with normal auditory nerve function, the I–V latency difference should be below 4.3 ms. Larger differences are suspicious and the reliability of the audiometric interpretation of the pattern is questionable. These limits are age-dependent, and for patients below 2.6 years, this limit value is higher. For term-born neonates it is 5.4 ms and for preterm neonates it is still higher. However, it must be kept in mind that absolute latencies can be prolonged due to a conductive hearing loss. In that case, the effective stimulation level of the cochlea is lower than the stimulation level by the amount of conductive loss. For each type of ABR system the normative values of the absolute latencies may differ somewhat, depending on the design and the stimulator used. Therefore, the absolute latencies of peak III and V at a specific stimulation level should preferably be compared to their normal range for that type of equipment setup.
With high-quality ABR-registrations, identification of the response threshold level is easy. In the case of moderate quality, identification is still possible but requires more expertise and experience. Two independent experienced judges will generally disagree by not more than 5–10 dB. For audiometric interpretation, the correspondence between the ABR threshold and pure tone threshold depends on the type of stimulus used, i.e. tonal or broadband. In the latter case, when a click stimulus is used, for example, the ABR threshold is strongly correlated with the pure-tone audiometric threshold at 3 kHz [31] as further discussed in Section 4. The latter being 10 dB less in dB(HL) than the ABR threshold in dB(nHL). In cases of very steep cochlear high-frequency hearing loss, the difference becomes larger, because the pure-tone frequency of highest correlation with the ABR threshold shifts downward. One should be on guard for this pitfall if shallower shapes of the ABR peaks are observed. For tonal stimuli, the relations between ABR threshold and pure-tone threshold depend strongly on the stimulus waveform used for eliciting the ABR.
This section gives a brief overview of frequency-specific ABR techniques that are now commonly used to establish hearing thresholds in audiological assessment following the newborn hearing screening and discusses why these techniques may be considered appropriate.
Traditionally, 100 μs click stimuli are used to evoke ABR responses (Figure 10a, top left). There are a number of advantages of using this stimulus: (1) it generally results in well-formed and detailed responses, (2) it helps in determining auditory neuropathy, and (3) it generates relatively large responses and therefore responses can be obtained in a brief amount of time [32]. Various studies describe a good correlation between click-evoked ABR thresholds and behavioral thresholds in the 2–4 kHz range, e.g. [31, 32], with correlations as high as 0.94. However, other studies report issues with the use of click stimuli for threshold estimates and report a much poorer correlation [33, 34]. The click-evoked ABR may seriously over-or underestimate sensory hearing loss, depending on hearing loss configuration. Though click ABR thresholds correlate well with the 2–4 kHz region on a population level, this does not necessarily result in accurate threshold estimates for individual patients. Stapells & Oates attribute these issues to the broadband spectrum of clicks and conclude that the click-ABR threshold probably represents the “best” hearing in a wide frequency range [33].
Waveform of ABR stimuli as recorded with an interacoustics eclipse loopback test (a) 100 μs click, 4, 2, 1, 0.5 kHz Blackman window tone-burst stimuli (b) broadband LS-CE chirp, 4, 2, 1, 0.5 kHz NB-CE chirp.
Over the years, several methods for obtaining frequency-specific ABR thresholds have been explored, for example, involving ipsilateral masking of frequency regions or derived response methods with filtered clicks. Hall gives a review of these various approaches [35]. The most common clinical approach for recording frequency-specific ABRs is more straightforward and involves brief tone stimuli, or tone-bursts. A tone-burst stimulus is a transient stimulus of typically 5 tone cycles within a Blackman window (Figure 10a), or a 2 cycles rise-time-1 cycle plateau-2 cycles fall-time envelope [35]. This stimulus configuration gives an acceptable trade-off between the short stimulus onset needed to evoke an auditory response, and the bandwidth needed to obtain frequency specificity. Several studies describe high correlations (0.85–0.95) between pure tone audiometry thresholds and tone-burst ABR thresholds in adults [36, 37] and in infants [34, 38] and the authors conclude that tone-burst ABR is a clinically feasible and accurate method of estimating the pure tone audiogram when appropriate correction factors are applied.
