Radar bands.
\r\n\tgas sensors.
",isbn:"978-1-80356-963-5",printIsbn:"978-1-80356-962-8",pdfIsbn:"978-1-80356-964-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"8eeb7ab232fa8d5c723b61e0da251857",bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",keywords:"Fabrication Technologies, Applications, Characterizations, Case Studies, Various Gas Sensors, Improvement of Lifestyle, Societal Benefit, Bio-Sensors, Bioreceptor Molecules, Integration, Packaging, Lab-on-Chip",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2022",dateEndSecondStepPublish:"June 17th 2022",dateEndThirdStepPublish:"August 16th 2022",dateEndFourthStepPublish:"November 4th 2022",dateEndFifthStepPublish:"January 3rd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"8 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in nanowire heterostructures and laser spectroscopy, recipient of JSPS (Govt. of Japan) and NPDF (Govt. of India) fellowships, and member of MRS(USA), MRS(India), IPA(India).",coeditorOneBiosketch:"Assistant Professor with the School of Medical Science and Technology, Indian Institute of Technology Kharagpur with research interests that include the design and characterization of portable biosensors, biodevices, and sensor interfaces for miniaturized systems and biomedical applications for point-of-care testing.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",middleName:null,surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara",profilePictureURL:"https://mts.intechopen.com/storage/users/196334/images/system/196334.jpeg",biography:"Dr. Dhara received his Ph. D in Physics in 2012 from Indian Institute of Technology Guwahati, India. Presently, he is associated with the Faculty of Science, Sri Sri University, India as an Assistant Professor in Physics. Prior to joining the current\naffiliation, he was a postdoctoral fellow at different renowned institutions, Kobe University Japan, S. N. Bose National Centre for Basic Sciences, India and Cardiff University, United Kingdom. He was awarded prestigious JSPS postdoctoral fellowship based on his research contribution on semiconducting nanowires. He has published more than 32 research articles including 1 review article in high profile international journals and 3 book chapters to his credit. His research trust areas of interests are semiconductor nanostructures, optoelectronics, solid state lighting and light sensors, spectroscopy of nanomaterials, thin-film transistors (TFTs) etc.",institutionString:"Sri Sri University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Sri Sri University",institutionURL:null,country:{name:"India"}}}],coeditorOne:{id:"442408",title:"Dr.",name:"Gorachand",middleName:null,surname:"Dutta",slug:"gorachand-dutta",fullName:"Gorachand Dutta",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Gorachand Dutta, PhD is an Assistant Professor with the School of MedicalScience and Technology, Indian Institute of Technology Kharagpur. His research interests include the design and characterization of portable\r\nbiosensors, biodevices and sensor interfaces for miniaturized systems and biomedical applications for point-of-care testing. He received his Ph.D in Biosensor and Electrochemistry from Pusan National University, South Korea,\r\nwhere he developed different class of electrochemical sensors and studied the electrochemical properties of gold, platinum, and palladium based metal electrodes. He completed his Post-doctoral fellowships in the Department of\r\nMechanical Engineering, Michigan State University, USA and Department of Electronic and Electrical Engineering at University of Bath, UK. He has expertise on label-free multichannel electrochemical biosensors, electronically\r\naddressable biosensor arrays, aptamer- and DNA-based sensors and surface bio-functionalization.",institutionString:"Indian Institute of Technology Kharagpur",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Indian Institute of Technology Kharagpur",institutionURL:null,country:{name:"India"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"10397",title:"Observing Marine Pollution with Synthetic Aperture Radar",doi:"10.5772/9106",slug:"observing-marine-pollution-with-synthetic-aperture-radar",body:'\n\t\tMarine pollution is a matter of public concern because of its strong influence on various human activities such as fisheries and tourism, as well as for consequences on health. In this context, particular attention is being paid to pollution phenomena on the sea surface, where even a small amount of substance can spread over a large area in the form of a thin film.
\n\t\t\tA great aid in the effort of monitoring sea surface pollution comes from remote sensing techniques. Satellite – borne instruments are able to monitor wide areas and to detect the presence of surface slicks; optical instrument can do this by evaluating the change in spectral components of visible and infrared radiation, but they are unable to work during the night or in bad weather (clouds) conditions. For this reason, active microwave instruments play a key role in sea surface observation because electromagnetic waves freely propagate in atmosphere and in clouds.
\n\t\t\tThe aim of this chapter is to explain the usefulness of the Synthetic Aperture Radar (SAR) as a tool for sea surface monitoring, especially to detect pollution. This happens because a number of pollutant substances produce huge areas of surface film which reduce water surface roughness and therefore they can be detected by the Normalized Radar Cross-Section (NRCS) on SAR images where they appear as dark areas.
