Main probiotic effect on cardiovascular disease risk-related states.
\r\n\t
",isbn:"978-1-83969-506-3",printIsbn:"978-1-83969-505-6",pdfIsbn:"978-1-83969-507-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"0e5d67464d929fda6d8c83ec20c4138a",bookSignature:"Dr. Endre Zima",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10704.jpg",keywords:"Anatomy, Physiology, Perioperative, Non-Cardiac Causes, Antiarrhythmic Drugs, Development, SARS-CoV2, Infection, Cardiac Arrest, Resuscitation, PPE, Arrhythmias",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 11th 2021",dateEndSecondStepPublish:"March 11th 2021",dateEndThirdStepPublish:"May 10th 2021",dateEndFourthStepPublish:"July 29th 2021",dateEndFifthStepPublish:"September 27th 2021",remainingDaysToSecondStep:"2 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Dr. Endre Zima works as the chief of Cardiac ICU at Semmelweis University Heart and Vascular Center. His fields of interest are intensive cardiac care, CPR, post-cardiac arrest care, device therapy of arrhythmias, defibrillator waveform, and AED development.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"201263",title:"Dr.",name:"Endre",middleName:null,surname:"Zima",slug:"endre-zima",fullName:"Endre Zima",profilePictureURL:"https://mts.intechopen.com/storage/users/201263/images/system/201263.jpg",biography:"Prof. Dr. Endre Zima works as the chief of Cardiac ICU at Semmelweis University Heart and Vascular Center. Dr. Zima is specialized in anesthesiology-intensive care and cardiology. He has authored 13 book chapters and more than 130 journal papers, achieved a Hirsch-index of 14, g-index of 22, and more than 650 independent citations. \nHe has been holding graduate and postraduate lectures and practices in anesthesiology since 2006, and in cardiology since 2008. He is a PhD Lecturer in Semmelweis University since 2010. He obtains an accreditation of EHRA on Cardiac Pacing and Implantable Cardioverter Defibrillators, he is accredited AALS Instructor of European Resuscitation Council. \nHe is a Fellow of the European Society of Cardiology, member of the European Heart Rhythm Association and Acute Cardiovascular Care Association, board member of the Hungarian Society of Cardiology (HSC), president of Working Group (WG) on Cardiac Pacing of HSC , board member of WG of Heart Failure. Dr. Zima is also a member the Hungarian Society of Resuscitation, Hungarian Society of Anesthesiology. His fields of interest are acute and intensive cardiac care, CPR and post-cardiac arrest intensive care, heart failure and cardiogenic shock, device therapy of arrhythmias, defibrillator waveform and AED development.",institutionString:"Semmelweis University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Semmelweis University",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59952",title:"Probiotics and Its Relationship with the Cardiovascular System",doi:"10.5772/intechopen.75077",slug:"probiotics-and-its-relationship-with-the-cardiovascular-system",body:'Cardiovascular disease (CVD) is a major cause of death worldwide. There are disease-associated risks that can be either modifiable or unmodifiable factors and examples are low-density lipoprotein (LDL) cholesterol, increased triglyceride-rich lipoproteins, and low levels of high-density lipoprotein (HDL) cholesterol [13]. An individual’s personal gene makeup, body composition, health, and having certain preexisting disease states can also influence their risk of having a CVD. These factors often contribute to a group of conditions leading to metabolic syndrome. Metabolic syndrome increases an individual’s chance of having a disease such as CVD and/or diabetes.
Gut microbes are thought to be responsible for healthy outcomes in terms of the gastrointestinal (GI) tract, as well as positive health benefits distant to the GI tract. The alteration to dietary macronutrient ingestion has increased the prevalence of metabolic disorders which has been shown to be related to microbial imbalance to the gut as part of the pathogenesis [7, 9]. A meta-analysis of several studies found about 1100 bacteria species and their related properties in relation to diseases such as diabetes mellitus, cardiovascular disease, obesity, and cancer [7]. The change in gut microbe related to a disease state can often be associated with an individual’s diet. Diets that are high in fat and/or sugar and low in fiber have a negative effect on gut ecosystem [18]. Therefore, diet modification to alter the composition of gut bacteria is vital for either prophylaxis or the treatment of some diseases. This makes gut microenvironment a focus point in the prevention of unhealthy state and improvement to a healthy state in order to avoid metabolic syndrome-related diseases such as cardiovascular disease and diabetes.
Modifying gut microbiota with probiotics has been in practice for centuries and is now being studied in relation to treatment and/or prophylaxis for metabolic syndrome and related diseases such as cardiovascular disease [9]. The more recent metagenomics studies are those that have demonstrated that probiotics are involved in host immune modulation and influence the development and physiology of organs. Therefore, they have been identified as the possible medical therapies to treat GI disorders and to restore an impaired gut ecosystem [8]. Studies have strengthened the idea of the importance of probiotics in aiding the prevention and prophylaxis of gut disorders, urogenital, and respiratory infections with their results [8]. The hypothesis that they could aid in the fight against metabolic disorders is based on them having an effect on the modulation of composition and function of interstitial microbiota [7]. Background information on probiotics, as well as current studies that have observed the gut microbiota in cardiovascular disease-related conditions such as obesity, diabetic, hypercholesterolemia, hypertension, cardio-arterial disease, and cardiomyopathy based on past studies, has been analyzed.
Individuals using probiotics for the improvement of health have a well-known history, especially lactic acid bacteria (LAB) and Bifidobacteria, as well as prebiotics as part of food or fermented food [7, 20]. Dating back to 76 BC, there was the recommendation of ingestion of fermented milk products for those who had gastroenteritis [7]. The idea behind probiotics being used as a way to alter interstitial microbial balance started in the twentieth century from the work of Metchnikoff [7, 9]. With new advance techniques such as DNA-based analyses, there have been a significant number of research that observed different bacteria and their properties that are related to both positive and negative influences on the human body in the disease and healthy state [7]. The following has been stated to be important in probiotic research: identification, maintenance, and characterization of probiotic strains in live conditions, so potency is preserved, and they arrive alive in a state of action which varies [25]. Probiotics have been observed to have a positive effect on gut microbial and are often studied in a combined relationship with prebiotics termed symbiotic.
Some examples of the positive outcome from probiotics have been an improved immune system through immunoglobulin production, trigger cell-mediated immune response, and help in the treatment of gut disorders such as irritable bowel syndrome (IBS), Clostridium difficile colitis, gastric ulcers lactose intolerance, and antibiotic-associated diarrhea (AAD). Positive results from probiotics are caused by the multifactorial process related to them that results in the production of organic acids, hydrogen peroxide, bacteriocins, bacteriocin-link inhibitory substances, short-chain fatty acid (SCFA)-conjugated linoleic acid, and ϒ-amino butyric acid [8]. These can cause improvements that range from improved bone density, anxiety, hyperammonemia, and improved blood lipid profile to name a few [3]. This is based on the proven functions of probiotics such as balancing intestinal microbiota, modulating the immune system, and exerting metabolic influences [4].
Prebiotics often provided with probiotics can contribute to the influences on the bacteria population in the human gut [7, 9]. Prebiotics is a type of nondigestible fiber compound, which is able to bypass the upper gastrointestinal tract, remain undigested, and reach the colon where they are fermented by the gut microflora. It is a type of food source for probiotics (microbiota) and it regulates the growth and activity of gut microbiota, resulting in an improved gut health and strengthened immune system [7, 14]. In order for prebiotics to provide a beneficial role, they must have the following three characteristics: “resistance to gastric acidity, hydrolysis by mammalian enzyme, and gastrointestinal absorption, fermentation by intestinal microflora and selective stimulation of growth and/or activity of intestinal bacteria associated with health and well-being.” Various chain-length oligosaccharides are the most common that are studied and those include fructo-oligosaccharide and galacto-oligosaccharide/transgalacto-oligosaccharides [2, 7]. Tri-, di-, and some monosaccharides may also be used as prebiotics if they have host-indigestible bonds.
Prebiotics mode of action is taking advantage of the commensals that are already in the host; they use this to degrade their otherwise indigestible bonds, which support the microbial survival [1]. They are used as fermented ingredients that induce the growth or activity of microorganism. Bifidobacterium and Lactobacillus have been identified for responding to the administration of prebiotics, for example, oligofructose (OFS) stimulates the growth of Bifidobacterium. Prebiotics beneficial properties are not just limited to the GI system. Once prebiotics have been selective fermentation, there will be an increase in the number of commensals while lowering other neutral/harmful organisms which support symbiotic gut microbiota composition. It has been shown that though the “gut-brain axis,” some such as fructo-oligosaccharide and galacto-oligosaccharide are able to modulate neural growth factors such as brain-derived neurotrophic factors and synaptic proteins [2]. This can affect memory, attention, learning, and mood. When prebiotics and probiotics are used together, it is called synbiotics.
Fermented foods consist of microorganisms that are either functioning or nonfunctioning. One of the functioning actions is to stimulate probiotic function [6]. Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella are lactic acid bacteria associated with fermented food along with species of Bacillus, Bifidobacterium, Brachybacterium, Brevibacterium, and Probacterium [6]. Lactobacillus and Enterococcus are LABs, which with Bifidobacterium are the most commonly used probiotics. The most common traditional source of the probiotic Lactobacilli is fermented milk [6]. These microorganisms have several properties such as probiotic, antimicrobial, antioxidant, peptide production, fibrinolytic activity, poly-glutamic acid, degradation of antinutritive compounds, and ambrotose complex memory [6]. Bifidobacterium and Lactobacilli will selectively ferment prebiotics which cause an increase of these commensals while displacing other pathogenic or neutral organisms [2].
