\n\t\t\t\t\t\t\t\taVolatile matter; bFixed carbon; cHigh gross calorific value.
Proximate analysis and calorific values of pine sawdust (PS) and α-cellulose (C) samples carbonized in MAHC for 60, 120 and 240 min.
\r\n\t a multi-pronged approach. The pervasive computing paradigm is at a crossroads where never before computing
\r\n\t has been so much embedded within the user. Recent developments in sensor technologies, wireless protocols
\r\n\tintegration, and AI have empowered the citizen towards a smart citizen with a high degree of autonomy and varying
\r\n\tcomputing capabilities from one context to another.
\r\n\t
\r\n\tMoreover, software engineering has evolved too to allow lightweight programming and full-stack coding of those sensors. The network itself is today viewed as a programming platform, thus wearable devices are no more stand-alone and do not operate in a vacuum. This book aims at attracting authors from academia, the industry, research institutions, public and private agencies to provide the findings of their recent achievements in the field, but also visionaries who foresee the future of wearable technologies in the coming decades.
The conventional methods of converting biomass into renewable energy are based on thermal, biochemical or physical processes. Carbonization is one of the possible thermochemical conversion of biomass into energy, where a solid residue known as charcoal is produced through a slow process of partial thermal decomposition of wood in the absence or controlled presence of oxygen (Bridgwater, 2003).
\n\t\t\tEach temperature range in carbonization is responsible for a product or byproduct. Both temperature and the raw material influence the quality of the obtained charcoal and they play a key role in several reactions that occur in the carbonization process used to produce compounds with different physical and chemical properties.
\n\t\t\tIn Brazil, the conventional charcoal production consists in cycles of 8-10 days to produce 20 m3 of charcoal, depending on the oven type. Furthermore, the carbonization process generates byproducts such as carbon dioxide (60%), carbon monoxide (30%) among others (Trugilho & Silva, 2001).
\n\t\t\tThese facts raise concern about global warming and environmentally friendly processes of energy production, and the need for research that aims to develop clean technology or green chemistry, new energy production routes that reduce waste and pollutants.
\n\t\t\tThe use of renewable energy has been widely discussed as an alternative to fossil fuels. The biomass, consisting mainly of agricultural and forestry waste, can be regarded as a renewable energy source with potential to supply the global energy demands. Moreover, the use of biomass contributes to reduce the greenhouse effect.
\n\t\t\tThe discussion on biofuels and renewable energy sources became a relevant topic both in academia and industry. The development of new technologies that leads to new and more products with specific applications and economically feasible is a challenge for scientific and technological advances.
\n\t\t\tA great contribution to environmentally sustainable processes was the development of a carbonization method that uses aqueous media, the hydrothermal carbonization (HTC). Hydrothermal carbonization is a thermochemical process for biomass conversion to produce a solid material, named "hydrochar”. In this chapter, authors feature the use of microwave energy in hydrothermal carbonization of lignocellulosic materials as an innovative process and discuss the potential of this technique in biochar production.
\n\t\tThere are many methods to produce advanced materials. One of them is hydrothermal processing. This technique enables the production of complex materials with interesting physicochemical properties. A wide range of materials such as metals, oxides, hydroxides, silicates, carbonates, phosphates and sulphates are being produced by this technique as nanosctructured particules (nanotubes, nanowires, nanospheres). It is also a method used to produce carbonaceous materials with both sp2 and sp3 hybridization type.
\n\t\t\tAccording to Yoshimura and Byrappa (2008), a hydrothermal process can be defined as any homogeneous or heterogeneous chemical reaction in the presence of solvent (whether aqueous or non-aqueous) above room temperature and at pressure greater than 1 atm in a closed system. As previously mentioned, the hydrothermal carbonization (HTC) is a thermochemical conversion process of biomass or lignocellulosic raw materials that yields a solid product, known as hydrochar. HTC has been widely used to simulate the coalification in laboratory (Funke and Ziegler, 2010). Due to increasing demand for efficient biomass conversion technologies, hydrothermal carbonization has attracted much attention as a promising large scale apllication.
\n\t\t\tSeveral studies have already been published reporting on hydrothermal environment to carbonize materials like cellulose (Sevilla & Fuertes, 2009; Inoue et al., 2008), switchgrass and corn stover (Kumar et al., 2011), wood (Liu et al., 2010), microalgae (Heilmann et al., 2010), swine-manure (Cao et al., 2011) and sugars such as xylose (Ryu et al., 2010), glucose (Mi et al., 2008), sucrose and starch (Sevilla & Fuertes, 2009).
\n\t\t\tBasically, the method consists of heating the biomass in the presence of a catalyst in a closed vessel under pressure, at temperatures ranging from 180 to 300°C, with reaction times between 1 and 48 h. Thus, the hydrothermal carbonization allows the use of stored energy in biomass more efficiently. Figure 1 shows a simplified scheme of energy comparison of HTC with the most common methods for processing biomass (adapted from Titirici et al., 2007).
\n\t\t\tTheoretically, 15% of the energy stored in biomass is already lost when the carbohydrates are converted into alcohol, for example, and two of six carbon atoms are released as CO2, generating a carbon efficiency of 0.66 or 60%. The carbon conversion efficiency (CE) can be defined as the amount of carbon derived from biomass, which remains linked to the final product after procesing. In the anaerobic conversion, about 18% of energy is lost and 50% of carbon is released as CO2 (CE=50%). In the HTC process, the carbon efficiency is very close to 100, i.e. almost the carbon from biomass is converted into carbonized material, without generating CO and CO2 (Titirici et al., 2007).
\n\t\t\tHTC is one of the most advanced technologies to convert biomass and waste with high moisture levels, because it eliminates the drying step. In addition, HTC efficiently decomposes the carbohydrates in biomass, such as cellulose and hemicellulose by hydrolysis, to produce sugars and other decomposition byproducts, i.e. organic acids and aldehydes (Mochidzuki et al., 2003; Fujino et al., 2002).
\n\t\t\tSimplified diagram comparing different processing of biomass conversion.
Water acts both as reagent and reactive environment, which aids the hydrolysis, depolymerization, dehydration and decarboxylation reactions. However, these conventional hydrothermal processes need special systems that support pressure, temperature (usually an autoclave with pressure safety device), and reaction times ranging from hours to days, making them expensive and time consuming. Another inconvenience is the low selectivity, generating by products in the same reaction.
\n\t\tMicrowaves are electromagnetic waves with frequencies ranging from 300 MHz to 300 GHz and wavelengths between 1 m and 1 mm. Originally, microwaves were used in telecommunications, such as radar and telephone technology. Only during World War II, Percy Spencer discovered that microwaves had the ability to heat food, based on the fact that the wave energy in this range of electromagnetic spectrum matches the energy of the rotational movement of some dipolar molecules like water, fats and sugars (Spencer, 1941). Thereafter, microwaves have been used in several applications like as civil aviation radars, cellphones and especially in domestic ovens.
\n\t\t\t\tFrom the physicochemical point of view, heating by microwave radiation is a result of the interaction of electromagnetic wave with the electric dipole of the molecule.
\n\t\t\t\tFood heating and cooking in a microwave oven, for example, takes place because food contains water, which is formed by polar molecules able to align with the microwave electric field, as shown in Figure 2 (adapted from Titirici et al., 2007).
\n\t\t\t\tElectric dipole of the water molecule. δ- and δ+ are the negative and positive partial charges of oxygen and hydrogen, respectively; μ1 and μ2 are the dipole moments of the water molecule and μ matches to the resulting dipole moment.
In chemistry and materials science fields, application of microwave technology has attracted special interest in the synthesis of organic and inorganic compounds and heat treatment of materials (drying and sintering).
\n\t\t\t\tMicrowave radiation has been used in material processing and synthesis reactions, such as the synthesis of advanced ceramic materials (Keyson et al., 2006), carbides (Rambo et al., 1999), oxide nanoparticles (Palchik et al., 2000), synthesis from catalytic reactions (Balalaie et al., 2000) and recycling plastics (Lulow-Palafox & Chase, 2001) in addition to use in organic synthesis with organic solvents (Nücher et al., 2004) and in the absence of solvents (Caddick, 1995).
\n\t\t\t\tIn contrast to conventional ovens, the material processed in a microwave oven interacts with electromagnetic radiation and not with the radiant energy. Due to the heat being generated by the material itself in its bulk, the heat reaches the entire volume and can be much faster and selective. These characteristics, when properly monitored, result in a homogeneous material, with faster production, while providing a significant reduction in energy losses (Clarck & Sutton, 1996).