\n\t\t\tTheoretical basis and practical applications will be described by reviewing literature, in order to give a comprehensive view about fundamental concept and the latest advances.
\n\t\t\tTheoretical and experimental studies, carried out over the last decades, demonstrate that the presence of a monomolecular film is able to modify the spectra of short sea waves. The damping ratio, e.g. the ratio between the spectra with clean and slick covered water, shows a maximum in the frequency domain, strongly dependent on slick composition and thickness.
\n\t\t\tSea surface roughness is due to the short waves (wavelength up to a few tenths of centimetres) appearing on sea surface due to external forcing such as wind. The dynamics of those short waves (wavelength, velocity, etc.) is driven by the physical characteristics of sea water such as density and surface tension. The presence of a surface film modifies the surface tension and therefore causes a noticeable damping of centimetric waves: the slick covered area appears “flatter” than the surrounding sea.
\n\t\t\tWater surface strongly reflects microwaves; water vapour is transparent instead. SAR is a powerful instrument to detect the presence of surface active pollutants, able to operate regardless of sunlight and weather conditions. The SAR sends microwaves towards the earth and collects the echoes from many radar pulses, processing them into a single radar image, allowing high spatial resolutions; radio pulses are sent with high incidence angles and therefore scattered by sea surface roughness. Radio wavelengths currently used by SAR are Bragg resonant with centimetric water waves: different scattered signals are summed with constructive interference and therefore easily detected.
\n\t\t\tMarine ecosystems are threatened by various pollution phenomena with possible consequences for vegetal and animal forms of life. Some pollutants appear as thin films on sea surface, spreading over large areas: this is the case of insoluble surfactant substances such as hydrocarbons, coming from pipelines or tank leakage, as well as illegal discharges in open seas or natural seeps. Other pollutants, whilst being water soluble, may produce macroscopic effects on the surface: a typical example is given by organic substances from sewage and land runoff, carried by rivers and then dissolved in sea; chemical modifications in seawater composition can cause algae to bloom, which in turn produces mucilage on the surface.
\n\t\t\tSurface films are able to modify water dynamics, inhibiting gas exchanges and strongly modifying the formation of short waves. This is the key point for understanding how SAR can be used for remote sensing of marine pollution episodes.
\n\t\t\tSatellite – borne SARs have been used since 1978 for sea surface monitoring, as well as for mapping applications; there are today various different satellites carrying SAR instruments with different technical characteristics.
\n\t\t\tThe state-of-the-art of SAR instruments and data analysis procedures will be presented, with a special focus on algorithm for automatic features extraction from SAR images. The limits of those technologies will be also evidenced; front-end technologies and future planned advances will be pointed out.
\n\t\t\tA number of operational services are currently managed and maintained by public and private bodies. A review will be carried out, in order to give a comprehensive view on practical issues and advantages.
\n\t\tWater surface slicks have several terrestrial and marine sources. Most of them are constituted by hydrophobic material naturally yielded, for instance as surfactant exuding from phytoplankton, composed mainly by homo- and hetero-polysaccharides, found at sea surface during phytoplankton blossoming (Zutic et al. 1981). Other natural sources come from land, such as the products of vegetables degradation carried by rivers to sea, and can have man-made origins such as industrial and oil plants or agricultural activities; furthermore, high concentrations of surfactants are found in urban waste water (Liss et al. 1997). Both soluble and insoluble surface-active substances are present at air-sea interfaces. The chemical nature and surface concentrations of these materials are influenced by environmental factors, such as distance from shore, local bio ecology, influx of man-made effluents from ships and meteorological conditions. Wave motion tends to select and accumulate organic materials in relation at their surface activity. With age, the films become progressively more water insoluble. Aged films and slicks generally involve multilayered structure and weak cohesion under wind action, manifesting a tendency to break up to into macroscopic discontinuities. These films, concentrated at air-sea interface, cover large oceanic surfaces. Even when their concentration is low, they can show important effects, such as alterations in the structure of surface waves, foam formation, modification of gas exchange at interface and changes in the behaviour of backscattering of electromagnetic waves at sea surface. Natural surfactants reduce gas transfer and short waves amplitude (Goldmann and Dennet 1983, Bock et al. 1999) and in general films at sea surface can influence energy dissipation of capillary waves (Lucassen-Reynders and Lucassen, 1969; Huhnerfuss et al. 1987) and gas exchange rates (Frew et al. 1990).
\n\t\t\tIn the more soluble adsorption films the relaxation process is essentially of a diffusional nature. The intermolecular forces between the adsorbed film molecules resist complete displacement from the surface by wind and wave dynamics and are of the same order as that of the solvent, since surface-active molecules are completely hydrated. In the more water-insoluble spreading films, however, when the surface concentration is high, interaction forces among hydrophobic chains are strong, and may even reach two-dimensional micellar conditions. Here the relaxation phenomenon involves structural rearrangement. Consequently, one should expect ripple-damping effects, which are greater for insoluble films than for films with greater seawater solubility.
