Comparison of RNA-seq methodologies.
\r\n\tEven though video surveillance systems have been part an integral part of the public and security sectors for decades, there is a significant interest in them outside of those industries. This interest is largely due to increased crime rates and security threats all around the globe, which are driving a continuous growth of the video surveillance market. According to a recent report, the video surveillance market was valued at $29.98 billion in 2016 and is expected to reach a value of $72.19 billion by 2022. This market potential is also propelled by recent advances in Artificial Intelligence and Computer Vision research fields—boosting the intelligence, scalability, and accuracy of intelligent video surveillance solutions.
\r\n\r\n\tThe book's goal is to provide a game-changing and cross-disciplinary forum that brings together experts from academia, industry, and government to advance the frontiers of theories, methods, systems, and applications.
",isbn:"978-1-80356-342-8",printIsbn:"978-1-80356-341-1",pdfIsbn:"978-1-80356-343-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"4d13a124dd9eb965b2e6958786b710cb",bookSignature:"Dr. Pier Luigi Mazzeo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11548.jpg",keywords:"Hardware and Software Architectures, Privacy in Surveillance, Cybersecurity for Surveillance, Biometrics, Activity and Interaction Analysis, Cognitive Dynamic Systems and Bio-Inspired Methods, Human-Computer Interfaces, Visualization Algorithms, Classification and Recognition, Sensors, Communications and Networked Sensing, Distributed Camera Networks and Smart Cameras",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"March 17th 2022",dateEndThirdStepPublish:"May 16th 2022",dateEndFourthStepPublish:"August 4th 2022",dateEndFifthStepPublish:"October 3rd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Artificial Intelligence and Computer Vision enthusiastic researcher at Institute of Applied Science and Intelligent Systems in Lecce (Italy) with more than one hundred publications in his referred research fields.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",middleName:null,surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo",profilePictureURL:"https://mts.intechopen.com/storage/users/17191/images/system/17191.jpeg",biography:"Pier Luigi Mazzeo obtained an MSc in Computer Science from the University of Salento, Lecce, Italy, in 2001. Since then, he has been working on several research topics regarding artificial intelligence and computer vision. Dr. Mazzeo joined the Italian National Research Council of Italy (CNR) as a researcher\nin 2002. He is currently involved in projects for algorithms for video object tracking, face detection and recognition, facial expression recognition, deep neural networks, and machine learning. He has authored and co-authored 100 publications, including more than fifteen papers published in international journals and book chapters. He has also co-authored five national and international patents. Dr. Mazzeo acts as a reviewer for several international journals and for some book publishers. He has been regularly invited to take part in the scientific committees of national and international conferences.",institutionString:"Italian National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8725",title:"Visual Object Tracking with Deep Neural Networks",subtitle:null,isOpenForSubmission:!1,hash:"e0ba384ed4b4e61f042d5147c97ab168",slug:"visual-object-tracking-with-deep-neural-networks",bookSignature:"Pier Luigi Mazzeo, Srinivasan Ramakrishnan and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/8725.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10390",title:"Deep Learning Applications",subtitle:null,isOpenForSubmission:!1,hash:"5cc6cd7972551be6cfc4d3c87bf8fb5c",slug:"deep-learning-applications",bookSignature:"Pier Luigi Mazzeo and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/10390.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66606",title:"Introductory Chapter: Transcriptome Analysis",doi:"10.5772/intechopen.85980",slug:"introductory-chapter-transcriptome-analysis",body:'\nThe central dogma of molecular biology describes the flow of genetic information from genes to functions of the cells and organisms. This comprises a two-step process: first, DNA, the permanent, heritable, genetic information repository, is transcribed by the RNA polymerase enzymes into RNA, a short-lasting information carrier; second, a subset of RNA, the messenger RNAs, mRNAs, are translated into protein. The
Importantly, not all RNAs are translated into proteins, some serve a structural function, for example, rRNAs in the assembly of ribosomes, others are transporters, e.g., tRNAs, yet others serve regulatory functions, for example, the siRNAs, short interfering RNA, or lncRNAs, long non-coding RNAs; these are not translated into proteins [1]. However, these non-coding RNAs can and often do play roles in human diseases such as cancer, cardiovascular, and neurological disorders. While transcriptomics is most commonly applied to the mRNAs, the coding transcripts, transcriptomics also provides important data regarding content of the cell noncoding RNAs, including rRNA, tRNA, lncRNA, siRNA, and others. Specific approaches address the analysis of splice variant of the same gene in different tissues.
\nTranscriptome Analysis is the study of the transcriptome, of the complete set of RNA transcripts that are produced by the genome, under specific circumstances or in a specific cell, using high-throughput methods. Transcription profiling, which follows changes in behavior of a cell
Transcriptome Analysis is most commonly used to compare specific pairs of samples. The differences may be due to different external environmental conditions, e.g., hormonal effects or toxins. More commonly, healthy and disease states are compared. For example, in cancer, transcriptomics analyses address classification, the mechanisms of pathogenesis and even outcome prediction. Transcriptome studies can classify cancer beyond anatomical location and histopathology. Outcome predictions can establish gene-based benchmarks to predict tumor prognosis and therapy response. These approaches are already in use for personalized medicine, individualized cancer patient therapies.
\nOrganisms and tissues at various stages of development can be molecularly characterized. The transcriptomes of stem cells help to understand the processes of cellular differentiation or embryonic development. Because of its very broad approach transcriptome analysis is a great source for identifying targets for treatment.
\nThe early approach to study whole transcriptomes used microarrays, a set of defined sequences arranged on a solid substrate [2]. Microarrays almost exclusively represented mRNAs, that is, genes that are translated into proteins.
\nNowadays the microarray approach is supplanted by high-throughput RNA sequencing, RNA-Seq, which detects all transcripts in a sample, including the regulatory siRNA and lncRNA transcripts [3]. In this methodology, the bulk RNA is extracted from the sample and copied into stable double-stranded copy DNA, ds-cDNA, which is then sequenced using various sequencing methods [4]. The sequences obtained are aligned to reference genome sequences, available in data banks, to identify which genes are transcribed. Quantitatively, the results provide the expression levels for the transcribed genes. Compared to microarrays, RNA-Seq can measure both the low-abundance and high-abundance RNAs over a five orders of magnitude range and, importantly, RNA-Seq requires much less starting material (nanograms vs. micrograms and even as little as 50 pg) [5]. This made possible analyses of transcriptomes in a single cell, a great advance over bulk tissue RNA analyses [6]. RNA-seq can be used to identify alternative splicing, novel transcripts, and fusion genes (Table 1).
\nComparison of RNA-seq methodologies.
In principle, the assembly of RNA-Seq reads is not dependent on reference genomes and can be used for gene expression studies of poorly characterized species with limited genomic resources. It can also be used to identify novel protein coding regions in sequenced genomes. RNA-seq can be performed using many next-generation sequencing platforms, however, each platform has its own requirements of sample preparation and the instrument design.
\nImproved sequencing technologies necessitated improved data analysis methods to deal with the increased volume of data produced by each transcriptome experiment. Importantly, the results are deposited into transcriptome databases, essential tools for transcriptome analysis. For example Gene Expression Omnibus, www.ncbi.nml.nih.gov, contains millions of transcription profiling experiments. Such data have potential applications beyond the original aims of an experiment. Typical outputs include quantitative tables of the transcript levels. This requires specific analysis algorithms, often specific to the methodology used. There are software packages to bridge data from disparate methodologies, to identify groups of similar expressed genes, or differentially expressed functionally significant regulatory or metabolic pathways.
\nThe results of transcriptomic analyses are graphically often presented as heat maps, a system of color-coding that represents different levels of expression of given genes in different samples (Figure 1A). Such presentations also frequently display a clustering of samples, this helps to identify samples with similar gene expression. Another common graphical presentation uses Venn diagrams, which count the transcripts which are equivalently regulated in multiple samples (Figure 1B).