Probiotics containing a live microorganism should be used with caution in patients that are immunocompromised because they can cause infection or pathogenic colonization [27]. This has been supported by several studies. A study that observed renal-transplant patients with AIDS found that Lactobacillemia, which is not a common cause of bacteremia, occurred. Lactobacillemia was found in other patients who were immunocompromised with the following conditions: cancer, organ transplantation, diabetes mellitus, and recent surgery. Out of these patients, fever was presented in all of them and 15% developed sepsis but it is important to note that Lactobacillemia can have a wide range of clinical features. A probiotic consumed by a patient who had advanced and severe bicuspid aortic valve stenosis developed L. paracasei endocarditis. Lactobacillus may be under recorded because it is not observed as a pathogen and is also usually determined as part of a polymicrobial infection [33]. These are just a few cases in which an infection was caused, and overall, there have been studies that support the safety of probiotics consumed by groups of immunocompromised patients [33]. Probiotics can also affect some interaction with other drugs, for example, they could interfere with the production of vitamin K and therefore could affect the sensitivity to some drugs like warfarin [27].
Lactic acid bacteria tend to produce bioactive compounds, which are frequently found in fermented products due to LAB-elective habitant food, especially in diary. Biogenic amines are the main health risk in fermented food [5]. These compounds can sometimes cause allergies, hypertensive crises, and headaches. Also, it is important to make sure that probiotics, which are used to aid in the control of LDL levels, do not affect cardiac myocyte function, increase fat deposition, or cause cancer [20]. Cancer is a risk because secondary bile salts may disrupt DNA repair pathway. This disruption can lead to oxidative stress in epithelial cells which can start tumor formation [21]. These adverse effects on human are usually not a concern in generally healthy individuals [6].
Obesity, which causes a low-grade inflammation, is a risk factor for cardiovascular disease, diabetes, dyslipidemia, premature death, hepatobiliary disease, and several cancers. There is an estimate of 1.7 billion people in the world that are overweight. Obese individuals tend to have an altered composition of intestinal microbiota, which suggest that intestinal microbiocenosis can be considered the environmental factor that creates the development of obesity [5]. Some of the effects of altered bacteria composition in the gut is linked to obesity due to several changes such as downregulated activity of FIAF and AMK, impaired production of SCFAs, increased inflammation, altered LPS-endocannabinoid (eCB) system regulatory loops, and bile acid metabolism [5]. The cause of the alteration is believed to be linked through the host’s diet. An example of this is that there was a reduction in Lactobacillus and Bifidobacterium and was observed in mice when they consumed high-fat diets [5]. This change of environment is the basis of studies that have shown that gut microbiota plays a role in energy homeostasis and bodyweight, therefore affecting the pathophysiology of obesity [5, 18].
In obese individuals, the different microorganism environment is believed to affect adiposity and alter the regulation to fat storage [7]. Insulin-type fructan affects the gut ecology and stimulates immune cells leading to a decrease in the weight gain and fat mass in obese individuals [7]. In a meta-analysis, several studies found that there was an increased prevalence of Firmicutes shown with obesity phenotypes. These bacteria interfere in a negative relation with metabolism and insulin sensitivity [26]. Probiotics, while resulting in more subtle effects in humans versus mice studies, are now being studied as a way to modulate gut microbiota in relation to obesity [20]. This is because certain traits in probiotic cultures such as exopolysaccharides, CLA, and GABA production were found to have a positive effect on host lipid metabolism and gut microbial composition [8].
An increased number of Lachnospiraceae family in obese female microbiota were altered when probiotics containing L. rhamnosus CGMCC1.3724 (which reduces Lachnospiraceae family) were administered along with an energy-strict diet [38]. However, the probiotics that were related to fat mass in Ref. [38] also caused a decrease of leptin levels, which may lead to a need for the supplementation of leptin in order to maintain weight loss. Probiotics and weight loss have also been linked to a decrease in ghrelin, which could assist in maintaining the weight loss even with the loss of leptin [41]. When L. gasseri strain was given in fermented milk for 12 weeks, there was a decrease in abdominal visceral fat in adults with large visceral fat areas [18]. Supporting this, there have been other studies that when looked at the outcome of probiotic consumption, there was a decrease in both body mass index (BMI) and waist circumferences [13]. However, those were a limited number of studies, and additional studies are required, including those that will observe the effect of probiotics on energy balance-related hormones.
In multi-strain probiotic therapies, with 8 weeks of treatment, obese individuals showed a decreased weight, waist circumference, and serum cholesterol levels. This study also supported the idea that probiotics caused results not only by their own metabolism but through probiotic alteration of the gut microbe with an increase of L. plantarum population and other Gram-negative bacteria [20]. When prebiotics were added, there was control of overexpression of several host genes that have been known to be related to both adiposity and inflammation [27]. However, the altered level in gut microbe with one probiotic only had a subtle effect, and more studies are necessary to understand if and what probiotics provide a change to obese individual’s gut microbe.
Gut bacteria also play a role in obesity through the regulation of inflammation. The relation between low-grade systemic inflammation and obesity is weakened through peptides produced in the gut. These peptides’ synthesis is affected by the composition of gut microbiota [7]. An example of this is the serum amyloid A3 protein where the expression in adipose tissue is regulated by gut microbiota [7]. Any alteration to the gut microbiota could then also potentially play a role in body weight due to intestinal microbiota effects on adiposity and the regulation of fat storages.
Having diabetes or having the risk of diabetes is often associated with a higher risk for cardiovascular disease. This is because of a compensatory action resulting in hyperinsulinemia which leads to a variety of metabolic abnormalities. Individuals who have diabetes were found to have altered intestinal microbiota which can cause increased adiposity, B-cell dysfunction, metabolic endotoxemia, systemic inflammation, and oxidative stress related to their disease. SCFA is an important function in type 2 diabetes mellitus (T2DM); however, bacteria producing SCFA numbers are lower in diabetic individual [7]. Probiotics may offer a beneficial therapy for diabetic patients through increasing SCFA and other methods.
Oral supplements, which contained viable and freeze-dried stains, were found to reduce fasting plasma glucose when compared to a placebo group. Fermented food was also noted to not only aid in the prevention of diabetes but also cause favorable changes in those already diagnosed with diabetes [6]. This could be due to some probiotics delaying the glucose intolerance and hyperglycemia state in individuals. For those with diabetes, some probiotics in fermented food decrease insulin requirements and could increase insulin sensitivity for non-diabetics [6].
Diabetes has a connection to long-term inflammation. This is due to the consumption of high fats and high fructose which causes chronic inflammation leading to the induction of insulin resistance (IR) and disruption of gut flora. This is supported by studies, which have found that certain diets, for example, high-fat diets, tend to increase lipopolysaccharide (LPS) contained in gut microbiota which leads to a decrease of Bifidobacteria. This leads to an inflammation state which may be associated to insulin resistance and weight gain [1]. Different probiotics have differential immune pro- or anti-inflammatory action through the attenuation of nuclear factor kappa B (NF-kB) [4]. Lactobacillus is a lactic acid bacteria that contains immune stimulating properties [28]. Probiotics, L. reuteri, and L. plantarum have anti-inflammatory and antioxidant effects which can aid in the management of diabetes [9]. For example, C-reactive protein (CRP), an inflammation marker, is noted to decrease when these probiotic supplements are used [13].
In a meta-analysis, there was no statistically significant glucose-lowering effect of probiotics when combined with prebiotics [1]. However, prebiotics may affect the inflammation state due to prebiotics having immunomodulatory benefits. In a study, prebiotics were found to alleviate chronic inflammation, which could lower the risk of development of cardiovascular disease and diabetes [2]. Probiotics may even possibly assist in the prevention of diabetes through bacterial translocation to mesenteric adipose tissue. This is mediated through acetate production and an increase in gut epithelial integrity [26].
Hyperglycemia, which is a property of diabetes, is a term given when a person has continuous high-fasting blood glucose (>6.1) and is associated with different diseases, the main one being diabetes mellitus [1]. The first line of treatment is proper nutrition and physical activity [1]. Probiotic supplements along with prebiotics were found to improve the hyperglycemia state. When multi-strain probiotics along with symbiotic supplements were provided to individuals in a hyperglycemia state as their baseline, there was an improvement in their blood glucose level (BGL) [1]. Glucose tolerance and increased satiety with weight loss were found when individuals were administered OFS which lead to Bifidobacterium and endotoxin levels to be normalized. Butyrate, which has properties of propionate that can lower blood glucose, is produced by several bacteria [4]. Other studies found that with a symbiotic shake of L. acidophilus, Bifidobacterium and L. rhamnosus caused a 38% decrease in blood glucose levels for patients with T2DM. Though these studies demonstrate that supplementation with probiotics with symbiotic may help in the control of hyperglycemia and T2DM, larger studies are needed to confirm. The glucose-lowering effect is due to the metabolites of these bacteria which was shown to affect biological signaling pathways, modulated genes involved in ubiquitination and proteasome process, and altered autonomic nerve activity [1]. It is also vital to note that probiotics or synbiotic alone did not cause a significant reduction in fasting blood glucose levels.
Cardiovascular disease, affecting both blood vessels and/or heart, usually is the result of hypercholesterolemia and dyslipidemia. There have not been direct studies that compare the effect of prebiotic intake on cardiovascular health; however, there has been an observation on the serum lipid profiles, which all have an effect on CV [2]. These experiments have observed the effect of probiotics and/or prebiotics both in vitro and in vivo on lowering cholesterol [7]. In order to use probiotics to help lower cholesterol, the probiotics adhesion property to the human intestinal epithelial cells is a critical characteristic that must be considered [14]. This characteristic is to ensure that there is extended probiotic transit time in the gastrointestinal trace which was found to cause cholesterol-lowering effects in vivo.
