\r\n\tThis book will consist of chapters that are an elegant mix of reviews and current developments on the subject that will be useful both to an expert on the subject as well as a newcomer to this area of research.
",isbn:"978-1-83969-076-1",printIsbn:"978-1-83969-075-4",pdfIsbn:"978-1-83969-092-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"8a2fd9bbbbae283bf115881d9d5cc47a",bookSignature:"Dr. Ashim Kumar Dutta",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11857.jpg",keywords:"Frenkel Excitons, Wannier-Mott Excitons, Low Dimensional Solids, Molecular Crystals and Aggregates, Exciton Diffusion and Hopping, Exciton–Exciton Annihilation, Dynamics, Scaling Laws, Photoluminescence, Exciton Lifetime, Energy Harvesting, Semiconductors",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 19th 2022",dateEndSecondStepPublish:"June 23rd 2022",dateEndThirdStepPublish:"August 22nd 2022",dateEndFourthStepPublish:"November 10th 2022",dateEndFifthStepPublish:"January 9th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Ashim Kumar Dutta received his Ph.D. in physical chemistry from the Indian Association for the Cultivation of Science (IACS). He has worked on various international post-doctoral fellowships in Japan, Canada, and USA. Dr. Dutta has worked as head of research and product development in several companies, and presently works as vice-president for India Glycols Limited. He has authored/co-authored 36 articles in international journals and 21 patents.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",middleName:"Kumar",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta",profilePictureURL:"https://mts.intechopen.com/storage/users/277477/images/system/277477.jpg",biography:"Dr. Ashim Kumar Dutta presently works as the vice president (R&D) with India Glycols Limited, one of the largest manufacturers of Green Surfactants in South East Asia. Earlier, he had worked with Unilever as a senior researcher and product development manager in their Home and Personal Care Category, with United Phosphorus Limited and Indofil as their global head for agrochemical formulations. He has authored/co-authored 36 articles in international journals and 19 patents. He received his Ph.D in physical chemistry from Indian Association for the Cultivation of Science (IACS) – a premiere research institute in India in 1993. Dr. Dutta has worked on various international post-doctoral fellowships in Japan, Canada and USA. His research interests include supramolecular assemblies, ultrathin nanostructured films, nanoparticles, novel surfactants, surfactant-polymer interactions, bio-membranes and spectroscopy of Langmuir-Blodgett films, tribology and rheology of complex systems.",institutionString:"India Glycols Limited",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440204",firstName:"Ana",lastName:"Cink",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440204/images/20006_n.jpg",email:"ana.c@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"74747",title:"Gain or Loss? The Effect of Ad Framing on the Intention to Control Sugar Intake",doi:"10.5772/intechopen.95779",slug:"gain-or-loss-the-effect-of-ad-framing-on-the-intention-to-control-sugar-intake",body:'
1. Introduction
High sugar consumption is becoming a serious problem that threats public health in many countries. Excessive sugar intake can cause a series of health consequences, such as tooth decay, obesity, diabetes, and heart diseases [1]. These health problems greatly increase the expenditure on healthcare. In the United States, one trillion dollars are spent on healthcare each year due to the national addiction to sugar [2].
The World Health Organization (WHO) is urging people to reduce the amount of sugar they eat, suggesting restriction of added sugar to less than 5% of one’s dietary intake [3]. However, it is not easy for people to control sugar intake because sugar is added to so many foods in the market [3]. Given the reality of added sugar in the market, WHO suggests that people should change eating behaviors, rather than waiting for the reformulation of products [3]. Thus, it is urgent to develop effective messages to persuade people to reduce their sugar consumptions.
This study aimed at examining the effectiveness of advertising on people’s intention to limit sugar intake. Specifically, three types of message framing were investigated in this study: gain-framed ads, loss-framed ads, neither gain- nor loss-framed ads.
Gain vs. loss frame is a common approach in health message design (e.g., [4, 5]). Gain frame usually emphasizes the positive results if an individual adopts a recommended behavior, while loss frame stresses the negative consequences if someone does not adopt a recommended behavior. A large amount of research in health communication has suggested that gain vs. loss frame can influence people’s preferences of whether or not to adopt a health behavior. However, most health-related research focuses on behaviors related to smoking, drinking, or fitness; little research investigates the impacts of gain vs. loss framing on changing behaviors regarding sugar intake. One contribution of the current study is to fill this gap by applying message framing in the advertising of limited sugar intake and examining the effects of gain vs. loss framing in this specific health context.
Moreover, neutral framing (neither gain- nor loss-framing) has been seldom examined in the previous research. The current research included neutral framing that only presented the neutral information about sugar but emphasized neither loss nor gain in order to fully examine the effects of message framing.
Although the effects of message framing (gain vs. loss) on people’s health behaviors has been found in many studies, meta-analyses (e.g., [6, 7, 8, 9, 10]) have shown that gain- and loss-framed messages do not have meaningful different effects on message persuasiveness. According to the results of meta-analyses, researchers have suggested that the studies of gain vs. loss framing should be focused on potential moderators that lead to meaningful framing differences [5, 7, 11]. Following this suggestion, the current study specifically investigated the moderation effects of regulatory focus on gain- vs. loss-framing.
According to regulatory focus theory [12, 13], people mainly adopt two self-regulatory orientations: promotion focus and prevention focus. Promotion focus is based on hopes and aspirations; prevention focus is motivated by security and safety emphasizes. Research showed that positively framed promotion-focused messages were more effective for people with a promotion focus, while negatively framed prevention-focused messages were more persuasive for people with a prevention focus (e.g., [14, 15]). This is most likely because people may experience regulatory fit when a message matches their regulatory focus orientation, which in turn leads them to “feel right” and then process the message more fluently (i.e., more easily) [14, 16]. The enhanced processing fluency (i.e., the ease of processing the information) further results in better persuasiveness of the message [14].
Therefore, processing fluency may play a mediator role in the interaction effect of message framing and regulatory focus on people’s behavioral intention. Nevertheless, little research investigated the abovementioned relationship. Hence, another expected contribution of this study was to fill the research gaps by examining a mediated moderation relationship between regulatory focus and processing fluency in influencing the effectiveness of gain- vs. loss-framing in the context of promoting less sugar intake.
2. Literature review and theoretical framework
2.1 Gain vs. loss framing on health issues
Health professionals often attempt to maximize the impact of a health message on people’s attitudes and behaviors by framing the message in different ways [17]. Gain-framed health information stresses the benefits of taking a health action, while loss-framed information emphasizes the costs of failing to engage in that action. It is necessary to note that a gain-framed message can stress the benefits by presenting either positive results that will happen or negative consequences that will not happen, whereas a loss-framed message can present either negative consequences that will happen or positive results that will not happen to address the costs [17].
Rothman et al. suggested that, based on the conceptualization of prospect theory, the impact of a given frame on a behavior depends on whether the behavior is perceived as a risk-seeking or a risk-averse course of action [17]. They further proposed that people consider a behavior as safe or risky depending on how they perceive the extent to which that behavior will cause an unpleasant outcome. For example, a detection behavior of getting a mammogram can be seen as risky (i.e., a risk-seeking behavior) because it is possible to discover breast cancer; a prevention behavior of using sunscreen is relatively safe or low risk (i.e., a risk-averse behavior) because the purpose is to prevent an unpleasant outcome of skin cancer and maintain current health.
Consistent with this viewpoint, Rothman et al. argued that loss framing is more persuasive in promoting disease detection behaviors that involve perceived risk of unpleasant outcomes, whereas gain framing is more persuasive in promoting prevention behaviors that have little risk of bad outcomes [17]. This argument has been supported by a plethora of research (e.g., [18, 19, 20, 21, 22, 23, 24]).
Since lower sugar intake can be considered a preventative behavior with little risk of bad consequences, gain framing may be more persuasive than loss framing in convincing people to adopt the recommendation to limit sugar intake. In the present study, a control condition of neither gain nor loss framing was added to further examine the effects of message framing; however, little literature provides information about the different effects among three types of framing (i.e., gain, loss, and neither gain nor loss in this study). Hence, the following hypothesis is proposed for testing and a research question is raised for exploring:
H1: Gain-framed ads lead to greater intention to limit sugar intake than loss-framed ads.
RQ1: Will ads that are neither gain nor loss framed lead to different intent to reduce sugar intake than ads that are gain and loss framed (i.e., will the effect of neutral framing on sugar-reduction intention be different than the effects of gain or loss framing)?
2.2 The moderator role of regulatory focus
Previous research has identified regulatory focus is a moderator of gain and loss frames [14]. Higgins developed regulatory focus theory and posited that when people pursue certain goals, they self-regulate their behaviors according to their regulatory orientations [12]. Two kinds of regulatory orientations were proposed by Higgin: Promotion focus and prevention focus [12]. People with promotion focus tend to take actions that advance desired results, while people with prevention focus are more likely to adopt actions that avoid undesired results.
The promotion orientation is associated with aspirations and advancement, while the prevention orientation is associated with responsibilities and safety [25]. Thus, promotion-focused people tend to approach pleasure and positive outcomes; prevention-focused people tend to avoid pain and negative outcomes [12]. Cesario, Higgins, and Scholer claimed that promotion focus and prevention focus are present in every individual to some degree because both nurturance and security are necessary survival needs [26]. However, people may have a predominant focus due to chronic individual differences, and additionally, situational features can momentarily activate one focus or the other [26].
Regulatory focus theory also posits that there are different goal-pursuit strategies for each system [25]. It distinguishes between eager means and vigilant means [25, 26]. Eager strategic means are associated with ensuring the presence of positive outcomes or against the absence of positive outcomes; therefore, this is a natural approach for promotion focus self-regulation, which concerns advancement and accomplishment [25]. In contrast, vigilance strategies ensure the absence of negative consequences or against the presence of negative consequences; accordingly, this is a natural means for prevention focus self-regulation, which concerns safety and responsibility [25]. This can be illustrated with an example of two students with different regulatory orientations. When they want to achieve the same goal of getting a decent grade in a course, the student with a promotion-focus orientation may read extra materials beyond the required readings (i.e., an eager means) to attain a good score, whereas the student with a prevention-focus orientation may make sure to fulfill all course requirements (i.e., a vigilant means) to attain a decent grade.
Higgins argued that there is a natural fit between eager means (e.g., making sure everything goes right) and promotion-focus orientation; and there is a natural fit between vigilance means (e.g., making sure nothing goes wrong) and prevention-focus orientation [27]. The value from fit is that regulatory fit experienced by a person can increase the value of what he/she is doing [27].
When a persuasive message is designed in a way that matches audiences’ regulatory focus, the audiences will feel right about the conveyed information, and regulatory fit emerges [14, 28]. Cesario et al. summarized that there are two main effects when people experience regulatory fit: First, people feel right about what they are doing during the process of goal pursuit; second, the strength of their engagement in the activity of goal pursuit can be enhanced [26].
Based upon the examination of 202 studies in a variety of topics over 13 years (1998–2010), a recent meta-analyzed study conducted by Grewal et al. also found that fit match is a way to create regulatory fit [29]. According to the discussion regarding fit match [29], gain-framed and loss-framed messages separately match people’s promotion regulatory focus and prevention focus, which in turn can create regulatory fit and lead people to feel right about the message. This feeling will be further transferred into the evaluation of the message and increase the message persuasiveness [30]. Hence, from another perspective, regulatory focus moderates the persuasive effect of message framing. That is, gain- and loss-framed messages have different persuasiveness under different circumstances of regulatory focus. Therefore, the following hypotheses are proposed:
H2a: For promotion-focused individuals, gain-framed ads lead to greater intentions to limit sugar intake than loss-framed ads.
H2b: For prevention-focused individuals, loss-framed ads lead to greater intentions to limit sugar intake than gain-framed ads.
2.3 The mediator role of processing fluency
It should be noted that the moderating effects of regulatory focus on the persuasiveness of framing may be mediated by processing fluency. A great deal of research has examined the impact of fluency [14]. Processing fluency refers to the extent of ease of processing a piece of information [14]. In previous research, processing fluency is often measured by reaction time or by subjective assessment of how easy/difficult to process the information [29].
Lee and Aaker [14] summarized that research has been using various stimuli across a variety of settings to promote processing fluency, such as prior exposure (e.g., [31]), expectancy (e.g., [32]), or enhanced visual clarity (e.g., [33]). It also has been suggested that process fluency can be enhanced by regulatory fit [14, 16, 34]. The reason is that compared to a message that is regulatory nonfit, people can process the message that fits their regulatory focus more easily [16]. It also can be explained as when the information is consistent rather than inconsistent with the way people naturally think when they face issues involving both positive and negative outcomes, the information might be easier to process [14].
It has been suggested that processing fluency results in enhanced affective judgment [14]. People may have more favorable attitudes toward a message when they can process that message fluently [35]. Once processing fluency is enhanced, people will evaluate the message more positively, so that it will be much easier to persuade them [14, 16].
Based on the above discussion, gain and loss framing separately fits people’s promotion- and prevention-focused orientation. Compared to regulatory nonfit, the regulatory fit may enhance processing fluency, and further increase the message persuasiveness. Thus, in the context of persuading people to lower their sugar intake, the following hypotheses are generated:
H3a: For promotion-focused individuals, gain-framed ads lead to greater processing fluency than loss-framed ads.
H3b: For prevention-focused individuals, loss-framed ads lead to greater processing fluency than gain-framed ads.
H4: Processing fluency mediates the interaction effects between ads’ gain vs. loss framing and individuals’ regulatory focus on intentions to limit sugar intake.
Since there is no literature comparing the effects of regulatory fit and processing fluency on all three types of framing (gain, loss, neither gain nor loss), the related research question is proposed to compare these effects:
RQ2: Does regulatory focus moderate three types of framing (gain, loss, neither gain nor loss) differently via processing fluency in changing people’s intention to limit sugar intake?
Based on all the hypotheses and research questions, a hypothesized model is also proposed and tested in the present study (see Figure 1).
Figure 1.
Hypothesized model.
3. Method
3.1 Participants and procedures
This study employed a three (message framing: gain vs. loss vs. neither gain nor loss framing) × two (regulatory focus: promotion focus vs. prevention focus) between-subjects online experiment design. In the experiment, the participants completed an online survey, which contained a presentation of stimuli (six ads). The questionnaire was built and distributed via an online survey tool, Qualtrics.
The subjects were paid and recruited via an online recruiting system Amazon Mechanical Turk (MTurk). In total, there were 1,104 people who resided in the US participated in this study. About 49% of them were female and 51% were male (544 vs. 558). They aged 18 to 74 years, with a mean age of 36.26 years (SD = 12.72). Most participants (70%) were white.
After the participants agreed with a digital consent form, they were directed to the online survey. The participants were randomly assigned into three experimental conditions (gain vs. loss vs. neither gain nor loss framing). They first answered a number of questions about their sugar-eating habits, regulatory focus orientations, and risk perceptions of excessive sugar consumption. Then they viewed an ad stimulus and responded to a following questionnaire to answer their processing fluency of viewing the ads, behavioral intention to limit sugar-eating, and demographic information.
3.2 Stimuli and measures
Six ads were designed for three experimental conditions (gain vs. loss vs. neither gain nor loss framing). Two ads were created for each condition in order to increase the external validity of the experiment: one was mainly designed by using arguments; the other one was designed by telling a personal story. All ads presented both images (e.g., a background picture with a variety of sweet snacks and beverages) and text.
The ads in the gain-framing conditions addressed the benefits of lowering sugar intake (e.g., lose weight, look younger, improve health), while the ads in the loss-framing conditions stressed the negative consequences of continuing a high-sugar diet (e.g., gain weight, look older, get diseases). In the control conditions of neither gain nor loss framing, the ads just kept neutral statements by just addressing that Americans eat too much sugar in their daily life and burning the extra calories gained from high sugar intake needs a large amount of exercise. Manipulation check was conducted, and the results showed that the stimuli ads were appropriate.
The measures of the main variables (i.e., behavioral intention, processing fluency, regulatory focus) were all drawn from the previous literature. Two control variables (i.e., sugar-eating habit, risk perception) were measured by self-created questions.
4. Results
Structural Equation Modeling (SEM) was used to explore the research questions and test the hypotheses and the model. Mplus 7 software [36] was employed to conduct the analysis. Since ad framing (gain vs. loss vs. neither gain nor loss) was a variable that had three categories, it was dummy coded into three variables in order to avoid having the analysis treat it as a continuous variable. Gain framing was first selected to be the reference group, so that the results could show the difference between gain and loss framing, as well as the difference between gain and neither gain nor loss framing. Then loss framing was chosen as the reference group for the analysis in order to compare the difference between loss framing and neither gain nor loss framing. The results showed that the model fit the data well, χ2 (18) = 32.872, p < .05; CFI = .995; TLI = .991; RMSEA = .027.