\n\t\t\tThe damping of short ocean surface waves by surfactant films is a well investigated phenomenon (Lucassen-Reynders and Lucassen, 1969; Huhnerfuss and Garrett, 1981; Lucassen, 1982; Huhnerfuss, 1986; Ermakov et al., 1986; Alpers and Huhnerfuss, 1988; 1989; Wu, 1989; Wei and Wu, 1992; Frysinger et al., 1992; Onstott and Rufenach, 1992; Huhnerfuss et al., 1994; 1996).
\n\t\t\tThe theory of rheology of air-water interfaces predicts a maximum in the frequency response of the ratio of the damping coefficient of short-gravity waves for water covered by an organic surface film to the coefficient for a pure water surface (Cini and Lombardini 1978). The theoretical analysis, based upon the Navier-Stokes equation and developed for the case of small ripples on an interface covered by a surface-active substance, has been extended by with a formalism which includes both soluble and insoluble monomolecular films for the two coexisting modal solutions: the Laplace or transversal mode and the Marangoni or longitudinal mode (Lombardini et al. 1982, Fiscella et al. 1985a).
\n\t\t\tAccording to Lombardini et al. (1989), the analytical form which describes the ratio between real parts of the complex radian frequencies on pure water to that for water covered by slick (damping ratio) can be given by the semi – empirical formula:
\n\t\t\tWhere:
\n\t\t\t\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t
are adimensional quantities and:
\n\t\t\t\n\t\t\t\t\n\t\t\t\t
the dispersion law, σ surface tension, ρ water density, g acceleration of gravity, k wave number, ν kinematics viscosity; the constant characteristic parameters of the film are: elasticity modulus ε0, surface concentration Γ, and characteristic frequency ωD, which, for soluble films, depends upon the diffusional relaxation, and for insoluble films, depends upon structural relaxation between intermolecular forces. In (1) a plus sign refers to soluble films, while a minus sign indicates insoluble films.
\n\t\t\tSpectral measurements carried out both in tanks and in many oceanic sites on slicked waters clearly show this damping effect. The ratios between spectra measured in pure water and in water covered by film have a maximum in the 2-10 Hz range (Cini et al. 1983). From observed ratios and theory it is possible to deduce rheological parameters, such as the relaxation characteristic frequency and the visco-elastic modulus, as well as the film concentration or fragmentation (Fiscella et al. 1995).
\n\t\t\tSoluble (adsorption) films have been thoroughly investigated (Lucassen-Reynders and Lucassen, 1969). Typical values of the diffusional characteristic frequency ωD observed in saturated conditions are in the order of 10-2 rad/s, or smaller (Loglio et al. 1986). Hence, in good approximation, soluble films are characterized by setting ωD = 0. With this condition one can verify that in soluble films the Marangoni waves are too highly attenuated to be of practical interest. The study of insoluble (spreading) films on sea surface (Lucassen 1982, Cini et al. 1983) have indicated the possibility of obtaining qualitative data on polluting films by analysing the short gravity portion of the wave spectrum of a breezy sea.
\n\t\t\tExperimental setup for wave damping measurements.
By means of a microwave probe (Fiscella et al. 1982), short gravity and capillary wave domain of the sea spectra have been investigated in a variety of field situations. Viscoelastic characteristics of insoluble films prepared in laboratory from pure surfactants (e.g. palmitic acid methyl ester, hexadecyl trimethyl ammonium bromide) have been then studied by tests including spectral measurements performed in a wind tunnel, and attenuation measurements of several monochromatic mechanically generated waves in the maximum damping ratio range (Fiscella et al. 1985b). Comparisons between the observed data and theory have produced relaxation characteristic frequencies ωD in the range 7.5 to 11 rad/s, and elasticity modulus ε0 in the range 5.0 ∙10-3 to 2.2 10-2 N/m. Such values produce a damping ratio for the Marangoni mode revealing that the insoluble films sustain both wave modes.
\n\t\t\t\tThe results of measurements obtained in laboratory using oleyl alcohol as surfactant are presented below; the surfactant organic compound, in fact, have been already used in past experiments as a good representative of hydrophobic surface substances (Trivero et al. 2001).