\nGraphic representations of transcriptome analysis data. (A) Heat map with clustering tree. (B) Venn diagrams of regulated genes.
Transcriptome analyses have become indispensable in basic research, translational, and clinical studies. In general, transcriptome analysis is a very powerful hypothesis-generating tool, more than a theory proving one.
\nEasily accessible, skin was among the first targets analyzed using ‘omics’ and dermatology embraced the approaches very early [7]. A classic example of coordinated transcriptional regulation was observed in cultured fibroblasts after serum stimulation [2]. Serum addition causes not only rapid recommencement of the cell cycle but, characteristically a wound-healing response, a physiological role of fibroblasts in wound healing [8]. Transcriptional responses of epidermal keratinocytes to UV light, hormones, vitamins, infections, inflammatory and immunomodulating cytokines, toxins and allergens have been characterized, as were the changes associated with epidermal differentiation [9, 10].
\nThe expression signatures that define the various cell types in human skin, were used to define 20 specific gene signatures, including those for keratinocytes, melanocytes, endothelia, adipocytes, immune cells, hair follicles, sebaceous, sweat, and apocrine glands. This resource provided a resource named SkinSig, which was then used to analyze 18 skin conditions, providing in-context interpretation of, for example, influx in immune cells in inflammation or differentiation changes in disorders of cornification [11].
\nIn the future we can anticipate a greatly expanded usage of transcriptome analysis. Translated to the bedside, it can provide better understanding and more specific diagnoses of diseases. This, of course, requires additional advances in the technology, both in the lab-bench components reducing the costs and guaranteeing reproducibility and accuracy, as well as in the computer-based components, algorithms that enable physicians to establish diagnosis quickly and reliably. In a generation, this approach will become routine.
\n\nEvery country develops studies for their main fruit chains to determine main losses and provide solutions for reducing them. When fruit shelf life cannot be increased, processing will avoid fruit spoilage. Food losses and waste are estimated globally in 1.3 billion tons annually. Commercialization loss was estimated in 9.5 tons/week in Salvador, Brazil, in highly perishable fruits such as banana, papaya, and tomato [1]. The annual loss of fruits during postharvest operation represents in Sri Lanka about 210,000 metric tons of fruit, which corresponds to 30–40% of the harvest, representing a loss of US$90 million [2]. Mexico is the leading producer of prickly pear plants with 230,000 hectares, being 67,000 for fruit production [3]. Mexico is also the world leader in exporting fresh mangoes in 2019 [4]. Postharvest losses of fresh mango fruits in Pakistan were reported to average 69% [5] but sometimes reach 100% under disease-favorable environments. In the 2014 season, an increase in mango stem end rot (SER) at Israel caused a 30–40% loss of the harvested fruit [6]. This disease occurs in mango, avocado, and citrus fruit [7].
The rind or exocarp includes the hard cases of nuts or the shell of watermelon. The peel forms the pericarp, meanwhile the pulp or edible portion of the fruit is the endocarp [8]. Fruit or vegetable peel or rind appears as its outer protective layer. Watermelon, a round fruit, has a firm outer rind that surrounds a white inner rind layer. The interior edible pulp of red or yellow color is the endocarp. The outer walls of the epidermal cells of all plant organs are coated with a cuticular membrane [9]. Physical properties and chemical composition of the fruit cuticle change markedly during its development [10]. During early fruit development, maximum cuticle deposition rates per unit area appear increasing cuticle thickness. Cuticle composition changes after depositions of wax, phenolic compounds, and polysaccharides [11].
Fleshy fruit cuticles and vegetative organs have similar compounds, but fruit cuticles are thicker [12, 13]. The hydrophobic nature of fruit cuticle makes it an effective barrier to reduce water loss. Cuticle permeance differs between mango fruits receiving sunshine and those growing under the canopy shade [14]. In addition, intracuticular waxes limit movement of surface water into the fruit and reduce transpiration. Cuticular wax load increases during fruit development leading to a thicker mango cuticle at maturity [15].
The fruit cuticle provides an important physical barrier against pathogens [16] avoiding fungal colonization on sweet oranges [17]. Industrial food wastes such as peels from juice production provide raw material for obtaining wax compounds [18]. The cuticle also provides protection against environmental conditions, where excessive solar radiation produces physiological disorders such as sunscald [19]. Cuticle strength and rigidity decrease as it becomes warmer [20]. The cuticle inner surface is fully hydrated, meanwhile the cuticle outer surface in contact with the atmosphere is less hydrated. Although waxes are present in both sides of the cuticle, water absorption takes place [10]. Cuticle swelling and softening alter its mechanical properties. Fruit cracking is triggered by cuticle breaking, linked to rainwater and high humidity [21, 22].
Handling fruits up to 15 days after harvest has a profound effect on its final quality because fruits are still alive and vulnerable to adverse conditions [23]. Throughout fruit ripening, softening results from the modification of polymers within the primary cell wall [24]. Cuticle and wax deposition increased during the first 15 days of postharvest shelf life in mango fruits of cultivars “Kent,” “Tommy Atkins,” and “Ataúlfo” [25]. Mango fruits with higher wax deposition in their cuticle were more resistant to fruit fly attack [26]; also fruits presented lower transpiration and deterioration. Pectin solubilization during fruit ripening is directly related with the ripe fruit texture [27]. Fruits showing a melting texture, such as avocado, kiwifruit, tomato, and peach, soften in a short time [28]. Fruits having a crispy texture during maturation, such as apple or watermelon, present low pectin solubilization [29]. The simplest postharvest procedure to increase fruits shelf life consists of storing them under controlled temperature and humidity conditions. However, rheological and mechanical properties of fruit cuticles are affected [20]. Peach firmness dropped after being stored at low temperatures. It was associated to a reduction of covalently bound pectins [30]. Apricot controlled-atmosphere treatments showed also pectin degradation [31].
Mango fruit pedicel (Figure 1a) presents an internal network of resin ducts, and the latex is kept under plant turgor pressure [32]. When the pedicel is broken or cut, a secretion of milky-viscous sap leaves the fruit [33]. This latex contains oily antifungal resorcinol [34]. The contact of the fruit surface with the sap exudate (Figure 1c) can lead to skin injury (sap burn) and develop under-skin browning [32]. This injury decreases mango quality after damaging seriously its skin, and if the fruit contacts the soil, it can be easily infected. These fruits are rejected at the entrance of fresh fruit packinghouses [35]. Lenticels also appear after sap exudation showing symptoms of early sap burn injury [36]. A delay in the appearance of stem end rot was noted by keeping a short pedicel at harvest [6, 34]. Mango fruits harvested with stems have more sap and less incidence of anthracnose [37].
Mango fruit (a) pedicel, (b) washing, and (c) showing latex in the peel.
Heat transfer within fruits stored at a cold storage warehouse after harvesting has been studied before long-term shipping [47, 48, 49]. Harvested fruits are treated with different technologies to delay ripening, preventing physiological and pathological disorders [49]. Producers sometimes target distant markets, so they must harvest their tomatoes in a mature green state to allow longer ripening and senescence periods [50]. Excessive field heat increases fruit metabolic activity, so immediate cooling after harvest is recommended [51]. Low and high temperatures lead to the denaturation of enzymes, modifying fruit’s respiration rate [52]. Stone fruits such as plums and mangoes have a seed inside and present different thermophysical parameters within the pulp [53, 54]. The contact surface between the seed and the pulp is the deepest point that can be reached in the fruit and becomes a thermal center. The finite element method can simulate heat transfer within food products that present irregular geometries [55].