The results of the direct effects of ad framing (gain vs. loss vs. neither gain nor loss) on behavioral intention showed that gain framing is significantly more effective than loss framing in leading to greater intention to limit sugar intake, γ = −.09, p < .05. Therefore, Hypothesis 1 was supported.
For the Research Question 1, the results showed that gain framing was not only more effective than loss framing but was also significantly more effective than neither gain nor loss framing in changing behavioral intention, γ = −.16, p < .001. Moreover, loss framing was also significantly more effective than neither gain nor loss framing in changing behavioral intention, γ = −.07, p < .05.
Individuals’ regulatory focus (prevention vs. promotion) was found to moderate the effect of ad framing (gain vs. loss) on behavioral intention, γ = .12, p < .01. Specifically, for promotion-focused individuals, gain framing was more effective to lead to greater intentions to limit sugar intake than loss framing; for prevention-focused individuals, loss framing was more effective than gain framing. Thus, both Hypotheses 2a and 2b were supported.
The results showed that there was no interaction effect between ad framing (gain vs. loss) and regulatory focus on processing fluency (γ = .02, p = .49). Thus, the data were not consistent with Hypotheses 3a and 3b. This finding also indicated that there was no moderated mediation among these three variables. Moreover, the indirect effect of the above tested interaction on behavioral intention through processing fluency was also not significant (γ = .01, p = .60), which confirmed that there were no moderated mediation effects among ad framing (gain vs. loss), regulatory focus, and processing fluency on behavioral intention. Thus, the data were also not consistent with Hypothesis 4.
For Research Question 2, the results showed that the interaction effects between other types of ad framing and regulatory focus on behavioral intention were also not significantly mediated by processing fluency. That is, there were no moderated mediation effects among the tested ad framing, regulatory focus, and processing fluency on behavioral intention.
However, based on the results of SEM analysis, it was found several additional findings. First, the results showed that regulatory focus not only had a significantly direct effect on behavioral intention to limit sugar intake (γ = −.20, p < .001), but also had a significantly effect on processing fluency, γ = −.18, p < .01. Promotion-focused individuals processed the ads more fluently and had greater intentions to limit sugar intake than prevention-focused individuals.
In addition, processing fluency mediated both the effect of ad framing (gain vs. neutral) and the effect of ad framing (loss vs. neutral) on people’s behavioral intention: Processing fluency significantly affected people’s behavioral intention, β = .21, p < .001. The indirect effect of ad framing (gain vs. neutral) on behavioral intention through processing fluency was significant (γ = −.03, p < .01). The indirect effect of ad framing (loss vs. neutral) on behavioral intention through processing fluency was also significant (γ = −.08, p < .001).
Based on the results, the statistical diagrams of the final model were presented as follows (See Figures 2–4).
Figure 2.
Final model (ad framing: Gain vs. loss). Note: 1. χ2 (18) = 32.872, p < .05; CFI = .995; TLI = .991; RMSEA = .027. 2. The model was evaluated by using gain framing as the reference group. 3. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. 4. Dotted line indicates the effect is not statistically significant at 95% level of confidence. 5. The indirect effect of regulatory focus on behavioral intention through processing fluency is −.04, p < .01.
Figure 3.
Final model (ad framing: Gain vs. neither gain nor loss). Note: 1. χ2 (18) = 32.872, p < .05; CFI = .995; TLI = .991; RMSEA = .027. 2. The model was evaluated by using gain framing as the reference group. 3. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. 4. Dotted line indicates the effect is not statistically significant at 95% level of confidence. 5. The indirect effect of gain vs. neither gain nor loss framing on behavioral intention through processing fluency is −.03, p < .01. 6. The indirect effect of regulatory focus on behavioral intention through processing fluency is −.04, p < .01.
Figure 4.
Final model (ad framing: Loss vs. neither gain nor loss). Note: 1. χ2 (18) = 32.872, p < .05; CFI = .995; TLI = .991; RMSEA = .027. 2. The model was evaluated by using loss framing as the reference group. 3. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. 4. Dotted line indicates the effect is not statistically significant at 95% level of confidence. 5. The indirect effect of loss vs. neither gain nor loss framing on behavioral intention through processing fluency is −.08, p < .001.
5. Discussion
The purpose of this study was to investigate the effectiveness of advertising on people’s intentions to control sugar intake. Specifically, three types of ad framing were examined: gain vs. loss vs. neither gain nor loss framing. Moreover, the moderator role of individuals’ regulatory focus (promotion focus vs. prevention focus) on the effects of ad framing was explored. In addition, processing fluency was tested as a mediator.
By considering the influences of all tested variables in a whole SEM model, it was found that gain framing was more effective than loss framing in leading people to have greater intentions to limit sugar intake. The positive reaction toward gain-framed ads may be because people do not want to be told not to eat sugar: Many people may find it pleasant to consume sweets and foods with sugar, and limiting sugar intake is a prevention behavior that asks people to give up some kind of pleasure in order to pursue other desirable outcomes. Therefore, using a positive blueprint to persuade them to pursue desirable outcomes may be more effective than using negative illustrations to scare them into giving up their current pleasure.
The findings also showed that both gain and loss framing were more persuasive than the neutral framing in changing peoples’ intentions to limit sugar intake. These findings suggest that ad framing (gain vs. loss vs. neither gain nor loss) matters in leading people to have greater intentions to adopt the recommended behavior of limiting sugar intake. Among the three types of ad framing, the neutral framing without emphasizing gain or loss cannot persuade people effectively to reduce sugar intake, while gain framing is the most effective framing to increase people’s intention to eat less sugar.
Moreover, there was a significant interaction effect between ad framing (gain vs. loss) and regulatory focus on people’s behavioral intentions. Gain framing was more effective in leading promotion-focused individuals to have greater intentions to limit sugar intake than loss framing, while loss framing was more effective in leading prevention-focused individuals to have greater behavioral intentions than gain framing. Based on regulatory focus theory [12], this result may indicate that gain-framed and loss-framed ads separately match people’s promotion regulatory focus and prevention focus, which in turn create regulatory fit and lead people to feel right about the message. Therefore, regulatory focus is a moderator in the effects of ad framing (gain vs. loss) on behavioral intention.
Additionally, it was found that processing fluency mediated both the effects of ad framing (gain vs. neutral) and ad framing (loss vs. neutral) on people’s behavioral intention to control sugar intake. That is, compared to the neutral-framed ads, both gain- and loss-framed ads were easier for participants to process, and then the greater processing fluency further led to greater advertising persuasiveness. This may be because people already have some knowledge or common sense about the negative consequences of high sugar intake or positive outcomes of controlling sugar intake; thus, compared to the neutral framing, they may process gain and loss framing more fluently with their existing knowledge, and then were better persuaded by the message.
This research provided several implications. The findings insinuate that to persuade the general population (i.e., without knowing their regulatory orientation) to control sugar intake, gain-framed advertising would be the best choice. Instead of always stressing the bad consequences of high sugar consumption to scare people, health professionals should design some positive-framed messages that stress the benefits of lowering sugar intake to stimulate people’s stronger desires to control their sugar consumption. Moreover, neutral framing of neither gain nor loss is not a good choice to persuade people to lower their sugar intake. However, if possible, it should be encouraged to find out people’s regulatory orientation in order to better persuade them. For example, hospitals or other health organizations can ask obese patients or the patients with high blood sugar to fill out a questionnaire to know their regulatory focus; and then the health professionals can use different strategies tailored to different patients to help them control sugar intake. Specifically, gain-framed messages could be used more often for promotion-focused people, while loss-framed messages should get the priority to be selected for prevention-focused people. In addition, since the findings showed that processing fluency can increase message persuasiveness, making the messages easy to process should be a way to better persuade people to lower sugar intake.
6. Conclusion
Controlling sugar intake is important for individuals since today many people have an appetite disorder [37, 38, 39]. The chronical diseases associated with sugar consumption such as obesity and diabetes are epidemic globally [37, 38]. While sugar stimulates individuals’ appetites, it also threatens public health if people appetite dysregulation and take excessive sugar [37, 38]. From a communication perspective, the present research contributes to this issue by investigating how to frame advertising messages to more effectively persuade individuals to actively reduce sugar consumptions. Prevention is better cure. More future research could be conducted to help individuals control sugar intake and build better health conditions.
\n',keywords:"ad framing, gain vs. loss vs. neither gain nor loss framing, regulatory focus, regulatory focus theory, processing fluency, structural equation modeling (SEM)",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/74747.pdf",chapterXML:"https://mts.intechopen.com/source/xml/74747.xml",downloadPdfUrl:"/chapter/pdf-download/74747",previewPdfUrl:"/chapter/pdf-preview/74747",totalDownloads:255,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:39,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"September 21st 2020",dateReviewed:"December 26th 2020",datePrePublished:"January 11th 2021",datePublished:"September 1st 2021",dateFinished:"January 11th 2021",readingETA:"0",abstract:"Health authorities have pointed out that high sugar intake can cause many health problems. The aim of this research is to examine the effectiveness of ad framing (gain vs. loss vs. neither gain nor loss) on persuading people to control their sugar intake. The results of an online experiment showed that both gain and loss frame were more effective than the neutral frame. Gain frame was the most effective one to persuade people to lower sugar intake. Moreover, individual difference of regulatory focus moderated the effect of ad framing (gain vs. loss). In addition, processing fluency mediated the effects of ad framing (gain vs. neutral/loss vs. neutral) on people’s intention to limit sugar intake. Contributions and implications to advertising on sugar control are discussed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/74747",risUrl:"/chapter/ris/74747",book:{id:"9485",slug:"sugar-intake-risks-and-benefits-and-the-global-diabetes-epidemic"},signatures:"Kang Li",authors:[{id:"332163",title:"Dr.",name:"Kang",middleName:null,surname:"Li",fullName:"Kang Li",slug:"kang-li",email:"kang.li@zu.ac.ae",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Literature review and theoretical framework",level:"1"},{id:"sec_2_2",title:"2.1 Gain vs. loss framing on health issues",level:"2"},{id:"sec_3_2",title:"2.2 The moderator role of regulatory focus",level:"2"},{id:"sec_4_2",title:"2.3 The mediator role of processing fluency",level:"2"},{id:"sec_6",title:"3. Method",level:"1"},{id:"sec_6_2",title:"3.1 Participants and procedures",level:"2"},{id:"sec_7_2",title:"3.2 Stimuli and measures",level:"2"},{id:"sec_9",title:"4. Results",level:"1"},{id:"sec_10",title:"5. Discussion",level:"1"},{id:"sec_11",title:"6. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Johnson, R. K., Appel, L. J., Brands, M., Howard, B. V., Lefevre, M., Lustig, R. H., … and Wylie-Rosett, J. (2009). Dietary sugars intake and cardiovascular health a scientific statement from the american heart association. Circulation, 120(11), 1011-1020'},{id:"B2",body:'Null, G. (2014, March 13). Sugar: killing us sweetly. Staggering health consequences of sugar on health of Americans. Global Research. Retrieved from http://www.globalresearch.ca/sugar-killing-us-sweetly/5367250'},{id:"B3",body:'Branswell, H. (2014, March 5). Eating sugar causes massive health problems, says WHO. The Canadian Press. Retrieved from http://www.huffingtonpost.ca/2014/03/05/eating-sugar_n_4903790.html'},{id:"B4",body:'Jung, W. S., & Villegas, J. (2011). The effects of message framing, involvement, and nicotine dependence on anti-smoking public service announcements. Health Marketing Quarterly, 28(3), 219-231'},{id:"B5",body:'Covey, J. (2014). The role of dispositional factors in moderating message framing effects. Health Psychology, 33(1), 52-65'},{id:"B6",body:'O’Keefe, D. J., & Jensen, J. D. (2006). The advantages of compliance or the disadvantages of noncompliance? A meta-analytic review of the relative persuasive effectiveness of gain-framed and loss-framed messages. Communication Yearbook, 30, 1-43'},{id:"B7",body:'O’Keefe, D. J., & Jensen, J. D. (2007). The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease prevention behaviors: A meta-analytic review. Journal of Health Communication, 12(7), 623-644'},{id:"B8",body:'O’Keefe, D. J., & Jensen, J. D. (2009). The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease detection behaviors: A meta-analytic review. Journal of Communication, 59, 296-316'},{id:"B9",body:'O’Keefe, D. J., & Jensen, J. D. (2010). The relative effectiveness of gain-framed and loss-framed persuasive appeals concerning obesity related behaviors: Meta-analytic evidence and implications. In R. Batra, P. A. Keller, & V. J. Strecher (Eds.), Leveraging consumer psychology for effective health communications (pp. 171-185). Armonk, NY: M. E. Sharpe Inc'},{id:"B10",body:'Gallagher, K. M., & Updegraff, J. A. (2012). Health message framing effects on attitudes, intentions, and behavior: A meta-analytic review. Annals of Behavioral Medicine, 43(1), 101-116'},{id:"B11",body:'Latimer, A. E., Salovey, P., & Rothman, A. J. (2007). The effectiveness of gain-framed messages for encouraging disease prevention behavior: Is all hope lost? Journal of Health Communication, 12(7), 645-649'},{id:"B12",body:'Higgins, E. T. (1997). Beyond pleasure and pain. American Psychologist, 52(12), 1280-1300'},{id:"B13",body:'Higgins, E. T. (1999). Promotion and prevention as a motivational duality: Implications for evaluative processes. In S. Chaiken and Y. Trope (Eds.), Dual-process theories in social psychology (pp. 503-525). New York, NY: The Guilford Press'},{id:"B14",body:'Lee, A. Y., and Aaker, J. L. (2004). Bringing the frame into focus: The influence of regulatory fit on processing fluency and persuasion. Journal of Personality and Social Psychology, 86(2), 205-218'},{id:"B15",body:'Zhao, G., & Pechmann, C. (2007). The impact of regulatory focus on adolescents\' response to antismoking advertising campaigns. Journal of Marketing Research, 44(4), 671-687'},{id:"B16",body:'Vaughn, L. A., Childs, K. E., Maschinski, C., Niño, N. P., and Ellsworth, R. (2010). Regulatory fit, processing fluency, and narrative persuasion. Social and Personality Psychology Compass, 4(12), 1181-1192'},{id:"B17",body:'Rothman, A. J., Bartels, R. D., Wlaschin, J., & Salovey, P. (2006). The strategic use of gain- and loss-framed messages to promote healthy behavior: How theory can inform practice. Journal of Communication, 56, S202-S220'},{id:"B18",body:'Meyerowitz, B. E., & Chaiken, S. (1987). The effect of message framing on breast self-examination attitudes, intentions, and behavior. Journal of Personality and Social Psychology, 52(3), 500-510'},{id:"B19",body:'Rothman, A. J., Salovey, P., Antone, C., Keough, K., & Martin, C. D. (1993). The