\n\t\t\t\tOleyl alcohol was used as surfactant substance to study damping effect by meanS of a laboratory tempered glass tank (dim. 298 x 27.3 x 29 cm; 235 litres volume) and an interferometric microwave wave gauge which measures wave heights on an absolute, self-calibrating scale with high accuracy; this apparatus has been already used in sea surface measurements (Fiscella et al. 1982). The basic element of this probe is a Teflon coated wire. The lower end of this wire is held vertically straight and dipped in water, while the other end is fed by a microwave source. The microwave energy travels downwards, confined to a close proximity of the coated wire (Goubau line). The contact with the water acts as a short circuit, giving origin to a reflected wave. In condition of good matching of the microwave system the field in the transmission line has a standing wave pattern, which is uniquely determined by the location of the water contact with the coated wire.
\n\t\t\t\tDamping coefficient vs. frequency for different film thickness.
Power spectra are obtained by data segmentation, Hanning windowing, FFT operation and subsequent power spectra meaning. In a Goubau line with a copper wire radius of 0.6 mm and coating thickness of 0.3 mm, the radius of the area in which 50% of the propagated power is concentrated is: ρo = 2.4 mm. This area includes the meniscus (for clean water) and implies a Voltage Standing Wave Ratio ≥ 2. In this case the liquid wavelength 4ρo, i.e., 26 Hz, may be considered the upper frequency limit of the probe. The measurement of z can thus be accomplished with accuracy of the order of few micrometers. In laboratory and clean water conditions the time series of the sea water elevation are affected by instrumental errors of few micrometers and frequency spectra can be obtained without distortion up to 20 Hz. The results obtained are in accord to theory of rheology and confirm even in laboratory the damping wave effect showed by surfactant substances at sea surface.
\n\t\t\t\tThe experimental apparatus, shown in figure 1, consists of a three Goubau line coated wire system. The wires are positioned along wave direction at proper distance in order to measure spatial damping of the waves mechanically generated. The same apparatus can be used at the sea to obtain information about directional wave spectra.
\n\t\t\t\tDamping measurements versus frequency were performed adding a known oleyl alcohol quantity in order to obtain a fixed growing film thickness. Figure 2 shows the damping coefficients for pure water and different film thicknesses.
\n\t\t\tSAR acquisition geometry.
The SAR is basically a conventional radar instrument, carried by a mobile system such as aircraft or satellite. The main principle of SAR is the antenna synthesis: when moving, the target is observed from different angles and the backscattered signals are put together. Observation is lateral rather than perpendicular to the earth’s surface (figure 3).
\n\t\t\tThe electromagnetic waves, used by SAR, are in the microwave region. Wavelengths are in the range from 0.1 to 100 cm and it is divided in different bands with a standard nomenclature. Table 1 summarizes the most utilised frequencies and their characteristics.
\n\t\t\tThe basic mechanism involved is the normalised radar cross-section which, for incidence angles higher than 20 , is proportional to the spectral energy density of the sea waves having wavelength Λ that obey the Bragg resonance condition:
\n\t\t\twhere λ is the radar wavelength and θ the incidence angle of radar beam; electromagnetic waves, backscattered from every water wave front, sum in phase producing a well detectable echo (figure 4). For low incidence angles the backscatter is due to specular reflection. The sea waves, which are Bragg resonant with microwaves employed by the SAR systems, fall in the short gravity wave region where is found a maximum in the ratio between spectra measured in pure water and in water covered by film.
\n\t\t\tBand designator | \n\t\t\t\t\t\tFrequencies (GHz) | \n\t\t\t\t\t\tWavelength in Free Space (cm) | \n\t\t\t\t\t
L band | \n\t\t\t\t\t\t1 to 2 | \n\t\t\t\t\t\t30.0 to 15.0 | \n\t\t\t\t\t
S band | \n\t\t\t\t\t\t2 to 4 | \n\t\t\t\t\t\t15.0 to 7.5 | \n\t\t\t\t\t
C band | \n\t\t\t\t\t\t4 to 8 | \n\t\t\t\t\t\t7.5 to 3.8 | \n\t\t\t\t\t
X band | \n\t\t\t\t\t\t8 to 12 | \n\t\t\t\t\t\t3.8 to 2.5 | \n\t\t\t\t\t
Ku band | \n\t\t\t\t\t\t12 to 18 | \n\t\t\t\t\t\t2.5 to 1.o7 | \n\t\t\t\t\t
K band | \n\t\t\t\t\t\t18 to 27 | \n\t\t\t\t\t\t1.7 to 1.1 | \n\t\t\t\t\t
Ka band | \n\t\t\t\t\t\t27 to 40 | \n\t\t\t\t\t\t1.1 to 0.75 | \n\t\t\t\t\t
V band | \n\t\t\t\t\t\t40 to 75 | \n\t\t\t\t\t\t0.75 to 0.40 | \n\t\t\t\t\t
W band | \n\t\t\t\t\t\t75 to 110 | \n\t\t\t\t\t\t0.40 to 0.27 | \n\t\t\t\t\t
Radar bands.
Bragg condition between water waves and radio waves.