Larger and clearer ABR responses can be evoked by using chirp stimuli, mathematically designed to compensate for frequency-dependent traveling wave delays in the cochlea and to generate synchronous stimulation across a wide frequency region. These level-specific (LS) chirp stimuli generate larger amplitude responses than clicks or tone-bursts, thus increasing the signal-to-noise ratio and reducing test time [39]. Elberling and Don derived narrow-band (LS NB-CE) chirps from these broadband chirps with approximately one-octave bandwidth (Figure 10b) [40]. These LS NB-CE chirps facilitate frequency-specific ABR.
Ferm et al. found significantly larger ABR responses with LS NB-CE Chirp stimuli compared to tone-bursts and anticipated a vast reduction in test time for achieving a similar SNR [41, 42]. They also established correction factors, compensating for the offset between ABR threshold (dB nHL) and estimated hearing level (dB eHL), as well as threshold confidence intervals for these stimuli. These correction factors are currently in use in the British Newborn Hearing Screening Program (Guidelines for the early audiological assessment and management of babies referred from the Newborn Hearing Screening Programme. British Society of Audiology, 2014).
An important feature of the auditory system is the ability to determine the location of sound sources relative to the head. Information from two ears can be used to estimate the location of a sound source in the horizontal plane using ITD and ILD. Using these binaural cues, normal hearing individuals can localize with high accuracy and precision [43]. Auditory localization allows humans to quickly detect and orient towards relevant sounds in the environment. This can be important, for example, when trying to safely navigate through traffic by bike or when walking, or when trying to focus on a single conversation in a noisy environment.
Measuring auditory localization accuracy and precision in a clinical setting requires specialized setups with a large number of speakers and, ideally, eye- or head-tracking. Although objective measures of hearing ability are often applied in the clinic, objective measures of auditory localization are not frequently used or well-known. An interesting objective measure of auditory localization can be found in the Binaural Interaction Component (BIC) of the ABR since the later peaks (IV and V) originate from binaural nuclei SOC and LL (see Section 2.2).
The amount of binaural interaction between the ears can be used as an objective measure of binaural hearing. ILDs and ITDs can be presented via headphones by introducing level and time differences between the left and right channels of a stereo sound. The BIC can be obtained by subtracting the ABR to a stereo sound from the sum of the monaural left and right ABRs [44, 45]. In normal-hearing listeners, the binaural ABR and the monaural sum are not the same, resulting in a different waveform: the BIC (see Figure 11). The most prominent peak in the BIC is the first negative peak, often called DN1 (sometimes called beta). The amplitude and latency of the DN1 systematically vary with ILD and ITD in humans and animals [46, 47, 48]. The largest amount of interaction (the largest DN1 amplitude) is typically observed at an ILD of 0 dB and/or an ITD of 0 μs.
The BIC is calculated by subtracting the binaural ABR from the sum of the monaural ABRs. Figure obtained from Laumen et al. [
The DN1 amplitude, and thus the amount of binaural interaction, gradually decreases with increasing ILD or ITD. The most likely sources of the DN1 are the MSO and LSO in the SOC [45].
Given that the BIC is a difference waveform and the fact that ABR peaks are typically of low amplitude, measuring the BIC requires a high signal-to-noise ratio in the binaural and monaural ABRs. Additionally, to obtain the DN1 amplitude for multiple ILDs requires a quite extensive testing and may be less practical in the clinic where less time may be available for measurements [48]. Some studies also report that the BIC is absent for some participants with normal localization skills (e.g. [49, 50]), making it difficult to rely on for individual diagnostic purposes in some cases. However, the BIC can be used to study the processing of binaural cues in the brainstem in various populations at a group level. For example, a study of children at risk for central auditory processing disorders (CAPD) showed that their BIC amplitude was reduced relative to normal hearing children [51]. Interestingly, the children in the CAPD group showed normal ABR thresholds, suggesting that binaural interaction can be specifically affected in certain conditions. That the presence of the BIC has some diagnostic value can be seen in the results of a study in which the presence of the BIC was used to detect children at risk for CAPD. The investigators could distinguish between children at risk for CAPD and those not at risk with a 76% sensitivity and specificity [52].
To conclude, the BIC of the ABR provides important information regarding binaural processing in the brainstem. Although some studies suggest that it may not be the best objective measure for diagnosing binaural hearing disorders at an individual level, it does provide a unique window into binaural cue interactions early in the auditory processing pathway.