influence of message framing on intentions to perform health behaviors. Journal of Experimental Social Psychology, 29(5), 408-433'},{id:"B20",body:'Banks, S. M., Salovey, P., Greener, S., Rothman, A. J., Moyer, A., Beauvais, J., & Epel, E. (1995). The effects of message framing on mammography utilization. Health Psychology, 14(2), 178-184'},{id:"B21",body:'Millar, M. G., & Millar, K. U. (2000). Promoting safe driving behaviors: The influences of message framing and issue involvement. Journal of Applied Social Psychology, 30(4), 853-866'},{id:"B22",body:'Cox, D., & Cox, A. D. (2001). Communicating the consequences of early detection: The role of evidence and framing. Journal of Marketing, 65(3), 91-103'},{id:"B23",body:'Schneider, T. R., Salovey, P., Apanovitch, A. M., Pizarro, J., McCarthy, D., Zullo, J., & Rothman, A. J. (2001). The effects of message framing and ethnic targeting on mammography use among low-income women. Health Psychology, 20(4), 256-266'},{id:"B24",body:'Finney, L. J., & Iannotti, R. J. (2002). Message framing and mammography screening: A theory-driven intervention. Behavioral Medicine, 28(1), 5-14'},{id:"B25",body:'Higgins, E. T. (2002). How self-regulation creates distinct values: The case of promotion and prevention decision making. Journal of Consumer Psychology, 12(3), 177-191'},{id:"B26",body:'Cesario, J., Higgins, E. T., and Scholer, A. A. (2008). Regulatory fit and persuasion: Basic principles and remaining questions. Social and Personality Psychology Compass, 2(1), 444-463'},{id:"B27",body:'Higgins, E. T. (2000). Making a good decision: Value from fit. American Psychologist, 55(11), 1217-1230'},{id:"B28",body:'Cesario, J., Grant, H., & Higgins, E. T. (2004). Regulatory fit and persuasion: Transfer from \'feeling right\'. Journal of Personality and Social Psychology, 86(3), 388-404'},{id:"B29",body:'Grewal, D., Motyka, S., Puccinelli, N. M., Roggeveen, A. L., Daryanto, A., de Ruyter, K., and Wetzels, M. (2011). Understanding how to achieve competitive advantage through regulatory fit: a meta-analysis. Marketing Science Institute Research Report, 10-117'},{id:"B30",body:'Uskul, A. K., Sherman, D. K., & Fitzgibbon, J. (2009). The cultural congruency effect: Culture, regulatory focus, and the effectiveness of gain- vs. loss-framed health messages. Journal of Experimental Social Psychology,45(3), 535-541'},{id:"B31",body:'Lee, A. Y. (2001). The mere exposure effect: An uncertainty reduction explanation revisited. Personality and Social Psychology Bulletin, 27(10), 1255-1266'},{id:"B32",body:'Whittlesea, B. W. A. (1993). Illusions of familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(6), 1235-1253'},{id:"B33",body:'Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science, 9(1), 45-48'},{id:"B34",body:'Lee, A. Y., Keller, P. A., and Sternthal, B. (2010). Value from regulatory construal fit: The persuasive impact of fit between consumer goals and message concreteness. Journal of Consumer Research, 36(5), 735-747'},{id:"B35",body:'Labroo, A. A., and Lee, A. Y. (2006). Between two brands: A goal fluency account of brand evaluation. Journal of Marketing Research, 43(3), 374-385'},{id:"B36",body:'Muthén, L., and Muthén, B. (2012). MPLUS (7). Los Angeles, CA: Muthén and Muthén'},{id:"B37",body:'Martins, I. J. (2013). Appetite dysregulation and obesity in Western Countries: Food restriction maintains the health and well-being of overweight individuals. Germany: LAP Lambert Academic Publishing'},{id:"B38",body:'Martins, I. J. (2020). Appetite dysregulation and the apelinergic system are connected to global chronic disease epidemic. Series of Endocrinology, Diabetes and Metabolism. 1(3), 67-69'},{id:"B39",body:'Martins, I. J. (2015). Nutritional diets accelerate amyloid beta metabolism and prevent the induction of chronic diseases and Alzheimer’s disease. Photon ebooks'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Kang Li",address:"kang.li@zu.ac.ae",affiliation:'
Zayed University, Abu Dhabi, UAE
'}],corrections:null},book:{id:"9485",type:"book",title:"Sugar Intake",subtitle:"Risks and Benefits and the Global Diabetes Epidemic",fullTitle:"Sugar Intake - Risks and Benefits and the Global Diabetes Epidemic",slug:"sugar-intake-risks-and-benefits-and-the-global-diabetes-epidemic",publishedDate:"September 1st 2021",bookSignature:"Ian James Martins",coverURL:"https://cdn.intechopen.com/books/images_new/9485.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83881-122-8",printIsbn:"978-1-83881-121-1",pdfIsbn:"978-1-83881-167-9",reviewType:"peer-reviewed",numberOfWosCitations:0,isAvailableForWebshopOrdering:!0,editors:[{id:"179745",title:"Dr.",name:"Ian James",middleName:null,surname:"Martins",slug:"ian-james-martins",fullName:"Ian James Martins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"178"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"76817",type:"chapter",title:"Introductory Chapter: Sugar Intake and Global Chronic Disease",slug:"introductory-chapter-sugar-intake-and-global-chronic-disease",totalDownloads:97,totalCrossrefCites:0,signatures:"Ian James Martins",reviewType:"peer-reviewed",authors:[{id:"179745",title:"Dr.",name:"Ian James",middleName:null,surname:"Martins",fullName:"Ian James Martins",slug:"ian-james-martins"}]},{id:"76776",type:"chapter",title:"The Sugars with the Potential to Prolong Human Life",slug:"the-sugars-with-the-potential-to-prolong-human-life",totalDownloads:179,totalCrossrefCites:0,signatures:"Tomoya Shintani, Laura Lema-Perez and Hideya Shintani",reviewType:"peer-reviewed",authors:[{id:"322277",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Shintani",fullName:"Tomoya Shintani",slug:"tomoya-shintani"},{id:"323491",title:"Dr.",name:"Laura",middleName:null,surname:"Lema-Perez",fullName:"Laura Lema-Perez",slug:"laura-lema-perez"},{id:"414278",title:"Dr.",name:"Hideya",middleName:null,surname:"Shintani",fullName:"Hideya Shintani",slug:"hideya-shintani"}]},{id:"75515",type:"chapter",title:"Impact of Sugar on Vision",slug:"impact-of-sugar-on-vision",totalDownloads:131,totalCrossrefCites:0,signatures:"Grace Ogbonna, Rosemary Ehigbo and Ogbonna Hannah",reviewType:"peer-reviewed",authors:[{id:"328976",title:"Dr.",name:"Grace",middleName:null,surname:"Ogbonna",fullName:"Grace Ogbonna",slug:"grace-ogbonna"},{id:"346841",title:"Dr.",name:"Rosemary",middleName:null,surname:"Ehigbo",fullName:"Rosemary Ehigbo",slug:"rosemary-ehigbo"},{id:"346842",title:"Dr.",name:"Hannah",middleName:null,surname:"Ogbonna",fullName:"Hannah Ogbonna",slug:"hannah-ogbonna"}]},{id:"73419",type:"chapter",title:"Biological Responses to the Consumption of Non-Nutritional Sweeteners",slug:"biological-responses-to-the-consumption-of-non-nutritional-sweeteners",totalDownloads:518,totalCrossrefCites:0,signatures:"Sage Arbor",reviewType:"peer-reviewed",authors:[{id:"245319",title:"Ph.D.",name:"Sage",middleName:null,surname:"Arbor",fullName:"Sage Arbor",slug:"sage-arbor"}]},{id:"74151",type:"chapter",title:"Hyperglycemia- and Hyperlipidemia-Induced Inflammation and Oxidative Stress through Human T Lymphocytes and Human Aortic Endothelial Cells (HAEC)",slug:"hyperglycemia-and-hyperlipidemia-induced-inflammation-and-oxidative-stress-through-human-t-lymphocyt",totalDownloads:293,totalCrossrefCites:0,signatures:"Frankie B. Stentz",reviewType:"peer-reviewed",authors:[{id:"324674",title:"Prof.",name:"Frankie B.",middleName:null,surname:"Stentz",fullName:"Frankie B. Stentz",slug:"frankie-b.-stentz"}]},{id:"74747",type:"chapter",title:"Gain or Loss? The Effect of Ad Framing on the Intention to Control Sugar Intake",slug:"gain-or-loss-the-effect-of-ad-framing-on-the-intention-to-control-sugar-intake",totalDownloads:255,totalCrossrefCites:0,signatures:"Kang Li",reviewType:"peer-reviewed",authors:[{id:"332163",title:"Dr.",name:"Kang",middleName:null,surname:"Li",fullName:"Kang Li",slug:"kang-li"}]},{id:"75058",type:"chapter",title:"Fructose Intake: Metabolism and Role in Diseases",slug:"fructose-intake-metabolism-and-role-in-diseases",totalDownloads:374,totalCrossrefCites:0,signatures:"Luke He, Ghufran S. Babar, Jacob M. Redel, Sabetha L. Young, Callie E. Chagas, Wayne V. Moore and Yun Yan",reviewType:"peer-reviewed",authors:[{id:"306114",title:"M.D.",name:"Yun",middleName:null,surname:"Yan",fullName:"Yun Yan",slug:"yun-yan"},{id:"317363",title:"Dr.",name:"Wayne V.",middleName:null,surname:"Moore",fullName:"Wayne V. Moore",slug:"wayne-v.-moore"},{id:"342353",title:"Dr.",name:"Luke",middleName:null,surname:"He",fullName:"Luke He",slug:"luke-he"},{id:"342354",title:"Prof.",name:"Ghufran S.",middleName:null,surname:"Babar",fullName:"Ghufran S. Babar",slug:"ghufran-s.-babar"},{id:"342355",title:"Dr.",name:"Jacob M.",middleName:null,surname:"Redel",fullName:"Jacob M. Redel",slug:"jacob-m.-redel"},{id:"342357",title:"Ms.",name:"Sabetha L .",middleName:null,surname:"Young",fullName:"Sabetha L . Young",slug:"sabetha-l-.-young"},{id:"342358",title:"Mrs.",name:"Callie",middleName:null,surname:"Chagas",fullName:"Callie Chagas",slug:"callie-chagas"}]},{id:"74163",type:"chapter",title:"Main Organs Involved in Glucose Metabolism",slug:"main-organs-involved-in-glucose-metabolism",totalDownloads:240,totalCrossrefCites:0,signatures:"Laura Lema-Pérez",reviewType:"peer-reviewed",authors:[{id:"323491",title:"Dr.",name:"Laura",middleName:null,surname:"Lema-Perez",fullName:"Laura Lema-Perez",slug:"laura-lema-perez"}]},{id:"73570",type:"chapter",title:"Application of a Pedometer for the Management of Impaired Glucose Tolerance in Pregnant Women",slug:"application-of-a-pedometer-for-the-management-of-impaired-glucose-tolerance-in-pregnant-women",totalDownloads:258,totalCrossrefCites:0,signatures:"Mariko Ueno, Mitsue Muraoka and Koichiro Takagi",reviewType:"peer-reviewed",authors:[{id:"323133",title:"Emeritus Prof.",name:"Koichiro",middleName:null,surname:"Takagi",fullName:"Koichiro Takagi",slug:"koichiro-takagi"},{id:"323138",title:"Dr.",name:"Mariko",middleName:null,surname:"Ueno",fullName:"Mariko Ueno",slug:"mariko-ueno"},{id:"323141",title:"Prof.",name:"Mitsue",middleName:null,surname:"Muraoka",fullName:"Mitsue Muraoka",slug:"mitsue-muraoka"}]}]},relatedBooks:[{type:"book",id:"6581",title:"Adipose Tissue",subtitle:null,isOpenForSubmission:!1,hash:"85899eab2d8b01653e1297b168c470d7",slug:"adipose-tissue",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/6581.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"61332",title:"Introductory Chapter: Types of Adipose Tissue",slug:"introductory-chapter-types-of-adipose-tissue",signatures:"Leszek Szablewski",authors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",fullName:"Leszek Szablewski",slug:"leszek-szablewski"}]},{id:"61088",title:"Characterization and Differentiation of Adipose Tissue by Spectroscopic and Spectral Imaging Techniques",slug:"characterization-and-differentiation-of-adipose-tissue-by-spectroscopic-and-spectral-imaging-techniq",signatures:"Fatma Küçük Baloğlu and Feride Severcan",authors:[null]},{id:"61323",title:"Sirtuins in Adipose Tissue Metabolism",slug:"sirtuins-in-adipose-tissue-metabolism",signatures:"Manu Sudhakar, Santhi Silambanan and Ramya Ramakrishnan",authors:[null]},{id:"59577",title:"Browning of Adipose Tissue and Sirtuin Involvement",slug:"browning-of-adipose-tissue-and-sirtuin-involvement",signatures:"Gaia Favero, Kristína Krajčíková, Francesca Bonomini, Luigi Fabrizio\nRodella, Vladimíra Tomečková and Rita Rezzani",authors:[null]},{id:"59249",title:"Cellularity Description of Adipose Depots in Domesticated Animals",slug:"cellularity-description-of-adipose-depots-in-domesticated-animals",signatures:"Olaia Urrutia, Leopoldo Alfonso and José A. Mendizabal",authors:[null]},{id:"59463",title:"Adipose Tissue and Inflammation",slug:"adipose-tissue-and-inflammation",signatures:"José Luis Muñoz Carrillo, Jaime Ortega Martín Del Campo, Oscar\nGutiérrez Coronado, Paola Trinidad Villalobos Gutiérrez, Juan\nFrancisco Contreras Cordero and Javier Ventura Juárez",authors:[null]},{id:"59223",title:"Physical and Mental Health Consequences of Obesity in Women",slug:"physical-and-mental-health-consequences-of-obesity-in-women",signatures:"Julia Weschenfelder, Jessica Bentley and Hubertus Himmerich",authors:[null]},{id:"59154",title:"The Role of Mesenteric Adipose Tissue in Crohn’s Disease",slug:"the-role-of-mesenteric-adipose-tissue-in-crohn-s-disease",signatures:"Raquel Franco Leal, Lívia Bitencourt Pascoal, Francesca Aparecida\nRamos da Silva and Bruno Lima Rodrigues",authors:[null]},{id:"61214",title:"The Heterogeneity of White Adipose Tissue",slug:"the-heterogeneity-of-white-adipose-tissue",signatures:"Quyen Luong and Kevin Y. Lee",authors:[null]},{id:"60593",title:"Adipose Tissue as an Endocrine Organ",slug:"adipose-tissue-as-an-endocrine-organ",signatures:"Hannah Xiaoyan Hui and Tianshi Feng",authors:[null]},{id:"60731",title:"Feedback Control of Second Messengers Signaling Systems in White Adipose Tissue Adipocytes in Healthy State and Its Loss at Adiposity",slug:"feedback-control-of-second-messengers-signaling-systems-in-white-adipose-tissue-adipocytes-in-health",signatures:"Vladimir V. Dynnik, Elena V. Grishina, Nikolay P. Sirota, Egor A.\nTurovsky, Rustam H. Djafarov and Alexander I. Sergeev",authors:[null]},{id:"60863",title:"Effect of Trans Fatty Acid on Insulin Responsiveness and Fatty Acid Composition of Lipid Species of 3T3-L1 Adipocytes",slug:"effect-of-trans-fatty-acid-on-insulin-responsiveness-and-fatty-acid-composition-of-lipid-species-of-",signatures:"Kenichi Ishibashi, Yoshihiro Takeda and Gen-ichi Atsumi",authors:[null]}]}],publishedBooks:[{type:"book",id:"7848",title:"Selected Chapters from the Renin-Angiotensin System",subtitle:null,isOpenForSubmission:!1,hash:"38e89685aa86d8cbff0718f3813ae625",slug:"selected-chapters-from-the-renin-angiotensin-system",bookSignature:"Aleksandar Kibel",coverURL:"https://cdn.intechopen.com/books/images_new/7848.jpg",editedByType:"Edited by",editors:[{id:"183303",title:"Dr.",name:"Aleksandar",surname:"Kibel",slug:"aleksandar-kibel",fullName:"Aleksandar Kibel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7865",title:"Type 2 Diabetes",subtitle:"From Pathophysiology to Modern Management",isOpenForSubmission:!1,hash:"f8b817f1959240ca2551ece7b8d03d75",slug:"type-2-diabetes-from-pathophysiology-to-modern-management",bookSignature:"Mira Siderova",coverURL:"https://cdn.intechopen.com/books/images_new/7865.jpg",editedByType:"Edited by",editors:[{id:"242582",title:"Associate Prof.",name:"Mira",surname:"Siderova",slug:"mira-siderova",fullName:"Mira Siderova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7980",title:"Hormone Therapy and Replacement in Cancer and Aging-related Diseases",subtitle:null,isOpenForSubmission:!1,hash:"4133a5c51dc2f19f331815450c49c6dd",slug:"hormone-therapy-and-replacement-in-cancer-and-aging-related-diseases",bookSignature:"Leticia B. A. Rangel, Hephzibah Kirubamani, Ian Victor Silva and Paulo Cilas Morais Lyra Junior",coverURL:"https://cdn.intechopen.com/books/images_new/7980.jpg",editedByType:"Edited by",editors:[{id:"60359",title:"Dr.",name:"Letícia",surname:"Rangel",slug:"leticia-rangel",fullName:"Letícia Rangel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8224",title:"Growth Disorders and Acromegaly",subtitle:null,isOpenForSubmission:!1,hash:"889cf2b5a21e42ccdf34e5861c1cc0a4",slug:"growth-disorders-and-acromegaly",bookSignature:"Ahmed R.G. and Ahmet Uçar",coverURL:"https://cdn.intechopen.com/books/images_new/8224.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"R.G.",surname:"Ahmed",slug:"r.g.-ahmed",fullName:"R.G. Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",isOpenForSubmission:!1,hash:"bfbc5538173f11acb0f9549a85b70489",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",editedByType:"Edited by",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"72312",title:"Uniaxial and Triaxial Creep Performance of Calcarenitic and Sandy Oolitic Limestone Formations for Stability Analysis of Roman Rock-Cut Tombs in Alexandria, Egypt",doi:"10.5772/intechopen.91720",slug:"uniaxial-and-triaxial-creep-performance-of-calcarenitic-and-sandy-oolitic-limestone-formations-for-s",body:'\n
\n
1. Introduction
\n
Creep is an irreversible ductile time-dependent deformation, without fracture where deformation does not occur suddenly when applying stress as opposed to brittle fracture. Instead, strain accumulates as a result of long-term stress [1, 2, 3, 4]. This behavior usually distinguishes weak rocks such as rock salt, shale, buttocks, venetian, silt, and sandstone. Rock creep behavior has been widely discussed in the literature, based on experimental results from laboratory or field investigations, foundational modeling, and numerical analyses. The main objective of this chapter is to focus on appropriate methodologies for determining the creep behavior of soft/weak intact rocks through laboratory experimental analysis and critical evaluation of available rheological models to explain creep behavior [5, 6, 7, 8, 9].