Remote sensing radars are usually designed to transmit either vertically polarised or horizontally polarised radiation. Likewise, the radar can receive either vertically or horizontally polarised radiation, or sometimes both. Polarisation planes are designated by the letters H for Horizontal and V for Vertical. When the polarisation of received radiation is the same as the transmitted radiation, the image is said to be like-polarised When the polarisation of received radiation is the opposite of the transmitted radiation, the image is said to be cross-polarised.Cross polarisation requires multiple-scattering by the target and therefore results in weaker backscatter than like-polarisation. Cross-polarised signals are sometimes too weak to produce a good image, although the use of multiple polarization can help in revealing sea surface characteristics (Brekke and Solberg 2005).
\n\t\t\tSea surface roughness is directly related to external forces such as wind and currents; for this reason, data from SAR observation can be used to compute sea surface parameters.
\n\t\t\t\tWhen dealing with surface slick observation, the knowledge of wind vector plays a key role for at least two reasons. First, surface slicks can be detected if wind intensity is within a range of 2 m/s and 20 m/s; a weaker wind cannot produce roughness and therefore the sea area appears as flat whether a slick is present or not. Conversely, a very strong wind can produce roughness even on a slick covered area. Secondly, wind forcing and wind – induced currents are directly responsible for slick evolution (drift and weathering); therefore the wind vector is fundamental in estimating the fate of a surface slick.
\n\t\t\t\tWind data are can be get from in-situ measurements (e.g. buoys), meteorological models or satellite – borne scatterometers (with poor spatial resolution). In last years, studies have been carried out in order to find suitable methods to extract wind field from the SAR image itself.
\n\t\t\t\tA popular approach is to use a geophysical model function (GMF), e.g. a nonlinear function who describes the NRCS as a function of, wind speed (normalized to 10 m height), wind direction, incidence angle and azimuth angle with respect to wind direction); radar frequency is also taken into account. Using numerical techniques to invert such a function, wind speed can be obtained from SAR image (assuming to have the wind direction). For satellite – borne SAR operating at C-band and vertical (VV) polarization in transmission and reception, several empirical GMFs have been developed and validated; the most popular are:
\n\t\t\t\tCMOD4 (Stoffolen and Anderson, 1997), utilising ECMWF (the European Center for Medium-Range Weather Forecast) weather model results as calibration data;
CMOD_IFR2 (Quilfen et al., 1998) developed at Ifremer-France and calibrated against in situ measurements, (buoys data and ECMWF model results);
CMOD5 (Hersbach, 2003), an upgraded version of CMOD4.
These functions are applied on SAR data from ERS-1, ERS-2 and ENVISAT satellites. Other similar approaches have been defined for L-band data or from C-band horizontal polarization data.
\n\t\t\t\tHowever, to measure wind speeds from SAR images using such kind of methods, it is necessary to have the wind direction. A first approach is to assume a fixed direction for a whole SAR image, for example interpolating the wind direction from scatterometer data or atmospheric models.
\n\t\t\t\tIn last years, several attempt have been done to extract the wind direction field from the image itself, exploiting linear features aligned with the wind direction are visible.
\n\t\t\t\tA popular method is the Fast Fourier Transform (FFT) method (Gerling, 1986): the Fourier spectrum of the SAR image is computed and the main spectral energy is located perpendicular to the orientation of the wind streaks, giving a wind direction with a 180 directional ambiguity.
\n\t\t\t\tA recently developed wind direction estimation method is the local gradient (LG) method, which derives the orientation of the wind streak by evaluating the local gradient on different scales (Horstmann and Koch, 2005; Horstmann et al., 2002; Koch, 2004). Alternative approaches such as wavelet analysis (Du et al., 2002; Fichaux and Rachin, 2002) and variance method (Wackerman et al., 2003) have also been applied.
\n\t\t\t\tA comprehensive review on wind estimation methods can be found in (Lin et al. 2008).
\n\t\t\tIt is well known that the surfactants are responsible for sea wave damping and reflectivity modulation over a broad range of frequencies from the visible to the microwave regions of the spectrum. Measurements of slick-induced damping of short-gravity ocean waves excited by the wind provide useful data for the investigation and characterization of ocean micro-layers on a thermodynamic basis. By means of a theoretical model one can infer the soluble or insoluble nature of the substance forming the film itself, the rheological parameters and the surface film fragmentation.
\n\t\t\t\tAmong all monitoring ways, multi-frequency radar and SAR are powerful tools for the detection and characterization of substances forming sea surface film.
\n\t\t\t\tWave damping, due to surface slick, modifies the backscattering of electromagnetic waves and hence it is possible to optically detect slicks (Scully-Power 1986) and measure their characteristics by means of radars from platform, airborne and satellite (Fiscella et al. 1985b, Espedal et al. 1996, Trivero et al. 2001). However, dark areas can be also due to atmospheric effects (Alpers, 1995; Melsheimer et al., 1998).