\n\t\t\t\tAll this set of benefits even leads to the greatest: the economic. Furthermore, the use of microwaves in a process is classified as clean technology, following the global trend towards the use of alternative environmentally friendly methods.
\n\t\t\t\tThe use of microwaves on hydrothermal carbonization contributed to simplify and accelerate the process, since the reaction time was decreased compared to conventional hydrothermal carbonization and the obtained products are usually homogeneous. The main difference between the conventional and microwave heating is how the heat is generated. In the conventional process, energy is transfrerred to material by convention, conduction and radiation of heat from the material surface.
\n\t\t\t\tOn the other hand, microwave energy is derived directly from the material by molecular interactions with electromagnetic waves. The material is processed rapidly, with selective power, homogeneous heating and energy conservation. These factors contribute to the improvement of the properties of the final products and enable the synthesis of new materials that could not be obtained by conventional methods (Yang et al., 2002).
\n\t\t\t\tThe use of microwaves in the carbonization process have been intensively investigated over the last decade with different raw materials like wood (Wan et al., 2009; Miura et al., 2000), corn stover (Wan et al., 2009), grass (Orozco et al., 2007) in addition to some sugars like as glucose and fructose (Qi et al., 2008) and activated carbons (Deng et al., 2010; Franca et al., 2010, Xin-hui et al., 2011)
\n\t\t\t\tThe innovative process discussed in this chapter depicts the use of microwave heating in the biomass hydrothermal carbonization, which is named microwave-assisted hydrothermal carbonization (MAHC) (Guiotoku et al., 2009).
\n\t\t\t\tThe method is based on previous work conducted by Antonietti and co-workers (2006), and uses pine sawdust and α-cellulose as raw material, water (hydrothermal environment), mild temperature (200°C) and citric acid as catalyst. The experiments were carried out using a microwave oven Millestone (Ethos Plus) suitable for sample digestion. The device frequency used was 2.45 GHz, 12.25 cm wavelength and 1000 W power supply. Figure 3 illustrates a simplified scheme of the microwave oven chamber (adapted from Walter et al., 1997).
\n\t\t\t\tTypical laboratory cavity-type microwave system. TFMTM, a modified polytetrafluorethylene, reaction closed vessels with 100 mL volume were used in the carbonization process. These vessels withstand temperatures up to 300°C and the pressure inside may range from 80 to 100 bar.
Different catalyst concentrations were tested with pine sawdust (PS) as raw material. Figure 4 illustrates the experiments (Guiotoku, 2008).
\n\t\t\t\tPine sawdust samples (a) in natura; hydrothermally carbonized during 30 minutes with different catalyst concentration: (b) 0.00; (c) 0.10; (d) 0.15; (e) 0.25; (f) 0.5; (g) 1.0; (h) 1.5; (i) 2.0; (j) 2.5 and (k) 3.0 mol L-1.
The color in the carbonized pine sawdust samples depends on the catalyst concentration. As the acid concentration increases, the samples become darker. The catalyst concentration chosen to conduct the experiments was 1.5 mol L-1. The changes caused during the cellulose heating in water are predominantly determined by hydrolytic reactions and especially in this case, by acid hydrolysis reactions.
\n\t\t\t\tThe key factor that influences the acid hydrolysis reaction is the way in which it takes place, since the most important reaction in cellulose occurs in heterogeneous phase: solid polysaccharide in acid media.
\n\t\t\t\tWhen subjected to carbonization or conventional pyrolysis lignocellulosic material generally undergoes thermal decomposition of their components - hemicellulose, cellulose and lignin - under inert or oxygen restricted atmospheres. Each component volatilizes more intensively at specific ranges of temperature: hemicellulose at 200 - 300°C, cellulose at 240 - 350°C and lignin at 350 - 500°C. The decomposition products are basically oil, gas and solid products (charcoal).
\n\t\t\t\t\tIn order to evaluate the energetic potential of pine sawdust (PS) and α-cellulose (C), proximate analysis and gross calorific value were carried out as shown in Table 1 (Guiotoku, 2008). The samples were hydrothermally carbonized in a microwave oven at 200°C for 60, 120 and 240 min with 10 mL of 1.5 mol.L-1 catalyst solution.
\n\t\t\t\t\tSample | \n\t\t\t\t\t\t\t\tTime (min) | \n\t\t\t\t\t\t\t\t% VMa\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t% Ash | \n\t\t\t\t\t\t\t\t%FCb\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\tHGCc (MJ/kg) | \n\t\t\t\t\t\t\t
PS60 | \n\t\t\t\t\t\t\t\t60 | \n\t\t\t\t\t\t\t\t61.41 | \n\t\t\t\t\t\t\t\t0.20 | \n\t\t\t\t\t\t\t\t38.39 | \n\t\t\t\t\t\t\t\t22.60 | \n\t\t\t\t\t\t\t
PS120 | \n\t\t\t\t\t\t\t\t120 | \n\t\t\t\t\t\t\t\t55.14 | \n\t\t\t\t\t\t\t\t0.20 | \n\t\t\t\t\t\t\t\t44.66 | \n\t\t\t\t\t\t\t\t24.22 | \n\t\t\t\t\t\t\t
PS240 | \n\t\t\t\t\t\t\t\t240 | \n\t\t\t\t\t\t\t\t50.94 | \n\t\t\t\t\t\t\t\t0.21 | \n\t\t\t\t\t\t\t\t48.85 | \n\t\t\t\t\t\t\t\t25.42 | \n\t\t\t\t\t\t\t
C60 | \n\t\t\t\t\t\t\t\t60 | \n\t\t\t\t\t\t\t\t53.37 | \n\t\t\t\t\t\t\t\t0.25 | \n\t\t\t\t\t\t\t\t46.38 | \n\t\t\t\t\t\t\t\t21.62 | \n\t\t\t\t\t\t\t
C120 | \n\t\t\t\t\t\t\t\t120 | \n\t\t\t\t\t\t\t\t51.36 | \n\t\t\t\t\t\t\t\t0.28 | \n\t\t\t\t\t\t\t\t48.36 | \n\t\t\t\t\t\t\t\t24.91 | \n\t\t\t\t\t\t\t
C240 | \n\t\t\t\t\t\t\t\t240 | \n\t\t\t\t\t\t\t\t48.05 | \n\t\t\t\t\t\t\t\t0.21 | \n\t\t\t\t\t\t\t\t51.74 | \n\t\t\t\t\t\t\t\t27.12 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\taVolatile matter; bFixed carbon; cHigh gross calorific value.
Proximate analysis and calorific values of pine sawdust (PS) and α-cellulose (C) samples carbonized in MAHC for 60, 120 and 240 min.
In the proximate analysis properties such as volatile matter, ash and fixed carbon were determined. There is a small decrease in volatile matter with increasing carbonization time, due to volatilization of low weight molecules during longer reaction times. The fixed carbon is intrinsically linked to high gross calorific values and their values increases with the MAHC reactions times, indicating that more carbonized material was generated.
\n\t\t\t\t\t\n\t\t\t\t\t\tFigure 5 shows the low gross calorific values (LGC) for some solid and liquid fuels. Hachured bars correspond to the MAHC materials (adapted from Ministério de Minas e Energia, 2007).
\n\t\t\t\t\tLGC values may be calculated from equation (1):
\n\t\t\t\t\twhere HGC = high gross calorific value; m = water mass combustion; c = water specific heat; ΔT = difference between ambient and equilibrium temperature before condensation, and L = condensation latent heat of water vapor.
\n\t\t\t\t\tLow gross calorific values for solid and liquid fuels. P240 and C240 are the MAHC samples.
Gross calorific values of MAHC products are comparable to a fossil fuel (coal), charcoal and ethanol. However, gross calorifc values found for petroleum-based fuels, such as gasoline and diesel oil are 48% higher than the carbonaceous materials obtained in MAHC process.
\n\t\t\t\t\tThermogravimetric analysis (TGA) provides information about the thermal stability of carbonized materials. Figure 6 shows the weight loss curves for the pine and α-cellulose samples under argon atmosphere.
\n\t\t\t\t\tThermogravimetric curves of pine sawdust samples in natura and MAHC pine sawdust samples (PS) carbonized in microwave for 60, 120 and 240 min.