Hot water immersion and hot air treatments at temperatures between 40 and 60°C from seconds to several hours control pathogens in apples, pears, citrus, and melons [56]. Postharvest quality of apples improved after being heated with air during one day at 40°C [57]. Heat treatment caused important changes in epicuticular wax altering microcrack structure. Mandarins were immersed in hydrothermal treatments, maintaining the fruit surface temperature at 50°C for 2.5 min [58]. Once the mandarin peel heats up, thermal energy transfers by conduction to subsequent layers toward the center. Heat transfer stops after reaching an equilibrium condition [59]. Thermally treated mandarins present higher TSS (total soluble solids), lower maturity index, and similar citric acid content.
Mango fruit must be treated to ensure that it is free of fruit flies, so that importing markets allow their acceptance [60]. Small mango fruits weighing less than 375 g require 65 min of immersion in hot water at 46.1°C [61]. A thermocouple was inserted at the surface of the endocarp and another in the center of the mango fruit to record temperature changes during hot water immersion. The temperature at the center of the fruit continued increasing for 10 min after removing the fruit from the hot water bath [61]. Although the hot water treatment reduces fruit firmness, it influences positively in oxidative processes, cell wall changes, and steady-state levels of protein [62].
Thermal treatment application maintains mango fruit quality and produces higher economic returns. Cauterization is a very useful technique that can close any tissue after applying heat. After harvesting, all the wounds of the fruit that were cauterized and sealed hermetically avoiding transpiration and increasing shelf life.
Postharvest mango quality depends on proper harvesting and even better production practices. Mangoes are generally handpicked or retrieved with poles adapted with a cutting blade and a bag [63]. The blade end breaks the pedicel and latex covers the fruit peel (Figure 1c). Although de-sapping after harvest avoids peel sap burn, it reduces fruit protection against anthracnose and stem end rot. The main cause of mango sap burn is attributed to a deposit of volatile compounds such as terpinolene and car-3-ene through the lenticels [64]. Stem trim cutting results in latex stains deposited on the fruit surface. The sap stored in the fruit ducts under high pressure falls on the peel of mango fruit [65]. Delatexing can be done by inverting freshly de-stemmed fruits on plastic or steel mesh racks for 30 min. Another technique is to dip freshly de-stemmed fruits in 1% alum solution (one-half kg powdered alum per 50 L of water) for 1 min; fruits should dry before packing [65]. The contact of latex with mango skin induces lenticel discoloration, resulting in red spots caused by the synthesis of anthocyanins [66]; these spots can also be induced by chilling injury [64]. Resorcinols and gallotannins are inhibitory to major postharvest pathogens including anthracnose [67].
If a 1 cm long pedicel remains attached to the fruit after harvest, latex will not leave the fruit avoiding sap burn. More than 80% of sap flow was observed within the first minute of stalk removal [37]. Sap pH varies between 4.43 and 4.6, and the ratio of nonaqueous fluid (oil) to aqueous fluid is of 1:6.5 [37]. The best hour for harvesting mango fruits was just after midday [68]. Early morning harvesting causes a rapid flow of sap from the pedicel end. High solar radiation and vapor pressure deficit increased stem water flow within mature fruit during the morning and decreased after midday [69]. Pedicel cutting place does not affect sap output flow. If stem is cut at the abscission zone, delayed ripening of mango fruit results [68].
Two of the main diseases of mango fruits are anthracnose and stem end rot. Anthracnose caused by the
Stem end rot (SER) is a disease caused by
If latex is retained within the fruit at harvest, it reduces anthracnose and stem end rot (SER) development during ripening. Fruit ripening parameters are not affected by pedicel length, and substantially less number of diseases appear compared with fruits harvested without stems. Anthracnose lesions decrease when mango fruit is harvested with a long stem [33]. SER onset in fruits with short pedicel was later than in fruit without stems [6]. Latex aqueous phase having chitinase contributes to fruit resistance against SER [67]. Two systems were developed to minimize latex de-sapping:
Cut stems 0.5 cm long and cauterize them with a hot knife implement.
If harvest brings fruits without stems, fruits are washed, dried and a wax is applied at the stem end.
Automatic fruit harvesting follows different picking patterns including bending, lifting, twisting, and pulling [72]. Modern soft grippers employ soft and flexible materials for holding the fruits [73]. Mechanical cutting devices for fruits consist of knifes [74, 75], scissors [76], and hot wires [77]. Knives used to cut stems have to be continuously immersed in skimmed milk. This action avoids virus invasion and should take place before contacting each plant. Therefore, it is not practical for automated processes [74]. A scissor employed to cut tomato stalks was articulated by a finger phalanx, but could also be fixed to the gripper palm [76].
Nichrome wire electrodes were mounted at a thermal cutting end effector. A high voltage of 300 V cuts 1 mm sweet pepper stems in 2 s [77]. As the diameter doubled, the cutting period increased to 5 s after applying the same voltage between electrodes [77]. Thermal stem cut ceased fungal or bacterial infestation, increasing pepper shelf life over 15 days. Peppers harvested by normal scissors showed physical changes after the fifth day and perished after nine days. Mechanical cutting is suitable for cucumbers where peduncle direction is uniform [74]. Laser cutting of variable-diameter tomato peduncles (1.5–5 mm) was studied [78]. It became impossible to cut off a peduncle directly by focusing a laser beam on it, as the focusing spot is smaller than the peduncle size. After tomato peduncle drilling, laser cut a 5 mm diameter stem in 15.2 s [78].
A harvesting robot requires a transmission system to drive the end effector [79]. A robot gripper with four pneumatic fingers has been used with mango fruits. The gripper can handle various shapes and sizes and has been used to determine fruit firmness [79]. A gripper was also developed to handle mango fruits and estimate their ripeness. This robot integrated accelerometers and optical sensors and worked without contacting the fruit [80]. Two robots were used for tomato grafting, cutting 240 plants per hour. The graft is accomplished when both plants are placed in intimate contact between them, and a clip is pressed against them [81].
Mango fruits collected at the Mexican Pacific coast were green, firm, and starting to ripe. The developed gripper to hold the fruit presented integrated soft cushions (Figure 3(a and b)) to protect the fruit and move it for cutting the stem. Two linear knifes were used by the trimmer equipment. One knife was fixed, meanwhile the other was ejected by a 24 VDC (direct current voltage) linear actuator. Preliminary tests show successful results in stem cutting with only one movement. The mango enters the transporting system, but not all the fruits have attached pedicels. Those having the pedicel were cut by a warm knife having a temperature of 35°C. An image of the mango peduncle or abscission zone was obtained with a X800 digital microscope. The effect of anthracnose infestation was analyzed after fruit matured.
Wax was applied to mango fruits without the stem end. Paraffin was warmed up in the interior of a conventional gun (Figure 3a) and applied to the mango abscission orifice to avoid fungal or bacteria infestation. The manual gun uses paraffin sticks that melt after being heated by an electric resistance. When the trigger is squeezed, liquid wax leaves the gun through an output nozzle. Better results are obtained after applying pressure with a conical stamp over the liquid wax placed at the fruit peduncle orifice (Figures 1a and 2b). An industrial wax application gun pressurizes the hot fluid with a pneumatic system (Figure 3b). A camera at the top provides information of whether the fruit has a 1 cm long stem and would only apply wax when there is no pedicel.
Robotic gripper (a) with mango pedicel, (b) without mango pedicel and having wounds, (c) cauterizer knife machine.
Robotic arms handling a mango fruit for (a) manual, and (b) industrial wax application.
Large latex channel openings were seen at and below the abscission zone close to the fruit. High volume of latex spurts out through these channels after detaching the pedicel from the fruit [82]. Latex canals are seen as large perforations in the fruit peel reaching the outer pulp [34, 82]. After cutting the Keitt mango pedicel 2 cm away from the abscission zone, it was cauterized at 35°C, showing latex channels (Figure 4a). Cauterization at 35°C does not heat mango peel tissue (Figure 4b). If the stalk was cauterized at 45°C, the cells surrounding the channels were burnt and reduced in size (Figure 4c). Latex channels are clearly observed within red circles in the green tissue just after removing the pedicel (Figure 5a). If the stem gets cauterized, latex channels are still present after cutting the pedicel with a razor blade, 0.5 cm toward the fruit abscission end (Figure 5b). If honey covers the green tissue, it will enclose the latex channels (Figure 5c).