\n\t\t\t\tOil slick observed by L-band (left), C-band (center), X-band (right).
Comparison among damping ratios obtained by radars and by the wave gauge.
The ability of multi-frequency SAR to characterize surface films was tested with data obtained during an experiment in October 1990 in the northern Adriatic Sea, when an airborne SAR flew over a research platform, on board of which, time series of radar backscatter as well as high frequency wave spectra were measured (Trivero et al. 2001). The obtained results were confirmed by analogous experiment performed in the North Sea during the first SIR-C/X-SAR mission in 1994 (\n\t\t\t\t\t\tGade et al. 1998\n\t\t\t\t\t); in that mission, the NASA’s space shuttle carried SAR instruments at three different bands simultaneously looking at the same areas. Figure 5 shows how the same surface slick is seen in a different way by three different frequencies;.
\n\t\t\t\tIn June 1991 in the Gulf of Genoa (Italy) another similar experiment was performed observing slicked area after oil-tanker accident (Trivero et al. 1998).
\n\t\t\t\tIn figure 6, the full line is the display of the ratio of the power spectral components from gauge data between pure and slick-covered water; the three (+) and the two (⊕) points are the plots of σ \n\t\t\t\t\t\t
The experimental results showed that multi-frequency SAR is an ideal instrument to monitor sea surface substances, since SAR data contain information about the spectral components affected by damping.
\n\t\t\tThe use of satellite – borne SARs for earth observation is a well tested and established technique. The history begun on the 28th June of 1978 when Seasat, the first Earth-orbiting satellite designed for remote sensing, was launched.
\n\t\t\tSeasat, managed by NASA’s Jet Propulsion Laboratory (JPL), operated for 105 days until October 10, 1978, when a short circuit occurred in the satellite electrical system; during the mission, the onboard L-band SAR acquired approximately 42 hours of data. Despite this unhappy ending, Seasat played a key role for earth observation by demonstrating the feasibility of global satellite monitoring of sea surface and by helping scientists in defining technical requirements (Evans et al. 2005).
\n\t\t\tIn the following years a number of satellites were launched, carrying SAR instruments with very different characteristics. Here, we want to review the currently operating missions, with data easily available for scientific and/or commercial use; for these reasons, only currently civil operational missions are described, while military only missions have been omitted as well as sensors which have reached the end of their operational life.
\n\t\t\tFor every sensor an overview is given about frequency, resolutions, revisitation frequency and data distribution policies; for detailed information, the satellite owner and contact details are reported. All the information is correct at the publishing date.
\n\t\t\tManaged by European Space Agency (ESA), ERS-1 satellite was launched in 1991 and completed its operation in 2000, overlapping with the new ERS-2 launched in 1995 and still operating.
\n\t\t\t\tERS-2 SAR works on C band at fixed VV polarisation. Its best spatial resolution is 12.5 m, but limited to 5km x 5km imagettes in “wave mode” acquisition. It can also operate in wave mode at 30m spatial resolution with a 100 km swath.
\n\t\t\t\tFull documentation is available on ESA earth observation website http://earth.esa.int/ers/ while data availability can be checked online via the EOLI catalogue (http://earth.esa.int/EOLi/EOLi.html), also allowing online ordering for ftp delivery. Different prices and data policies apply for scientific/non-commercial use rather than commercial exploitation.
\n\t\t\tDesigned and built by ESA, launched in 2002 with the aim to be the ERS follower, Envisat carries an improved C-band SAR sensor as well as a number of other active and passive instruments.
\n\t\t\t\tEnvisat SAR best spatial resolution is ~30m for a ~100 km swath; multiple polarization modes are available (VV, HH, VH, HV). A wide swath mode (~400 Km) with a 150m spatial resolution is available.
\n\t\t\t\tIt has a dedicated section on the ESA website (http://envisat.esa.int/); also Envisat data are available on EOLI catalogue.
\n\t\t\tDesigned and built by the Canadian Space Agency, the Radarsat – 1 satellite was launched in 1995. It operates in C-band with fixed HH polarization; seven imaging modes are available with different swaths (from 50 to 500 km) and different spatial resolutions (from 8 m to 100 m )
\n\t\t\t\tRadarsat – 2, launched in December 2007, is an enhancement of the previous sensor; all polarization modes are now available and a new “ultra fine” acquisition mode (3 m pixel and 20 km swath) can be operated. Moreover, Radarsat – 2 is able to look on both right and left sides with a switch time of a few minutes, allowing more flexibility on selecting the target zone.