TG curves for pine samples reveal three weight loss stages, the first matches the moisture loss and occurs at 95 to 110°C, the second stage at 300 to 470°C is assigned to the cellulose thermal decomposition with cellulose macromolecule breakdown. The third weight loss at 470 to 740°C, is assigned to thermal degradation of lignin. The α-cellulose samples showed similar trends.
\n\t\t\t\t\tThermogravimetric analysis showed that the carbonization time was not enough to promote complete carbonization. These results were confirmed by elemental analysis of MAHC charcoals and raw materials (Table 2) (Guiotoku et al., 2009). Elemental analysis data from α-cellulose carbonized in a tubular furnace at 900°C, for 3 h, under nitrogen atmosphere, was used as reference material to complete carbonization.
\n\t\t\t\t\tTime | \n\t\t\t\t\t\t\t\tC (wt.%) | \n\t\t\t\t\t\t\t\tH (wt.%) | \n\t\t\t\t\t\t\t\tN (wt.%) | \n\t\t\t\t\t\t\t\tOa (wt.%) | \n\t\t\t\t\t\t\t\tAtomic ratio | \n\t\t\t\t\t\t\t|
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | H/C | \n\t\t\t\t\t\t\t\tO/C | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tPine sawdust\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t45.45±0.06 | \n\t\t\t\t\t\t\t\t6.22±0.09 | \n\t\t\t\t\t\t\t\t0.02±0.01 | \n\t\t\t\t\t\t\t\t48.31±0.16 | \n\t\t\t\t\t\t\t\t1.16 | \n\t\t\t\t\t\t\t\t0.79 | \n\t\t\t\t\t\t\t
0 | \n\t\t\t\t\t\t\t\t60.01±0.15 | \n\t\t\t\t\t\t\t\t5.51±0.00 | \n\t\t\t\t\t\t\t\t0.02±0.00 | \n\t\t\t\t\t\t\t\t34.46±0.16 | \n\t\t\t\t\t\t\t\t1.10 | \n\t\t\t\t\t\t\t\t0.43 | \n\t\t\t\t\t\t\t
60 | \n\t\t\t\t\t\t\t\t64.74±0.15 | \n\t\t\t\t\t\t\t\t5.29±0.18 | \n\t\t\t\t\t\t\t\t0.04±0.01 | \n\t\t\t\t\t\t\t\t29.93±0.35 | \n\t\t\t\t\t\t\t\t0.98 | \n\t\t\t\t\t\t\t\t0.35 | \n\t\t\t\t\t\t\t
120 | \n\t\t\t\t\t\t\t\t63.54±0.12 | \n\t\t\t\t\t\t\t\t5.19±0.10 | \n\t\t\t\t\t\t\t\t0.71±0.01 | \n\t\t\t\t\t\t\t\t30.56±0.20 | \n\t\t\t\t\t\t\t\t0.98 | \n\t\t\t\t\t\t\t\t0.36 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tα-cellulose\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t |
0 | \n\t\t\t\t\t\t\t\t40.5±0.15 | \n\t\t\t\t\t\t\t\t6.43±0.02 | \n\t\t\t\t\t\t\t\t0.09±0.06 | \n\t\t\t\t\t\t\t\t52.98±0.11 | \n\t\t\t\t\t\t\t\t1.90 | \n\t\t\t\t\t\t\t\t0.97 | \n\t\t\t\t\t\t\t
60 | \n\t\t\t\t\t\t\t\t63.11±0.08 | \n\t\t\t\t\t\t\t\t4.74±0.007 | \n\t\t\t\t\t\t\t\t0.26±0.05 | \n\t\t\t\t\t\t\t\t31.89±0.13 | \n\t\t\t\t\t\t\t\t0.90 | \n\t\t\t\t\t\t\t\t0.38 | \n\t\t\t\t\t\t\t
120 | \n\t\t\t\t\t\t\t\t63.63±0.00 | \n\t\t\t\t\t\t\t\t4.64±0.03 | \n\t\t\t\t\t\t\t\t0.06±0.02 | \n\t\t\t\t\t\t\t\t31.67±0.06 | \n\t\t\t\t\t\t\t\t0.87 | \n\t\t\t\t\t\t\t\t0.37 | \n\t\t\t\t\t\t\t
240 | \n\t\t\t\t\t\t\t\t63.75±0.09 | \n\t\t\t\t\t\t\t\t4.50±0.04 | \n\t\t\t\t\t\t\t\t0.46±0.01 | \n\t\t\t\t\t\t\t\t32.19±0.10 | \n\t\t\t\t\t\t\t\t0.85 | \n\t\t\t\t\t\t\t\t0.37 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tα-cel charcoal\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t91.08±0.12 | \n\t\t\t\t\t\t\t\t1.33±0.05 | \n\t\t\t\t\t\t\t\t0 | \n\t\t\t\t\t\t\t\t7.59±0.08 | \n\t\t\t\t\t\t\t\t0.17 | \n\t\t\t\t\t\t\t\t0.06 | \n\t\t\t\t\t\t\t
Elemental analysis for pine sawdust and α-cellulose at different times of MAHC and α-cellulose charcoal (Guiotoku et al., 2009). a The oxygen content was determined by mathematical difference [100% - (C% + H% + N%)].
Compared with their respective raw materials, the samples subjected to the microwave-assisted hydrothermal carbonization process had their carbon content increased by 40% and 57% for pine sawdust and α-cellulose, respectively. In contrast, the amount of O and H decreased in all carbonized materials, which suggests aromatization process.
\n\t\t\t\t\tIn order to evaluate qualitatively the carbonization process, H/C and O/C molar ratios were plotted using the van Krevelen diagram, which provides information about the changes in chemical structure after carbonization, as seen in Figure 7. The van Krevelen diagram is widely used in study and classification of kerogen, which is a mixture of organic chemistry compounds modified by geological actions that originates the most of fossil fuels such as oil, gas and coal. This classification is basically provided by analysis of H/C and O/C molar ratios (van Krevelen, 1950).
\n\t\t\t\t\tIn the diagram, H/C and O/C ratios of carbonized materials decrease when compared to their natural samples, suggesting that changes in the materials were taking place. The loss of H and O occurred by dehydrogenation, deoxygenation and dehydration processes.
\n\t\t\t\t\tHowever, as seen in TGA curves, the products are not completely carbonized, since they are in the center of diagram, between the raw material and α-cellulose charcoal. Such partially carbonized materials are commonly obtained by hydrothermal carbonization and their chemical structure can be described as amorphous aromatic carbon -OH and -COOH substituted (Titirici et al., 2007a).
\n\t\t\t\t\tThe van Krevelen diagram for pine sawdust (•), α-cellulose (○) and α-cellulose charcoal (Ä) (Guiotoku et al., 2009).
SEM (Scanning Electron Microscopy) micrographs of pine sawdust and α-cellulose both in natura and in carbonized form are depicted in Figure 8.
\n\t\t\t\t\tSEM micrographs of pine sawdust (A) and α-cellulose raw material (C); hydrothermally carbonized in microwave oven pine sawdust (B) and α-cellulose (D) (Guiotoku et al., 2009).
Carbonized pine sawdust apparently maintained its micro-morphological features after hydrothermal carbonization (Fig. 8B). In contrast, the carbonized α-cellulose is characterized by a noticeable morphological change after the MAHC process (Fig. 8 C and D). α-cellulose exhibits a fibrous aspect (Fig. 8C). After carbonization the fibers changed to spherical particles, with sizes of aproximately 1.5 μm in diameter (Fig. 8D).
\n\t\t\t\tTo better understand the molecules breakdown mechanism under microwave-assisted hydrothermal carbonization, Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC-MS) analysis were carried out in order to identify and quantify the carbonized compounds.
\n\t\t\t\t\tA list of compounds identified by Py-GC-MS and total ion current (TIC) is shown in Table 3. Carbonized products were divided into five classes: (A) alkyl furans, (B) oxygen-functionalized furans, (C) benzenoids, (D) benzofurans and (E) unknown compounds. Only compounds with total percentage area higher than 1.0% had their spectra analyzed (Guiotoku et al., submitted).
\n\t\t\t\t\tEight chromathografic peaks, 27.2% of total area, did not provide pure compounds. For this reason their mass spectra were not useful for interpretation. Major classes identified in the hydrochar were benzofurans followed by oxygen-functionalized furans, which correspond to 32.1% and 24.3%, respectively. The minor classes were alkyl furans and benzenoids.