Transverse section of Keitt mango fruit stem, showing the latex canals after cauterization at (a) 35°C on the abscission zone, (b) 35°C on the pedicel, and (c) 45°C on the pedicel.
Transverse section of Keitt mango showing the latex canals after (a) removing the pedicel, (b) cauterizing, and (c) removing the stem and adding honey.
Cactus pear (
Cauterization prototypes were developed to increase prickly pear shelf life and decrease fruit diseases. A review on cauterization techniques including high-temperature contact and cryo-cauterization was presented [38]; both of these systems are patented [86, 87]. A cauterizer for harvested fruits applied 100 kPa of pressure at 200°C during 30 s [88]. Cactus pears subjected to a cauterization treatment were cut at the top-peduncle section, leaving a sealing area of 13 cm2. The system is efficient in controlling postharvest diseases, but its excessive heat application results in expensive energy consumption [88]. Pulp temperature increased to 86°C after heating the fruit at 200°C for 45 s [88].
Prickly pear and their cladodes have natural polymers, and several eco-friendly materials are under development [89]. Cactus mucilage can be used as gelling, stabilizing, or encapsulating agent. The use of this bio-polymer material opens new opportunities in the food packaging. It is also used as a flocculating agent for heavy metals in water [90]. All these properties open new economic opportunities for cactus produce.
Several mechanisms have been developed for detaching the fruit from the cladode [91] and for fruit cold cauterization [92]. A harvesting arm with four degrees of freedom is used as hydraulic piston to collect prickly pears [91]. Cryo-cauterization results from pressing the fruit sliced area against a dry ice wall. The thermal shock maintained cactus pear over 120 days without further cooling [44]. Energy consumption of cryo-cauterization was minimum as no resistance was used; meanwhile the cauterizer working at 200°C employed 13 W per fruit [88]. The first automatic fruit cauterizer uses sensors and mechanisms to detect when the prickly pear is present within the metal container, rotate it 90° counterclockwise, displace it against the dry ice wall and deposit it again into the original band. The processing of 1000 fruits took a little more than 500 min [92]. Further development to simplify the system used a two-finger gripper that picks the fruit (Figure 6a). The most significant features to select a gripper include its opening range, its maximum applied force, its type of movement (angular, parallel or self-centered), and the grasp strategy (external or internal grasp). The robotic end effector uses two fingers to press the thick fruit peel without damaging it. The mechanism rotates the fruit by180° until it touches the ice pad (Figure 6b). However, dry ice melts in 5 h and has to be replaced in both systems. The last prototype has a gripper that grasps the fruit more efficiently with six fingers (Figure 6c). The gripper moves horizontally toward the dry ice chamber by sliding on pneumatic actuators. In the slider actuators, the gripper is mounted to the carriage. Precise slicing of the top-peduncle section is done by means of a circular blade. Once the fruit is sliced, it moves further to the left until it presses the dry ice chamber. With additional volume of dry ice within the chamber, it can last more than one day.
Rotating gripper (a) picking the fruit, (b) contacting the heating surface, and (c) over a linear mechanism sliding toward the dry ice chamber.
Thermocouple sensors are being used for monitoring temperature within the fruit. Sensors were added below mesocarp and in the center of the fruit to study fruit changes during hot water treatments [58]. Three thermocouples of type J were inserted in the flat prickly pear surface to study variations during cauterization. As well after keeping the fruits for nine and 15 days at ambient storage, 10 prickly pears were cut nearby the sealed surface and in the middle of the fruit to measure TSS changes. Fruits stored for nine and 15 days at ambient storage were cut nearby the sealed surface and in the middle of the fruit to measure TSS and acidity changes.
Mango cuticle is thin and does not resist the high thermal gradient required by cauterization operations. Therefore, thermal treatments have to be applied carefully, mainly in the mango fruit abscission-pedicel interface.
Average biochemical maturity properties of fruits at early harvest for Haden, Kent, and Keitt were analyzed. These properties include pH, total soluble solids (TSS, °Brix), ascorbic acid (mg.100 g−1), moisture content (%), and dry matter content DM (%). Kent and Keitt late varieties were harvested 137 and 148 days after fruit set, respectively. These results are similar with those obtained at Ghana plantations [93]. Mango trees with higher fertilization delayed fruit firmness decay. At the moment of harvest, fruits were green and firm for all varieties and fertilization regimes. After nine days of storage at 25°C, firmness decreased to 16.93 N for Kent fruits and remained firmer for Keitt mangoes. Chemical composition changes result from physiological and biochemical events controlled during fruit ripening [94]. Pectins are responsible for fruit texture and rise in the fifth week of mango fruit setting until the stone is formed. Pectins are responsible for fruit texture and rise five weeks after mango fruit setting until the stone is formed. Afterward, pectin content decreases, and fruit starts softening due to enzymatic degradation [64].
Fruits were harvested at a very green stage showing low TSS, acidity, and pH values (Table 1). As fruits mature nine days after, firmness decreased to 25.73, 16.93, and 32.91 N for Haden, Kent, and Keitt fruit, respectively (Table 2). After mango harvest, quality losses occur, affecting the content of nutritional components at different points during the handling chain [65].
Variety | Pulp pH | TSS (°Brix) | TA (% citric acid) | DM (%) | Firmness N |
---|---|---|---|---|---|
Haden | 3.81 | 9.72 | 2.11 | 16.27 | 113.27 |
Kent | 3.98 | 6.42 | 1.45 | 17.84 | 122.42 |
Keitt | 3.66 | 7.63 | 2.43 | 17.85 | 121.05 |
Physicochemical analyses of different mango varieties considering pulp pH, TSS (total soluble solids), TA (Titratable acidity), DM (dry matter), and firmness of just harvested fruit.
Variety | Pulp pH | TSS (°Brix) | TA (% citric acid) | DM (%) | Firmness N |
---|---|---|---|---|---|
18.32/ | 0.24/ | 19.20/ | 25.73/ | ||
Haden | 5.12 | 17.56* | 0.33* | 18.86* | 32.42* |
17.98/ | 0.21/ | 18.96/ | 16.93/ | ||
Kent | 4.43 | 17.18* | 0.31* | 18.09* | 22.42* |
15.72/ | 0.18/ | 18.55/ | 32.91/ | ||
Keitt | 5.67 | 15.03* | 0.27* | 17.96 | 35.72* |
Physicochemical analyses of different mango varieties considering pulp pH, TSS (total soluble solids), TA (Titratable acidity), DM (dry matter), and firmness in the market place.
Measurements of fruits without latex removal.
Kent mangoes show a rapid decrease in firmness during ripening [95]. Kent mango trees with normal fertilization level produce fruits with high respiratory activity, lower ascorbic acid concentration, and fruit firmness drop [95]. Lower content of potassium within tissues is related to higher acidity, while lower pulp pH responds to the fertilization regime [96]. Keitt mangoes showed the lower quantity of total soluble solids (15.72°Brix) and a low acidity of 0.18 (Table 2). On the other hand, Ca applications increased citric acid content in “Haden” mango fruits [97]; meanwhile pulp pH jumped to 5.12. Keitt mango showed higher vitamin C content than Kent and Haden fruits in their ripe phases, because of the inhibition of polyphenol oxidase (PPO). This mango variety provides better color and flavor retention during processing [98]. Mango refrigerated at 4°C tends to maintain the same TSS and TA during nine days of storage (Figure 7a and b). If the pedicel gets cauterized, mango TSS drops. Titratable acidity (Figure 7b) was significantly affected by fruit respiration, consuming organic acid.