\n\t\t\t\tRadarsat images are distributed by MacDonald, Dettwiler and Associates Ltd. (MDA), a Canada based firm (http://gs.mdacorporation.com/products/sensor/index.asp).
\n\t\t\tThe TerraSAR-X Earth observation satellite is a joint venture being carried out under a public-private-partnership between the German Aerospace Center DLR and EADS Astrium GmbH.; TerraSAR-X was launched on June 15th, 2007 and has been in operational service since January 2008 ; it operates on X-band with single, dual and quad polarization. There are three operational imaging modes: SpotLight (1m resolution, 10 km swath); StripMap (3m resolution, 30 km swath) ; ScanSAR (18 m resolution, 100 km swath).
\n\t\t\t\tThe exclusive commercial exploitation rights are held by the geo-information service provider Infoterra GmbH (http://www.infoterra.de/), while data access for scientific (non commercial) use is directly managed by DLR.
\n\t\t\tDesigned and managed by the Japanese space agency JAXA, ALOS was launched in 2006 being operational in October. It carries, together with other instruments, an L-band SAR (named PALSAR) able to acquire in single polarisation (HH or VV) or dual polarisation (HH/HV or VV/VH) modes. The best available resolution is 10 m with 70 km swath; the widest swath is over 250km at 100m resolution.
\n\t\t\t\tMore information can be found at JAXA (http://www.eorc.jaxa.jp/ALOS/en/index.htm) as well as ESA (http://earth.esa.int/ALOS/) websites; ESA is also responsible for ALOS data distribution in Europe, Africa and Middle East; ALOS images are available on the above mentioned EOLI catalogue.
\n\t\t\tSince late 90s the Italian Space Agency ASI started to design a multi - purpose Earth Observation System devoted to providing products and services for military and civil use through an integrated approach (Dual Use System). The decision to build a constellation was driven by the need for the shortest revisit time with the aim to exploit data in critical applications such as risk management and environmental monitoring (Rum 2000).
\n\t\t\t\tThe first three satellites of the COSMO-SkyMed constellation are already in orbit and operational; the launch of the fourth satellite is planned for 2010. The carried sensor is an X-band right and left looking SAR with a maximum spatial resolution of 1m (on a 10 km swath); the “huge” acquisition mode offers a 100 m resolution with a 200 km swath; all polarization modes are available.
\n\t\t\t\tOperational mode can be set up in three ways (routine, crisis and very urgent) allowing the system to respond to different needs in terms of required programming latency. A User Request (in the case of the first level of SAR standard products) can be satisfied in 72 hours for the system working in routine mode, 36 hours for the crisis mode and 18 hours for the very urgent mode. The management of a constellation rather than a single satellite, as well as the high number of degrees of freedom in acquisition management, pose new issues in operational management (Bianchessi and Righini, 2008).
\n\t\t\t\tThe commercial distribution rights for Cosmo – SkyMed images have been recently granted to e-GEOS (http://www.e-geos.it/), a new entity owned 80% by the private firm Telespazio and 20% by ASI. Technical documentation about Cosmo – SkyMed satellites and products can be found on e-GEOS website.
\n\t\t\tDamped areas appear as dark spots on SAR images; however, different features are clearly identifiable because of their own geometric characteristics. For example, oil slicks usually have a linear shape with well defined contours, whilst natural surfactant appears in a different way (figure 7). An expert photo interpreter is able to distinguish between categories.
\n\t\t\tExample of oil spill (a) and look-alike feature (b) in SAR images.
Since SAR images were available, a number of attempts have been done in order to develop and test automatic procedures for oil spill detection, with the aim OF definING A new instrument for real time analysis of satellite images in order to prevent pollution. Here we want to present some exempla of different approaches based on various mathematical techniques.
\n\t\t\tHere we describe a procedure, named “Oil Spill Automatic Detector” (OSAD), able to distinguish oil spills from other similar sea surface features (look-alike) in SAR images using a statistical approach; during last years, the procedure has been updated (Fiscella et al. 2000, Nirchio et al. 2002, Nirchio et. al 2005a, Nirchio et al. 2005b). It considers both the radiometric and the geometric characteristics of the areas being tested. In order to minimize the operator intervention, it adopts automatic selection criteria to extract the potentially polluted areas from the images.
\n\t\t\t\tThe related operational activities are carried out at the Matera Geodesy Space Centre, where the Italian Space Agency Processing and Archiving Facility (PAF) for the European Remote Sensing (ERS) satellite sensor data and the ‘Telespazio’ acquisition facility are located. A satellite ground station has been operative in Matera (Italy) since November 1999. It acquires data trasmitted down by the European satellites ERS 2 and Envisat. The facility is composed of an 8 m main dish, a down converter chain and a direct ingestion sub system. The acquisition area spans from the North Sea to the Red Sea including the entire Mediterranean basin.