\n\t\t\t\t\tIdentified compounds and their relative distribution in Py-GC-MS data of microwave assisted hydrothermal product of cellulose (hydrochar).
The most pyrolytic furan-like and benzenoids compounds present in the hydrochar are detected in Py-GC-MS analysis of raw materials and carbonized cellulose, A and B classes (Pastorova et al., 1994). However, levoglucosan, the main product detected by pyrolysis analysis of raw cellulose, and other sugar markers (e.g. pyranones) were not identified in the hydrochar, indicating that all original material was modified during the hydrothermal treatment.
\n\t\t\t\t\tFurthermore, condensed aromatic compounds (e.g. naphtalene and phenantrene) usually present in the macromolecular structure of carbonized cellulose were also not detected. Therefore, apparently the hydrochar material did not preserve the oligosaccharide structure of the started material in spite of low temperature used, and no strong evidence of the cellulose charcoal was detected in the final hydrochar product.
\n\t\t\t\t\tThe solid state 13C NMR spectrum of hydrochar is showed in Figure 9 and is characterized by the presence of two broadened peaks centered at 25 and 125 ppm.
\n\t\t\t\t\tSolid state 13C NMR spectrum of hydrothermally carbonized on microwave cellulose (hydrochar) (Guiotoku et al., submitted).
Contribution of aliphatic groups can be observed between 10 and 60 ppm, with methylene resonance contribution ranging from 20 to 40 ppm. The peak at 125 ppm is typical of charred residues due to polycyclic aromatic structures. Other peaks of low intensities appear at 175 and 205 ppm, and they are consistent with the presence of carboxyl and carbonyl functional groups, respectively (i.e aliphatic carboxylic acids – 175 ppm and aldehydes and ketones – 205 ppm).
\n\t\t\t\t\tResults of the NMR and Py-GC-MS analyses confirmed that the hydrochar product contains an intermediate polymer composed of mainly furan elements. A strong cellulose signal is also absent in the NMR spectrum, since signals around 75 ppm, indicative of the presence of hydroxylated methylene gourps, were not prominent. The same results were observed in the pyrolysis analysis.
\n\t\t\t\t\tInterestingly, NMR spectra provided information on the nature of aromatic carbons (129 ppm), which may be interpreted as a graphite-like structure (Jiang et al., 2002). Py-GC–MS analysis provided a more detailed view of the aromatic structure, suggesting that aromatic monomers of hydrochar polymer are built on benzofuran-like components.
\n\t\t\t\t\tAccording to a study about hydrochar production from cellulose, the carbon-rich production from cellulose takes place via:
\n\t\t\t\t\thydrolysis;
dehydration and fragmentation of sugars;
polymerization or sugar derivatives condensation, and
aromatization (Sevilla & Fuertes, 2009). Similar mechanism should occur in hydrochar production by microwave hydrothermal carbonization, leading to partial oxygenated and aromatic products.
Hydrothermal carbonization is a novel route to produce carbon-rich material, and its use as a soil additive should be considered, mainly due to its specific properties like a functionalized chemical nature structure (hydrochar). In contrast to several biochar agronomic studies (Sohi et al., 2010 and references therein), only preliminary studies using hydrochar have been carrying out.
\n\t\t\t\tBiochar is any source of biomass previously heated under low or absence of oxygen supply – a carbonization process – whose purpose is to be applied to soil in order to improve its agronomic and environmental quality. This process results in a very stable carbon-rich material not only capable of improving physical and chemical soil properties, and therefore soil productivity, but also of increasing soil carbon storage on large scale and for a long period of time (Sohi et al., 2010).
\n\t\t\tBiochar application to soil involves a combination of biological and physico-chemical routes to reduce atmospheric greenhouse gas levels, but its behavior in soil needs to be deeply evaluated for large scale use (Hammond et al., 2011). Nevertheless, there are few alternatives of carbon-neutral or carbon negative technologies, with great economic viability and low cost, leading to significant changes in the global carbon balance, such as that can be expected by adopting the currently technology known as biochar.
\n\t\t\tUsually, biochar is obtained from the partial transformation of biomass in to coal-like material by thermal decomposition under low oxygen atmosphere, resulting in partial degradation of cellulose into smaller molecules. This material is characterized by condensed aromatic structures with no functional groups (e.g. alcohol and organic acids), which are very important for reactivity and soil fertility when used as an additive. Therefore, methods for production and conversion of lignocellulosic biomass waste into highly functionalized biochar have emerged as a major challenge.
\n\t\t\tSoil fertility, especially in tropical soils, is substantially influenced by soil organic matter contents and its physical and chemical properties. Soil organic matter (SOM) is a complex mixture of organic compounds, of plants and animals origin, in gradual decomposition stage due to chemical or biological transformation. Pyrogenic carbon is the most recalcitrant fraction of SOM and, according to Seiler & Crutzen (1980), it can be described as “a continuum form partly charred plant material, through char and charcoal, to soot and graphite particles without distinct”.
\n\t\t\tPyrogenic carbon is derived from partial carbonization mainly of lignocellulosic materials resulting in different sizes of condensed polyaromatic units, hydrogen and oxygen deficient. Soot particles that condense from gas phase typically develop as concentric shells of graphene stacks (“onion-like” structure) (Preston & Schmidt, 2006). Pyrogenic carbon is highly resistant to thermal, chemical and photo degradation, excellent characteristics for soil carbon sequestration (Glaser et al., 2001; Masiello, 2004). However, partial oxidation of peripheral aromatic units may produce carboxylic groups that elevate the total acidity of SOM and, therefore, the cation exchange capacity (CEC) and soil fertility (Novotny et al., 2009). This effect is demonstrated in Figure 10 where the 13C NMR spectra of charcoal before and after chemical oxidation is shown (Novotny et al., 2007).
\n\t\t\tThe use of biochar as a soil conditioner and several scientific publications can be found from the beginning of the 20th century. Nevertheless, recent studies about Amazonian Dark Earths, known as Terras Pretas de Índios (TPI), renewed the scientific interest on pyrogenic carbon in soils. TPI are anthropogenic dark earths which surface horizons of variable depth enriched in organic matter (OM), pottery shards lithic artifacts and other evidences of human activity (Kämpf et al., 2003).
\n\t\t\tSolid state 13C NMR spectra of charcoal (a) before and (b) after chemical oxidation (Novotny et al., 2007).
These archeological Amazonian sites are highly fertile, very unusual among Amazonian soils, typically of low fertility, highly weathered and very acid. TPI soils have carbon content up to 150 g kg-1 of soil, compared with 20 to 30 g kg-1 in adjacent soils (Novotny et al., 2009). This additional carbon is present mainly in the pyrogenic form, which is more stable than other carbons forms (Glaser et al., 2001), distributed along the whole soil organic profile, which can reach up to 200 cm deep, averaging from 40 to 50 cm, while surrounding soils are limited from 10 to 20 cm. Therefore, carbon stocks in TPI can be an order of magnitude higher than in surrounding soils.
\n\t\t\tHumic acids extracted from TPI and analyzed by 13C NMR spectroscopy, revealed that this fraction is rich in condensed aromatic structures and functionalized with carboxylic groups linked directly to the recalcitrant polyaromatic rings. In contrast, humic acids from adjacent non–anthropogenic soils have a higher content of labile compounds, shuch as carbohydrates and aminoacids. Once in soil biochar increases the pyrogenic fraction and the stable carbon pool. Besides carbon sequestration, biochar can provide other benefits such as: enhancing productivity (from 0 to 300%); decreasing emission of methane and nitrous oxide (up to 50% estimations); decreasing nutrients leaching and enhancing water holding capacity (Gaunt & Lehmann, 2007).
\n\t\t\tThe success in obtaining functionalized materials by MAHC leads to new perspectives for the application of spherical carbonaceous particles, as soil amendments. Although soil pyrogenic carbon is rich in condensed polyaromatic compounds of low H/C and O/C ratios, chemical characteristics which provide high recalcitrant, resilience and resistance to thermal, chemical and photo degradation (Seiler & Crutzen, 1980), as a soil organic matter component, the presence of functionalized groups as carboxyls and hydroxyls is desirable to improve cationic exchange capacity (CEC). Charcoal is an efficient material for carbon sequestration (half-life ranging from decades to millennia), but it does not contain carboxylic groups that could improve its reactivity and CEC. Functionalization of the aryl backbone can be naturally obtained, slowly, or through chemical, thermal or biological oxidation like MAHC.