Studies have shown a lower low-density lipoprotein and total cholesterol, along with increases in high-density lipoprotein cholesterol, a reduction in systolic blood pressure (SBP), increases in antioxidant activity, and influences on leptin regulation as a result of probiotics [9]. This is done through an enzyme called bile salt hydrolase (BSH) which causes a decrease in the absorption of cholesterol in the blood stream and is an essential criterion for the selection of probacteria [9, 13]. This enzyme unconjugated bile acids, which eventually cause a decrease in circulating triglycerides and plasma LDL and VLDL levels [12, 20]. The most associated BSH active probiotics are Lactobacillus, Lactococcus, and Bifidobacterium [21]. These bacteria have been observed to lower cholesterol both in vitro and in vivo [28].
For example, see [14], which found that L. fermentum NCIMB 5221 and NCIMB 2797 were able to lower cholesterol in an in vitro analysis. They found that L. plantarum ATC 14917 had the best results [22]. Another study found that the BSH candidate L. reuteri NCIMB 30242 had the capabilities to lower cholesterol in otherwise healthy individuals [12]. This is because Lactobacillus species are able to colonize and survive in small intestines [21]. These studies have demonstrated why lactic acid bacteria with BSH are being classified as having hypocholesterol effect. More specifically, trials that used multiple strains versus single strains and fermented products versus capsule found that multi-strain and fermented methods both caused a decrease in total cholesterol and LDL [13].
Probiotic soy products in association with cardiovascular risk factors were observed. The fecal microbiota that was used was Lactobacillus spp., Bifidobacterium spp., Enterococcus spp., Enterobacteriaceae, and Clostridium spp. populations. Their results showed a negative correlation with Enterococcus spp., Lactobacillus spp., and Bifidobacterium spp. with cholesterol, non-HDL cholesterol, and autoantibody against LDL [29]. However, this study was performed with rabbits, and future studies with human subjects are necessary for a confirmed effect.
High-density cholesterol, HDL, is considered good cholesterol and is important for removing “bad” cholesterol from the blood stream. This study found that there was a positive correlation between Lactobacillus, Bifidobacterium, Enterococcus, and HDL-C levels [29]. However, in relation to T2DM patients, there were some studies, which found that probiotics failed to maintain a significant effect on lipid profiles [7]. Prebiotics, however, were found to maintain hypocholesterolemic effects in the T2DM individuals [7].
Other methods in which probiotics affect blood lipids include binding and incorporating cholesterol to their cell membrane, which decreases the amount of intestinal cholesterol available for absorption, and by producing SCFA which inhibit hydroxymethylglutaryl CoA reductase. Lactobacillus species have protease-sensitive receptors on their cell surface. These receptors bind to exogenous cholesterol or phosphatidylcholine vessels, which then incorporate cholesterol into their cell membrane. This is strain- and growth-dependent action [21].
Probiotics, performing the mechanism of a 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor, was shown with dietary fibers (prebiotics) altering the functionality of gut microbiome including the stimulation of microbial metabolite production such as short-chain fatty acid which impacts cholesterol metabolism. The lowering of cholesterol with prebiotics is believed to occur through two mechanisms. The first one is it lowers cholesterol absorption by enhancing cholesterol excretion via feces and the second is through the production of SCFAs upon selective fermentation by intestinal bacterial microflora. Inulin and arabinoxylan, both prebiotics, can alter gut microbiome to stimulate SCFA production which has been already shown to effect cholesterol metabolism [12]. The mechanism behind this is that cholesterol is removed though the incorporation of cholesterol into cellular membranes in the intestine [13].
In terms of fermented food, Monascus purpureus rice was found have similar actions as statin and acted as a HMG-CoA reductase inhibitor, decreasing the makeup of cholesterol [6]. The studies that have conflicting findings could possibly be due to the delivery system. Studies varied whether the probiotics were given in capsule versus fermented foods. However, in a limited number of meta-analysis of studies, it was found that probiotics using fermented foods were more effective in reducing total cholesterol and LDL than in capsule [13]. In the majority of studies that were reviewed, there was no control for individual’s lifestyles in human subjects which could alter the findings.
Hypertension has several risk factors, such as sedentary lifestyle, lipid and hypercholesterolemia, chronic inflammation, inconsistent modulation of renin-angiotensin system (RAS), sodium sensitivity, personal habits, anxiety, and stress. While dietary strategies have been the focus of target for repairing the disturbed gut microbiota, probiotics have been found to decrease systolic/diastolic pressures (approximately 14–6.9 mm drop) in prehypertensive and hypertensive patients. This blood pressure (BP)-lowering effect through probiotics is due to a decrease in nitrogen oxide production in macrophages, reducing reactive oxygen species and enhancing dietary calcium absorption using different mechanism. These mechanisms have been found to be related to the production of SCFAs, CLA, GA A, and angiotensin-converting enzyme (ACE) inhibitor peptides [8]. Short-chain fatty acids (SCFAs), which have a role in both energy metabolism and adipose tissue expansion, also have two sensory receptors that have been linked to BP regulation. Some of the probiotic strains that were noted to cause a decrease in SBP were L. casei, Streptococcus thermophiles, L. plantarum, and L. helveticus [9]. Fermented milk products have been shown to have antihypertensive properties in both animal models and clinical trials [6]. Blood pressure release may also be due to a decrease in blood lipids, body weight, and IR.
On continuing, blood pressure is normally controlled with a variety of biochemical pathways, including the RAS system. The generation of antihypertensive bioactive peptides causes an ACE-inhibitory activity [8]. Different strains of probiotics have varying potencies as ACE inhibitory activity based on different bioactive peptides [18]. When prebiotics were used along with probiotics or the probiotic strains were enhanced via fermentation substrates, the proteolytic activity and ACE inhibition were increased [20]. Fermentation is able to produce bioactive ACE-inhibitory type peptides, casokinins and lactokinins. Probiotics are able to generate these peptides though fermentation having caseinolytic and lactose hydrolyzing enzyme systems [9]. Consuming probiotic soy milk led to a decrease in BP in a limited number of type II diabetic mellitus subject in a clinical trial lasting 8 weeks [15]. This study did not find any alterations of anthropometric measures which had been found in other studies. This could be that there are strain-specific properties [15]. However, subpopulation studies showed no significant difference and there are no definitive recommendations at this time.
Cardio-arterial diseases are often associated with hypercholesterolemia, diabetes, and other metabolic-related diseases. Alteration to the gut microbiota can cause a detrimental risk of obtaining a cardio-arterial disease/state such as atherosclerosis. The change in gut microbiota can cause an increase in the level of trimethylamine N-oxide (TMAO), which has been linked to an increased risk of major adverse cardiovascular events observed in large clinical cohorts. However, additional studies are needed to determine the mechanism of CVD through TMAO [7].
Apo A-V deficient mice were found to have increased precursors of small dense LDL, which is a predictor of coronary artery disease [16]. This deficiency has been observed with bile salt hydrolase expressing probiotics to have an important role in not only lipid metabolism but also atherosclerosis development. L. reuteri NCIMB 30242 when provided to non-diabetic subjects with hypertriglyceridemia caused a decrease in apolipoprotein B, which is associated with atherogenic VLDL and LDL products [16]. It was also shown to reduce CRP and fibrinogen which are two factors of atherogenesis [12]. However, this study only included small healthy hypercholesterolemia population, and the probiotic was given either in capsule or in yoghurt format. In mice, Lactobacillus species was found to lower arteriosclerosis [20]. When provided through powered supplement, L. curvatus and L. plantarum caused a significant increase in apo A-V [16]. With varying methods of providing the probiotics, more controlled studies are necessary to understand the relationship between probiotics and cardio-arterial disease.
Fermented products may provide a decrease in the development of atherosclerosis with the activation of G-protein-coupled bile acid receptor [25]. In a study that compared atherosclerotic lesions in the aortic vessel in animals treated with fermented soy product supplements versus a control group, the ones that were provided the supplement was found to have a lower percentage of aortic vessel covered with lesions [29]. Fermented whole grains are also able to lower coronary heart disease [6].
Heart failure causes a variety of systemic effects on multiple organs. While there are no heart failure changes observed to effect the gut microbial composition, there have been changes that could cause or increase the incidence of heart failures. New research is currently observing probiotics therapy providing direct cardio-protective effect to the heart. This protection would result in a reduced ischemic injury and improve cardiac function after an infarction [20]. TMAO, which is effected by gut microbiota, can be linked to both the development and progression of atherosclerosis and cardiovascular disease and is effected by gut microbiota [21]. However, a majority of studies have only observed the effects in mice. Continuing due to individuals not realizing that they are at risk for infarction, consuming probiotics as prophylaxis is unlikely and the prevalence of heart failure is stagnant.
Patients with chronic kidney disease have an increased risk for cardiovascular disease through having hyperhomocysteinemia, increased lipoprotein, oxidative stress, and inflammation. Vascular dysfunction in both humans and experimental animals with CKD has been discovered to be due to an increased production and impaired renal excretion of p-cresyl sulfate and indoxyl sulfate which pairs CKD with vascular disease. These toxins along with others are normally cleared by the kidneys. When kidney patients were provided probiotics, there was a decrease in those toxins. However, due to the uremic environment of the gut that is often associated with CKD, probiotic may become ineffective or less ineffective [23].