Keitt mango (a) total soluble solid (TSS) concentration, and (b) Titratable acidity (TA) during the nine days of storage at 4 and 20°C with and without pedicel cauterization.
Fruit fly control and removal of surface fungal diseases can be carried out by hot water immersion [99] and by hot air application. Hot water immersion is relatively easy to use, economic, and can provide accurate monitoring of fruit and water temperature. Mango fruits immersed in hot water at 52°C for 5 min eliminated anthracnose fungal infection [60]. Anthracnose infestation was not present after storing the fruit for 15 days at ambient temperature [100]. The effect of hot water treatment on pulp TSS was insignificant and mango visual quality remained outstanding. If green mature fruits are dipped for 20 min in water heated to 53°C, it will control both anthracnose and SER. If water is heated below 52°C, it is not effective to control anthracnose, and at 5 degrees warmer, it will scald the peel [101]. Hot water immersion without waxing affects the natural wax layer of the fruit surface, enhancing its senescence. Fruits coated with wax delay the ripening and extend their shelf life [102]. Keitt and Tommy Atkins mango fruits develop yellow pigments in the skin after hot water immersion [60]. TSS content of fruits immersed in hot water increased to 20°Brix, meanwhile untreated fruits remained at 17° Brix. In mangoes infected with SER, immersed in hot water and stored for 13 days, TSS content reached 19°Brix; fruits remained in 14°Brix if they were untreated [103].
At immature stage, anthracnose is not perceived, and the infection appears when mango ripens. Mango latex contains antifungal resorcinols and chitinase, so its retention during harvest will protect fruits against anthracnose and stem end rot [67]. Stem trimming deposits latex stains on the fruit surface, as pressurized sap stored in mango ducts falls on the fruit peel [65, 104]. Keitt mango fruit that preserved latex at harvest developed slightly smaller anthracnose lesions than fruits in which latex was drained (Figure 8). Keitt mango lesion area increases to 200 mm2 after 10 days when fruits do not have latex (Figure 8a). Mango lesion corresponds to the black spot area growing on the fruit peel. When latex is present, the lesion only increases to 50 mm2. The size of the remaining stem is correlated to the lesion area (Figure 8a). As it is longer and cauterized, less sap leaves the fruit, and it is more protected against pathogen infections. Higher anthracnose infection was noted in Keitt trees when more nitrogen was applied during fruit development [105]. This result was also found after analyzing “Willard” mango fruits [34].
Keitt mango anthracnose lesion area after several days of harvest (a) with and without latex, and (b) after petiole trimming.
When Keitt mango fruit stems were cauterized or their peduncle orifice covered with wax just after harvest, latex fluid remained within the fruit. Average anthracnose lesion was 38 and 54% smaller for wax and cauterization treatments, respectively, with respect to the control treatment after 11 days (Figure 9); no stem, wax, and latex were present on control fruits.
Anthracnose lesion area several days of harvest for fruits cauterized and for mangoes after wax application.
Gripper suction cups grasp products by means of pressure difference [106, 107]. These grippers can be joined with other mechanisms easily, but are impractical for high-temperature grasping [108]. Modern granular-material grippers align themselves in malleable shapes to grasp the end product [108, 109, 110]. The prickly pear gripper used a grasping force of 40 N with a holding time of 30 s. The cauterizer robot (Figure 6a) presents a gripper moved by a mechanism containing two DC motors. One of the gripper fingers´ remains static during grasping, meanwhile the opposite finger presses the fruit; this finger moves using a DC motor. The second prototype used a pneumatic actuator. The slide actuator (Figure 6b) transports the six-finger gripper until a sensor detects its contact against the dry ice wall. A timer ensures that the fruit surface contacts the dry ice block during the right period. The pneumatic slider returns the fruit back to the pick and place area; this process takes 25 s. The end effector damaged the prickly pear during grasping and cauterization, when the fingers did not allow fruit movement. Fruit compression plotted in the vertical axis of Figure 10 corresponds to the prickly pear deflection caused by finger pressing.
Fruit firmness vs. compression for prickly pears having different slice diameter.
Prickly pears were sliced and cauterized by the robotic systems. Large prickly pears present an average diameter of 15 mm at the sliced section; smaller pears present a larger slice diameter ranging between 30 and 35 mm. Two clusters appear after plotting fruit firmness against pear compression (Figure 10). The black marks within the red circle show big fruits having firmness within 13 and 16 Ncm−2. Fruit damage during processing decreased for pears compressed less than 3 mm. Orange markers show fruits with higher firmness (17.5–21.5 Ncm−2), where the slicing area rises.
Prickly pear is a desert fruit with a thick peel. Pear firmness decreases once it is sliced (Table 3), and the fruit is destroyed when compression overpasses 5.2 mm. Red data in Table 3 shows prickly pear values suffering some kind of damage. As the cauterizing diameter (ϱ) increases, fruit firmness drops and a lower pressure should be applied to avoid its destruction. Yellow fruits are softer and their tissue compresses easily. Therefore, yellow fruits are unable to withstand the cauterizing force (Table 3). As the prickly pear sliced area receives an orthogonal force, the airspaces within the pulp fill up. Pulp deformation takes place, growing sideways until the peel cannot withstand the pressure and explodes.
Diameter (mm) | Color | Firmness (Ncm−2) | Compression (mm) | Damage (%) | ||
---|---|---|---|---|---|---|
Min | Max | Min | Max | |||
<15 | green | 16.12 | 16.82 | 2.5 | 3.2 | 0 |
15 < ϱ < 25 | green | 15.28 | 15.94 | 2.8 | 4.1 | 0 |
25 < ϱ < 35 | green | 14.47 | 15.35 | 4.2 | 5.5 | 50 |
<15 | yellow | 14.21 | 14.72 | 4.9 | 5.5 | 100 |
15 < ϱ < 25 | yellow | 13.73 | 14.15 | 5.1 | 5.5 | 100 |
25 < ϱ < 35 | yellow | 13.04 | 13.57 | 5.3 | 5.5 | 100 |
Green and yellow prickly pear firmness and compression having different slice diameters.
Temperature measurements 2 mm within the pulp sliced area and at the middle of the prickly pear differ (Figure 11). The thermocouple placed 2 mm away from the sliced area reached only −4°C after 50 s, being hotter than the temperature of the dry ice block (−78°C). For the rotating robot (Figure 6a), fruit temperature decays after 50 s once the gripper contacts the dry ice surface, reaching its minimum temperature 10 s later. The green area in Figure 11 shows negative pear temperature values in the sliced area during fruit cauterization contact. The complete temperature signal within the prickly pear during the cauterization cycle is shown in Figure 11. Fruit cauterization ended 125 s later, arriving to 17.4°C 145 s after; At this moment the slide system returned the pear back. Pulp temperature measurements acquired 15 mm below the sliced area were almost constant during the 6 min (Figure 11, dot line). Tissue temperature returns quicker to its natural thermal state (17.4°C) with the sliding system as shown by the red line, Figure 11. Cell walls have a more rigid contact when touching the dry ice chamber surface. Similar results were achieved by prickly pears that contacted the dry ice for 25 s.
Prickly pear pulp temperature monitored 2 mm and 15 mm away from the sliced surface during cauterization.