Sources of the ABR are the auditory nerve and brainstem auditory nuclei. Clinical application of ABRs includes identification of the site of lesion in retrocochlear hearing loss, establishing functional integrity of the auditory nerve and objective audiometry. To help interpretation and establish reliability, separate subaverages may be obtained for ipsi- and contralateral registrations, and for test-retest reliability. Hearing threshold estimation of infants who are referred for audiological assessment after hearing screening relies on accurate estimation of hearing thresholds. Frequency-specific ABR using tone-burst or narrow band chirp stimuli is a clinically feasible method for this. Whenever possible, obtained thresholds should be confirmed with behavioral testing. The binaural interaction component of the ABR provides important information regarding binaural processing in the brainstem. Although some studies suggest that it may not be the best objective measure for diagnosing binaural hearing disorders at an individual level, it does provide a unique window into binaural cue interactions early in the auditory processing pathway.
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132506},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1-NW"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12009",title:"Soil Moisture",subtitle:null,isOpenForSubmission:!0,hash:"9d683c1c4b137c5de03d7e6f141256f1",slug:null,bookSignature:"Dr. Rahul Datta, Dr. Mohammad Javed Ansari, Dr. Shah Fahad and Dr. Subhan Danish",coverURL:"https://cdn.intechopen.com/books/images_new/12009.jpg",editedByType:null,editors:[{id:"313525",title:"Dr.",name:"Rahul",surname:"Datta",slug:"rahul-datta",fullName:"Rahul Datta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Dr. José R. Martí",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12173",title:"Dairy Processing - From Basics to Advances",subtitle:null,isOpenForSubmission:!0,hash:"420e687768b56ca7b3238d77f63f1302",slug:null,bookSignature:"Dr. Neelam Upadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/12173.jpg",editedByType:null,editors:[{id:"269538",title:"Dr.",name:"Neelam",surname:"Upadhyay",slug:"neelam-upadhyay",fullName:"Neelam Upadhyay"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12176",title:"Oligonucleotides - Overview and Applications",subtitle:null,isOpenForSubmission:!0,hash:"365b4a84e87d26bcb24b7183814fba04",slug:null,bookSignature:"Dr. Arghya Sett",coverURL:"https://cdn.intechopen.com/books/images_new/12176.jpg",editedByType:null,editors:[{id:"301899",title:"Dr.",name:"Arghya",surname:"Sett",slug:"arghya-sett",fullName:"Arghya Sett"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11830",title:"Rubber Materials",subtitle:null,isOpenForSubmission:!0,hash:"6cf0b844f6881c758c61cca10dc8b134",slug:null,bookSignature:"Associate Prof. Gülşen Akın Evingür and Dr. Önder Pekcan",coverURL:"https://cdn.intechopen.com/books/images_new/11830.jpg",editedByType:null,editors:[{id:"180256",title:"Associate Prof.",name:"Gülşen",surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11947",title:"Power Converter Technology - Recent Advances, Design and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1f5c85b127faa05e07e46c646dcb4540",slug:null,bookSignature:"Dr. Raul Gregor",coverURL:"https://cdn.intechopen.com/books/images_new/11947.jpg",editedByType:null,editors:[{id:"175676",title:"Dr.",name:"Raul",surname:"Gregor",slug:"raul-gregor",fullName:"Raul Gregor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"22a4fb880337aaa9899a7bddcdde52eb",slug:null,bookSignature:"Dr. Bo Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg",editedByType:null,editors:[{id:"234525",title:"Dr.",name:"Bo",surname:"Yang",slug:"bo-yang",fullName:"Bo Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:412},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:99,numberOfSeries:0,numberOfAuthorsAndEditors:2716,numberOfWosCitations:4236,numberOfCrossrefCitations:1957,numberOfDimensionsCitations:4588,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"208",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5353,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17288,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27927,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20385,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5365,totalCrossrefCites:23,totalDimensionsCites:55,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3140,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2139,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3732,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"71346",title:"Application of Nanomaterials in Environmental Improvement",slug:"application-of-nanomaterials-in-environmental-improvement",totalDownloads:1691,totalCrossrefCites:0,totalDimensionsCites:13,abstract:"In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Ali Salman Ali",authors:[{id:"313275",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Salman",slug:"ali-salman",fullName:"Ali Salman"}]}],onlineFirstChaptersFilter:{topicId:"208",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:71,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:74,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:123,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:211,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:1,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:174,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/267204",hash:"",query:{},params:{id:"267204"},fullPath:"/profiles/267204",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()