A population of microbes that assist the host’s biochemical metabolic and immunological balance necessary for health maintenance is termed normal microbiota [6]. Both composition and function characterize the biodiversity of microbiota [4]. The gastrointestinal microbiota includes bacteria, archaea, protozoa, fungi, and different viruses, with anaerobic bacteria and the predominant source [4]. The numbers range from 10 to 100 trillion microorganisms in the GI tract, which, based on an individual’s genetic age and diet, vary from individual to individual [9]. From the time an individual is born until his/her death, there will be more than 500 different species of microorganism that are contained in the human body [6, 7]. An individual’s microbial diversity changes throughout his/her life span and depends on a person’s health-related interaction between gut microbiota and host’s overall health [7]. There are even geographic variations that have been found in relation to the type of Lactobacillus, varying from the western and eastern hemispheres. The factors that can influence a person’s microbiota are genetics, age, diet, and antibiotic use [8].
The colon has the largest variety of microorganism and is the focus part of most studies [4]. Bifidobacterium, Lactobacillus, Propionibacterium, and Bacteroidetes are the dominant species of obligate microflora [5]. Lactic acid-producing Bifidobacterium and Lactobacillus are often the focal points of studies due to their beneficial effects that is caused by their expression of immunomodulatory and pathogen-antagonistic molecules [2]. These bacteria produce butyrate, which highlights some properties of propionate and is observed as the preferred metabolic fuel for colonocytes possessing antineoplastic properties. This contributes to energy production [4]. Propionate affects colonic muscular contraction, relaxation of resistance vessels, and stimulation of colonic electrolyte transport and insulin resistance [4].
There are several ways that a human’s microbiota aids overall health; examples of this include endogenous symbiont microorganisms, microbiota, changing not only gene expression but also have an effect on pH, redox balance, and the ratio between pro-inflammatory and anti-inflammatory cytokines. There are also studies which showed normal microbiota effect on brain metabolism, the immune system, and a couple of homeostatic routes [3]. There have been several studies that have noted a change of gut microbiota in several conditions/diseases such as obesity, fatty liver, insulin-resistant diabetes mellitus, and hypertension [11]. Some examples of these changes are an increase in Firmicutes and a decrease in Bacteroidetes [18]. With recent studies showing gut microbiota related to the pathogenesis of cardiovascular disease, probiotics, which are live microbial food supplements, could balance intestinal microbial resulting in the treatment or prevention of cardiovascular disease [9, 11].
The gut environment also plays a role in the type of bacteria found per location in the tract. The tract varies from an alkaline pH in the small bowel to an acidic pH in the stomach [31, 32]. Using the 16 s ribosomal RNA gene sequence-based metagenomics methods, it has been determined that 90% of bacteria of the gut belong mainly to the Bacteroidetes and Firmicutes phylum [27]. It has been discovered that both are lactic acid bacteria which are vital to the gastrointestinal track normal residents. These two are commonly used in fermented food for the prevention and treatment of different disorders ranging from constipation to high cholesterol levels [27].
When an individual is healthy, most of the microbiota act symbiotically with the host. The major metabolic function of microbiota is to assist with the harvest of nutrients and energy from different diets that human’s consume [4]. The interaction between the gut epithelial cells and the microbes and the metabolites produced is responsible for the maturation of intestinal epithelial cells, enteric nervous system, intestinal vascular system, and the mucosal immune system. However, an imbalance in gut bacteria has been shown in numerous studies to be linked to a variety of diseases. Intestinal disease state can affect the microflora, impair the gut barrier, and/or cause intestinal inflammation which can all lead to imbalance in gut bacteria population [31]. In order to reestablish a balance, probiotics, prebiotics, and synbiotics have been used and observed. Probiotics are able to affect the GI tract through their interaction with the intestinal epithelial cells, luminal flora, and mucosal immune cell components of the GI tract [28].
Antibiotics usage in early life has been determined to deplete some components of microbiota causing disrupted normal gut microbiota development [4]. Prebiotics such as fructo-oligosaccharides do not support the growth of antibiotic-related pathogens like C. difficile [31]. Several studies have observed the efficacy of different probiotic strains in the treatment of antibiotic/C. difficile-associated diarrhea. L. acidophilus, L. rhamnosus GG, L. delbrueckii, and L. fermentum are several bacteria that have been shown to decrease the occurrence of antibiotic-induced diarrhea [10]. C. difficile, a main concern with the usage of antibiotics pathogenesis, is the disruption of indigenous intestinal microbiome. Probiotics were shown in several studies to decrease C. difficile risks; those studies had several limitations such as the type of probiotic variation, the duration of use, and different dosages [35]. Therefore, C. difficile and probiotic relationship require more in-depth research.
There have been a variety of studies that observe and prove the health benefits and clinical effects of probiotics to GI abnormalities such as irritable bowel syndrome, gastric ulcer, and antibiotic-associated diarrhea and some cancers [8]. Lactobacillus and Bifidobacteria influence on resident microbiota can range from temporarily replacing missing parts or supplementing certain population, or by stimulating some of the resident microbiota. Lactobacillus species, which has been noted in several studies to provide beneficial effects when they are presented, is metabolically active and contains several properties that affect the whole intestinal microbiota biodiversity [4]. Prebiotics have been shown to suppress indigestion and diarrhea that were caused by pathogens [2].
Continuing, they can also aid in preventing the growth of harmful competitors, prevent the growth of exogenous microbes, and lower the substrate availability for pathogens [19]. L. fermentum ME-3 has been found able to suppress Gram-negative bacteria. Some probiotics have an antagonistic effect such as L. paracasei and L. plantarum with Salmonella (microaerobic), L. plantarum against C. difficile colitis (anaerobic), L. paracasei against Helicobacter pylori, and B. lactis/B. longum against Shigella sonnei and E. coli. Inflammatory bowel disease, which consists mainly of ulcerative colitis and Crohn’s disease, has been shown related to intestinal flora dysbiosis through clinical and research studies. In an analysis of several studies, probiotics were determined to have a better outcome than non-probiotics therapy for maintenance therapy. However, they did not give benefit in inducing the remission of ulcerative colitis. This could be due to various methods used, different sample sizes, and controlled variables [34].
Prebiotics can also influence the composition of bacteria in human gut [9]. Several studies showed that when given supplements of fructan and inulin, there was an increased number of Bifidobacteria [19]. Other types of prebiotics that have been found to positively affect the gut microbe are arabinoxylan and inulin. These two have a modifying ability through affecting the makeup of and function ability of gut microbe [12]. Bifidobacteria and Lactobacilli selected fermentation of prebiotics have supported symbiotic gut microbiota through improving numbers of these commensals and decreasing the number of neutral or pathogenic organisms. It is vital to know that these microbes’ preference to coproduce certain fermentation products depend on the prebiotic structures and the bacterial communities [2]. Example of acidic fermentation products are lactate and short-chain fatty acid, butyrate acetate, and propionate [2]. These products can have benefits in the gut, for example, butyrate supports intestinal epithelium, and along with other SCFAs, they have benefits that are distal to the gut system.
Before recommendations on probiotics are made, the following are needed to be taken into account: an individual’s immunity, genetics, and diet [9]. The type of probiotics being suggested may differ based on goals and shelf life. World Health Organization (WHO) suggests that in order to provide health benefits, probiotics must be able to endure human digestion including gastric juices and bile and be capable of multiplying once they arrive in the GI tract [9]. The focus should be on the origin of the strain, its colonizing ability, and its safety and efficacy [4]. The amount varies based on the goal; however, it must be adequate enough to have colonization and effect [30]. The duration of the effect varies from probiotics. Studies have found that most effects only last as long as they are consumed [31].
There are an increasing number of probiotic products made available to consumers which include yogurt, other fermented milk and food products as well as various forms of dietary supplements [9]. Individual preferences can vary on the method of ingestion of probiotics. These are usually prepared using lactic acid bacteria of four general species, Lactobacillus, and Bifidobacterium. Probiotics are used in a variety of food sources not only in traditionally fermented food but are now being added to meat products, snacks, fruits, and juices [5]. Functional properties that lead to microorganisms in fermented foods have probiotics properties, antimicrobial properties, fibrolytic activity, and degradation of antinutritive compounds which may be essential when looking into the selection of a starter culture to be used in the makeup of functional foods [5].
In terms of prebiotics, foods such as artichoke, asparagus, garlic, and wheat have a variety of compound types that have been looked at for prebiotic attributes such as various length oligosaccharides and galacto-oligosaccharides/trans-oligosaccharides [2]. Monosaccharides, di-, and tri- may be used for prebiotics if they have host-indigestible bonds. Other examples of what have been used are sugar alcohol, cycle disaccharide difructose, and hydride II [2]. In order to have a beneficial effect from prebiotics, usually an individual will need 5 g or more to produce enough fermentation [1]. However, to avoid risk related to fermented food, a maximum limit of 100 mg/kg of histamine indicates safe level for consumption [6].
It is vital to recognize that there are no standard guidelines currently existing for oral administration, and the individual use of probiotic and prebiotics should be carefully monitored in order to determine potential adverse reaction [7]. More long-term well-controlled double-blinded studies are needed.
Gut microbial is essential for the balance of pathogens and the control of disease not only at the gastrointestinal tract but also distal to the tract as well. Metabolism and energy balance are major components of cardio-metabolic health [24]. Disease state has been determined to be one cause of an alteration to gut microbial that can affect the stated components. This was observed through different types of microbial environments in patients who are obese or diabetic. This change in gut microbial increases the disease state through the support of its pathogenesis.
Dietary supplements, including probiotics, could lower the risk of diseases such as CVD [17]. Probiotics have been known to cause a positive alteration in the gut microbial. They are often provided with prebiotics in fermented food and are termed synbiotic. Several studies have observed probiotics, its effect on gut microbial, and its relationship to cardiovascular diseases and risks. Probiotics may offer an alternative treatment for diabetes, obesity, hypercholesterolemia, hypertension, CKD, cardiomyopathy, atherosclerosis (Table 1). In order for a better understanding on how probiotics can lower the risks for diseases and treat, more studies need to be performed.