TTS and total acidity (TA) were measured every 15 days after cutting three fruits at the center. TSS and TA monitoring was repeated in fruits stored for three months. Total soluble solids (TSS) concentration estimates the sugar content in the fruit and determines its degree of sweetness [111]. TSS concentration of prickly pears of cultivar “Blanca Cristalina” just after cryo-cauterization remained in 13.5°Brix. Measurements taken one, two, and three months later showed values of 13.4, 13.3, and 13.2°Brix, respectively. TSS minimum variations show that cryo-cauterization preserves fruit quality. Blanca Cristalina and Esmeralda fruits present 13.6 and 14°Brix at harvest, respectively [112]. Twenty-eight days later, TSS concentration was of 11.4 and 12° Brix for Blanca Cristalina and Esmeralda pears [112]. Cactus pears from the “Orito” cultivar presented 14.9°Brix after harvest and 14°Brix after 28 days later [111]. Blanca Cristalina TA values remained constant at 0.25% during the three months, so fruits remain acid and fruit acceptance high [111]. Blanca Cristalina and Esmeralda presented 0.27 and 0.29% of citric acid at harvest, respectively. After four weeks, it decreased to 0.18% in Blanca Cristalina [112]. For all the varieties, pulp citric acid decreased during ripening [113]. Although in these experiments cuticle thickness was not measured after heat treatments. Cuticle thickness reduction on some varieties was due to the effect of heat treatments [114]. The resistance provided by the cuticle against mechanical damage depends on the cuticle structure [115].
An increase in the quality and shelf life of mango fruit and prickly pear will increase their marketing worldwide. The first step to increase mango quality is to reduce fungal diseases such as anthracnose and stem end rot that appear due to environmental changes. Thermal treatments on mango fruits preserve their quality and reduce postharvest fruit disease infestation. Mango fruits must be harvested with care as mechanical damage of the stem end can start rotting in the fruit. Latex de-sapping after field harvest will reduce fruit sap burn.
Mango latex that contains antifungal resorcinols and chitinase should remain within the fruit to decrease anthracnose and stem end rot infestation. Stem channel thickness where latex flows can decrease after cauterization or by applying liquid paraffin. Two systems were developed to maintain latex after harvesting.
In the first system, a gripper grabbed the mango fruit and proceeded to cut the stem by means of two hot knifes maintained at 45°C. The cauterized pedicel presented burnt cells at the surface and reduced in size toward the stem end. This technique decreased anthracnose infestation by 50% after 11 days of storage when compared with de-sapped mango fruits. TSS concentration drops after pedicel cauterization. In the second equipment, warm paraffin wax was applied by a conventional gun to mango fruits without the stem end. Average anthracnose lesion was 38% smaller for paraffin application after 11 storage days than in untreated infested mangoes.
Prickly pears are native fruits from Mexico that grow in arid zones and have very important nutritional properties. Cauterization increased prickly pear fruits’ shelf life over two months. Hot and cold cauterizer equipment extended shelf life without pathogen damage as the treatment seals the fruit and avoids dehydration. Two grippers were developed to cryo-cauterize prickly pears as this system is more energy-efficient than hot cauterization. The first gripper uses two fingers to press the thick fruit peel without damaging it. In this robotic system, the biggest disadvantage is the reduced dry ice pad duration. Warm air moves around the dry ice pad and melts in 5 h, so it has to be replaced. The second robotic system was more efficient as the dry ice block was within a chamber isolated from the air. Dry ice lasted for more than one day. This system used a six-finger gripper that moved over a pneumatic actuator, cryo-cauterizing a pear every 25 s. When the gripper contacted the dry ice wall, the temperature inside the fruit 2 mm away from the fruit sliced area was of −4°C. The temperature was measured with a thermocouple inserted in the fruit. Another temperature measurement was taken inside the pear 15 mm away from the sliced zone and the colder temperature was of 16°C. Gripper grasping damaged yellow fruits and its compression should be limited to 3 mm in green fruits. TSS and TA remained constant in cryo-cauterized fruit during the three months of fruit storage.
This work was supported by mango and prickly pear producers in Mexico by providing fruits for analysis. Also I would like to thank the DGIP, who funded the cauterizer project 21013-DTT. I appreciate the assistance of MI Angel Hernandez Facundo in the preparation of the drawings and the Language Department of the Universidad Autonoma Chapingo for reviewing this manuscript. As well I acknowledge the help from Biol and Ruth Perez in the analysis of data.
The authors declare no conflict of interest.
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"23,21,7"},books:[{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11774",title:"International Law",subtitle:null,isOpenForSubmission:!0,hash:"9e629251ba38b83f6bf406dd93511c61",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"90d8b5fdb1297222c88ab85dd900297a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11771",title:"Photography",subtitle:null,isOpenForSubmission:!0,hash:"466454ffeb31a0953c5120379ffece18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11771.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Occupational Stress",subtitle:null,isOpenForSubmission:!0,hash:"2dc8ab0bc980393022adbacd9a23d219",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12124",title:"Criminal Behavior",subtitle:null,isOpenForSubmission:!0,hash:"b0c407228070f8876b24ceb718516ed7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12124.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:96},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:45},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"851",title:"Green Chemistry",slug:"environmental-sciences-environmental-chemistry-green-chemistry",parent:{id:"127",title:"Environmental Chemistry",slug:"environmental-sciences-environmental-chemistry"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:31,numberOfWosCitations:47,numberOfCrossrefCitations:20,numberOfDimensionsCitations:53,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"851",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5170",title:"Green Nanotechnology",subtitle:"Overview and Further Prospects",isOpenForSubmission:!1,hash:"e2d4dc551be023ba3525e6126076af90",slug:"green-nanotechnology-overview-and-further-prospects",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5170.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50106",doi:"10.5772/62327",title:"“Green” Quantum Dots: Basics, Green Synthesis, and Nanotechnological Applications",slug:"-green-quantum-dots-basics-green-synthesis-and-nanotechnological-applications",totalDownloads:3780,totalCrossrefCites:9,totalDimensionsCites:19,abstract:"Nanotechnological development of new materials involves the discovery or design of materials at small length scales with controlled physical and chemical properties than can be tuned or modified in function of their applications. One of the most suitable examples of nanoparticles used for this purpose are quantum dots, a type of colloidal fluorescent semiconducting nanocrystalline material that has the possibility, due to its unique optical and electronic properties, to be used in numerous technological applications such as biosensing, in vivo imaging techniques, photovoltaics, nanomedicine, molecular pathology, and drug delivery. Thus, there are almost endless possibilities for quantum dots materials. In spite of the fast advance in the search of quantum dots with better nanomaterial performance, environmentally benign and sustainable production is still lacking. Although the use of these materials is developing promptly, there is increasing concern that these materials might pose potential risks to human health. Herein, we discuss principal properties of quantum dots, including their functional architecture and toxicity, and review the main studies about “green” quantum dots synthesis to be aligned with green nanotechnology approach for nontoxic, cleaner, safer, and more responsible processes. The organometallic colloidal synthesis and the aqueous colloidal synthesis, as well as their drawbacks and benefits, are conferred. Recent advances in technological and biological quantum dots–based applications are also discussed in this chapter.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Carlos A. Martínez Bonilla and Vladimir V. Kouznetsov",authors:[{id:"105180",title:"Prof.",name:"Vladimir V.",middleName:"V.",surname:"Kouznetsov",slug:"vladimir-v.