\n\t\t\tHydrothermal carbonization produces carbonaceous materials under milder conditions than other carbonization processes. The structure of the hydrochar produced is basically an aromatic nucleus with hanging functional groups such as hydroxyl (-OH), carboxyl (-OOH) and carboxylic acids (-COOH), making it hydrophilic and less graphitized as compared with conventional charcoal (Rillig et al., 2010).
\n\t\t\tConventional pyrolysis results in graphite-like structures with low O/C and H/C ratios and, therefore, few functional organic groups. Due to its polar structure, hydrochar is especially interesting as a soil conditioner, since it can play an active role in soil CEC and reactivity.
\n\t\t\tBiochar has been considered a very promising technology around the world mainly because it perfectly fits in the bioenergy sector as a solution for mitigation of greenhouse gas emissions. Scientific evidences indicate that biochar improves soil biodiversity, enhances soil performance, and reduces its susceptibility to weathering and its fertilization input. With the additional suppression of trace gas emission, a biochar-to-soil strategy based on agricultural waste streams offers a sustainable, carbon negative energy production by cutting farming´s carbon footprint, and offering to the society a rare win-win option for combating climate change (Sohi et al., 2010).
\n\t\t\tSome of the benefits of biochar with respect to biomass are low moisture retention, high gross calorific value (and consequent reduction in transportation costs), ease of handling, it non perishablity and long term storage ability. The acceleration of biomass carbonization by a factor of 106 to 109 by microwave hydrothermal reaction can be considered promising technology.
\n\t\t\tDespite these advantages of MAHC, further studies are still needed, in order to evaluate the viability of the wide range of possible applications. Considering its potential, the microwave-assisted hydrothermal carbonization is a new thermochemical conversion technology that should be seriously considered among biomass conversion technologies for the near future.
\n\t\tBrazil is now the world’s largest exporter not only of coffee, sugar, orange juice and tobacco but also of ethanol, beef and chicken, and the second-largest source of soybean products (The Economist, 2010). With this huge agricultural production, the first challenge is exactly the large variety of biomass source available to char. Each biomass source is physically and chemically different and has specific ideal conditions to char, and different soil responses. Besides, the large climate variation of the country also contributes to the variety of biomass and soil. With all these possibilities, it is necessary to prioritize the biochar research on certain biomass sources. At the moment, the natural trend seems to point to Brazilian energetic matrix, which is based in renewable sources (45% compared with a world average of 15%), from which 27.2% is supplied by biomass (Lora & Andrade, 2009). The Brazilian agro-energy chain involves 121.15 million tons of bagasse from sugar cane industry, although others sources of wasted biomass are currently in the biochar research agenda. As for MAHC procedures, the challenge is even larger since as a biochar making technique, is barely studied.
\n\t\tThe purpose of this chapter was to demonstrate how the use of microwaves in an already well established process such as the hydrothermal, can produce materials with several interesting physico-chemical properties. As this process has been recently developed, there are no sufficient studies for material comparison and the discussed results during the chapter was based on the work of the authors research group. However, the authors hope that the disclosure of this book may inspire further studies and applications for microwaves on carbonaceous materials in all fields of knowledge, such as materials engeneering, chemistry, physics, biology, agronomy and others.
\n\t\tThe authors thank Prof. Dr. Adilson Curtius and Prof. Dr. Vera Azzolin Frescura Bascuñan from Federal University of Santa Catarina for their valuable contribution during the microwave-assisted hydrothermal carbonization experiments, and to CNPq for financial support.
\n\t\tWater availability is one of the most important environmental factors for plant growth and development. The water deficit caused by drought or salinity in soils is one of the most serious environmental problems that limit agricultural production in various regions of the world. According to [1], water deficit occurs when all water content in the cell is below the highest water content displayed in the state of greatest hydration.
Plants experience a water deficit when water supply to the roots becomes difficult or when the rate of evapotranspiration becomes very high. These two conditions generally coincide in regions with an arid and semiarid climate and affect plants to a greater or lesser extent according to the tolerance that species have [2].
Plant response to biotic and abiotic stresses is a complex network of reactions, which involves different physiological pathways of the primary and secondary metabolism. At the cellular level, membranes and proteins can be damaged by a reduction in hydration and an increase in reactive oxygen species (ROS) [3]. ROS derive from oxidative processes such as photosynthesis and respiration, and, in normal conditions, they are produced in low concentration without any negative consequences for the plants. In stressful conditions (biotic or abiotic), ROS levels increase as an index of the oxidative burst induced by the stress agent [4]. When ROS become toxic, they can result in a series of damages to plant metabolism, such as deterioration of photosynthetic components, inactivation of proteins and enzymes, and destruction of the structure and permeability of the cell membrane by lipid peroxidation [5, 6].
Antioxidants and their role in the plant defense system have received a lot of attention in scientific research. Many results suggest that the effects of environmental stresses, such as salinity, drought, low temperatures, and herbicide residues, damage plants directly or indirectly by increasing endogenous ROS [7].
Plant cells are protected against the damaging effects of ROS by a complex antioxidant system composed of enzymatic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) [8]. The close relationship between antioxidant activity and stress tolerance has been identified in many crops such as maize (Zea mays L.) [7], tobacco (Nicotiana tabacum) [9], and grasses [10].
Biostimulants are extracts obtained from organic raw materials containing bioactive compounds. The most common components of the biostimulants are mineral elements, humic substances (HSs), vitamins, and amino acids [6]. Seaweed extracts have been used in agriculture as soil conditioners or as plant stimulators. They are applied as foliar spray and enhance plant growth; freezing, drought, and salt tolerance; photosynthetic activity; and resistance to fungi, bacteria, and virus, improving the yield and productivity of many crops [11, 12]. Seaweeds used for biostimulant production contain cytokinins and auxins or other hormone-like substances [13]. From a legal point of view, the biostimulants can contain traces of natural plant hormones, but their biological action should not be ascribed to them; otherwise they should be registered as plant growth regulators [6].
Humic acids have been used in the composition of many commercial products because they have phytohormones [14] that favor protection against oxidative damage in plants caused by environmental stresses. Thus, the use of biostimulants in agriculture has been emphasized, which are products that contain active ingredient or organic agent free of pesticides, capable of acting, directly or indirectly, on all or part of the cultivated plants, increasing their productivity [15].
The components of biostimulants can change the hormonal status of the plant and have a great influence on its development and health. Seaweed, humic acids, and vitamins are commonly present in biostimulants and are important in improving plant development and hormonal activity [16]. In addition, these products increase the antioxidant activity in plants, especially when they are under water stress, severe temperatures, and herbicide action, among others [7].
Several studies have shown results in improving the resistance of plants to water stress when subjected to the application of biostimulants. The activity levels of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) have been determined. In general, increases in these antioxidant enzymes have been observed with the use of biostimulants [16]. Another parameter that has been improved in the plant with the application of biostimulants is the photochemical efficiency [17].
Thus, the objective of this chapter was to approach the role of biostimulants in plants submitted to water supply deficit, by affecting the activities of enzymatic antioxidants.
Biostimulants are components that produce responses in plant growth by improving tolerance to abiotic stresses. Many of the effects of these products are based on their ability to influence the hormonal activity of plants. Phytohormones are chemical messengers that regulate the normal development of plants by growing roots and shoots, in addition to regulating responses to the environment where they are located [18].
Many statements about biostimulants also refer to the improvements they provide in the tolerance of plants to water stress, a limiting factor in the management of the crops. Water stress affects many metabolic functions in plants, specifically photosynthesis. The application of biostimulants increases the defense system of the plant by increasing its level of antioxidant enzymes [15].
The components of biostimulants can alter the plant’s hormonal status and have a major influence on its growth and health. Seaweed, humic acids and vitamins are commonly present in biostimulants and are important in improving plant development and hormonal activity [19]. In addition, these products increase the antioxidant activity in plants, especially when they are under water stress, severe temperatures and herbicide action, among others [20].
However, the composition of biostimulants is partly unknown; the complexity of the extracts and the wide range of molecules contained in the solution make it very difficult to understand which the most active compounds are. Moreover, the isolation and study of a single component present in a biostimulant can produce unreliable results because the effects on plants are often due to the combination and synergistic action of different compounds. In addition, the mechanisms activated by biostimulants are difficult to identify and still under investigation [6].