\n
Creeping in fragile hard rocks is rare because the deformation rate is too slow. Solid rocks exhibit a creep behavior noticeably only at elevated temperatures and pressures generally not encountered in engineering structures. Soft rocks on the other hand mostly creep at room temperature, atmospheric pressure, and the range of deviating stress typically encountered in engineering structures [10, 11, 12].
\n
As we know, creeping rocks have a significant effect on the long-term stability of the rocks and the surrounding surface [13, 14, 15, 16]. For broken rocks, porosity is the primary determinant of creep characteristics, but in the existing literature, the stress rate was mainly used to describe the creeping properties of broken rocks. For example, Wang [17, 18] carried out numerical simulations on the process of creeping damage to the road surrounding the rock under high pressure, and Zhu and Ye discussed the law of creep affected by water content by comparing the results of the rock creep test under dry condition and in saturation. Zhang and Luo [19] studied the properties of creeping rocks under different stress levels. Liu et al. [20] performed triaxial creep tests on coal and rock by step loading method. Zhang and Luo [19] examined the creeping test of marble and soft rock separately; Parkin [21] used a pressure meter to study the rheological properties of granular materials. Shen and Zhao [22] proposed a model for three parameters of creeping rock filling through rheological experiments on limestone. Zheng and Ding proposed a creep model to rocks of nine parameters and obtained parameter indexes through tests. Guo et al. [23] proposed a modified three-parameter rheological model for coarse-grained materials. Wang [24] and Liu et al. [25] summarized the rheological state of coarse-grained materials and noted that experimental studies on granular materials were insufficient.
\n
They suggested that it is necessary to study the mechanism of partial deformation of coarse granular materials given the effect of the scale for internal testing.
\n
Understanding the mechanisms of deterioration of the calcarenite rock structures in which the Greco-Roman monuments are excavated requires a comprehensive study of the mechanical behavior and engineering properties of the calcarenite rocks. In addition to geological and geomorphological concerns, numerous investigations have been conducted on rock degradation and disintegration. As the areas are an open museum and attractive places for tourists, sampling can only take place in a limited number of locations with official permission. For this purpose, cylindrical samples with a diameter of 42–44 mm and a height of 90–100 mm, prepared using a basic drilling machine and some blocks collected from archeological sites under investigation (catacomb from Kom El-Shoqafa, El-Shatby tombs, and tombs of Mustafa Kamel), as shown in Figure 1 illustrates the physical, short, and long-term mechanical properties of calcarenitic rocks in the laboratory, a number of samples prepared from these blocks have been used for testing, and the limitations of the number of blocks have been overcome by determining the topical properties of the rocks through hammer tests. Schmidt, pictorial geographic investigations and classification of the rocky hill in some outcrops and in some rock structures where testing was permitted.
\n
Figure 1.
Underground monuments (Catacombs) in Alexandria, (present conditions).
\n
The purpose of this research is to make recommendations on the strengthening and safety of archeological underground structures under long- and short-term loading. For this purpose, a set of experimental tests and advanced digital analyses had been performed.
\n
Calcarenitic rocks and other type of fine limestone (under investigations) are porous rocks with complex behavior [26, 27, 28]. Two major mechanisms can be identified to distort types of rock properties, depending on conditions in-situ stress: (1) the prevalence of fracture, associated with volumetric expansion and fragile behavior, which is predominant in compressive stress paths in the absence of low confined pressure, or (2) pore breakdown, which dominates high-stress conditions, producing plastic deformations and large contracting [29].
\n
The high fossil content, mainly due to the shells of necrosis and some mollusks, leads to structural heterogeneity, which is reflected in the variance of mechanical properties and weaknesses in the conclusion of experimental results [13].
\n
There is no generally accepted theory of fragile rock strength based on examination of the process of formation of microcracks and deformation, and the establishment of the initiation and development of stress-induced fractures in EDZ is therefore a major concern.
\n
Some of the main concerns related to the stability of underground structures in soft rocks include the effects of potential land disturbances through the method of drilling and reallocation of pressures at the site surrounding the excavations [30, 31, 32, 33, 34, 35]. Each of these factors relates to the initiation and spread of fragile fractures and the extent of the troubled drilling area (EDZ), which can adversely affect the stability of the drilling boundaries and can increase the permeability of host rocks to the near field. In structural and tectonic geology, experimental rock deformation is important in determining the evolution of natural structures and tectonic features [36, 37].
\n
Great effort has been made toward understanding the fragile fracture processes and mechanisms. Much of this focus extended to laboratory tests and quantification/measurement of fragile fracture thresholds [7, 38]. Among these, damaged thresholds marked by the onset of expansion, which is the reflection point of the volumetric pressure curve, are particularly important because many studies have linked the threshold to the spread of unstable fracture in fragile rocks [7]. The unstable crack spreading corresponds to the point where the reproduction process is controlled between the applied stress and the speed of crack growth. Under these circumstances, the crack will continue to spread until failure even if the applied load stops and remains stable. As such, Martin and Chandler and Read et al. equated the threshold of damage caused by cracking and the long-term on-site strength of fragile rocks.
\n
Thus, the identification of these processes and associated mechanisms is essential in predicting both the strength of soft rocks in the short and long term. This research focuses on these processes by presenting the results of many short- and long-term laboratory tests.
\n
In general, the spread of cracks can be equated with the irreversible destruction of molecular cohesion along the path of the crack generated. In this sense, the miniature crushing process “damages” the rock material. Due to the multiplication of the number of reproductive fractures, the damage can be considered to be cumulative and can be associated with a perceived lack of elastic stiffness and the strength of material cohesion.
\n
In this work, we highlighted some important characteristics of the geotechnical behavior of structured soft rocks and showed that these properties are very common in many natural rocks. Based on these concepts, research into soil/rocky transition material has intensified in the last two decades [39].
\n
\n
\n
2. Geological and tectonic setting
\n
The Roman underground tombs in Alexandria are located on the northern edge of the “Nile Delta geomorphic province, c. 1.30 km north of the Lake Maryout and 1.42 km south of the Mediterranean Sea shoreline, as shown in Figure 2”. Since Pleistocene time, within the last 1 million years, Lake Maryout has intermittently been connected to fresh Nile river flows and sea water sources and has been both at and below mean sea level. Lake Maryout and Delta had varied depositional environment, including “silt and clay deposits with some organics (lagoonal deposit)”; “sand and silt deposits (Nile River deposits); “sand deposits (beach and littoral deposits”). The basement rock unit is Miocene (6–25 million years old) and older carbonate formations that comprise the Egyptian plateau. Above the Miocene sedimentary rocks are Plio-Pleistocene age (less than 6 million years old) sediments consisting of alternating beds of shale, limestone, sandstone, silt, and calcareous sand.
\n
Figure 2.
The limestone outcrop at the catacombs of Kom El-Shoqafa.
\n
The Plio-Pleistocene sediments form a series of ridge and trough that are approximately parallel to the Mediterranean coastline in the vicinity of the catacomb site. Most of the city of Alexandria rests on one of these topographic ridges while behind the ridge, Lake Maryout is in a trough. The near surface limestone deposits, which are commonly encountered in the Alexandrian ridge, are cemented marine sand.
\n
\n
\n
3. State of preservation
\n
The catacombs of Alexandria show some clear indications of yield and partial collapse in several locations, as defined in the honeycomb weathering, the contour scaling and spalling of the stone surface, the disintegration of building materials, and the wet surfaces of rocky meals especially for semi-protected parts of the excavation; also, we observe salt flowering and yellow staining of yellow iron in many wall parts.
\n
Structural damage is obvious like the wall cracking, the thinning out of rock pillars, disintegration and degradation of the walls surfaces, the partial collapse of some parts of the roofs and walls, and the peeling of rocks, especially in the roof of narrow corridors found in the deepest parts and mass waste from the ceiling and walls.
\n
In conclusion, the current state of conservation of the great catacombs at Kom El-Shoqafa, the best-known and most famous testimony of the culture of the funerary architecture of Alexandria, is now at its most deteriorating.
\n
Most structural damage is caused by one or a combination of the following factors:
The gradual weakening of rock materials due to the intrinsic sensitivity of weathering factors, especially the effect of weathering with groundwater and salt
Earthquake and other man-made dynamic loading
Permanent deformation of the rock mass
Natural wear and tear of materials
History of construction in the area
\n\n
\n
\n
4. Mineralogical and petrographical studies
\n
The effort behind thin-section analysis was to provide insight into the closed grains (calcite/sand) and/or theories of overgrowth after precipitation of the large angle of internal friction. Due to the fragile nature of the rocks and plaster layers being excavated, it was necessary to be very careful to make thin sections, which were studied using independent polarized light, electron microscopy (SEM), and stereoscopic observation.
\n
A light-transmitted polarized plane, scanning electron microscopy, and stereoscopic observations were used to determine the interlocking textures and connections between grains and crystals. These contacts rely on differences in solubility due to impurities and differences in bending radius, which lead to the penetration of smaller grains in large grains.
\n
In addition, thin section microscopy was used to help explain the large friction angles associated with the material, limestone/rock.
\n
Miniature petrographic description of stones/rocks for engineering purposes includes the identification of all parameters that cannot be obtained from a comprehensive endoscopic examination of rock samples, such as mineral content, grain size and texture, which have an impact on the mechanical behavior of the rock or rock mass. To ensure proper classification, the first step should be to check the metal composition and rock texture; see Table 1. Mineralogy summarizes the three types of soft limestone under investigation. Additional investigations should include analysis of the texture and minerals in the case of highly contrasting rocks, determining the degree of change or weathering, grain size, partial fracture, and porosity.
Mineralogy of the three soft limestone types under investigation.
\n
In sandstone, limestone, and calcarenite samples intact, it is possible to determine with the naked eye an alternative sequence of white and pink bands with a thickness of about 1 mm (bedding plane). Optical microscopy and counting points were performed on thin sections of rock samples. The air-dried samples were inoculated with Canada balsam, and the thin sections were then cut perpendicular to the bedding planes. A thin section is observed under parallel light and polarizing light. The following is a detailed analysis of the rock samples collected from the three archeological sites under investigation, rock samples from six collections of El-Shatby with code Nr (SH), five rock samples collected from the tombs of Mustafa Kamel 1 and No. 2 with code Nr (M), and four samples Rock collected from Catacomb of Kom El-Shoqafa code Nr (COM).
\n
\n
4.1 Catacombs of Kom El-Shoqafa
\n
In the internal structure, we can observe the dominant components, which are the cells of the fibers of the stomach, grass, algae, and mother of pearl, mostly with a test wall of microscopic microspheres, while the tests are filled internally with microtomes and microbes (Figure 3). Surrounded monocrystalline quartz granules of varying sizes and perimeter of iron oxides have been detected representing the previous presence of K-feldspar grains. Rock and granular materials make up this fossil sand limestone, or cement sand.
\n
Figure 3.
Photomicrograph of fossiliferous sandy oolitic limestone, (a) under parallel polarized light, (b) under cross polarized light (XPL), showing bioclasts of gastropods, foraminifera, algae, and shell debris; most of them are with test wall of neomorphic microspar, filled with micrite and microspar, cracks between and through the minerals are obvious. Catacombs of Kom El-Shoqafa.
\n
(Calcarenite size) 15% of customizations are medium-sized numulite tests filled with prickly calcite. 15% of foraminifers tests with a neomorphic microspar test wall and test chambers are full of neomorphic microspar. 20% of medium size bryoza and algae tests 0.25% small size, monocrystalline, crispy extinction, quartz granules subrounded. 25% medium to small size structure less ooides. Customizations are solidified by isopachous microspar. Porosity is a fit of 20% of the area of the thin-section field, which is reduced by microscopy. Oxidation is observed as red color spots.
\n
\n
\n
4.2 Mustafa Kamel Necropolis
\n
The rock texture in these tombs consists of two textures, namely packed stone and stone. These two types of texture show different proportions and sizes of quartz granules, and different biological plates, especially foraminifer tests. Most Ooides lost their internal structure. Few of them retain their concentric structure. Consolidation of the components of this limestone is represented by isopachous microspar (Figure 4).
\n
Figure 4.
(a, b) Photomicrograph of intact calcarenite under cross polarized light (XPL) showing wackestone (pele-oo-sparite) texture with drusy sparite, Mustafa Kamel Necropolis (Weathered sample, heterogeneous pore system).
\n
(Calc rud –arenite size) 58% of the assignments are medium in size, thin and micro pigment and less pollutant internal structure. 10% micritic oval. 30% large to small angular size to subrounded, crispy extinction, monocrystalline quartz. 2% plajioclase and microcline crystals. Porosity reached 20% of the area of the thin-section field. The pores are filled with neomorphic microspar. Allochems are surrounded with isopachous microspar.
\n
Calcarenite is a bio-soft rock originating from marine sediments, which occurred during the overflow and decline of the region in the Ice Age. The calcarenite consists of almost pure calcium carbonate and is applied directly to the limestone rock of the Cretaceous.
\n
\n
\n
4.3 El-Shatby cemetery
\n
Changes in internal structure and metals were analyzed and the most distinctive textures documented on the images. In the internal structure, we can observe the porosity increase of various sizes. In some places, we can find cracks on metal contacts or even inside metals. Generally, significant changes are shown in the cement material; see Figure 5. Limestone in this site can be classified into two types of fabric, namely, fossiliferous oolitic intraclasic limestone. These two types of texture are in different proportions of quartz granules, biological panels, ooides, and peloids.
\n
Figure 5.
(a, b) Photomicrograph of fossiliferous oolitic intraclastic limestone thin section under cross-polarized light (XPL) showing subrounded monocrystalline quartz grains (QTZ) and porous region, El-Shatby Necropolis.
\n
(Callus arinite rod size) 80% of the customizations are medium-sized structure less ooides. 10% large to medium-sized monocrystalline unite extinction, quartz granules subrounded. 5% large polycrystalline, crispy extinction, quartz granules subrounded. Five% of algae and foraminifera are tested with a micritic wall and are filled internally with microscopic grains. Porosity is greatly reduced due to their filling with depressed dwarfs. The new form is observed to worsen from micrite to microspar. The evaluation of thin sections allows the analysis of pore structure and enables the assessment of pore size and distribution in relation to the distribution and formation of the minerals involved.
\n
\n
\n
4.4 Comparison between the sound and weathered rock layers
\n
Samples can be clearly distinguished from the alveolar portions - the amortized and non-woven parts using thin, unpainted limestone sections that feature a relatively homogeneous pore structure. In contrast to unpainted areas, alveolar flats have a heterogeneous pore structure, for example pores often contain ferric oxides and hydroxides indicating a lower total pore size and higher content of small spots.
\n
Data from microscopic polarization and electron microscopy experiments show that oxygen clarity of NaCl crystals is strongly influenced by the rate and volume of moisture changes, and how they shrink with changes in crystal size.
\n
\n
\n
\n
5. Creep tests (materials and experimental program)
\n
Creep is an irreversible ductile deformation in time under constant stress. Creep strain seldom can be recovered fully when the loads are removed, thus it is largely “plastic deformation.” It is a progressive phenomenon initiated at a certain time after excavation at a certain location around the profile and spreading in time into the rock mass. For the long-duration design life of underground structures, the long-term stability of the tunnel must receive major consideration. For this reason, time-dependent deformation behavior of the surrounding rock must be well understood. Neglecting creep effects during deep excavation may lead to incorrect evaluation of deformation and thus may impact on the criteria for selection of proper design.
\n
Understanding the mechanisms of rock breakdown that have been excavated within ancient monuments requires a thorough study of the mechanical behavior of these rocks, and the importance of the physical and mechanical properties of these rocks to understand the phenomena of instability.
\n
The results of the geotechnical characterization of these rocks will be used in numerical modeling and design of reinforcement measures. For this purpose, a new laboratory testing program will be launched.
\n
Rocks, sample preparation, experimental setup used and the procedure are briefly described below.
\n
\n
5.1 Types of creep
\n
An idealized creep curve for rock at constant stress consists of three stages: instantaneous elastic strain followed by primary creep with decreasing creep rate, then steady-state creep with constant creep rate, and finally tertiary creep with increasing creep rate leading to failure. Most of the work on time-dependent strain has been conducted on primary and secondary creep phases only and the tertiary phase has not been investigated in appreciable detail.