-kouznetsov",fullName:"Vladimir V. Kouznetsov"},{id:"179817",title:"M.Sc.",name:"Carlos A.",middleName:"Andrés",surname:"Martínez Bonilla",slug:"carlos-a.-martinez-bonilla",fullName:"Carlos A. Martínez Bonilla"}]},{id:"50214",doi:"10.5772/62620",title:"TiO2 Nanostructures and Nanocomposites for Sustainable Photocatalytic Water Purification",slug:"tio2-nanostructures-and-nanocomposites-for-sustainable-photocatalytic-water-purification",totalDownloads:2271,totalCrossrefCites:3,totalDimensionsCites:12,abstract:"Water, together with energy and food, has been addressed as one of the main urgent problems of humanity. The conventional wastewater treatments suffer some limitations related to the effectiveness in decontamination (mechanical filtration), in the heavy use of chemicals (chlorination), or in elevation of operational costs and energy requirements (desalination and reverse osmosis). In this sense, new materials such as nanocomposites may overcome these issues taking advantage of the peculiar properties of materials at nanoscale. Research on novel nanotechnologies must bring advances in order to contrast and prevent water scarcity and pollution. In order to be effective, these nanotechnologies should run at low operational cost, even in places unequipped by strong infrastructures and in concert with conventional cheap methodologies.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Giuseppe Cacciato, Massimo Zimbone, Francesco Ruffino and Maria\nGrazia Grimaldi",authors:[{id:"178880",title:"Ph.D.",name:"Francesco",middleName:null,surname:"Ruffino",slug:"francesco-ruffino",fullName:"Francesco Ruffino"},{id:"180334",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Cacciato",slug:"giuseppe-cacciato",fullName:"Giuseppe Cacciato"},{id:"180335",title:"Dr.",name:"Massimo",middleName:null,surname:"Zimbone",slug:"massimo-zimbone",fullName:"Massimo Zimbone"},{id:"180336",title:"Prof.",name:"Maria Grazia",middleName:null,surname:"Grimaldi",slug:"maria-grazia-grimaldi",fullName:"Maria Grazia Grimaldi"}]},{id:"50705",doi:"10.5772/63314",title:"Metal Nanoparticles as Emerging Green Catalysts",slug:"metal-nanoparticles-as-emerging-green-catalysts",totalDownloads:3255,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"Green nanotechnology is defined as the technology applied for building clean technology by which one can reduce the potential risks of environment and also improve human health conditions. It is linked with the implementation of products of nanotechnology and its process of manufacturing. Green nanotechnology synthesizes new nanoproducts with improved properties in such a way that they can substitute some of the existing low‐quality products. The main motive of developing new nanoproducts is to enhance sustainability and also to make them more environment friendly. In particular, nanoscale materials (e.g., nanoparticles) can be defined as those having characteristic length scale lying within the nanometric range, that is, in the range between one and several hundreds of nanometers. Within this length scale, the properties of matter are sufficiently different from individual atoms/molecules or from bulk materials. The primary objective of this chapter is to provide comprehensive overview about metal nanoparticles (MNPs) and its application as emerging green catalysts. This chapter contains six sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of MNPs as green catalyst. Section 2 reviews the preparation and characterization of supported metal nanoparticles for a wide range of catalytic applications. Section 3 presents the catalytic properties of supported metal nanoparticles. Section 4 describes briefly some of the most commonly reported supported MNPs in different green catalytic applications. Section 5 concentrates on our own results that related to the application of supported MNPs in catalysis. In this section, the oxidation of benzyl alcohol to benzaldehyde, the production of adipic acid from cyclohexane, the photodegradation of dyes using green route will be discussed. Finally, Section 6 describes the summary of main points and also presents an outlook of the application of MNPs in green chemistry.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Ahmad Alshammari, V. Narayana Kalevaru and Andreas Martin",authors:[{id:"178547",title:"Dr.",name:"Ahmad",middleName:null,surname:"Alshammari",slug:"ahmad-alshammari",fullName:"Ahmad Alshammari"},{id:"180753",title:"Dr.",name:"V. Narayana",middleName:null,surname:"Kalevaru",slug:"v.-narayana-kalevaru",fullName:"V. Narayana Kalevaru"},{id:"180804",title:"Dr.",name:"Andreas",middleName:null,surname:"Martin",slug:"andreas-martin",fullName:"Andreas Martin"}]},{id:"50074",doi:"10.5772/62316",title:"Nanostructured TiO2 Layers for Photovoltaic and Gas Sensing Applications",slug:"nanostructured-tio2-layers-for-photovoltaic-and-gas-sensing-applications",totalDownloads:2110,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Titanium dioxide (TiO2) has been an important material for decades, combining numerous attractive properties in terms of economy (low price, large availability) or ecology (non-toxic), as well as broad physical and chemical possibilities. In the last few years, the development of nanotechnologies offered new opportunities, not only in an academic perspective but also with a view to many applications with particular reference to the environment. This chapter focuses on the many ways that allow to tailor and organize TiO2 crystallites at the nanometre scale to make the most of this amazing material in the field of photovoltaics and gas sensing.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"André Decroly, Arnaud Krumpmann, Marc Debliquy and Driss\nLahem",authors:[{id:"108357",title:"Dr.",name:"Marc",middleName:null,surname:"Debliquy",slug:"marc-debliquy",fullName:"Marc Debliquy"},{id:"156323",title:"Dr.",name:"Driss",middleName:null,surname:"Lahem",slug:"driss-lahem",fullName:"Driss Lahem"},{id:"179585",title:"Associate Prof.",name:"André",middleName:null,surname:"Decroly",slug:"andre-decroly",fullName:"André Decroly"},{id:"179653",title:"MSc.",name:"Arnaud",middleName:null,surname:"Krumpmann",slug:"arnaud-krumpmann",fullName:"Arnaud Krumpmann"}]},{id:"50180",doi:"10.5772/62448",title:"Recent Advances in Environment-Friendly Alkyd Nanocomposites Towards “Greener” Coatings",slug:"recent-advances-in-environment-friendly-alkyd-nanocomposites-towards-greener-coatings",totalDownloads:3791,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Alkyd nanocomposites have attracted great attention in the field of heavy duty coating materials. This is due to the synergistic action of both alkyds (flexibility, biodegradability, compatibility, good gloss retention, durability, weathering resistance) and nanofillers (large surface area to volume ratio). Alkyd nanocomposites show good physico-mechanical, physico-chemical, anticorrosive, and antimicrobial performances and thermal stability, with application as anticorrosive, anti-fog, self-cleaning, self-healing, and antimicrobial coatings. In view of present drives and legislations towards environment-friendly coatings, alkyds have undergone modifications as waterborne, high solids, hyperbranched “greener” nanocomposites. The present chapter deals with a brief overview of alkyds, recent advances in environment-friendly alkyd nanocomposite coatings, and the effects of nanofillers on the performance (physico-mechanical, chemical/corrosion resistance, thermal stability, and others) of “greener” alkyd nanocomposite coatings.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Eram Sharmin, Fahmina Zafar, Nahid Nishat and Sharif Ahmad",authors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"},{id:"107375",title:"Dr.",name:"Eram",middleName:null,surname:"Sharmin",slug:"eram-sharmin",fullName:"Eram Sharmin"},{id:"185271",title:"Prof.",name:"Nahid",middleName:null,surname:"Nishat",slug:"nahid-nishat",fullName:"Nahid Nishat"},{id:"191804",title:"Dr.",name:"Sharif",middleName:null,surname:"Ahmad",slug:"sharif-ahmad",fullName:"Sharif Ahmad"}]}],mostDownloadedChaptersLast30Days:[{id:"50106",title:"“Green” Quantum Dots: Basics, Green Synthesis, and Nanotechnological Applications",slug:"-green-quantum-dots-basics-green-synthesis-and-nanotechnological-applications",totalDownloads:3780,totalCrossrefCites:9,totalDimensionsCites:19,abstract:"Nanotechnological development of new materials involves the discovery or design of materials at small length scales with controlled physical and chemical properties than can be tuned or modified in function of their applications. One of the most suitable examples of nanoparticles used for this purpose are quantum dots, a type of colloidal fluorescent semiconducting nanocrystalline material that has the possibility, due to its unique optical and electronic properties, to be used in numerous technological applications such as biosensing, in vivo imaging techniques, photovoltaics, nanomedicine, molecular pathology, and drug delivery. Thus, there are almost endless possibilities for quantum dots materials. In spite of the fast advance in the search of quantum dots with better nanomaterial performance, environmentally benign and sustainable production is still lacking. Although the use of these materials is developing promptly, there is increasing concern that these materials might pose potential risks to human health. Herein, we discuss principal properties of quantum dots, including their functional architecture and toxicity, and review the main studies about “green” quantum dots synthesis to be aligned with green nanotechnology approach for nontoxic, cleaner, safer, and more responsible processes. The organometallic colloidal synthesis and the aqueous colloidal synthesis, as well as their drawbacks and benefits, are conferred. Recent advances in technological and biological quantum dots–based applications are also discussed in this chapter.