Carbon nanotubes (CNTs) have attracted substantial research interest in biomedical sciences and bionanotechnology, rendered from its unique structure, electronic, mechanical, and optical properties. Despite the diverse potential applications, the integration of CNTs in biomedical research is one of the most challenging areas where nanotubes fall under much scrutiny. Pristine nanotubes are highly hydrophobic, and non-dispersible in most of the common aqueous and organic solvents and to render nanotubes biocompatible, functionalization is one of the key prerequisites. In this regard, covalent and noncovalent functionalization are the two widely adopted approaches for co-tethering biologically active molecules on the CNTs. Likewise, the hollow cavity of the nanotube facilitates in the endohedral encapsulation of biomolecules, peptides, DNA oligonucleotides, and proteins, thereby retaining the physiological attributes of the biological molecules. The chapter focuses on the emerging approaches to the functionalization of single-wall CNTs (SWCNTs) and the potential application of functionalized SWCNTs in tuberculosis and cancer chemotherapy using state-of-the-art density functional theory, molecular docking and molecular dynamics simulation methods.
Part of the book: Novel Nanomaterials