Pulse-current electrodeposition and a sulfite-based electrolyte were used in fabrication of pure gold films. Surface of the pulse-electrodeposited gold film possessed less defect, lower roughness, smaller grain size, and denser texture when compared with the gold film prepared by constant-current electrodeposition. Microstructures and compressive yield strength of the electrodeposited gold could be controlled by regulating the pulse on-time and off-time intervals in pulse-current electrodeposition. The gold film prepared under the optimum conditions showed an average grain size at 10.4 nm, and the compressive yield strength reached 800 MPa for a pillar-type micro-specimen having dimensions of 10 μm × 10 μm × 20 μm fabricated from the pulse-electrodeposited gold film. Average grain size of the pulse-electrodeposited gold film was much smaller, and the compressive yield strength was much higher than the values reported in other studies. The high strength is due to the grain boundary strengthening mechanism known as the Hall-Petch relationship. In general, the pulse-electrodeposited gold films showed yield strength ranging from 400 to 673 MPa when the average grain size varied by adjusting the pulse-electrodeposition parameters.
Part of the book: Novel Metal Electrodeposition and the Recent Application