\n
\n
\n
5.2 Laboratory test specimens
\n
In this study, the size of the comprehensive laboratory testing program using cylindrical samples with 42-44 mm diameter and height (91–103 mm). Although these rocks do not show distinct layers, the nuclei were extracted from the blocks and their masses in the vertical direction, which was expected to represent the physical properties of these units perpendicular to the layers. However, some samples were also extracted in a vertical direction on the mattress. Some specimens were broken and/or small cracks or cracks appeared on their surfaces. However, in order to achieve reliable assessments, the number of samples was increased as many as possible. Laboratory tests were performed in accordance with the testing procedures proposed ISRM and recommended by ASTM at the Engineering Geology Laboratory, Department of Civil Engineering, University of Aristotle Thessaloniki, Greece.
\n
\n
\n
5.3 Laboratory tests
\n
Laboratory studies (experimental examination) were performed on surface rock samples and prepared surfaces. The basic mechanical testing of the laboratory includes the behavior of deformation to failure under uniaxial and triaxial compression and we offer a complete creeping rock characterization conducted during the past 2 years from a series of isotropic and isotropic compression tests conducted in the inventory of various stresses, viscosity behavior was determined by following a procedure, the multi-step download, which emphasizes the transit creep side.
\n
\n
\n
5.4 Very slow uniaxial creep tests on calcarenitic and sandy oolitic rock specimens under investigation
\n
Creep in hard brittle rocks is rare as deformation rate is extremely slow. Hard rock shows creep behavior appreciably only at elevated temperatures and pressures generally not encountered in engineering structures. Soft rocks on the other hand creep mostly at the room temperature, atmospheric pressure, and deviatoric stress range normally encountered in engineering structures.
\n
\n
\n
5.5 Analysis of creep behavior of soft rocks in tunneling
\n
Regarding viscous plasticity, despite much work done on high porous rocks, only over the past years, there has been growing concern about the long-term behavior of deep underground structures in general. The rock mass tests large strain rates of viscosity and plastic. However, after a few years, the stress rates become smaller and reach a fairly stable condition characterized by very small stress rates.
\n
It is known that most rocks have time-dependent behavior, and the viscous and plastic modeling of rocks and soils is of great importance both in petroleum engineering and underground engineering, for example when assessing deformations at the walls of deep fossil sections or considering pressure problems.
\n
Moreover, when smaller time periods are considered, the stress distribution around a cave or exposures is such that the divergent pressure decreases rapidly with respect to the distance to the cave. Very small stress rates are tested at large distances within the rock mass and should be evaluated when predicting the behavior of the cave or photo gallery [40].
\n
The limited available literature may be rooted in the particular problems raised by the long-term creep test, in the short term, as described below.
When the creep rate is 10 = 10−12 s−1, a 12-day test results in a strain of ε = 10−6. The coefficient of thermal expansion of rocks is in order α = 1−4 × 10−5 C−1, that is, the “noise” (i.e., elastic thermal deformation sample) due to small temperature changes will be greater, in most cases, than the signal to be measured (e.g., the average sample deformation arose from proper creep). The same can be said for moisture variations, which have a significant impact on many rocks.
Slow creep rates are obtained when small mechanical loads are applied. Most of the crawl test devices are designed to work in a DVR pressure range of 5–20 MPa. Stress control is usually weak when the applied pressure is less than 1 MPa.
The creep rate is calculated by comparing strains ε1, measured in two different times, τ1 and τ2, or ε. = (ε2 − ε1) / (τ2 − τ1). When the compression rate is in the range ε = 10−12 s−1, it can be reasonably evaluated on a daily basis (t2 − t1 = 105 s, ε2 − ε1 = 10−7) only if ε1 and ε2 can be measured with an accuracy of not less than 10.8, or one-tenth of the expected difference between the two successive measured breeds [40].
\n\n
Tightening of fragile rocks results in distributed damage long before the rocks fail unstable. The damage is usually manifested in small fractures and expansive microcracks [41, 42, 43]. These small fractions are usually smaller than the grain size and are often distributed almost uniformly before they are locally cracked. There are no uniform distributions of small fractions associated with the nucleus of error and growth.
\n
Partial damage was used to explain the reduction of seismic wave velocity, earthquake variation, reduction of elasticity and strength units, and rock failure mechanics. In addition, stress damage can facilitate time-based creep-driven by stress erosion and subcritical crack growth. This creep strongly affects long-term strength and failure stability. For example, granite samples that are exposed to 1 month of non-axial static pressure under a pressure of approximately 0.65 may fail—or “delayed fractures” may develop days to years after removal of applicable loads.
\n
The creep test shows how strain builds up over time under constant pressure. The rock usually deforms quickly and then begins to deform more slowly after the yield fatigue, which is called the initial creep. After the initial creep (I), the deformation continues at a constant rate in the linear part of the curve, which is secondary creep (II). Finally, the deformation rate increases rapidly until the rock fails to “fracture” in the high creep (III), if stress is removed but the strain remains permanent.
\n
Three stages of creep behavior can be identified: in the first stage, they are classified as initial creep, and strain occurs at a decreasing rate. In some cases, the primary creep curve approaches a constant rate of strain called secondary creep. In high-stress specimens, secondary creep may turn up in higher creep, which is characterized by an increased strain rate until creep failure occurs suddenly. In the last two stages, the thin vertical cracking begins, accompanied by hardening, and only near failure, large cracks spread rapidly and lead to a sudden collapse. Long-term tests performed on a secondary creep sample revealed even appearance at 40% of estimated strength. The purpose of this research is to make recommendations on the promotion and safety of long-term underground historical structures under load. For this purpose, there is a set of experimental tests and advanced numerical analyses.
\n
\n
\n
\n
6. Description and discussion of the experimental program
\n
\n
6.1 Describe full creep tests
\n
The research demonstrates an integrated empirical approach aimed at assessing safety and strengthening historic underground structures under high pressure.
\n
The purpose of these tests is to obtain data, first, to determine the amount of sticky parameters that govern the long-term behavior of these structures, and secondly, to validate numerical models.
\n
\n
\n
6.2 Testing device
\n
Long-range uniaxial creep tests were performed on standard cylindrical rock samples collected from the three archeological sites under investigation (diameter D = 4.2–4.4 mm, height H = 90–103 mm); samples were prepared for testing according to ASTM standards with length-to-diameter ratios approximately 2.25, all samples have highly polished end surfaces to minimize final effects. The sample was set between two solid steel plates, with a steel cover between the sample and the two plates. During each test, two high-precision displacement sensors at two vertical levels at a 90° angle allowed both the relative rotation of the two pages and the measurement of the average relative displacement.
\n
\n
\n
6.3 Sensors
\n
Applied loads and the resulting strain were recorded using an automatic data acquisition system, sampling at a rate between 1 and 3 readings per second, thereby overcoming any deficiencies in data resolution.
\n
\n
\n
6.4 Loading
\n
The approved test procedure consisted of loading samples at a constant rate of about 1.35 MPa up to 1.75 MPa for samples from Catacomb in Kom El-Shoqafa, 1.55 MPa up to 2.17 MPa for samples from Mustafa Kamel Necropolis, and 2.6 MPa up to 3.44 MPa for samples from El-Shatby cemetery. In order to keep the applied pressure as stable as possible, dead weights were used and steel cylinders were placed on the upper steel plate on the upper face of the cylindrical sample. The applied stress is calculated by dividing the weight of the steel cylinders placed on the top plate by the initial cross-sectional area of the sample.
\n
\n
\n
6.5 Temperature and hygrometry
\n
The temperature changes during a long-term creep test must be as a small as possible and must be measured precisely enough to allow correction of the raw strain data for thermoelastic strains; in our study, all the periods of test were in the room temperature between 24 and 26° in the laboratory by controlling the air condition.
\n
\n
\n
\n
7. Test results
\n
Uniaxial creep tests were performed on three rock samples from each site. Rock samples are loaded through fixed uniaxial compression at 1, 35, 1, and 75 MPa (one stress per sample) for Catacomb of Kom El-Shoqafa rock samples collected, at 2.6 and 3.44 MPa for rock samples collected from El-Shatby archeological site, and at 1.55 and 2.17 MPa for rock samples collected from Mustafa Kamel Necropolis.
\n
The experimental procedure follows ASTM standards (ASTM D4405 and D4341). The compression machine is used to apply continuous axial load to the samples. Digital scales are installed at 0.001 millimeters to measure the axial displacement of the samples, see Figures 6–9. Samples are loaded continuously for 1 to 2 years until the samples fail without any acceleration, depending on the displacement results. During testing, axial distortion, time, and failure modes are recorded. The readings are repeated every minute at the beginning of the test, and gradually decrease to twice a day after the first few days of testing. This also depends on the deformation rate of each sample. The results are presented by strain time curves. Axial stress and axial pressure values are calculated by:
\n
Figure 6.
Rock creep testing devices. Samples are 90–105 mm high, 42–44 mm2 diameters. Two displacement sensors were used during each test.
\n
Figure 7.
The collected intact sandy oolitic limestone specimens from Εl-Shatby Necropolis site under creep testing devices.
\n
Figure 8.
The collected sandy οοlitic limestone specimens from the catacombs of Kom El-Shoqafa site under creep testing devices.
\n
Figure 9.
The collected intact calcarenitic rock specimens from Mustafa Kamel Necropolis site under creep testing devices.
\n
\n\n\nσ\naxial\n\n=\nPa\n/\nA\n,\n\nE1
\n
\n\n\nε\naxial\n\n=\nΔL\n/\nL\n,\n\nE2
\n
where σ axial is the axial pressure, Pa is applied axial load, A is the normal cross-section area of the direction of the load, ε axial is the geometric axial strain, ΔL is the axial deformation, and L is the original length.
\n
\nTable 2 summarizes the results of a uniaxial creep test. The axial stress time curves are shown in Figures 10–16, and the curves represent instantaneous, transient, and triple creeps of rock samples under a fixed axial load. Samples are loaded quickly and then the axial strains increase. The immediate breeds range from 0.07 to 3.5.
\n
\n
\n
\n
\n
\n
\n\n
\n
Specimen No.
\n
Testing period
\n
Time (days)
\n
\n
\n
1 9 100 135 178 375 667 786 813
\n
\n\n\n
\n
Catacomb of Kom El-Shoqafa test Ν_1 (sandy oolitic limestone)
\n
From 5/5/2016 to 1/6/2017
\n
σ1= 1.35 MPa
\n
\n
\n
Catacomb of Kom El-Shoqafa test Ν_2
\n
From 1/9/2016 to 2/7/2018
\n
σ1= 1.75 MPa
\n
\n
\n
El-Shatby Necropolis. test Ν_1 (oolitic intraclastic limestone)
\n
From 12/4/2016 to 4/7/2018
\n
σ1= 2.60 MPa
\n
\n
\n
El-Shatby Necropolis. test Ν_2 (oolitic intraclastic limestone)
\n
From 5/5/2016 to 3/7/2018
\n
σ1= 3.44 MPa
\n
\n
\n
\n
Mustafa Kamel Necropolis .test Ν_1 (intact Calcarenite)
\n
From 3/4/2016 to 22/3/2017
\n
σ1= 1.55 MPa
\n
σ1= 1.86 MPa
\n
\n
\n
\n
Mustafa Kamel Necropolis. test Ν_2 (intact Calcarenite)
\n
From 11/4/2016 to 28/3/2017
\n
σ1= 2 MPa
\n
\n
\n
Mustafa Kamel Necropolis. test Ν_3 (intact Calcarenite)
\n
From 6/4/2016 to 7/4/2016
\n
σ1= 2.50 MPa
\n
\n\n
Table 2.
Uniaxial creep test, testing program.
\n
Figure 10.
Strain versus time curve during the catacomb of Kom El-Shoqafa, uniaxial creep test no. 1.
\n
Figure 11.
Strain versus time curve during the catacomb of Kom El-Shoqafa, uniaxial creep test no. 2.
\n
Figure 12.
Strain versus time during El-Shatby Necropolis, uniaxial creep test no. 1.
\n
Figure 13.
Strain versus time curve during El-Shatby Necropolis, uniaxial creep test no. 2.
\n
Figure 14.
Strain versus time curve during Mustafa Kamel Necropolis, uniaxial creep test no. 1.
\n
Figure 15.
Strain versus time curve during Mustafa Kamel Necropolis, uniaxial creep test no. 2.
\n
Figure 16.
Strain versus time curve during Mustafa Kamel Necropolis, uniaxial creep test no. 3.
\n
Most samples, under constant axial pressure, show a complete creep stage: transient, steady, and triple creep stages.
\n
Increasing the value of the instantaneous creep strain with hard axial stress gives strain time curves of rock samples tested under constant high and low axial pressures. Axial stress also increases crawling strains. In the transit crawl stage, the stress rate increases with the applied stressors. In most cases, the stress rate under high axial pressure is greater than the low axial pressure rate. The effect of embedding in the sample may make the compression rate under low pressure higher than the pressure under high pressure.
\n
\n
7.1 Catacomb of Kom El-Shoqafa, Test No. 1
\n
On May 5, 2016 (Day 1), Catacomb of Kom El-Shoqafa no_1 began testing on a sample of sandy limestone, loading it to a vertical stress of σ1 = 1.75 MPa, 65% of the coaxial compression strength of the rock material (peak sample strength). Figure 10 displays the strain curve versus time; this curve averages the data provided by two displacement sensors. Strains do not correct for elastic thermal differences. In this test, the crawl was faster than the Catacomb of Kom El-Shoqafa site. Test no_2: From day 130 to day 200 after the start of each test, the cumulative strain was 4.5 microns for Catacomb of Kom El-Shoqafa. 1 and 2.8 microns for Catacomb of Kom El-Shoqafa test site 2. This difference is fully in line with what is known in previous tests conducted at greater pressures on these samples. When the stress rate in the transient pressure zone is increased, followed by a similar decrease, it can be observed from day 44 to day 130, immediately followed by a steady slope (steady state crawl) up to 205 days. Finally, a more stable condition followed with a smaller stress rate until the sudden sample failure on day 368. Stress rate developments were more progressive in this case. There is no specific explanation for these changes in compression rate. At the end of the test, the observed pressure rate is ε = 2.30 × 10−8 s−1, the sample was suddenly broken after the 368 day (end of the test) on June 1, 2017, while the sample showed a higher creep phase.
\n
\n
\n
7.2 Catacomb of Kom El-Shoqafa, Test No. 2
\n
On September 1, 2016, (Day 1) after the start of the previous tests, an identical creep device on the same table was assigned to the catacomb of Kom El-Shoqafa Test no_2, which began on another sample significantly purer than the previous, loaded on a vertical stress σ1 = 1.35 Mpa, 50% of the axial compression strength of the rock material (peak strength), the applied stress until the end of the test was not adjusted without sample failure on July 2, 2018, during a steady slope or steady state and a creep with a small strain rate was observed. Figure 11 displays a curve versus time. This curve averages the data provided by two displacement sensors. The compression rate (ε.) is calculated every 5 days; it is calculated for 10 days. Strains are corrected for temperature variation. Initially, the strain experienced a long initial transient period until the first few days characterized by a slow decline in rate, with the average stress rate stabilizing to ε = 5.85 × 10−10 s−1 (positive sample contractions), with long-term amplitude fluctuations ++20%; this is probably associated with moisture fluctuations. This phase was followed by a long steady slope or steady-state creep to the end of the test while the observed compression rate was ε. = 3.21 × 10−9 s−1, while it was 1.50 × 10−9 s−1 was at the beginning of the test.
\n
\n
\n
7.3 El-Shatby Necropolis, Test No. 1
\n
On April 12, 2016, (Day 1) testing of Shatby Tombs No. 1 began on a sample of sound rock-limestone that was loaded to = 1 = 2.60 MPa, 50% of the axial compression strength of the rock material (peak strength) is not Stress adjustment until the end of the test on July 4, 2018. Figure 12 shows the stress curve versus time, where the elastic strain is followed by a long transient creep characterized by a slow rate of decline, followed by a slope or creep constant in a steady state with a small stress rate until end of the test without sample failure; this curve averages the data provided by two displacement sensors. The compression rate (ε.) is calculated every 1 h at the beginning of the test, and after the first few days it is calculated every day. Strains are corrected for temperature variation. The strain experienced a long initial transient period, where the average stress rate stabilized on ε = 1.3 × 10−9 s−1 (positive sample contractions.), with long-term amplitude fluctuations ++15%; this is probably associated with moisture fluctuations.
\n
Transient reverse crawl was observed on day 214 to day 244, sometimes referred to as “hypotension.” During this test, this reverse crawl lasted much longer (20 days) than is currently observed in tests with greater stress. The stress rate stabilized one way or another after day 260, but at the end of the test, the observed pressure rate was ε. = 1.62 × 10−9 s−1.