Microorganism | Results | Authors | |
---|---|---|---|
Obesity | Lactobacillus rhamosus | Mean weight loss in women was significantly higher than that in women in placebo group (p = 0.02) | Sanchez et al. [38] |
Diabetes | L. acidophilus,L. rhamnosusand B. bifidum | Decline in blood glucose levels by 38% in T2DM subjects | Moroti et al. [39] |
L. acidophilus and Bifidobacterium lactis Bb12 | Significantly lowered fasting blood glucose hemoglobin A1c and malondialdehyde and increased erythrocyte superoxide dismutase and glutathione peroxidase activities and total antioxidant states | Ejtahed et al. [37] | |
Cholesterol | L. acidophilus w. B. longum | Elevation of HDL cholesterol level by 0.3 mmol L-1 and reduction in the ratio of LDL/HDL cholesterol from 3.24 to 2.38 | Kiessling et al. [42] |
L. reuteri | A significant reduction in LDL cholesterol 8.92%, total cholesterol 4.81%, non-HDL cholesterol 6.01% | Jones et al. [40] | |
L. curvatusandL. plantarum | An increase of 21.1 and 15.6% in plasma apo A-V levels and LDL particles size | Ahn et al. [16] | |
Hypertension | L. casei w/Streptococcus thermophiles | Systolic pressure lowered significantly (p < 0.05) | Kawase et al. [36] |
Main probiotic effect on cardiovascular disease risk-related states.
Each single strain of multiple strains must be observed individually. This is in order to directly compare the effectiveness of individual strain versus multi-strain [1]. Also, a synergistic effect in the bioactivity of probiotics could result in multi-strain, which can lead to a mutual inhibition by a component strain. This could possibly decrease probiotic efficacy [1]. While there are several probiotics that are available, only some have been shown to be effective and able to colonize [30].
Tropheryma whipplei, formerly Tropheryma whipplei, is an intracellular gram-positive Actinobacteria ubiquitous in the environment that is involved in a large variety of clinical forms [1, 2]. The initial name was proposed by Relman et al. in 1992, and comes from the Greek trophe, nourishment, and eryma, barrier, due to the malabsorption it causes, and from the surname of George Hoyt Whipple [3]. In 2001, the name of the bacterium was slightly modified to conform to the proper spelling of Dr. George H. Whipple’s name [4].
Dr. Whipple was the first who reported, in 1907, a “hitherto undescribed disease” he named “intestinal lipodystrophy” in a 36-year-old man with malabsortion, weight loss, diarrhea, migratory polyarthritis, cough and mesenteric lymphadenopathy [5]. Now, we refer to this disease as Whipple’s disease. Although this disease was first described at the beginning of the last century, the hypothesis of its bacterial origin goes back to the late 40’s and was supported with use of periodic acid-Schiff (PAS) staining and the success of the first antibiotic treatment [6, 7]. Subsequently, the presence of the microorganism was confirmed by electron microscopy (rod-shaped organism), polymerase chain reaction (PCR) of the 16S rRNA and finally by culture [1, 3, 8, 9, 10, 11, 12]. The isolation and later sequencing of its genome made possible to define its antibiotic susceptibility [13, 14, 15, 16].
Until recently, T. whipplei was known to be only the causative agent of Whipple’s disease, now called by some authors “classical Whipple disease”, a rare chronic multisystemic infection [5]. Incidence of Whipple’s disease was reported in approximately 1 per 1.000.000, although it remains unclear and epidemiological estimates varies among different studies [17, 18, 19]. Classical form of Whipple’s disease usually involves the gastrointestinal tract, joints and central nervous system with malabsorption, diarrhea, abdominal pain and/or weight loss and arthralgia as prominent manifestations. Cardiac, ocular or other organs involvement has been also reported in patients with Whipple’s disease [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The knowledge of the genome of T. whipplei has allowed developing specific and sensible tools that have let to involve this microorganism in a broad spectrum of clinical conditions [13, 14]. Therefore, T. whipplei can produce acute localized forms of infection such as pneumonia [30, 31], bacteremia [32], acute diarrhea [33, 34], uveitis [35, 36]; sub-acute forms such as adenitis [37] and chronic forms as uveitis [38], and, overall, endocarditis [39, 40].
T. whipplei has also been detected in asymptomatic carriers based, mainly, on stools and saliva analysis with very different prevalence among populations [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. The carriage of T. whipplei varies considerably across studies and subjects. Many factors are involved in those differences such as the geographical region, exposure or the age of the studied subjects. The prevalence of asymptomatic carriers of T. whipplei in Africa and Asia is higher than in Europe and it is also higher in children than in adults [49, 50, 51, 53]. Actinobacteria are environmental microorganisms that can be found in freshwater, soil or seawater sediments, this fact could explain the high prevalence of T. whipplei in people expose to sewage and sewage plant workers [2, 41, 47, 54, 55]. People in contact with patients with Whipple’s disease, as patients’ relatives or carriers, or those with poor hygiene conditions such as homeless, also presents higher prevalences [56, 57, 58, 59]. Differences between the targets used for the PCR and the samples used have been also observed and could explain these reported differences [52, 60]. Li et al. assessed that genomic variants of T. whipplei are associated with neither the organotropism of the bacteria nor the geographical residence of the individuals [61], however later studies show that different genotypes are more frequent in some populations [34, 56, 58, 62]. Therefore, despite Whipple’s disease is rare, the high number of healthy carriers, the ubiquitous presence of the bacteria in the environment [41, 47, 57, 59] and the possibility of interhuman transmission [49, 56, 57, 58, 59, 63, 64] make T. whipplei a common bacterium in humans.
First implication of T. whipplei as causative agent of infective endocarditis was reported in Switzerland in 1997, in a patient with blood culture negative endocarditis (BCNE) using a broad-range PCR followed by sequencing [64]. Curiously, first stable cultivation of the bacterium of Whipple’s disease was carried out in 2000, from the mitral valve of a patient with BCNE [1]. Since then, the number of cases has increased and to date T. whipplei endocarditis is one of the more frequent causes of BCNE in some areas [65, 66].
BCNE is a relative frequent condition among endocarditis representing 5–30% in big series [67, 68, 69, 70]. The main reasons are the previous administration of antimicrobials and fastidiously culture microorganisms [67, 68, 71, 72, 73, 74, 75]. The application of molecular tools has allowed doing new approximations to the etiology of BCNE and new agents have been involved [69].
Sporadic cases of T. whipplei endocarditis have been reported from different countries, but there are few published series of T. whipplei endocarditis. France, Spain, Germany and Switzerland have the largest number of diagnosed cases [39, 64, 65, 70]. This fact could be due to their larger experience in the knowledge and use of the molecular tools to heart valves [40]. The incidence of T. whipplei endocarditis among BCNE varies depending on the series. The incidence rate estimated varies between 2.6% and 7.1% depending on the country (France: 2.6% [76], Spain and Denmark: 3.5% [70, 77], Switzerland: 4.3% [78], Germany: 6.3% [65], Czech Republic: 7.1% [79]). However, it is difficult to know the true incidence of T. whipplei endocarditis since its study by molecular tools is not the rule in all hospitals. Thus, several parameters seem to affect the incidence of T. whipplei endocarditis such as the diagnostic tools available, the working group experience and the true incidence itself [39].
A total of 174 cases of T. whipplei endocarditis have been reported between 1999 and 2020 [21, 39, 65, 70, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117]. The vast majority of cases were men (>85% of the cases) and the average age was around 57 years (range: 33–81 years).
Comorbidities or other predisposing risk factors have been not uniformly reported in the literature [118]. Previous valvular affectation has been documented in 21% of the diagnosed cases, while prosthetic valve replacement previously to the event seems not an important condition (<5% of the available series). Alcohol abuse has been reported in very few cases, however alcohol intake (>60 g/d) was referred by the 23.5% of the patients in the Spanish series [70]. Previous cardiac condition or a cardiac event (i.e., coronary heart disease) has been observed in 50% of cases [66]. Data of historical immunosuppression forms (autoimmune disease or immunosuppressive therapies such as steroids or tumor necrosis factor inhibitors) have been reported in 21 cases (12%).
Classical Whipple’s disease has been reported as concomitant with the diagnose of endocarditis in few cases (6%) [66, 70]. However, in lot of cases this data is not available and in some of them although, classical Whipple’s Disease has not been diagnosed, it cannot be excluded.
The signs and symptoms T. whipplei endocarditis are not the typical ones. Fever has been only reported in 21% of the cases. Cardiac failure and arthralgia have been shown as the main presenting symptoms and have been described in 43% and 52% of patients, respectively. Cardiac failure is of special interest because it is the first manifestation in a high percentage of patients. Long lasting arthralgias presence as a prominent symptom varies depending on the series. While in the French series arthralgias were present in 75% of patients [39], in the Spanish one this condition was present in 53% [70]. These variations could be due to this symptom is sometimes weak and only detected after an exhaustive clinical research. Some authors suggest that, in those patients with sub-acute endocarditis and low-grade fever or not fever, if arthralgias are present, T. whipplei as causative agent should be suspected [39, 103]. Asthenia and malaise lasting more than six months were notified by the 41.2% of the patients in one series [70]. Other signs such as weight loss or gastrointestinal symptoms have been observed in 25% and 21% of the reported patients [118]. In addition, central nervous system manifestations (i.e., emboli) have been detected in 16% of patients.
The valve involved in patients with T. whipplei endocarditis has been predominantly the aortic (63%). Involvement of multiple valves (mainly aortic valve in combination with the mitral or tricuspid valve, and mitral-tricuspid affection) has been noticed in 23% of patients. Only mitral valve affectation has been observed in 20% of patients and tricuspid valve just in six of 174 patients (3%). Native valve was affected in the vast majority of cases.
