This study primarily focuses on the constitutive modeling of masonry walls strengthened with fiber-reinforced polymers (FRP). In general, providing suitable relations for the material characterization of the masonry constituents so that the nonlinear finite element (NLFEA) applications of the elasto-plastic theory achieves a close fit to the experimental load-displacement diagrams of the walls subjected to in-plane loadings is desired. In this chapter, two relations proposed for masonry columns confined with FRP are adjusted for the cohesion and the internal friction angle of both units and mortar. Relating the mechanical parameters to the uniaxial compression strength and the hydrostatic pressure acting over the wall surface, the effects of major and intermediate principal stresses σ1 and σ2 on the yielding and the shape of the deviatoric section are then reflected into the analyses. Finally, NLFEA results for the walls tested in different studies showed a good match with the experimental ones.
Part of the book: New Trends in Structural Engineering