\n
\n
\n
7.4 El-Shatby Necropolis, Test No. 2
\n
On May 5, 2016 (after the start of the previous tests), an identical crawl device was assigned to the same table, and El-Shatby test of Q2 was started on a cylindrical sample with geometric dimensions similar to that used in El-Shatby test of cemetery no_1, loaded on a vertical stress of σ1 = 3.44 MPa, 65% of the coaxial compression strength of the rock material (Figure 13). A long transient period can be observed followed by a constant inclination or a steady-state crawl until the last day of recording. In this test, the crawl was faster than at El-Shatby Cemetery, test number 1: from day 70 to 270 after the beginning of each test, the cumulative strain was 2.5 μm for El-Shatby Cemetery, test number 2 and 1.8 microns for El-Shatby Cemetery site, test number 1. This difference corresponds exactly to what is known from previous tests conducted at greater pressures on these samples. An increase in the stress rate can be observed, followed by an equivalent decrease, at day 260 and at around day 324, and stress rate developments were more progressive in this case. There is no specific explanation for these changes in compression rate. At the end of the test on July 3, 2018, the observed pressure rate was ε. = 3.41 × 10−10 s−1.
\n
\n
\n
7.5 Necropolis of Mustafa Kamel, Test No. 1
\n
On April 3, 2016, (Day 1) Mustafa Kamel’s # 1 test began on an intact sample initially loaded at 1.55 MPa but no creep was observed until 9 days after the test began. Perhaps the pregnancy is too small to produce any detectable strain. Thereafter, the applied pressure was adjusted once, and was constructed up to σ1 = 1.86 MPa (+10%) after the 9th day 60% of the uniaxial compression strength of the rock material. The numbers in parentheses indicate that the compression value is adjusted. Figure 14 shows the pressure curve versus time; this curve averages the data provided by two displacement sensors. The compression rate (ε.) is calculated every 5 days; it is calculated for 10 days. Strains are corrected for temperature variation. The strain experienced a long initial transient period characterized by a low slow rate followed by a steady slope or a steady-state creep with a small stress rate, at which time the average stress rate stabilized to ε = 1.62 × 10−9 s−1 (positive sample contractions.), with long-term capacity fluctuations of + _20%; this is probably associated with moisture fluctuations.
\n
The transient inverse creep has not been observed, and is sometimes referred to as “stress drop.” Strain rate more-or-less stabilized after day 160, and strain rate ε. = 4.86 × 10−9 s−1 and the sample has been broken suddenly after 178 days (the end of the test 22/3/2017); the specimen showed the complete three phases of creep end with the tertiary or acceleration creep stage.
\n
\n
\n
7.6 Necropolis of Mustafa Kamel, Test No. 2
\n
On April 11, 2016, (after the start of the previous tests) an identical crawl device was set on the same table, and Mustafa KAM # 2 test started on another sample that is significantly purer than the previous, loaded on the stress of σ1 = 2 MPa, 65% of the uniaxial compression force for rocky materials, and applied pressure was not modified until the end of the test on 28/3/2017 (Figure 15). It displays the strain curve versus time; this curve averages the data provided by two displacement sensors. In this test, the creep was faster than the site of Mustafa Kamel’s tombs, test number 1: from day 11 to 91 after the start of each test, the cumulative strain was 3.7 microns for the Mustafa Kamel test site Necropolis. 2 and 3.5 microns of the graves of Mustafa Kamel site No. 1. This difference corresponds exactly to what is known from previous tests conducted at greater pressures on these samples. An increase in stress rate was not observed in this test, followed by an equivalent decrease, while a long transient strain was encountered and a slow decline in rates was followed by a creeping phase in a steady state with a very small stress rate until day 91, after acceleration or the third stage of creep began. The 135th day in a large stress rate ε. = 1.11 × 10−9 s−1.
\n
\n
\n
7.7 Necropolis of Mustafa Kamel, Test No. 3
\n
On April 6, 2016, an identical creep device was set on the same table, and Mustafa KAM # 3 test was started on another heavily loaded sample on a stress of σ1 = 2.5 MPa, 80% of the uniaxial pressure force of the material rock (peak strength). Strains do not correct for elastic thermal differences. Figure 16 displays a curve versus time. This curve averages the data provided by two displacement sensors. In this test, the crawl was faster than the site of Mustafa Kamel’s tombs, test number 1 and test number: from the first day after the start of the test, the cumulative strain was 7 microns for the site of Mustafa Kamel Necropolis, test number 3. This difference corresponds exactly to what is known from the tests previously conducted at smaller pressures on these samples. The sample fractured 26 h after the start of the test, the crawl begins with a short elastic strain followed by a short transient strain followed by a steady-state crawl with a very small stress rate up to 23 h after the start of acceleration or triple crawl resulting in a sudden failure of the sample with a high stress rate after 26 h exactly. At the end of the test, the observed pressure rate was ε. = 0.30 per second.
\n
\n
\n
7.8 Comparison with tests performed under larger stresses
\n
Qualitatively, the behavior of soft rocks under small pressure (0.1 = 0.1–3 MPa) exhibits the same general features as observed under large pressures (e.g., σ = 5–20 MPa). The rapid accumulation of stress leads to a transient creep characterized by a slow rate of decline. The creep rate then becomes almost constant (a steady state is reached) or, more precisely, its average value remains constant, but the rate faces long-term fluctuations that may be affected by slow changes in moisture measurement. Reducing the load (“low pressure”) creates an inverse crawl, which lasts much longer during tests under greater stress.
\n
Norton-Hoff’s constitutive equation is often proposed to describe stable state creep.
where σ is the applied deviatoric stress; T is the absolute temperature; and A*, n, and Q/R are constants. For Etrez salt, Pouya suggests the following parameter values:
Berest et al. [40] found that if the Norton-Hoff Law of Conditions was derived in Creep Test 1 (σ = 0.108 ΜPa, T = 286.5 K), the calculated compression rate (ε. = 10−17 s−1) is smaller. Start by from the observed compression rate (ε. = 1.4 × 10−12 s−1). The observed pressure rates, even if they are too small, are much larger than expected. Spears et al. suggest that the pressure solution (rather than infiltration and slip, the mechanism that controls high stresses) is the most effective mechanism for crawling at very small pressures; the exponent of stress in this context would be n = 1 instead of n = 3–5, which is observed during standard tests. If this proposal is adopted, the Creep law should be modified when considering small pressures, with significant consequences in predicting the cave or gallery convergence rate.
\n
Many lessons were learned during the test under these unusually low pressures. This first series of tests opened the way for further research on the behavior of rocks under very small pressures, long-term single-axis crawl tests were performed for geological and engineering applications on rock samples (for 850 days), and the applied loads were as small as 1.35 MPa. Slow stress rates such as 1.11 × 10−10 s−1 were observed in some cases. These small loads and pressure rates pose several specific problems: potential drift of sensors during long 2-year tests, interference with small changes in room temperature and moisture measurement, and effects related to irregular load distribution applied to sample surfaces. These difficulties have been recognized and at least partially addressed. The qualitative results are in good agreement with what is known as the behavior of soft rocks under greater pressure; however, the observed pressure rates, even if they are extremely small, were much greater than expected.
\n
The initiation, accumulation, and growth of cracks caused by stress in rocks are generally referred to as rock damage. Referring to the pressure caused by the crack is the load at which the sample will eventually fail, under prolonged loading, which they propose correspond to about 70–80% of the peak strength of the sample. It is also believed that the damage to the crack damage or the crack damage threshold point corresponds to the point at which the stress reflection or sample expansion begins. Corresponding to the volumetric stress gradient is approximately 70% of the estimated unrestricted compressive strength of the rock.
\n
These stresses are well above the stress threshold for damage. It has been suggested that sample composition for unrestricted compression force tests reduces the spread of cracks. Many researchers suggest that the strain of the ring is generated between a stretch crack and the outer surface of a cylindrical sample. This breed may generate a confinement collar that limits the growth of continuous cracks.
\n
Preliminary test results suggest that an alternative mechanism may affect the spread of unstable cracks. Under pure uniaxial loading conditions, a split can be expected parallel to the maximum pressure direction. The failure may ultimately be at the microscopic level due to the curvature of the rock slabs resulting from tensile fractures directed toward the maximum compressive pressure, as shown in Figure 17.
\n
Figure 17.
Rock specimens under investigation, after uniaxial creep test. (a) Calcarenitic rock specimens, Necropolis of Mustafa Kamel. (b) Oolitic intraclastic limestone specimens, El-Shatby Necropolis. (c) Sandy oolitic limestone specimens, Catacombs of Kom El-Shoqafa.
\n
\n
\n
7.9 Triaxial creep tests on the calcarenitic and sandy oolitic rock specimens under investigation
\n
The purpose of triaxial creep tests is to determine the viscosity and plastic parameters of the soft rock samples under confined conditions and to investigate the effects of axial stress and fortified pressure. Time-related parameters are monitored, recorded, and analyzed.
\n
\n
\n
7.10 Test methods
\n
Two samples of rock (length = 91–103 mm, diameter = 41–44 mm) were tested from each site under different constant axial pressures and different static pressure pressures for approximately 300 h. The experimental procedure follows the ASTM standard (ASTM D4406-93). The compression machine (fusion machine, 5000 kN) is used to apply the fixed axial load to the samples. Rock samples were placed in a three-axis cell (GDS) to provide constant confining pressure (Figure 18). The collected sample (Test # 1) of Catacomb of Kom El-Shoqafa is immediately loaded to the axial stress required at 1.45 MPa to limit the pressure by 225 kPa, and the applied axial stress was adjusted twice: the initial applied pressure was increased to 1 = 2, 17 MPa (+50%) after 98 h (2) then increased to σ1 = 2.53 MPa (+74%) after 125 h (3). The number in brackets refers to Figure 18, which displays the strain versus the time curve. Where the axial stress of up to 1.45 MPa and inventory pressures 510 kPa. Axial stress was not adjusted until the test ends after 200 h with steady-state creep with a small stress rate and without sample failure.
\n
Figure 18.
Triaxial creep test device, with constant axial load under confining pressure. Triaxial creep test device. The cylindrical specimen placed inside (GDS) cell is loaded vertically using the compression machine.
\n
Samples collected (test # 1) from the Shatby Necropolis site were immediately loaded on the required axial stress at 2.63 MPa to limit pressure at 210 kPa, the applied axial stress was adjusted once: the initial applied pressure was increased to = 1 = 3.30 MPa (+25%) after 26 h (2).
\n
In Mustafa Kamel Test No. 2, the sample was loaded on the axial stress required at 2 MPa to limit pressures of 600 kPa without modifying the axial stress until the end of the test at 300 h without high creep.
\n
During testing, axial distortion and time are recorded. The frequency of reading is once every second at the beginning of the test, and gradually decreases to once every half an hour after the first day of the test. This also depends on the deformation rate of each sample. The results are presented by stress time curves in Figures 19–24. Axial stress and axial pressure values are calculated.
\n
Figure 19.
Strain versus time during the catacomb of Kom El-Shoqafa, triaxial creep test no. 1.
\n
Figure 20.
Strain versus time during the catacomb of Kom El-Shoqafa, triaxial creep test no. 2.
\n
Figure 21.
Strain versus time curve during El-Shatby Necropolis, triaxial creep test no. 1.
\n
Figure 22.
Strain versus time during El-Shatby Necropolis, triaxial creep test no. 2.
\n
Figure 23.
Strain versus time during Mustafa Kamel Necropolis, triaxial creep test no. 1.
\n
Figure 24.
Strain versus time curve during Mustafa Kamel Necropolis, triaxial creep test no. 2.
\n
\n
\n
\n
8. Test Results
\n
\n
8.1 Catacomb of Kom El-Shoqafa site
\n
Axial strain time curves are shown in shapes (Figures 19 and 20). The curves represent transient and transient creep conditions of rock samples under constant axial load and compression pressure. Instantaneous strains were observed immediately after loading the range from 3 × 10−3 to 3.2 × 10−3 for the test number_1, and 1.3 × 10−3 to 2.2 × 10−3 for the test number_2. All samples show a long “slow low” primary transient creep and steady-state creep stages until the end of the test without acceleration or triple creep resulting in sudden failure. Observations on subsequent tests show that deformation increases rapidly at first to the first few hours of testing and tends to remain constant after that. Stress rates in a steady state are 0.01 to 0.02 × 10−3 h−1.
\n
In this test, it was observed that crawling during the catacomb of Kom El-Shoqafa site Test no_1 (where = 3 = 225 kPa) was faster than crawling during the catacomb of Kom El-Shoqafa site test no_2 (where = 3 = 510 kPa) with the same axial pressure σ1 = 1.45 MPa: From 1 to 96 h after the start of each test, the axial strain accumulated (10–3) 3.5 for the catacomb of Kom El-Shoqafa site Test No. 1 and 2.7 for the catacomb of Kom Shoqafa website Test No. 2.
\n
\n
\n
8.2 El-Shatby Necropolis
\n
Axial strain time curves are shown in shapes (Figures 21 and 22). The curves represent temporary and transient creeps of rock samples under constant axial load and confined pressure. Instantaneous strains were observed immediately after the loading range from 2.5 × 10−3 to 2.9 × 10−3 for number_1 test, and from 0.91 × 10−3 to 1.8 × 10−3 for number_2 test. All samples show a long “slow low” primary transient creep and steady creep stages (constant slope) up to the end of the test at 300 h except test number_1, which showed acceleration or triple creep stage leading to a sudden sample failure at 180 h where the confined pressure σ3 was small, that is, 210 KPa, while at test number_2, it was 560 kPa and the axial pressure was the same for the eyes σ1 = 3.3 Mpa. Observations on subsequent tests showed deformation increases rapidly at first to the first few hours of testing and tends to remain constant after that. The first sample failed after the end of the test. Pressure rates in the steady state are 0.01 to 0.015 × 10−3 h−1.
\n
It was observed that creep through Shatby site Necropolis, test number 1 (where k3 = 210 kPa) was faster than creep through Shatby cemetery site, test no_2 (where = 3 = 560 kPa) under the same axial pressure σ1 = 3.3 MPa: From 1 to 150 h after the start of each test, the accumulated axial strain (10−3) was 3.2 for Shatby Necropolis site Test site 1 and 2.4 for Shatby site Necropolis Test No. 2.
\n
\n
\n
8.3 Mustafa Kamel Necropolis
\n
\nTable 3 summarizes the results of the triple axial crawl test. Axial strain time curves are shown in shapes (Figures 23 and 24). The curves represent transient and transient creep conditions of rock samples under constant axial load and compression pressure. Strains observed immediately after the loading range from 2.5 × 10−3 to 2.7 × 10−3 for test number_1, and from 0.98 × 10−3 to 2.3 × 10−3 for test number 2. All samples show a long initial transient creep “characterized by slow rate of decline” and steady creep phases (constant slope) up to the end of the test at 300 h except the first sample, which shows a transient, steady, and triple-accelerated creep phase leading to sudden sample failure at 49 h immediately after adjusting the axial pressure from σ1 = 2 MPa to σ1 = 2.65 MPa. Observations on subsequent tests showed deformation increases rapidly at first to the first few hours of testing and tends to remain constant after that. Pressure rates in the steady state are 0.01 to 0.015 × 10−3 h−1.
\n
\n
\n
\n
\n
\n
\n
\n
\n\n
\n
Specimen No.
\n
Testing period
\n
Confining pressure (σ3)
\n
Time (h)
\n
\n
\n
1 3 26 51 52 98 125 200 300
\n
\n\n\n
\n
Catacomb of Kom El-Shoqafa test Ν_1 (Sandy oolitic limestone)
\n
From 19/10/2016 to 27/10/2016
\n
225 KPa
\n
σ1= 1.45 MPa
\n
σ1= 2.17 MPa
\n
σ1= 2.53 MPa
\n
\n
\n
\n
Catacomb of Kom El-Shoqafa test Ν_2
\n
From 21/11/2016 to 28/11/2016
\n
510 KPa
\n
σ1= 1.4 MPa
\n
\n
\n
\n
El-Shatby Necropolis test Ν_1 (oolitic intraclastic limestone)
\n
From 9/11/2016 to 16/11/2016
\n
210 KPa
\n
σ1= 2.63 MPa
\n
σ1= 3.30 MPa
\n
\n
\n
\n
El-Shatby Necropolis test Ν_2 (oolitic intraclastic limestone)
\n
From 29/11/2016 to 11/12/2016
\n
560 KPa
\n
σ1= 3.31 MPa
\n
\n
\n
Mustafa Kamel Necropolis test Ν_1 (Calcarenite rock)
\n
From 16/10/2016 to 18/10/2016
\n
200 KPa
\n
σ1= 1.32 MPa
\n
σ1= 1.98 MPa
\n
σ1= 2.6 MPa
\n
\n
\n
\n
Mustafa Kamel Necropolis test Ν_2 (Calcarenite rock)
\n
From 12/12/2016 to 22/12/2016
\n
600 KPa
\n
σ1= 2 MPa
\n
\n\n
Table 3.
Triaxial creep test, testing program.