Echocardiography features are one of the most valuable tools for suspecting infectious endocarditis. According to the literature, when these data were recorded, presence of vegetations was observed in more than the half of patients [66]. In our series, echocardiography was performed in all patients (both transthoracic and transesophageal in more than 80%) and allowed the diagnosis of infectious endocarditis in 70% of patients through the visualization of vegetations in the vast majority, or by indirect signs in a few [70]. Valve vegetation from a patient after cardiac valve surgery is shown in Figure 1. In the French series, echocardiography showed vegetations in 78% of the patients, but these data are not recorded in the German one [39, 65]. Data of vegetation appearance or size is rarely reported. Data of size vegetations when available, shown a minimum size of 5 mm and a maximum of 33 mm [118].
Valve vegetation specimen obtained after surgery from a patient with T whipplei endocarditis.
The main laboratory recording abnormalities at the time of the diagnosis have been anemia, which was detected in 40% of patients but this date can reach 88.2% in some series, and increasing of C-reactive protein in range from 2.3 to 137 mg/L [70]. In patients who had heart failure, B-type natriuretic peptide (BNPs) of up to 2536 ng/L has been also reported [118].
Main characteristics of patients are shown in Table 1.
% (No.) | ||
---|---|---|
Patients (No.) | 174 | |
Epidemiological data | ||
Medium Age (years) | 57 | |
Male gender | 85% (148) | |
Medical history | ||
Immunosuppression | 12% (21) | |
Valvular abnormality | 21.8% (38) | |
Affected valve | ||
Aortic | 63% (110) | |
Mitral | 20.7% (36) | |
Tricuspid | 3.4% (6) | |
Multiple valves | 22.9% (40) | |
Presenting symptoms | ||
Arthralgia | 51.7% (90) | |
Heart failure | 43% (75) | |
Weight loss | 25.2% (44) | |
Fever | 21.3% (37) | |
Central nervous system | 16.1% (28) | |
Gastrointestinal symptoms | 20,7% (36) | |
Laboratory abnormalities | ||
Anemia | 39,1% (68) | |
Outcome | ||
Valve surgery | 73.5% (128) | |
Death | 17.8% (31) |
Main clinical epidemiological, clinical and outcome characteristics of patients with T. whipplei endocarditis reported in the literature. Updated from McGee et al. [118].
The suspicion and diagnosis of T. whipplei endocarditis is complicated. To date, 174 cases have been reported but, due to the difficulties for the identification of T. whipplei, the prevalence of the endocarditis it causes could be underestimated [119].
Diagnosis of T. whipplei endocarditis remains a challenge for several reasons. One of them is because this endocarditis does not exhibit the typical sings (no fever nor peripheral stigmata and low inflammatory response) and blood cultures used to be negative; therefore, modified Duke’s criteria are ineffective for diagnosis before heart valve analysis [39]. In this sense, some series have shown that only 3.6% patients met criteria for endocarditis according to the modified Duke criteria and 60.7% met for possible endocarditis [39]. It is very difficult to perform a microbiological or histological diagnose without analyzing the surgical remove valve. Routine blood and tissue culture are not often useful for the diagnosis. Thus, the diagnosis is often made post-surgery and valve analysis requires specialized laboratories, moreover if culture of the bacteria is intended to carry out.
Different targets have been used for molecular analyses. PCR based on the 16S rRNA amplification and subsequent sequencing has been widely used and has been the first-line screening in our series. However, some authors alert that this broad-spectrum PCR could have a limited sensitivity (value sensitivity 60%, specificity 100%) [120], while specific qPCR for T. whipplei have showed higher sensitivities [48, 60]. So, if 16S rRNA PCR has been negative, specific targets should be used in highly suspected cases of T. whipplei. At least 2 of the PCRs must be positive and their sequences have to show higher identity with the bacterium studied. PCR yield in other specimen different from valves varies depending on the specimen type and should be interpreted with caution according to the clinical context [66, 118]. A positive PCR result from a non-sterile site such as stool or saliva samples has been used to diagnose classical Whipple’s disease and to detect asymptomatic carriers, but is nor sensible nor specific for the diagnosis of T. whipplei endocarditis without clinical evidence of disease [42, 121, 122].
The role of serological tests in the diagnosis of Whipple’s disease is unclear because healthy carrier patients may paradoxically have a higher immune response to T. whipplei compared with patients with active Whipple’s disease [123]. Specific tools for an indirect diagnose for T. whipplei endocarditis are not available. This fact does not occur in other BCNE such as Q fever endocarditis or Bartonella spp. endocarditis. Curiously, a patient with Q fever and T. whipplei concomitant endocarditis has been described [124]. Valvular inflammatory infiltrates of T. whipplei–infected heart valves mainly consisted of foamy macrophages and lymphocytes. These macrophages have been observed in valvular tissue and in the vegetations on the surface of the heart valves. The dense and granular material that foamy histiocytes are filled with is strongly positive on PAS staining or immunopositive with a specific antibody against T. whipplei [39]. Thus, PAS staining and specific immunohistochemistry test (IHC) using specific antibodies against T. whipplei of cardiac valves could be useful for the diagnosis of T. whipplei endocarditis (Figure 2).
PAS staining positive in valvular tissue and vegetation.
According to the literature, 156 patients have been diagnosed of definite T. whipplei endocarditis by direct examination of the valve, of which more than 70% had positive PCR, almost 40% reported PAS staining positive on valve tissue and around 50% showed positive IHC. Seven patients were diagnosed of possible endocarditis regarding to vegetations on valve imaging and classical Whipple’s disease concomitant diagnosis. In these last cases, 85% had positive PCR on different specimen such as duodenal sample, stool, saliva or central nervous system samples and more than 50% had positive PAS staining in other tissue specimen [118].
In summary, definitive T. whipplei endocarditis could considered if positive results of PAS staining and/or specific IHC test using specific antibodies against T. whipplei and/or 2 positive results of PCR assays targeting 2 different sequences in a cardiac valve specimen are met [60]. It is important to notice that in patients with subacute endocarditis with negative blood cultures and low-grade fever (or not fever), if arthralgias are present, T. whipplei as causative agent should be suspected [39, 103].
The optimal treatment of IE caused by T. whipplei remains uncertain. Treatment options and duration are based on previous experience and expert opinion owing to the microorganism’s nature, the lack of large series (because of the low incidence) in which follow-up is documented and because clinical trials have not been developed [74]. Recommendations are mainly based on the experience obtained from the treatment of classical Whipple’s disease and other types of BCNE such as Q fever endocarditis [125, 126]. Two weeks treatment with ceftriaxone, followed by 1 year of trimethoprim/sulfamethoxazole, has been the most recommended treatment for years [126]. However, in vitro studies have shown best results with the combination of doxycycline and hydroxychloroquine [127, 128].
According to the literature, treatments used in T. whipplei endocarditis include, in most cases, two weeks of parenteral high dose of ceftriaxone (others such as meropenem, penicillin G have been also used) followed by an oral treatment strategy of 12 months with sulfamethoxazole (160/800 mg BID) or, at least, 18 months of doxycycline (100 mg BID) plus hydroxychloroquine (600 mg/d), in a smaller proportion [125, 129, 130]. Available data indicate that the average treatment length (range) has been 17 months (12 months to indefinite) [118].
Last European guidelines published in 2015, recommend doxycycline (200 mg/24 h) plus hydroxychloroquine (200–600 mg/24 h) orally for at least 18 months (in the case of central nervous system involvement, sulfadiazine 1.5 g/6 h orally must be added to doxycycline). As alternative therapy, 2–4 weeks of ceftriaxone (2 g/24 h intravenously) or 2–4 weeks of penicillin G (2 million U/4 h) and streptomycin (1 g/24 h) intravenously can be used, followed by, at least, 1 year of oral trimethoprim/sulfamethoxazole (800 mg/12 h) [74]. It is likely that this recommendation was included after taking into consideration an in vitro T. whipplei resistant to trimethoprim, a case report of a patient with clinically acquired resistance to trimethoprim/sulfamethoxazole and the cases of T. whipplei endocarditis relapses after treatment with trimethoprim/sulfamethoxazole which were apparently cured after two years of doxycycline and hidroxychloroquine [109, 114, 131, 132]. Furthermore, some authors do not recommend the use of trimethoprim/sulfamethoxazole because the clinical, microbiological and genetic data analyses show that it is an antibiotic not efficient for the management of T. whipplei endocarditis [109]. In fact, three T. whipplei endocarditis relapses after treatment with trimethoprim/sulfamethoxazole have been published.
After the end of treatment, some authors recommend checking for the presence of T. whipplei in blood, saliva, and fecal samples every six months for two years and every year for the entire life of the patient [39]. If colonization is detected, they recommend treating again, but there is not still evidence for this procedure.
Follow-up data and long-term outcome of the treatments used in this condition have not been widely reported. These data are well documented in the Spanish series. Although in this series only the 35% of the patients received treatment according to guidelines, all the treatment lines used in this cohort in the management of T. whipplei endocarditis were effective and well tolerated and therapeutic failures or relapses were not detected either during the treatment or after it was finished [133]. Furthermore, no major complications were detected once the treatment was established or during the follow-up. Even though, follow-up of all patients continues in order to identify possible late relapses. It has been demonstrated that doxycycline plus hydroxychloroquine treatment of duration shorter than 18 months was not associated with either relapses or fatal outcomes. Moreover, data suggest that, with a very careful post-treatment monitoring, in patients who require the replacement of the infected valve and without classical manifestation of Whipple’s disease, replacement of the affected valve and a shorter duration antimicrobial treatment might be sufficient [133].
