During the last two decades, numerous surface treatments have been developed to improve the biocompatibility of different types of prosthesis and other medical implants. Some of these devices are subject to demanding loading and friction conditions (e.g., hip, knee, and spine prosthesis). However, for other implants, there are more specific requirements as it happens for coronary stents or pacemaker electrodes. The materials used for the manufacture of the aforementioned devices are subjected to very high restrictions in terms of biocompatibility, in particular on chemical composition, corrosion resistance, or ion release. As a consequence, most of prosthesis and other implants are made of a limited number of materials such as titanium alloys, stainless steels, cobalt-chromium alloys, UHMWPE, or PEEK. Unfortunately, from a strict point of view, none of these materials meet all the requirements that would be desirable in terms of durability and prevention of infections and inflammatory processes. Coatings and other surface treatments have been developed to solve these problems and to improve biocompatibility. In this chapter, we present an updated review of the most used surface engineering technologies for biomaterials, like novel PVD coatings, ion implantation, and other plasma spray treatments, as well as a critical review of the characterization techniques. This study is completed with an insight into the future of the field.
Part of the book: Advanced Surface Engineering Research