Plants usually thrive when the environment is favorable. Under these conditions, the effects of biostimulants may not be easily identified. However, when plants are stressed and undergo treatment with biostimulants, they develop better, as their defense system becomes more efficient due to the increase in their levels of antioxidants [20]. Besides, many of the active substances of biostimulants can be present in very low concentrations, sometimes below the levels detectable with commonly available technologies, but can provide strong biological effects [6].
Biostimulants and humic substances have shown an influence on many metabolic processes in plants, such as respiration, photosynthesis, synthesis of nucleic acids, and ion absorption. Within the cell, humic substances can increase the chlorophyll content resulting in greener leaves and reduction of some problems in plants, such as leaf chlorosis, since humic substances improve the capacity of nutrient uptake by the roots [21]. Beyond humic substances, various raw materials have been used in biostimulant compositions, such as hormones, algae extracts, and plant growth-promoting bacteria [22].
Water availability is one of the most limiting environmental factors that affect crop productivity. In the semiarid tropics, the occurrence of drought or water deficit in the soil is quite common, despite the fact that crops in regions of tropical and temperate climate suffer seasonal periods of water deficit, especially during the summer [23].
Drought is a prevalent stress factor especially in arid and semiarid areas and can affect different aspects of plant growth, development, and metabolism. Drought is a multidimensional stress factor, and hence its effects on plants are complex. Its effects on plants can occur on a molecular level up to a whole-plant level. There are several reasons for drought in nature, including low rainfall, salinity, high temperature, and high intensity of light, among others [24].
Some of the plants’ first responses to stress appear to be mediated by biophysical events, rather than changes in chemical reactions resulting from dehydration. The closing of stomata, the reduction of photosynthesis, and osmotic adjustments are the responses of some plants to the first stage of water deficit [25]. As the water content of the plant decreases, the cells shrink, and the cell walls relax. With this, the solutes increase their concentration in the cells, and the plasma membrane becomes thicker and more compressed, as it covered a smaller area than before [1]. Cell expansion occurs when the turgor pressure is greater than the growth of the cell wall. Water stress greatly decreases cell expansion and plant growth due to low turgor pressure [26].
Stomata provide the main mechanism for controlling the rate of water loss. However, the site of water loss is also the site of carbon gain by the plant, so a reduction in water loss by stomatal control also results in a reduction in assimilation with consequent effects on productivity and the accumulation of reactive oxygen species [27]. These responses hinder the supply of CO2 for photosynthesis and expose chloroplasts to excess energy excitation, especially under high light intensity [25].
The low potentials in the soil and in the plant inhibit their growth, reduce the development activities of cells and tissues, decrease the uptake of nutrients, and cause morphological and biochemical changes [28]. To maintain water uptake, the roots have to grow deeper or increase their density. A characteristic of drought-resistant species is that they have a large proportion of their total mass consisting of roots and a deep-rooted habit. A high root/shoot ratio does not indicate in itself great ability to absorb water: water deficiency invariably increases the root/shoot ratio, but this is due to the loss of plant shoot weight without loss of root mass [1].
Photosynthesis is the driving force of plant productivity. The ability to maintain the rate of photosynthetic carbon dioxide and the assimilation of nitrate under environmental stresses is fundamental for the maintenance of plant growth and production. It is known that when water stress becomes extreme, non-stomatal factors can become even more limiting for photosynthesis [17].
The water deficit often decreases the number of photons captured by the leaves because withered leaves are at a more acute angle to the sun’s rays. Changes in the absorption characteristics of the leaves occur due to the shrinkage of the cells. However, changes in chloroplasts and thylakoid during light capture and energy transfer centers are relatively small under water deficit conditions [29].
The diatomic oxygen (O2) molecules in the Earth’s atmosphere are the major promoters of reactions in cells. Except for those organisms that are specially adapted to live under anaerobic conditions, all animals and plants require oxygen for efficient energy production [30].
Aerobic organisms use diatomic oxygen as a terminal electron receptor, providing a high-energy field compared to fermentation and anaerobic respiration. In this base stage, molecular oxygen is relatively nonreactive, but it is capable of giving rise to excited reactive and lethal states, such as free radicals and their derivatives [31].
Superoxide, produced by electron transport to oxygen, is not compatible with cellular metabolism; hence, all organisms that are involved in aerobic environments must have an efficient mechanism capable of removing or neutralizing free radicals from cellular components. The balance between oxidative and antioxidant capabilities determines the fate of the plant [32]. Without this defense mechanism, plants may not efficiently convert solar energy into chemical energy [33].
The formation of reactive oxygen species occurs primarily through the superoxide radical (O2●−), which can be dismutated into hydrogen peroxide (H2O2), or even through catalytic action, by the action of the superoxide dismutase (SOD) enzyme. Antioxidant systems in plants act as mechanisms of resistance to stress by protecting the membranes against damage caused by these oxygen species produced under conditions of environmental and xenobiotic stress [34].
The fate of cells under stressful environments is determined by the duration of the stress, as well as the plant’s protective capacity. Reactive oxygen species (ROS) play a crucial role in causing cellular damage to plants under stress. The sequence of events in plant tissues subjected to stress is increased production of ROS; increased levels of antioxidants; and increase in the capacity to “sweep” ROS, resulting in the plant’s tolerance against water stress [35].
The detoxification mechanisms of ROS exist in all plants and can be categorized into enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX, among others) and nonenzymatic (carotenoids, ascorbic acid, among others). The degree to which the amount and activities of antioxidant enzymes increases under water stress is extremely variable between many plant species and even between two cultivars of the same species. The level of response depends on the species, the development of the plant, as well as the duration and intensity of the stress [35].
The superoxide produced by the thylakoid can spontaneously be dismutated into molecular oxygen and hydrogen peroxide. In chloroplasts, this reaction is catalyzed enzymatically via superoxide dismutase (SOD). Chloroplasts also contain large amounts of ascorbic acid, which can efficiently reduce superoxide to hydrogen peroxide via ascorbate peroxidase [4].
Plants have the superoxide dismutase enzyme containing Cu and Zn, Fe, or Mn as prosthetic metals. Zn is found in superoxide dismutase present in chloroplasts and cytosol, while Mn is found in superoxide dismutase in mitochondria and Fe in superoxide dismutase is present in chloroplasts and mitochondria [36].
Reactive oxygen species can react with unsaturated fatty acids, causing the peroxidation of essential lipid membranes in plasmalemma or intracellular organelles [33]. The damage caused by the peroxidation of plasmalemma leads to extravasation of cellular content and rapid dissection and cell death. The damaged intracellular membrane affects the respiratory activity in the mitochondria, in addition to depigmentation and loss of the ability to fix carbon in chloroplasts [34].
Under normal conditions, antioxidant systems eliminate or slow the reaction of reactive oxygen, preventing its transformation into products more toxic to cells. Photosynthetic cells can tolerate high levels of oxygen because endogenous mechanisms sweep and remove toxic products before cell damage occurs [32]. However, oxidative damage is evident under conditions where the rate of production of ROS is high and the removal ability is low [37].
Water stress conditions can trigger an increase in the production of various forms of reactive oxygen, which can explain the damage to chloroplasts, lipids, and proteins and the alteration of the structural integrity of cell membranes. During the reduction of water inside the plant, the superoxide radical (O2●−) can also react nonenzymatically with hydrogen peroxide (H2O2), giving rise to products such as hydroxyl radicals (OH−) and singlet oxygen (1O2), which are more reactive than the superoxide radical (O2●−) [32].
Although a number of regulatory mechanisms have been evolved within the plant cell to limit the production of these toxic molecules, oxidative damage remains a potential problem, as it causes disturbances in metabolism, such as loss of coordination between production processes (source) and energy use (drain) during photosynthesis on green leaves under stressful environments [38].
When plants are under stress, free radicals or ROS damage plant cells, and antioxidants decrease the toxicity of these radicals. Plants with high levels of antioxidants produce better root and shoot growth, maintaining a high water content in the leaves and low incidence of disease, both occurring when they are under ideal growing conditions and under environmental stress [18].
The use of biostimulants in plant breeding could change the activity of enzymes and antioxidant properties. Lycopene, ascorbic acid, phenolic compounds, and others have antioxidant properties. Antioxidant compounds (e.g., phenols, ascorbic acid) and enzymes (e.g., catalase, peroxidase, superoxide dismutase) detoxify reactive oxygen molecules [20].