Since T. whipplei is not present in the stool or saliva of patients with endocarditis caused by this microorganism and in the absence of other biological markers indicating the discontinuation of the antimicrobials, other tools are needed. In this regard, the role of PCR of urine should be explored both as a tool for monitoring patients post-treatment and the non-invasive diagnosis of T. whipplei endocarditis [134].
In the last years and with the development of molecular tools, new cases of T. whipplei endocarditis have been diagnosed. For this reason, although T. whipplei infective endocarditis is an infrequent condition has emerged as an important differential diagnosis for BCNE. Endocarditis due to T. whipplei is often slowly progressive, similar to that caused by Coxiella burnetii and Bartonella spp. and it could be diagnosed with specific procedures when BCNE undergo cardiac surgery. An early and appropriate diagnosis is required since this condition has a very good course and prognosis when the appropriate treatment is started (including surgery). In our opinion, patients with unexplained valve destruction which requires cardiac surgery, an exhaustive clinical investigation must be performed and removed valves should be studied by molecular tools for to rule out an underlying infectious endocarditis.
The authors declare no conflict of interest.
We pride ourselves on our belief that scientific progress is generated by collaboration, that the playing field for scientific research should be leveled globally, and that research conducted in a democratic environment, with the use of innovative technologies, should be made available to anyone.
\n\nWe look forward to hearing from individuals and organizations who are interested in new discoveries and sharing their research.
",metaTitle:"Contact us",metaDescription:null,metaKeywords:null,canonicalURL:"/page/contact-us",contentRaw:'[{"type":"htmlEditorComponent","content":"Headquarters
\\n\\n\\n\\n
London
\\n\\nIntechOpen Limited
\\n\\n5 Princes Gate Court,
\\n\\nLondon, SW7 2QJ, UK
\\n\\nPhone: +44 20 8089 5702
\\n\\n\\n\\n
Rijeka
\\n\\nIN TECH d.o.o.
\\n\\nJaneza Trdine 9
\\n\\n51000 Rijeka - Croatia
\\n\\nPhone: +385 (0) 51 770 447
\\n"},{"imagePath":"/media/thumbnail/780x430/3","type":"mediaComponent","mediaType":"image","mimeType":"image/jpeg","caption":"","originalUrl":"/media/thumbnail/600x600/3","alignment":"center"},{"type":"htmlEditorComponent","content":"General Inquires: info@intechopen.com
\\n\\nFunders: funders@intechopen.com
\\n\\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 5 Princes Gate Court, London, SW7 2QJ, UK
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Headquarters
\n\n\n\n
London
\n\nIntechOpen Limited
\n\n5 Princes Gate Court,
\n\nLondon, SW7 2QJ, UK
\n\nPhone: +44 20 8089 5702
\n\n\n\n
Rijeka
\n\nIN TECH d.o.o.
\n\nJaneza Trdine 9
\n\n51000 Rijeka - Croatia
\n\nPhone: +385 (0) 51 770 447
\n"},{imagePath:"/media/thumbnail/780x430/3",type:"mediaComponent",mediaType:"image",mimeType:"image/jpeg",caption:"",originalUrl:"/media/thumbnail/600x600/3",alignment:"center"},{type:"htmlEditorComponent",content:'General Inquires: info@intechopen.com
\n\nFunders: funders@intechopen.com
\n\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 5 Princes Gate Court, London, SW7 2QJ, UK
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"160349",title:null,name:null,middleName:null,surname:null,slug:"",fullName:null,position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"25887",title:"Dr.",name:null,middleName:null,surname:"Abbasi",slug:"abbasi",fullName:"Abbasi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"161332",title:"Dr",name:null,middleName:null,surname:"Abu-El Hassan",slug:"abu-el-hassan",fullName:"Abu-El Hassan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"212347",title:"Dr.",name:null,middleName:null,surname:"Abubakar",slug:"abubakar",fullName:"Abubakar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"93806",title:"Dr",name:null,middleName:null,surname:"Adani",slug:"adani",fullName:"Adani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158756",title:"Dr",name:null,middleName:null,surname:"Adler",slug:"adler",fullName:"Adler",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"63002",title:"Dr.",name:null,middleName:null,surname:"Agius",slug:"agius",fullName:"Agius",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"34637",title:"Dr.",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"118228",title:"Dr",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89784",title:"Dr",name:null,middleName:null,surname:"Ai",slug:"ai",fullName:"Ai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158540",title:"Dr",name:null,middleName:null,surname:"Al-Jumaily",slug:"al-jumaily",fullName:"Al-Jumaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"113521",title:"Dr",name:null,middleName:null,surname:"Alavi Panah",slug:"alavi-panah",fullName:"Alavi Panah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"540",title:"Wireless Communication Network",slug:"communications-and-security-wireless-communication-network",parent:{title:"Communications and Security",slug:"communications-and-security"},numberOfBooks:10,numberOfAuthorsAndEditors:266,numberOfWosCitations:475,numberOfCrossrefCitations:263,numberOfDimensionsCitations:522,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"communications-and-security-wireless-communication-network",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9219",title:"Recent Trends in Communication Networks",subtitle:null,isOpenForSubmission:!1,hash:"80b5339ac7ae4b7a91fd4e71b4d468e5",slug:"recent-trends-in-communication-networks",bookSignature:"Pinaki Mitra",coverURL:"https://cdn.intechopen.com/books/images_new/9219.jpg",editedByType:"Edited by",editors:[{id:"89103",title:"Prof.",name:"Pinaki",middleName:null,surname:"Mitra",slug:"pinaki-mitra",fullName:"Pinaki Mitra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7322",title:"Wireless Mesh Networks",subtitle:"Security, Architectures and Protocols",isOpenForSubmission:!1,hash:"db5ab870ec11f9d4d1ebb54c7dd6e2bf",slug:"wireless-mesh-networks-security-architectures-and-protocols",bookSignature:"Mutamed Khatib and Samer Alsadi",coverURL:"https://cdn.intechopen.com/books/images_new/7322.jpg",editedByType:"Edited by",editors:[{id:"22273",title:"Dr.",name:"Mutamed",middleName:null,surname:"Khatib",slug:"mutamed-khatib",fullName:"Mutamed Khatib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8662",title:"Data Service Outsourcing and Privacy Protection in Mobile Internet",subtitle:null,isOpenForSubmission:!1,hash:"697eadc7a3390023bb43d1d2406f0ebb",slug:"data-service-outsourcing-and-privacy-protection-in-mobile-internet",bookSignature:"Zhen Qin, Erqiang Zhou, Yi Ding, Yang Zhao, Fuhu Deng and Hu Xiong",coverURL:"https://cdn.intechopen.com/books/images_new/8662.jpg",editedByType:"Authored by",editors:[{id:"101193",title:"Dr.",name:"Hu",middleName:null,surname:"Xiong",slug:"hu-xiong",fullName:"Hu Xiong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"3139",title:"Wireless Ad-Hoc Networks",subtitle:null,isOpenForSubmission:!1,hash:"5a8ce0920ae4a8c48e38a9bc60684aa1",slug:"wireless-ad-hoc-networks",bookSignature:"Hongbo Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/3139.jpg",editedByType:"Edited by",editors:[{id:"154490",title:"Dr.",name:"Hongbo",middleName:null,surname:"Zhou",slug:"hongbo-zhou",fullName:"Hongbo Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1938",title:"Advanced Wireless LAN",subtitle:null,isOpenForSubmission:!1,hash:"e4d4c069bc97e5c0ad97e60e023b6827",slug:"advanced-wireless-lan",bookSignature:"Song Guo",coverURL:"https://cdn.intechopen.com/books/images_new/1938.jpg",editedByType:"Edited by",editors:[{id:"15566",title:"Dr.",name:"Song",middleName:null,surname:"Guo",slug:"song-guo",fullName:"Song Guo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"97",title:"Cellular Networks",subtitle:"Positioning, Performance Analysis, Reliability",isOpenForSubmission:!1,hash:"ca45ba51c623c9aef3c0d25772413039",slug:"cellular-networks-positioning-performance-analysis-reliability",bookSignature:"Agassi Melikov",coverURL:"https://cdn.intechopen.com/books/images_new/97.jpg",editedByType:"Edited by",editors:[{id:"23032",title:"Dr.",name:"Agassi",middleName:null,surname:"Melikov",slug:"agassi-melikov",fullName:"Agassi Melikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"137",title:"Sustainable Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"sustainable-wireless-sensor-networks",bookSignature:"Winston Seah and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/137.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"135",title:"Wireless Sensor Networks",subtitle:"Application - Centric Design",isOpenForSubmission:!1,hash:null,slug:"wireless-sensor-networks-application-centric-design",bookSignature:"Geoff V Merrett and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/135.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"136",title:"Smart Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"smart-wireless-sensor-networks",bookSignature:"Hoang Duc Chinh and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/136.