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Carlos A. Martínez Bonilla and Vladimir V. Kouznetsov",authors:[{id:"105180",title:"Prof.",name:"Vladimir V.",middleName:"V.",surname:"Kouznetsov",slug:"vladimir-v.-kouznetsov",fullName:"Vladimir V. Kouznetsov"},{id:"179817",title:"M.Sc.",name:"Carlos A.",middleName:"Andrés",surname:"Martínez Bonilla",slug:"carlos-a.-martinez-bonilla",fullName:"Carlos A. Martínez Bonilla"}]},{id:"50705",title:"Metal Nanoparticles as Emerging Green Catalysts",slug:"metal-nanoparticles-as-emerging-green-catalysts",totalDownloads:3255,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"Green nanotechnology is defined as the technology applied for building clean technology by which one can reduce the potential risks of environment and also improve human health conditions. It is linked with the implementation of products of nanotechnology and its process of manufacturing. Green nanotechnology synthesizes new nanoproducts with improved properties in such a way that they can substitute some of the existing low‐quality products. The main motive of developing new nanoproducts is to enhance sustainability and also to make them more environment friendly. In particular, nanoscale materials (e.g., nanoparticles) can be defined as those having characteristic length scale lying within the nanometric range, that is, in the range between one and several hundreds of nanometers. Within this length scale, the properties of matter are sufficiently different from individual atoms/molecules or from bulk materials. The primary objective of this chapter is to provide comprehensive overview about metal nanoparticles (MNPs) and its application as emerging green catalysts. This chapter contains six sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of MNPs as green catalyst. Section 2 reviews the preparation and characterization of supported metal nanoparticles for a wide range of catalytic applications. Section 3 presents the catalytic properties of supported metal nanoparticles. Section 4 describes briefly some of the most commonly reported supported MNPs in different green catalytic applications. Section 5 concentrates on our own results that related to the application of supported MNPs in catalysis. In this section, the oxidation of benzyl alcohol to benzaldehyde, the production of adipic acid from cyclohexane, the photodegradation of dyes using green route will be discussed. Finally, Section 6 describes the summary of main points and also presents an outlook of the application of MNPs in green chemistry.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Ahmad Alshammari, V. Narayana Kalevaru and Andreas Martin",authors:[{id:"178547",title:"Dr.",name:"Ahmad",middleName:null,surname:"Alshammari",slug:"ahmad-alshammari",fullName:"Ahmad Alshammari"},{id:"180753",title:"Dr.",name:"V. Narayana",middleName:null,surname:"Kalevaru",slug:"v.-narayana-kalevaru",fullName:"V. Narayana Kalevaru"},{id:"180804",title:"Dr.",name:"Andreas",middleName:null,surname:"Martin",slug:"andreas-martin",fullName:"Andreas Martin"}]},{id:"49331",title:"Metal Complexes Immobilized on Magnetic Nanoparticles",slug:"metal-complexes-immobilized-on-magnetic-nanoparticles",totalDownloads:2100,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The reusability of valuable catalysts in organic reaction without change in properties is known as an important feature in the evolution of green processes. The imobilization of metal catalysts on magnetic nanoparticles makes them recoverable and can be used as building blocks for the fabrication of various functional systems, which are applied in several fields such as catalysis, environmental remediation magnetic resonance imaging, data storage, and biotechnology. Applying magnetic nanoparticles in organic reaction as a scaffold for the immobilization of metal complexes is reviewed as well as the improvement of the methods of production and applying catalysts with magnetic properties in organic reaction.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Seyed Mohsen Sadeghzadeh and Mehdi Mogharabi",authors:[{id:"175879",title:"Dr.",name:"Seyed Mohsen",middleName:null,surname:"Sadeghzadeh",slug:"seyed-mohsen-sadeghzadeh",fullName:"Seyed Mohsen Sadeghzadeh"},{id:"191799",title:"Dr.",name:"Mehdi",middleName:null,surname:"Mogharabi",slug:"mehdi-mogharabi",fullName:"Mehdi Mogharabi"}]},{id:"50132",title:"Recent Highlights in Green Oxidative Chemical Processes Applied to Steroid Chemistry",slug:"recent-highlights-in-green-oxidative-chemical-processes-applied-to-steroid-chemistry",totalDownloads:2382,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Steroids and their oxidation products are widely distributed in living organisms and are important intermediates for the synthesis of many biologically active molecules. Due to their pharmacological and synthetic relevance, several oxidative chemical processes for the functionalization of the steroid nucleus have been developed. Green chemistry principles have been incorporated in some oxidative transformations of steroids, allowing significant advances in synthetic chemistry applied to these compounds. This chapter presents a selection of relevant applications of pharmaceutical green chemistry to steroid’s oxidative processes. Special emphasis is given to catalytic processes encompassing heterogeneous nanocatalysts, whose application in this context is increasing over the past years. This chapter is organized according to the reaction type that includes alcohol oxidation, epoxidation of alkenes, and allylic oxidation of alkenes to enones, among other relevant oxidative transformations. Biocatalytic oxidative methods applied to steroid synthesis are not included in this review.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"Samuel M. Silvestre, M. Manuel C. Silva and Jorge A. R. Salvador",authors:[{id:"69976",title:"Prof.",name:"Jorge António Ribeiro",middleName:null,surname:"Salvador",slug:"jorge-antonio-ribeiro-salvador",fullName:"Jorge António Ribeiro Salvador"},{id:"157541",title:"Prof.",name:"Samuel",middleName:null,surname:"Silvestre",slug:"samuel-silvestre",fullName:"Samuel Silvestre"},{id:"185027",title:"Prof.",name:"Maria Manuel Cruz",middleName:null,surname:"Silva",slug:"maria-manuel-cruz-silva",fullName:"Maria Manuel Cruz Silva"}]},{id:"50074",title:"Nanostructured TiO2 Layers for Photovoltaic and Gas Sensing Applications",slug:"nanostructured-tio2-layers-for-photovoltaic-and-gas-sensing-applications",totalDownloads:2110,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Titanium dioxide (TiO2) has been an important material for decades, combining numerous attractive properties in terms of economy (low price, large availability) or ecology (non-toxic), as well as broad physical and chemical possibilities. In the last few years, the development of nanotechnologies offered new opportunities, not only in an academic perspective but also with a view to many applications with particular reference to the environment. This chapter focuses on the many ways that allow to tailor and organize TiO2 crystallites at the nanometre scale to make the most of this amazing material in the field of photovoltaics and gas sensing.",book:{id:"5170",slug:"green-nanotechnology-overview-and-further-prospects",title:"Green Nanotechnology",fullTitle:"Green Nanotechnology - Overview and Further Prospects"},signatures:"André Decroly, Arnaud Krumpmann, Marc Debliquy and Driss\nLahem",authors:[{id:"108357",title:"Dr.",name:"Marc",middleName:null,surname:"Debliquy",slug:"marc-debliquy",fullName:"Marc Debliquy"},{id:"156323",title:"Dr.",name:"Driss",middleName:null,surname:"Lahem",slug:"driss-lahem",fullName:"Driss Lahem"},{id:"179585",title:"Associate Prof.",name:"André",middleName:null,surname:"Decroly",slug:"andre-decroly",fullName:"André Decroly"},{id:"179653",title:"MSc.",name:"Arnaud",middleName:null,surname:"Krumpmann",slug:"arnaud-krumpmann",fullName:"Arnaud Krumpmann"}]}],onlineFirstChaptersFilter:{topicId:"851",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/245607",hash:"",query:{},params:{id:"245607"},fullPath:"/profiles/245607",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()