Biostimulants stimulate root production and growth when applied to seeds or early plant development, especially in soils with low fertility and low water availability. Biostimulants act in accelerating the recovery of the seedlings in unfavorable conditions, such as water deficit. In addition, biostimulants reduce the need of fertilizers to the plants and increase their productivity and resistance to water stress, since they act as a hormonal and nutritional increment [15].
The application of humic acid extracts seems to be beneficial for field crop monocots. In a study conducted by [39], extracts from vermicompost applied to rice (Oryza sativa L.) played a role in activating antioxidative enzymatic function and increased ROS-scavenging enzymes. These enzymes are required to inactivate toxic-free oxygen radicals produced in plants under drought stress. Humic acid extracts may stimulate plant growth by improving nutrient uptake by exerting hormone-like effects as auxins, stimulating shoot elongation and increasing leaf nutrient accumulation and chlorophyll biosynthesis [40].
According to [41], humic acids improve root and shoot growth by increasing the concentrations of antioxidants in tall fescue (Festuca arundinacea) and creeping bent grass (Agrostis palustris) grown under conditions of low water availability. The authors also claim that exogenous applications of seaweed extracts together with humic acids promote root and shoot growth through the action of antioxidants in plants under water stress conditions.
A study carried out using a biostimulant based on salicylic acid and chitosan nanoparticles had an effect on the enzyme and antioxidant activity in maize leaves under water shortage [42]. The enzyme activity in leaves treated with chitosan, salicylic acid, and a control was comparable, and the activity of superoxide dismutase and peroxidase activity in plants treated with a biostimulant was 7.7 (after 2 days) and 5.2 (after 3 days) times higher than for plants treated with only salicylic acid.
The activities of antioxidant enzymes in plants are normally favored when plants are subjected to some kind of improvement in the conditions in which they are grown. The superoxide dismutase (SOD) antioxidant enzyme is the first line of defense against ROS caused by environmental stresses. Increases in SOD values provide an increase in plant resistance when subjected to environmental stresses [43].
In an experiment with Kentucky bluegrass (Poa pratensis) subjected to water stress and humic acid applications, [44] observed an increase in superoxide dismutase activities related to the applied doses of humic acids. However, a decrease in the activity of superoxide dismutase related to soil moisture content was observed. The authors justify this decrease by the increase in nonenzymatic antioxidants favored by the action of humic acids, which caused a decrease in the reactive oxygen species present in the cells.
The activity of superoxide dismutase responds differently to water deficit in different experiments and species: it can be increased [45] or decreased [46], or it cannot be altered [45]. Due to the presence of multiple enzymatic forms of the superoxide dismutase enzyme [33], only the investigation of the responses of each of its enzymatic forms can provide more information about the behavior of this enzyme in plants subjected to water stress.
Some authors mention that catalase activity has little affinity for hydrogen peroxide, a reason why it is common not to have a significant increase in its activity when evaluated in plants under stress [7]. [47] examined the activity of catalase in rice seedlings (Oryza sativa) under water stress and found that the increase of this enzyme in plants was not significant. Likewise, [48] did not find a significant increase for catalase in tomato plants (Lycopersicon esculentum Mill. cv. Nikita) submitted to three different levels of water stress. However, the extract of Moringa oleifera used as a biostimulant in rocket plants (Eruca vesicaria subsp. sativa) under water stress presented a decrease in the activity of the antioxidant enzymes (catalase, peroxidase, and superoxide dismutase) [49].
Several seaweed species influence ROS-scavenging systems in the plant tissue. Seaweed extracts controlled oxidative stress under drought conditions, by reducing lipid peroxidation, increasing total phenolic content, and enhancing superoxide dismutase, catalase, and ascorbate peroxidase activity in green bean (Phaseolus vulgaris) [50]. Extracts from Sargassum and Ulva, applied as seed presoaking, activated antioxidant systems by enhancing catalase and peroxidase activities, increasing ascorbic acid content, and therefore alleviating stress symptoms in wheat grown under drought conditions [51]. Ascophyllum nodosum extract applied to roots increased the total phenolic and flavonoid content and total antioxidant activity in spinach (Spinacia oleracea) [52]. In tall fescue (Festuca arundinacea), A. nodosum extract increased the activity of superoxide dismutase and in another study additionally enhanced glutathione reductase and ascorbate peroxidase activities [36]. Similarly applied seaweed extract increased the antioxidant capacity and enhanced flavonoid and tannin content in plant leaves of the ornamental hybrid Calibrachoa x hybrida under normal conditions [53].
Seaweed extracts have also been applied in combination with other compounds to enhance antioxidant activity in plants under water stress, such as a mixture of seaweed extracts from A. nodosum, Fucus spp., and Laminaria spp. with zinc and manganese and A. nodosum extract with free amino acids. These mixtures increased superoxide dismutase activity in shoots and roots of maize (Zea mays) and soybean (Glycine max). Collectively, these studies demonstrate that seaweed extracts enhance antioxidant activity, indicating their potential to scavenge damaging ROS molecules and improve plant stress tolerance [54].
Humic acids have also been shown to alleviate water deficit stress. Faba bean (Vicia faba) plants were protected from lead-induced oxidative damage by fulvic acids, which reduced lipid peroxidation, hydrogen peroxide, and pigment content [55]. The foliar application of fulvic acid ameliorated drought stress symptoms of reduced chlorophyll content, gas exchange, and yield while enhancing activities of superoxide dismutase, peroxidase, and catalase and increasing proline content in a study with maize [56]. Humic and fulvic acid based biostimulants, applied to the soil, enhanced superoxide dismutase, ascorbate peroxidase, and catalase activities in leaves of maize grown under well-watered and drought conditions. However, the effect of these biostimulants was less pronounced in soybeans [7].
Humic substances can also increase activity of antioxidant enzymes. Activity of superoxide dismutase, peroxidase, and catalase was higher after foliar application of fulvic acid in maize grown under drought conditions. Biostimulant containing humic and fulvic acids and amino acids increased activity of antioxidant enzymes, specifically superoxide dismutase and ascorbate peroxidase in maize subjected to drought stress, but did not affect catalase activity [7].
The composition of biostimulants should present a variety of organic materials such as humic substances, seaweed extracts, organic matter, and amino acids in order to improve stress tolerance. The literature on biostimulants have been reporting an increase in enzyme activities involved in antioxidant functions, especially under stress conditions.