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3628",title:"Mobile and Wireless Communications",subtitle:"Network Layer and Circuit Level Design",isOpenForSubmission:!1,hash:null,slug:"mobile-and-wireless-communications-network-layer-and-circuit-level-design",bookSignature:"Salma Ait Fares and Fumiyuki Adachi",coverURL:"https://cdn.intechopen.com/books/images_new/3628.jpg",editedByType:"Edited by",editors:[{id:"3125",title:"Dr.",name:"Salma",middleName:null,surname:"Ait Fares",slug:"salma-ait-fares",fullName:"Salma Ait Fares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"9002",doi:"10.5772/7698",title:"Terrestrial Free-Space Optical Communications",slug:"terrestrial-free-space-optical-communications",totalDownloads:7305,totalCrossrefCites:8,totalDimensionsCites:73,book:{slug:"mobile-and-wireless-communications-network-layer-and-circuit-level-design",title:"Mobile and Wireless Communications",fullTitle:"Mobile and Wireless Communications Network Layer and Circuit Level Design"},signatures:"Ghassemlooy Z. and Popoola W. O.",authors:null},{id:"12472",doi:"10.5772/13802",title:"Monitoring of Human Movements for Fall Detection and Activities Recognition in Elderly Care Using Wireless Sensor Network: a Survey",slug:"monitoring-of-human-movements-for-fall-detection-and-activities-recognition-in-elderly-care-using-wi",totalDownloads:14793,totalCrossrefCites:36,totalDimensionsCites:54,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Stefano Abbate, Marco Avvenuti, Paolo Corsini, Janet Light and Alessio Vecchio",authors:[{id:"14025",title:"MSc.",name:"Stefano",middleName:null,surname:"Abbate",slug:"stefano-abbate",fullName:"Stefano Abbate"},{id:"15973",title:"Prof.",name:"Marco",middleName:null,surname:"Avvenuti",slug:"marco-avvenuti",fullName:"Marco Avvenuti"},{id:"15974",title:"Prof.",name:"Paolo",middleName:null,surname:"Corsini",slug:"paolo-corsini",fullName:"Paolo Corsini"},{id:"15975",title:"PhD.",name:"Alessio",middleName:null,surname:"Vecchio",slug:"alessio-vecchio",fullName:"Alessio Vecchio"},{id:"15976",title:"Prof.",name:"Janet",middleName:null,surname:"Light",slug:"janet-light",fullName:"Janet Light"}]},{id:"12418",doi:"10.5772/13062",title:"Review of Energy Harvesting Technologies for Sustainable WSN",slug:"review-of-energy-harvesting-technologies-for-sustainable-wsn",totalDownloads:3882,totalCrossrefCites:2,totalDimensionsCites:49,book:{slug:"sustainable-wireless-sensor-networks",title:"Sustainable Wireless Sensor Networks",fullTitle:"Sustainable Wireless Sensor Networks"},signatures:"Yen Kheng Tan and Sanjib Kumar Panda",authors:[{id:"15547",title:"Dr.",name:"Sanjib Kumar",middleName:null,surname:"Panda",slug:"sanjib-kumar-panda",fullName:"Sanjib Kumar Panda"},{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}]}],mostDownloadedChaptersLast30Days:[{id:"72470",title:"A Mobile Ad Hoc Network Routing Protocols: A Comparative Study",slug:"a-mobile-ad-hoc-network-routing-protocols-a-comparative-study",totalDownloads:419,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"recent-trends-in-communication-networks",title:"Recent Trends in Communication Networks",fullTitle:"Recent Trends in Communication Networks"},signatures:"Alagan Ramasamy Rajeswari",authors:[{id:"320070",title:"Dr.",name:"Rajeswari",middleName:null,surname:"Alagan Ramasamy",slug:"rajeswari-alagan-ramasamy",fullName:"Rajeswari Alagan Ramasamy"}]},{id:"12472",title:"Monitoring of Human Movements for Fall Detection and Activities Recognition in Elderly Care Using Wireless Sensor Network: a Survey",slug:"monitoring-of-human-movements-for-fall-detection-and-activities-recognition-in-elderly-care-using-wi",totalDownloads:14791,totalCrossrefCites:36,totalDimensionsCites:54,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Stefano Abbate, Marco Avvenuti, Paolo Corsini, Janet Light and Alessio Vecchio",authors:[{id:"14025",title:"MSc.",name:"Stefano",middleName:null,surname:"Abbate",slug:"stefano-abbate",fullName:"Stefano Abbate"},{id:"15973",title:"Prof.",name:"Marco",middleName:null,surname:"Avvenuti",slug:"marco-avvenuti",fullName:"Marco Avvenuti"},{id:"15974",title:"Prof.",name:"Paolo",middleName:null,surname:"Corsini",slug:"paolo-corsini",fullName:"Paolo Corsini"},{id:"15975",title:"PhD.",name:"Alessio",middleName:null,surname:"Vecchio",slug:"alessio-vecchio",fullName:"Alessio Vecchio"},{id:"15976",title:"Prof.",name:"Janet",middleName:null,surname:"Light",slug:"janet-light",fullName:"Janet Light"}]},{id:"14756",title:"Call-Level Performance Sensitivity in Cellular Networks",slug:"call-level-performance-sensitivity-in-cellular-networks",totalDownloads:1586,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cellular-networks-positioning-performance-analysis-reliability",title:"Cellular Networks",fullTitle:"Cellular Networks - Positioning, Performance Analysis, Reliability"},signatures:"Felipe A. Cruz-Pérez, Genaro Hernández-Valdez and Andrés Rico-Páez",authors:[{id:"19751",title:"Mr.",name:"Genaro",middleName:null,surname:"Hernández-Valdez",slug:"genaro-hernandez-valdez",fullName:"Genaro Hernández-Valdez"},{id:"20630",title:"Dr.",name:"Felipe A.",middleName:null,surname:"Cruz Pérez",slug:"felipe-a.-cruz-perez",fullName:"Felipe A. Cruz Pérez"},{id:"22692",title:"Mr.",name:"Andres",middleName:null,surname:"Rico-Paez",slug:"andres-rico-paez",fullName:"Andres Rico-Paez"}]},{id:"41427",title:"Reducing Routing Loops Under Link-State Routing in Wireless Mesh Networks",slug:"reducing-routing-loops-under-link-state-routing-in-wireless-mesh-networks",totalDownloads:1997,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wireless-ad-hoc-networks",title:"Wireless Ad-Hoc Networks",fullTitle:"Wireless Ad-Hoc Networks"},signatures:"Takuya Yoshihiro",authors:[{id:"13453",title:"Dr.",name:"Takuya",middleName:null,surname:"Yoshihiro",slug:"takuya-yoshihiro",fullName:"Takuya Yoshihiro"}]},{id:"12464",title:"Wireless Sensor Networks - An Introduction",slug:"wireless-sensor-networks-an-introduction",totalDownloads:13105,totalCrossrefCites:17,totalDimensionsCites:29,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Qinghua Wang and Ilangko Balasingham",authors:[{id:"13799",title:"Dr.",name:"Qinghua",middleName:null,surname:"Wang",slug:"qinghua-wang",fullName:"Qinghua Wang"},{id:"23809",title:"Prof.",name:"Ilangko",middleName:null,surname:"Balasingham",slug:"ilangko-balasingham",fullName:"Ilangko Balasingham"}]},{id:"12487",title:"Imaging in UWB Sensor Networks",slug:"imaging-in-uwb-sensor-networks",totalDownloads:2516,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Ole Hirsch, Rudolf Zetik and Reiner Thomä",authors:[{id:"14629",title:"Dr.",name:"Ole",middleName:null,surname:"Hirsch",slug:"ole-hirsch",fullName:"Ole Hirsch"},{id:"14630",title:"Dr.",name:"Rudolf",middleName:null,surname:"Zetik",slug:"rudolf-zetik",fullName:"Rudolf Zetik"},{id:"14632",title:"Prof.",name:"Reiner",middleName:null,surname:"Thomä",slug:"reiner-thoma",fullName:"Reiner Thomä"}]},{id:"70079",title:"MAC Aspects of Millimeter-Wave Cellular Networks",slug:"mac-aspects-of-millimeter-wave-cellular-networks",totalDownloads:259,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wireless-mesh-networks-security-architectures-and-protocols",title:"Wireless Mesh Networks",fullTitle:"Wireless Mesh Networks - Security, Architectures and Protocols"},signatures:"Hossein S. Ghadikolaei",authors:null},{id:"12466",title:"Wildlife Assessment Using Wireless Sensor Networks",slug:"wildlife-assessment-using-wireless-sensor-networks",totalDownloads:2649,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Harry Gros-desormeaux, Philippe Hunel and Nicolas Vidot",authors:[{id:"15994",title:"Dr.",name:"Nicolas",middleName:null,surname:"Vidot",slug:"nicolas-vidot",fullName:"Nicolas Vidot"},{id:"15995",title:"Dr.",name:"Philippe",middleName:null,surname:"Hunel",slug:"philippe-hunel",fullName:"Philippe Hunel"},{id:"15996",title:"Dr.",name:"Harry",middleName:null,surname:"Gros-Desormeaux",slug:"harry-gros-desormeaux",fullName:"Harry Gros-Desormeaux"}]},{id:"12457",title:"Security of Wireless Sensor Networks: Current Status and Key Issues",slug:"security-of-wireless-sensor-networks-current-status-and-key-issues",totalDownloads:2401,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"smart-wireless-sensor-networks",title:"Smart Wireless Sensor Networks",fullTitle:"Smart Wireless Sensor Networks"},signatures:"Chun-ta Li",authors:[{id:"13973",title:"Dr.",name:"Chun-Ta",middleName:null,surname:"Li",slug:"chun-ta-li",fullName:"Chun-Ta Li"}]},{id:"41429",title:"Review of Autoconfiguration for MANETs",slug:"review-of-autoconfiguration-for-manets",totalDownloads:1924,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"wireless-ad-hoc-networks",title:"Wireless Ad-Hoc Networks",fullTitle:"Wireless Ad-Hoc Networks"},signatures:"Hongbo Zhou and Matt W. Mutka",authors:[{id:"154490",title:"Dr.",name:"Hongbo",middleName:null,surname:"Zhou",slug:"hongbo-zhou",fullName:"Hongbo Zhou"}]}],onlineFirstChaptersFilter:{topicSlug:"communications-and-security-wireless-communication-network",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/235131/takashi-shinohara",hash:"",query:{},params:{id:"235131",slug:"takashi-shinohara"},fullPath:"/profiles/235131/takashi-shinohara",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()