\n
In this test, it was observed that crawling through the site of Mustafa Kamel’s cemetery in test 1 (where = 3 = 200 kPa) was faster than crawling through the site of Mustafa Kamel’s cemetery. No_2 test (where = 3 = 600 kPa) under the same axial pressure = 1 = 2 MPa: from 1 to 45 h after the start of each test, the accumulated axial strain (10−3) was 3.3 for Necropolis of Mustafa Kamel site Test no. 1 and 2.5 for the site of Mustafa Kamel cemetery test site 2.
\n
Thus, the prevalence of cracking (in the fragile field) and pore breakdown (under high pressure conditions) are the prevailing deformation mechanisms of the selected rocks.
\n
The cumulative results of various three-axis crawl tests, conducted at tight pressures ranging from 200 to 600 kPa, showed that crawling reduces the level of brittle stress on failure by 15–20% in relation to standard tests, and similarly, the resulting stress threshold (e.g., Pore breakdown (reduction)) is reduced by the same amount, while the volumetric component of the strain is diluted only in the absence of confined pressure, and shrinks completely even when σ3 decreases.
\n
The instantaneous creep strain depends on axial pressure and confining pressure. In general, increased continuous axial pressure leads to greater axial stress. The pressure rate under high axial pressure is greater than the pressure under the lower axial pressure for the same fixed pressure. The higher the confined pressure, the smaller the resulting pressure. Comparison of results obtained from other soft rocks/salts indicates that the stress rate depends on the stress and previous strain. This is also consistent with the conclusion of Courthouse and Ong et al. who describe soft rocks as close.
\n
The time-based foundational model of soft rocks developed by Zhang et al. can reproduce the general crawl characteristics of soft rocks with high precision. The crawl failure time to load the strain of the aircraft is longer than that of the three-axis load because the strain load frame controls the sample to expand.
\n
\n
\n
\n
9. Micromechanics of creep in the calcarenitic rocks
\n
There is now a large body of evidence that rock deformation at low temperatures and pressures occurs through two mechanisms widely referred to as faulty flow and ductile flow. The term ductile is often used in three different contexts, including (1) plastic deformation of single crystals, (2) homogeneous deformation or uniform flow, and (3) deformation over a certain amount of stress. Here we will use the term ductile in the macroscopic sense of homogeneous deformation where inferior microscopic processes include improved shear pressure, granulation, and granular flow.
\n
Macroscopically, these microscopic processes form the flow of the calcite. Experimental evidence of Caracola flow includes (1) a broad shear area indicating distributed damage and intact granules in an extraction; (2) a large pore breakdown, often accompanied by small intracranial cracks caused by “fragmentation”; and (3) fractures. Unlike this distributed pervasive flow, the standard fragile deformation at low-effective pressures is characterized by an expansive fine fracture, leading to shear localization along narrower fracture zones, which often consist of sections linked to a zigzag pattern (e.g., [44, 45, 46, 47, 48]). In thin sections, the fragile fracture is evidenced by the presence of almost abundant small cracks, away from the shear fracture. Many of these miniature cracks are parallel to the main baseline pressure and may arise from axial splitting of healthy grains [42, 43] or cracking of grain boundaries.
\n
From previous experimental studies, the researchers agreed that distributed sedimentary rocks, for calcarenitic sedimentary rocks, are the dominant failure mechanisms in highly porous rocks, especially at high effective medium pressures [49, 50, 51, 52]. On the contrary, the fragile local fracture dominates the rocks with low porosity, as well as in high-porosity rocks with low effective pressure.
\n
\n
\n
10. Conclusions
\n
The catacombs of the Kom El-Shoqafa and Amod El-Sawari (Pompeii’s pillar) site, located in the city center, 2.5 km from the sea coastline, are carved into the initial sandy limestone (cement limestone); Cross joints filled with fragmented sand and saturated with water in the lower parts. This unit is illustrated with loose sandstone. It is medium brown in color to decorate granulated limestone saturated with groundwater. It goes beyond the formation of the hayf (Pliocene) or the older myosin. Surface quadruple deposits obscure actual contact. The other two archeological sites, which are located close to the waterfront of Alexandria (Shatby Cemeteries, Mustafa Kamel Cemeteries), were excavated in internal limestone or calcite (coastal hills). Yellowish white upward become yellow brown bottom.
\n
Based on tests carried out on air-dried samples prepared in the vertical direction, UCS values indicate that according to the classification adopted by the London Geological Society, which relies on the unrestricted compressive strength and the classification proposed by [33, 50]. These calcarenitic rocks from which excavations are carried out underground are classified as soft to very weak. It is also in good compliance with the Rock Quality Assignment System (RQD) for these types of soft rocks, where RR = 18 and RQD = 15–20% and a very poor quality range from 0 to 25. In addition, the results of static deformation tests indicate that the types of rock in question have high deformation.
\n
It should be noted that the silica content at the Catacomb site in Kom El-Shoqafa is higher than in any area in Alexandria, possibly due to sedimentation processes, such as the high silica content that does not contain cement but is found as sand grains. In low rock durability and stiffness, high sand-like grain content reduces rock strength against salt crystallization and moisture pressures within rock pores. This is not only because of its high content of silica granules but also because it is a sparse rock. It is known that this type of limestone is characterized by low durability.
\n
Three stages of crawling behavior can be identified by uniaxial and triple-axis crawling tests. In some cases, the primary creep curve approaches a constant rate of stress called secondary creep. In high-stress specimens, secondary crawl may turn up in higher creep, which is characterized by an increased stress rate until crawl failure occurs suddenly. In the last two stages, the thin vertical cracking begins, accompanied by hardening, and only near failure, large cracks spread rapidly and lead to a sudden collapse. Long-term tests were performed on a secondary creep sample showing even at 40% of estimated strength.
\n
The weathering process is associated with structural properties, such as poor geotechnical properties, carbon chemical composition, the presence of soluble salts in the porous system, marine climate with characteristic humidity, and marine spray, groundwater.
\n
\n\n',keywords:"Roman rock-cut tombs, geotechnical assessment, creep tests, calcarenitic limestone, oolitic limestone, rock mass rating, tomb construction",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72312.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72312.xml",downloadPdfUrl:"/chapter/pdf-download/72312",previewPdfUrl:"/chapter/pdf-preview/72312",totalDownloads:678,totalViews:0,totalCrossrefCites:0,dateSubmitted:"September 25th 2019",dateReviewed:"February 12th 2020",datePrePublished:"May 26th 2020",datePublished:"July 15th 2020",dateFinished:"May 26th 2020",readingETA:"0",abstract:"The Greek-Roman rock-cut tombs at Alexandria, Egypt, were excavated mainly in the calcarenitic limestone formations and show varying degrees of damage of rock pillars and ceilings. In order to understand the long-term rock mass behaviour in selected tombs and its impact on past failures and current stability, uniaxial and triaxial Creep tests and rock mass quality assessments had been carried out. Creep behavior of rock plays an important role in underground works, especially for archeological structures subjected to large initial stresses. These conditions yield nonreversible deviatoric creep strains that develop during time at constant stress. In order to describe the time-dependent deformation, various approaches have been established based on analytical, empirical, and numerical methods. Our analyses show that the Roman tombs at Alexandria have been cut into poor quality rock masses. Rock failures of ceilings and pillars were frequently facilitated by local, unfavourably oriented persistent discontinuities, such as tension cracks and joints. Other failures were related to the disintegration of calcarenitic and oolitic limestones. Our data suggest that, in Roman age monumental tomb construction, low-strength rock masses resulted in modifications of the planned tomb design in order to minimise the risk of rock falls and to prevent collapses.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72312",risUrl:"/chapter/ris/72312",signatures:"Sayed Hemeda",book:{id:"8240",type:"book",title:"Geotechnical Engineering",subtitle:"Advances in Soil Mechanics and Foundation Engineering",fullTitle:"Geotechnical Engineering - Advances in Soil Mechanics and Foundation Engineering",slug:"geotechnical-engineering-advances-in-soil-mechanics-and-foundation-engineering",publishedDate:"July 15th 2020",bookSignature:"Sayed Hemeda and Mehmet Barış Can Ülker",coverURL:"https://cdn.intechopen.com/books/images_new/8240.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-290-6",printIsbn:"978-1-78984-289-0",pdfIsbn:"978-1-78985-302-5",isAvailableForWebshopOrdering:!0,editors:[{id:"258282",title:"Prof.",name:"Sayed",middleName:null,surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"258282",title:"Prof.",name:"Sayed",middleName:null,surname:"Hemeda",fullName:"Sayed Hemeda",slug:"sayed-hemeda",email:"hemeda_200x@yahoo.com",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258282/images/system/258282.jpg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Geological and tectonic setting",level:"1"},{id:"sec_3",title:"3. State of preservation",level:"1"},{id:"sec_4",title:"4. Mineralogical and petrographical studies",level:"1"},{id:"sec_4_2",title:"4.1 Catacombs of Kom El-Shoqafa",level:"2"},{id:"sec_5_2",title:"4.2 Mustafa Kamel Necropolis",level:"2"},{id:"sec_6_2",title:"4.3 El-Shatby cemetery",level:"2"},{id:"sec_7_2",title:"4.4 Comparison between the sound and weathered rock layers",level:"2"},{id:"sec_9",title:"5. Creep tests (materials and experimental program)",level:"1"},{id:"sec_9_2",title:"5.1 Types of creep",level:"2"},{id:"sec_10_2",title:"5.2 Laboratory test specimens",level:"2"},{id:"sec_11_2",title:"5.3 Laboratory tests",level:"2"},{id:"sec_12_2",title:"5.4 Very slow uniaxial creep tests on calcarenitic and sandy oolitic rock specimens under investigation",level:"2"},{id:"sec_13_2",title:"5.5 Analysis of creep behavior of soft rocks in tunneling",level:"2"},{id:"sec_15",title:"6. Description and discussion of the experimental program",level:"1"},{id:"sec_15_2",title:"6.1 Describe full creep tests",level:"2"},{id:"sec_16_2",title:"6.2 Testing device",level:"2"},{id:"sec_17_2",title:"6.3 Sensors",level:"2"},{id:"sec_18_2",title:"6.4 Loading",level:"2"},{id:"sec_19_2",title:"6.5 Temperature and hygrometry",level:"2"},{id:"sec_21",title:"7. Test results",level:"1"},{id:"sec_21_2",title:"7.1 Catacomb of Kom El-Shoqafa, Test No. 1",level:"2"},{id:"sec_22_2",title:"7.2 Catacomb of Kom El-Shoqafa, Test No. 2",level:"2"},{id:"sec_23_2",title:"7.3 El-Shatby Necropolis, Test No. 1",level:"2"},{id:"sec_24_2",title:"7.4 El-Shatby Necropolis, Test No. 2",level:"2"},{id:"sec_25_2",title:"7.5 Necropolis of Mustafa Kamel, Test No. 1",level:"2"},{id:"sec_26_2",title:"7.6 Necropolis of Mustafa Kamel, Test No. 2",level:"2"},{id:"sec_27_2",title:"7.7 Necropolis of Mustafa Kamel, Test No. 3",level:"2"},{id:"sec_28_2",title:"7.8 Comparison with tests performed under larger stresses",level:"2"},{id:"sec_29_2",title:"7.9 Triaxial creep tests on the calcarenitic and sandy oolitic rock specimens under investigation",level:"2"},{id:"sec_30_2",title:"7.10 Test methods",level:"2"},{id:"sec_32",title:"8. Test Results",level:"1"},{id:"sec_32_2",title:"8.1 Catacomb of Kom El-Shoqafa site",level:"2"},{id:"sec_33_2",title:"8.2 El-Shatby Necropolis",level:"2"},{id:"sec_34_2",title:"8.3 Mustafa Kamel Necropolis",level:"2"},{id:"sec_36",title:"9. Micromechanics of creep in the calcarenitic rocks",level:"1"},{id:"sec_37",title:"10. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'\nBerest P, Charpentier JP, Blum PA. Creep of rock under small loading. In: Proceedings of SMRI Fall Meeting; Washington DC; 1999. pp. 11-24\n'},{id:"B2",body:'\nCostin LS. Time-dependent deformation and failure. In: Atkinson BK, editor. Fracture Mechanics of Rock. San Diego, CA: Academic; 1987. pp. 167-215\n'},{id:"B3",body:'\nDas S, Scholz CH. Theory of time-dependent rupture. Journal of Geophysical Research. 1981;86:6039-6051\n'},{id:"B4",body:'\nDe Meer A, Spiers CJ. Creep of wet gypsum aggregates under hydrostatic loading conditions. Tectonophysics. 1995;245:171-183\n'},{id:"B5",body:'\nASTM D 4406–93 (Reapproved 1998). Standard test method for creep of cylindrical rock core specimens in triaxial compression; 1998. pp. 1-5\n'},{id:"B6",body:'\nAydan IT, Zbay U, Kwasniewski M, Shariar K, Okuno T, Zgenoglu A, et al. ISRM suggested methods for determining the creep characteristics of rock. Rock Mechanics and Rock Engineering. 2014;47:275-290\n'},{id:"B7",body:'\nBieniawski ZT. Mechanism of brittle fracture of rock. International Journal of Rock Mechanics and Mining Sciences. 1967;4:395-430\n'},{id:"B8",body:'\nDusseault MB, Fordham CJ. Time dependent behaviour of rocks. Comprehensive Rock Engineering. 1993;3:119-149\n'},{id:"B9",body:'\nHemeda S. Engineering failure analysis and design of support system for ancient Egyptian monuments in Valley of the Kings, Luxor, Egypt. Geoenvironmental Disasters. 2018;5:12. DOI: 10.1186/s40677-018-0100-x\n'},{id:"B10",body:'\nHaupt M, Natau O. Uniaxial relaxation test on rock salt. In: Proceedings of the 2nd Conference on Mechanical Behaviour of Salt; Hanover; 1984. pp. 180-185\n'},{id:"B11",body:'\nLadanyi B. Time dependent response of rock around tunnels. Comprehensive Rock Engineering. 1993;2:77-112\n'},{id:"B12",body:'\nLama RD, Vutukuri VS. Handbook on Mechanical Properties of Rocks-Testing Techniques and Results. Vol. 21978. pp. 209-323\n'},{id:"B13",body:'\nMaranini E, Brignoil M. Technical note: Creep behaviour of a weak rock: Experimental characterization. International Journal of Rock Mechanics and Mining Sciences. 1999;36:127-138\n'},{id:"B14",body:'\nNomikos. Supported axisymmetric tunnel within linear viscoelastic burger rocks. Rock Mechanics and Rock Engineering. 2011;44:553-564\n'},{id:"B15",body:'\nPan YW, Dong JJ. Time-dependent tunnel convergence I. Formulation of the model. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts. 1991;28:477-488\n'},{id:"B16",body:'\nRobertson EC. Creep of Solenhofen limestone under moderate hydrostatic pressure. Geological Society of America Memoirs. 1963;79:227-244\n'},{id:"B17",body:'\nWang Y, Qi J, Yang C, Wei J. A study of nonlinear creep law in deep rocks. Rock and Soil Mechanics. 2005;26(1):117-121\n'},{id:"B18",body:'\nZhu H, Ye B. Experimental study on properties of rock creep in saturation. Chinese Journal of Rock Mechanics and Engineering. 2002;21(12):1791-1796\n'},{id:"B19",body:'\nZhang Z, Luo J. Study on creep properties of rock under step load. Chinese Journal of Rock Mechanics and Engineering. 2004;23(2):218-222\n'},{id:"B20",body:'\nLiu J, Yang C, Li X, Jiang D. Testing study on creep of coal rocks in the tunnel of Wankai speedway. Chinese Journal of Rock Mechanics and Engineering. 2004;23(22):3794-3798\n'},{id:"B21",body:'\nParkin AK. Creep of rockfill (Part A). In: Maranhadas Neves E, editor. Advances in Rockfill Structure. London: Kluwer Academic Publishers; 1992. pp. 221-239\n'},{id:"B22",body:'\nShen Z, Zhao K. Back analysis of creep deformation of rockfill dams. Journal of Hydraulic Engineering. 1998;6:1-6\n'},{id:"B23",body:'\nGuo X, Wang D, Cai X, Dong L. Rheological analysis of concrete faced rock-fill dam. Journal of Hydraulic Engineering. 1999;11:42-46\n'},{id:"B24",body:'\nWang M, He X, Cheng Z. Current situation and prospect of studies on rheology property of course stuff. Rock and Soil Mechanics. 2003;Suppl:451-454\n'},{id:"B25",body:'\nLiu Y, Li Y, Sun M. A new method of permeability test for loose rock. Ground Pressure and Strata Control. 2002;19(4):108-110\n'},{id:"B26",body:'\nHemeda S. An integrated approach for the pathology assessment and protection of underground monuments in seismic regions. Application on some Greek-Roman Monuments in Alexandria, Egypt [PhD thesis]. Greece: Aristotle University of Thessaloniki; 2008\n'},{id:"B27",body:'\nHemeda S, Pitlakis K. Serapeum temple and the ancient annex daughter library in Alexandria, Egypt: Geotechnical-geophysical investigations and stability analysis under static and seismic conditions. Engineering Geology. 