Investigations on the role of biostimulants in the physiological mode of action in plants subjected to drought stress should be continued, since considerable researches remain to be completed to gain a clearer understanding of how these products increase the physiological health of plants under water stress.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"10"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10756",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",slug:null,bookSignature:"Dr. Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",editedByType:null,editors:[{id:"108118",title:"Dr.",name:"Luis",surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10762",title:"Cosmology",subtitle:null,isOpenForSubmission:!0,hash:"f28a2213571fb878839bcbacb9827a1d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10762.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:null,bookSignature:"Prof. Angelo Paone and Prof. Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:[{id:"182871",title:"Prof.",name:"Angelo",surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10949",title:"Clay and Clay Minerals",subtitle:null,isOpenForSubmission:!0,hash:"44d08b9e490617fcbf7786c381c85fbc",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/10949.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10950",title:"Landslides",subtitle:null,isOpenForSubmission:!0,hash:"8fcc0f63c22c087239f07a8e06ec2549",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10950.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science - Emerging Technologies, Global Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3dbedd2099c57a24eaab114be4ba2b48",slug:null,bookSignature:"Dr. Michael Thomas Aide and Dr. Indi Braden",coverURL:"https://cdn.intechopen.com/books/images_new/10952.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10954",title:"Dark Matter - Recent Observations and Theoretical Advances",subtitle:null,isOpenForSubmission:!0,hash:"b0fbd6ee0096e4c16e9513bf01273ab3",slug:null,bookSignature:"Dr. Michael L. Smith",coverURL:"https://cdn.intechopen.com/books/images_new/10954.jpg",editedByType:null,editors:[{id:"59479",title:"Dr.",name:"Michael L.",surname:"Smith",slug:"michael-l.-smith",fullName:"Michael L. Smith"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"572",title:"User Interface Design",slug:"user-interface-design",parent:{title:"Human-Computer Interaction",slug:"human-computer-interaction"},numberOfBooks:2,numberOfAuthorsAndEditors:21,numberOfWosCitations:30,numberOfCrossrefCitations:30,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"user-interface-design",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7603",title:"Mixed Reality and Three-Dimensional Computer Graphics",subtitle:null,isOpenForSubmission:!1,hash:"96e6d4a84d98903e442415024f7403f5",slug:"mixed-reality-and-three-dimensional-computer-graphics",bookSignature:"Branislav Sobota and Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7603.jpg",editedByType:"Edited by",editors:[{id:"109378",title:"Dr.",name:"Branislav",middleName:null,surname:"Sobota",slug:"branislav-sobota",fullName:"Branislav Sobota"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3787",title:"Human Computer Interaction",subtitle:"New Developments",isOpenForSubmission:!1,hash:"3e674caf0f42f89fcb433e4e7ae3e05f",slug:"human_computer_interaction_new_developments",bookSignature:"Kikuo Asai",coverURL:"https://cdn.intechopen.com/books/images_new/3787.jpg",editedByType:"Edited by",editors:[{id:"6710",title:"Dr.",name:"Kikuo",middleName:null,surname:"Asai",slug:"kikuo-asai",fullName:"Kikuo Asai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"5547",doi:"10.5772/5870",title:"A Tool for Getting Cultural Differences in HCI",slug:"a_tool_for_getting_cultural_differences_in_hci",totalDownloads:2625,totalCrossrefCites:8,totalDimensionsCites:10,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Ruediger Heimgaertner",authors:null},{id:"5540",doi:"10.5772/5878",title:"The Adaptive Automation Design",slug:"the_adaptive_automation_design",totalDownloads:3816,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Caterina Calefato, Roberto Montanari and Francesco Tesauri",authors:null},{id:"5539",doi:"10.5772/5877",title:"Application Prospects of the Augmented Reality Technology for Improving Safety of Machine Operators",slug:"application_prospects_of_the_augmented_reality_technology_for_improving_safety_of_machine_operators",totalDownloads:2525,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Marek Dzwiarek and Anna Luczak",authors:null}],mostDownloadedChaptersLast30Days:[{id:"72705",title:"Mixed Reality: A Known Unknown",slug:"mixed-reality-a-known-unknown",totalDownloads:244,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mixed-reality-and-three-dimensional-computer-graphics",title:"Mixed Reality and Three-Dimensional Computer Graphics",fullTitle:"Mixed Reality and Three-Dimensional Computer Graphics"},signatures:"Branislav Sobota, Štefan Korečko, Marián Hudák and Martin Sivý",authors:[{id:"109378",title:"Dr.",name:"Branislav",middleName:null,surname:"Sobota",slug:"branislav-sobota",fullName:"Branislav Sobota"},{id:"121880",title:"Prof.",name:"Stefan",middleName:null,surname:"Korecko",slug:"stefan-korecko",fullName:"Stefan Korecko"},{id:"322684",title:"Dr.Ing.",name:"Marián",middleName:null,surname:"Hudák",slug:"marian-hudak",fullName:"Marián Hudák"},{id:"322685",title:"Dr.Ing.",name:"Martin",middleName:null,surname:"Sivý",slug:"martin-sivy",fullName:"Martin Sivý"}]},{id:"73091",title:"Blockchain-Based Data Integrity for Collaborative CAD",slug:"blockchain-based-data-integrity-for-collaborative-cad",totalDownloads:236,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mixed-reality-and-three-dimensional-computer-graphics",title:"Mixed Reality and Three-Dimensional Computer Graphics",fullTitle:"Mixed Reality and Three-Dimensional Computer Graphics"},signatures:"Samir Lemeš",authors:[{id:"167012",title:"D.Sc.",name:"Samir",middleName:null,surname:"Lemes",slug:"samir-lemes",fullName:"Samir Lemes"}]},{id:"71263",title:"3D Modeling and Computer Graphics in Virtual Reality",slug:"3d-modeling-and-computer-graphics-in-virtual-reality",totalDownloads:345,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"mixed-reality-and-three-dimensional-computer-graphics",title:"Mixed Reality and Three-Dimensional Computer Graphics",fullTitle:"Mixed Reality and Three-Dimensional Computer Graphics"},signatures:"Yuk Ming Tang and H.L. Ho",authors:[{id:"314714",title:"Dr.",name:"Yuk",middleName:null,surname:"Tang",slug:"yuk-tang",fullName:"Yuk Tang"}]},{id:"5535",title:"Modeling Human-Computer Interaction in Smart Spaces: Existing and Emerging Techniques",slug:"modeling_human-computer_interaction_in_smart_spaces__existing_and_emerging_techniques",totalDownloads:3553,totalCrossrefCites:3,totalDimensionsCites:2,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Yngve Dahl",authors:null},{id:"5553",title:"Structured Light Illumination Methods for Continuous Motion Hand and Face-computer Interaction",slug:"structured_light_illumination_methods_for_continuous_motion_hand_and_face-computer_interaction",totalDownloads:3808,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Charles J. Casey, Laurence G. Hassebrook and Daniel L. Lau",authors:null},{id:"72385",title:"3D Solid Reconstruction from 2D Orthographic Views",slug:"3d-solid-reconstruction-from-2d-orthographic-views",totalDownloads:215,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mixed-reality-and-three-dimensional-computer-graphics",title:"Mixed Reality and Three-Dimensional Computer Graphics",fullTitle:"Mixed Reality and Three-Dimensional Computer Graphics"},signatures:"Long Hoang",authors:[{id:"310032",title:"Ph.D.",name:"Long",middleName:null,surname:"Hoang",slug:"long-hoang",fullName:"Long Hoang"}]},{id:"71251",title:"An Interactive VR System for Anatomy Training",slug:"an-interactive-vr-system-for-anatomy-training",totalDownloads:281,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mixed-reality-and-three-dimensional-computer-graphics",title:"Mixed Reality and Three-Dimensional Computer Graphics",fullTitle:"Mixed Reality and Three-Dimensional Computer Graphics"},signatures:"Djamel Aouam, Nadia Zenati-Henda, Samir Benbelkacem and Chafiaa Hamitouche",authors:[{id:"64814",title:"Mr.",name:"Samir",middleName:null,surname:"Benbelkacem",slug:"samir-benbelkacem",fullName:"Samir Benbelkacem"},{id:"72390",title:"Dr.",name:"Nadia",middleName:null,surname:"Zenati-Henda",slug:"nadia-zenati-henda",fullName:"Nadia Zenati-Henda"},{id:"314338",title:"Ph.D. Student",name:"Djamel",middleName:null,surname:"Aouam",slug:"djamel-aouam",fullName:"Djamel Aouam"},{id:"318975",title:"Dr.",name:"Chafiaa",middleName:null,surname:"Hamitouche",slug:"chafiaa-hamitouche",fullName:"Chafiaa Hamitouche"}]},{id:"5552",title:"Head-mounted Displays in Ultrasound Scanning",slug:"head-mounted_displays_in_ultrasound_scanning",totalDownloads:2944,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Juha Havukumpu, Jari Takatalo, Gote Nyman and Jukka Hakkinen",authors:null},{id:"70449",title:"Using Augmented Reality Technology to Construct a Wood Furniture Sampling Platform for Designers and Sample Makers to Narrow the Gap between Judgment and Prototype",slug:"using-augmented-reality-technology-to-construct-a-wood-furniture-sampling-platform-for-designers-and",totalDownloads:245,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mixed-reality-and-three-dimensional-computer-graphics",title:"Mixed Reality and Three-Dimensional Computer Graphics",fullTitle:"Mixed Reality and Three-Dimensional Computer Graphics"},signatures:"I-Jui Lee",authors:[{id:"229636",title:"Dr.",name:"I-Jui",middleName:null,surname:"Lee",slug:"i-jui-lee",fullName:"I-Jui Lee"}]},{id:"5549",title:"The Role of Head-Up Display in Computer-Assisted Instruction",slug:"the_role_of_head-up_display_in_computer-assisted_instruction",totalDownloads:2233,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"human_computer_interaction_new_developments",title:"Human Computer Interaction",fullTitle:"Human Computer Interaction: New Developments"},signatures:"Kikuo Asai",authors:null}],onlineFirstChaptersFilter:{topicSlug:"user-interface-design",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/227482/anca-lelia-riza",hash:"",query:{},params:{id:"227482",slug:"anca-lelia-riza"},fullPath:"/profiles/227482/anca-lelia-riza",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()