2010;113:33-43\n'},{id:"B28",body:'\nHemeda S, Pitilakis K, Bandis S, Papayianni I, Gamal M. The Underground monuments (Catacombs) in Alexandria, Egypt. In: Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering; Thessaloniki, Greece; 25–27 June, 2007. pp. 715-738\n'},{id:"B29",body:'\nBieniawski ZT. The geomechanics classification in rock engineering applications, In: Proceedings of the Fourth International Conference on Rock Mechanics, Vol. 2. Montreox: ISRM; 1979. pp. 41-48\n'},{id:"B30",body:'\nAydan O, Akagi T, Ito T, Kawamoto T. Prediction of behaviour of tunnels in squeezing ground. Journal of JSCE. 1992;440(3–9):73-82\n'},{id:"B31",body:'\nAydan O, Akagi T, Kawamoto T. The squeezing potential of rocks around tunnels: Theory and prediction. Rock Mechanics and Rock Engineering. 1993;26(2):137-163\n'},{id:"B32",body:'\nAydan O, Kawamoto T. The stability assessment of a large underground opening at great depth. In: 17th International Mining Congress and Exhibition of Turkey (IMCET 2001); Ankara, Vol. 1; 2001. pp. 277-288\n'},{id:"B33",body:'\nAydan O, Ulusay R. Geotechnical and geo-environmental characteristics of man-made underground structures in Cappadocia, Turkey. Engineering Geology. 2003;69:245-272\n'},{id:"B34",body:'\nAydan O, Ulusay R, Kawamoto T. Assessment of rock mass strength for underground excavations. In: The 36th US Rock Mechanics Symposium; 1997. pp. 777-786\n'},{id:"B35",body:'\nDeere DU, Varde OA. General report, engineering geological problems related to foundations and excavations in weak rocks. In: Proceedings of the 5th International Association of Engineering Geology Congress, 1986. Vol. 4. Balkema; 1990. pp. 2503-2518\n'},{id:"B36",body:'\nHemeda S. 3D finite element coupled analysis model for geotechnical and complex structural problems of historic masonry structures: conservation of Abu Serga church, Cairo, Egypt. Heritage Science. 2019;7:6. DOI: 10.1186/s40494-019-0248-z\n'},{id:"B37",body:'\nHemeda S. Geotechnical and geophysical investigation techniques in Ben Ezra Synagogue in Old Cairo area, Egypt. Heritage Science. 2019;7:23. DOI: 10.1186/s40494-019-0265-y\n'},{id:"B38",body:'\nHemeda S, Pitilakis K. Geophysical Investigations at Cairo’s Oldest, the Church of Abu Serga (St. Sergius), Cairo, Egypt. Research in Nondestructive Evaluation. 2017;28(3):123-149. DOI: 10.1080/09349.847.2016.11439.91\n'},{id:"B39",body:'\nBukovansky M, Richard DP, Week KR. Influence of slope deformations on the tombs in the valley of the kings, Egypt. In: Engineering Geology and the Environment-Proceedings-Symposium; Athens, Vol. 3; 1997. pp. 3077-3080\n'},{id:"B40",body:'\nBerest P, Charpentier JP, Blum PA, Gharbi H. Very slow creep tests on rock samples. International Journal of Rock Mechanics and Mining Sciences. 2005;42:569-576\n'},{id:"B41",body:'\nBrace WF, Kohlstedt DL. Limits of lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research. 1980;85:6348-6352\n'},{id:"B42",body:'\nBrace WF, Paulding BW, Scholz CH. Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research. 1958;71:3939-3953\n'},{id:"B43",body:'\nCharles RJ. Fatigue of glass, I. Journal of Applied Physics. 1966;29:1549-1560\n'},{id:"B44",body:'\nAdachi T, Oka F. An elasto-plastic constitutive model for soft rock with strain softening. International Journal for Numerical and Analytical Methods in Geomechanics. 1995;19:233-247\n'},{id:"B45",body:'\nArces M, Nocilla, Aversa S, Lo Cicero G. Geological and geotechnical features of the “Calcarenite di Marsala”. In: Evangelista, Picarelli, editors. Proceedings of the Geotechnics of Hard Soils-Soft Rocks. Rotterdam: Balkema; 1998\n'},{id:"B46",body:'\nAtkinson BK. Introduction to fracture mechanics and its geophysical applications. In: Atkinson BK, editor. Fracture Mechanics of Rocks. San Diego, CA: Academic; 1987. pp. 1-26\n'},{id:"B47",body:'\nAtkinson BK, Meredith PG. The theory of sub-critical crack growth with applications to minerals and rocks. In: Atkinson BK, editor. Fracture Mechanics of Rocks. San Diego, CA: Academic; 1987. pp. 111-166\n'},{id:"B48",body:'\nAversa S. Mechanical behaviour of soft rock: Some remarks. In: Proceedings of the Workshop on “Experimental Characterization and Modelling of Soil and Soft Rocks. Napoli; 1991. pp. 191-223\n'},{id:"B49",body:'\nAydan O, Tokashiki N, Kawamoto T. Microstructure models for porous rocks to jointed rock masses. In: Third Asia-Pacific Conference on Computational Mechanics; Seoul, Vol. 3; 1996. pp. 2235-2242\n'},{id:"B50",body:'\nCecconi M, Viggiani G. Physical and structural properties of a pyroclastic soft rock. In: Evangelista, Picarelli, editors. Proceedings of the Geotechnics of Hard Soils-Soft Rocks. Rotterdam: Balkema; 1998\n'},{id:"B51",body:'\nCooper MR. The mechanics of uncemented carbonate sands. Geotechnique. 1990;40(4):607-627\n'},{id:"B52",body:'\nCripps JC, Coulthard JM, Forster A, Hencher SR, Moon CF. The engineering geology of weak rock. In: Proceedings of the 26th Annual Conference of the Engineering Group of the Geological Society, Leeeds (AA Balkema, Engineering Geology Special Publication, 8); 1993. 510pp\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Sayed Hemeda",address:"sayed.hemeda@cu.edu.eg",affiliation:'
Conservation Department, Faculty of Archaeology, Cairo University, Egypt
'}],corrections:null},book:{id:"8240",type:"book",title:"Geotechnical Engineering",subtitle:"Advances in Soil Mechanics and Foundation Engineering",fullTitle:"Geotechnical Engineering - Advances in Soil Mechanics and Foundation Engineering",slug:"geotechnical-engineering-advances-in-soil-mechanics-and-foundation-engineering",publishedDate:"July 15th 2020",bookSignature:"Sayed Hemeda and Mehmet Barış Can Ülker",coverURL:"https://cdn.intechopen.com/books/images_new/8240.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-290-6",printIsbn:"978-1-78984-289-0",pdfIsbn:"978-1-78985-302-5",isAvailableForWebshopOrdering:!0,editors:[{id:"258282",title:"Prof.",name:"Sayed",middleName:null,surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"251953",title:"Dr.",name:"Graciano",middleName:null,surname:"Dieck-Assad",email:"graciano.dieck.assad@itesm.mx",fullName:"Graciano Dieck-Assad",slug:"graciano-dieck-assad",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"63638",title:"Modeling, Simulation, and Control of Steam Generation Processes",slug:"modeling-simulation-and-control-of-steam-generation-processes",abstract:"This chapter describes a modeling methodology to provide the main characteristics of a simulation tool to analyze the steady state, transient operation, and control of steam generation processes, such as heat recovery steam generators (HRSG). The methodology includes a modular strategy that considers individual heat exchangers such as: economizers, evaporators, superheaters, drum tanks, and control systems. The modular strategy consists of the development of a numerical modeling tool that integrates sub-models based upon first principle equations of mass, energy, and momentum balance. The main heat transfer mechanisms characterize the dynamics of steam generation systems during normal and abnormal operations, which include the response of key process variables such as vapor pressure, temperature, and mass flow rate. Other important variables are: gas temperature, fluid temperature, drum pressure, drum’s liquid level, and mass flow rate at each module. Those variables are usually analyzed with design predicted performance of real industrial equipment such as HRSG systems. Finally, two case studies of the application of the modeling strategy are provided to show the effectiveness and utility of the methodology.",signatures:"Graciano Dieck-Assad, José Luis Vega-Fonseca, Isaías Hernández-\nRamírez and Antonio Favela-Contreras",authors:[{id:"62108",title:"Prof.",name:"Antonio",surname:"Favela-Contreras",fullName:"Antonio Favela-Contreras",slug:"antonio-favela-contreras",email:"antonio.favela@itesm.mx"},{id:"251953",title:"Dr.",name:"Graciano",surname:"Dieck-Assad",fullName:"Graciano Dieck-Assad",slug:"graciano-dieck-assad",email:"graciano.dieck.assad@itesm.mx"},{id:"261740",title:"Mr.",name:"José Luis",surname:"Vega-Fonseca",fullName:"José Luis Vega-Fonseca",slug:"jose-luis-vega-fonseca",email:"jlvega@gmail.com"},{id:"261741",title:"Dr.",name:"Isaías",surname:"Hernández-Ramírez",fullName:"Isaías Hernández-Ramírez",slug:"isaias-hernandez-ramirez",email:"isaias.hernandez@gmail.com"}],book:{id:"6869",title:"Modeling and Computer Simulation",slug:"modeling-and-computer-simulation",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"62108",title:"Prof.",name:"Antonio",surname:"Favela-Contreras",slug:"antonio-favela-contreras",fullName:"Antonio Favela-Contreras",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101330/images/system/101330.jpg",biography:"Dragan Cvetković obtained a Ph.D. in Aeronautics from the\nFaculty of Mechanical Engineering, University of Belgrade, in\n1997. To date, he has published sixty-five books, scripts, and\npracticums about computers and computer programs, aviation\nweapons, and flight mechanics. He has published many scientific\npapers as well. Dr. Cvetković became a full professor of Informatics and Computing at Singidunum University, Belgrade, in\n2014. Since 2019, he has been the vice-rector for teaching at the same university",institutionString:"Singidunum University",institution:{name:"Singidunum University",institutionURL:null,country:{name:"Serbia"}}},{id:"199033",title:"M.Sc.",name:"Misa",surname:"Stojicevic",slug:"misa-stojicevic",fullName:"Misa Stojicevic",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"199034",title:"M.Sc.",name:"Ivana",surname:"Cvetkovic",slug:"ivana-cvetkovic",fullName:"Ivana Cvetkovic",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"251123",title:"Associate Prof.",name:"Vojtech",surname:"Merunka",slug:"vojtech-merunka",fullName:"Vojtech Merunka",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"253431",title:"Ph.D. Student",name:"Sevcan",surname:"Emek",slug:"sevcan-emek",fullName:"Sevcan Emek",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"254455",title:"Prof.",name:"Branislav",surname:"Popkonstantinovic",slug:"branislav-popkonstantinovic",fullName:"Branislav Popkonstantinovic",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"261740",title:"Mr.",name:"José Luis",surname:"Vega-Fonseca",slug:"jose-luis-vega-fonseca",fullName:"José Luis Vega-Fonseca",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"261741",title:"Dr.",name:"Isaías",surname:"Hernández-Ramírez",slug:"isaias-hernandez-ramirez",fullName:"Isaías Hernández-Ramírez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"266627",title:"Dr.",name:"Şebnem",surname:"Bora",slug:"sebnem-bora",fullName:"Şebnem Bora",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"open-access-funding",title:"Open Access Funding",intro:"
IntechOpen’s Academic Editors and Authors have received funding for their work through many well-known funders, including: the European Commission, Bill and Melinda Gates Foundation, Wellcome Trust, Chinese Academy of Sciences, Natural Science Foundation of China (NSFC), CGIAR Consortium of International Agricultural Research Centers, National Institute of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), German Research Foundation (DFG), Research Councils United Kingdom (RCUK), Oswaldo Cruz Foundation, Austrian Science Fund (FWF), Foundation for Science and Technology (FCT), Australian Research Council (ARC).
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\\n\\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\\n\\n
\\n\\t
Does your institution already have a budget for covering Open Access publication costs?
\\n\\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\\n
\\n\\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\\n\\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\\n\\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\n\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\n\n
\n\t
Does your institution already have a budget for covering Open Access publication costs?
\n\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\n
\n\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\n\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11803",title:"Alternative Dietary Lifestyles",subtitle:null,isOpenForSubmission:!0,hash:"54e1d61b9b0befe1e198556039143205",slug:null,bookSignature:"Dr. Paz Otero",coverURL:"https://cdn.intechopen.com/books/images_new/11803.jpg",editedByType:null,editors:[{id:"356318",title:"Dr.",name:"Paz",surname:"Otero",slug:"paz-otero",fullName:"Paz Otero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11785",title:"Ginger - Cultivation and Use",subtitle:null,isOpenForSubmission:!0,hash:"1caa2d6d054af82de4a88ecb2b3fedfa",slug:null,bookSignature:"Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11785.jpg",editedByType:null,editors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11930",title:"Reliability-Based Design in Structure and Geotechnical Engineering",subtitle:null,isOpenForSubmission:!0,hash:"63cb9ce2478d12b0649b47deaab8ab56",slug:null,bookSignature:"Dr. Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/11930.jpg",editedByType:null,editors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11892",title:"Facial Nerve Palsy - A Practitioner’s Guide",subtitle:null,isOpenForSubmission:!0,hash:"3022a85c51fe3ba1d2cc2a5de4e66072",slug:null,bookSignature:"Dr. Pratap Sanchetee, Dr. Kirti Sachdev and Dr. Rajeswari R.",coverURL:"https://cdn.intechopen.com/books/images_new/11892.jpg",editedByType:null,editors:[{id:"206518",title:"Dr.",name:"Pratap",surname:"Sanchetee",slug:"pratap-sanchetee",fullName:"Pratap Sanchetee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11935",title:"Oil Spills",subtitle:null,isOpenForSubmission:!0,hash:"8ef4f1400c5e99e53d93847aaf92216b",slug:null,bookSignature:"Prof. Prof.Dr. Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/11935.jpg",editedByType:null,editors:[{id:"96666",title:"Prof.",name:"Prof.Dr. Maged",surname:"Marghany",slug:"prof.dr.-maged-marghany",fullName:"Prof.Dr. Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11520",title:"Direct Torque Control",subtitle:null,isOpenForSubmission:!0,hash:"6504dee75dbbfd7792308293a8f1a27f",slug:null,bookSignature:"Prof. Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/11520.jpg",editedByType:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:435},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:729,numberOfDimensionsCitations:1703,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:23,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:20,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"87",type:"subseries",title:"Economics",keywords:"Globalization, Economic integration, Growth and development, International trade, Environmental development, Developed countries, Developing countries, Technical innovation, Knowledge management, Political economy analysis, Banking and financial markets",scope:"
\r\n\tThe topic on Economics is designed to disseminate knowledge around broad global economic issues. Original submissions will be accepted in English for applied and theoretical articles, case studies and reviews about the specific challenges and opportunities faced by the economies and markets around the world. The authors are encouraged to apply rigorous economic analysis with significant policy implications for developed and developing countries. Examples of subjects of interest will include, but are not limited to globalization, economic integration, growth and development, international trade, environmental development, country specific comparative analysis, technical innovation and knowledge management, political economy analysis, and banking and financial markets.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11971,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null,series:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X"},editorialBoard:[{id:"104262",title:"Dr.",name:"Chee-Heong",middleName:null,surname:"Quah",slug:"chee-heong-quah",fullName:"Chee-Heong Quah",profilePictureURL:"https://mts.intechopen.com/storage/users/104262/images/system/104262.jpg",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",slug:"monica-violeta-achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",institutionString:null,institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}},{id:"202039",title:"Dr.",name:"Nahanga",middleName:null,surname:"Verter",slug:"nahanga-verter",fullName:"Nahanga Verter",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCwtQAG/Profile_Picture_1643101901237",institutionString:null,institution:{name:"Mendel University Brno",institutionURL:null,country:{name:"Czech Republic"}}},{id:"107745",title:"Emeritus Prof.",name:"Panagiotis E.",middleName:null,surname:"Petrakis",slug:"panagiotis-e.-petrakis",fullName:"Panagiotis E. Petrakis",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRzzaQAC/Profile_Picture_1644221136992",institutionString:null,institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}},{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",slug:"ryan-merlin-yonk",fullName:"Ryan Merlin Yonk",profilePictureURL:"https://mts.intechopen.com/storage/users/196259/images/system/196259.jpg",institutionString:null,institution:{name:"American Institute for Economic Research",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/251953",hash:"",query:{},params:{id:"251953"},fullPath:"/profiles/251953",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()