\n\t\t\t\tThe acquired data are first recorded and screened for evaluating the quality parameters, and then a browse image is generated. At this point data are available for processing and distribution to end-users. An operator inspects the browse image, covering an area about 4000 km long and 100 km wide, and selects those frames 100 km x 100 km which appear affected by oil spill. The next step foresees the production of the full resolution image. This can be analysed by OSAD that provides the probability that the suspected area is affected by an oil spill. The land, eventually present in the image, is masked to allow the identification of dark areas potentially interested by oil spills. A threshold is computed, its value depends on the average image intensity from which the image standard deviation has been subtracted. Those areas whose average backscattering is lower than the threshold are further screened for retaining those whose dimensions are larger than 0,3 km2 and smaller than 10 km2. The small regions are rejected because these eventual slicks are not significant; usually they disappear from images in a short time. The large areas are also rejected because they are probably due to lack of wind. At the end of the process, several analysis are performed on the remaining slicks candidates, the probability the area under test is affected by a spill is computed and a detection report is generated and sent to the responsible authority.
\n\t\t\t\tBefore operational use, the system must be tuned; this is done by means of a training dataset, composed by images that have been classified by an expert photointerpreter as “oil spill” or “look-alike”; uncertain images are discarded. For every image family, geometric and radiometric characteristics are computed; for every characteristic, the data distribution is evaluated in order to find significant parameters for both oil spills and look-alikes.
\n\t\t\t\tIn the operational use, every acquired image is first calibrated and the land is masked. On sea areas, the significant values are evaluated and then compared with the previously described statistical distributions, in order to define the probability to be an oil spill. This probability is given as a percentage (“score”) where 0 is the lookalike and 100% in an oil spill.
\n\t\t\t\tThe first tuning of OSAD system has been done on a set of SAR images corresponding to 153 cases of oil spill and 237 cases of look-alike detected during 1999 in the Mediterranean Sea using ERS-1/2 SAR Precision Image Product (PRI) which dimensions are 100 x 100 km. The method has demonstrated an a priori percentage of correct classification higher than 90%, it is easy to apply and able to determine the identification probability in an automated way (Nirchio et al. 2005b).
\n\t\t\t\tAnother statistical approach was proposed by Solberg et al. (1999); the procedure consists of first detecting dark spots in the image, then computing a set of features for each dark spot, before the spot is classified as either an oil slick or a “look - alike”. The classification rule is constructed by combining statistical modelling with a rule-based approach. Prior knowledge about the higher probability for the presence of oil slicks around ships and oil platforms is incorporated into the model. In addition, knowledge about the external conditions like wind level and slick surroundings are taken into account. The algorithm accuracy is 94% for the oil slicks and 99% for the look-alikes.
\n\t\t\tAn artificial neural network, usually called “neural network”, is a mathematical model or computational model that tries to simulate the structure and/or functional aspects of biological neural networks. It consists of an interconnected group of artificial neurons and processes information using a connectionist approach to computation.
\n\t\t\t\tIn more practical terms neural networks are non-linear statistical data modeling tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data. It can be thought as an adaptive system that changes its structure based on external or internal information that flows through the network during the learning phase.
\n\t\t\t\tUsing an approach similar to that described on previous paragraph, Calabresi et al. (1999) used neural networks in order to find specific values identifying oil slicks, chosen from a given set of parameters. Here the network input was a vector containing the values of a set of features previously calculated.
\n\t\t\t\tUsually the oil spill candidates (that is the dark areas on SAR image) are identified with their geometric and radiometric parameters, then a classification algorithm is applied. In Topouzelis et al. (2007) two different neural networks are used: one to detect dark spots on sea surface and another to classify the previously found areas as oil spills or look-alikes. The proposed method shows good results in detecting dark formations and discriminating oil spills from look-alikes as it detects with an overall accuracy of 94% the dark formations and discriminate correctly 89% of examined cases. For dark area detection the network unit is the pixel, while for classification is a vector made of ten parameters.
\n\t\t\t\tIt is worth to note how a neural network approach has been used to classify samples of unknown crude oils and distilled fuels on the basis of the results from standard chemical analysis (Fonseca et al. 2006, Fernandez – Varela et al. 2008).
\n\t\t\tA number of different mathematic techniques can be found in literature for sea surface detection and characterisation of surface slicks.
\n\t\t\t\tAs previously said, the first step is the determination of dark areas on SAR image, due to low backscattering levels. A first approach is described by Skøelv and Wahl (1993) for ERS-1 SAR images). A similar approach is described in Vachon et al. (1998) and Manore et al. (1998). Solberg et al. (1999, 2003) apply an adaptive algorithm where the threshold is dynamically set at k dB below the mean value estimated in a moving window.
\n\t\t\t\t\n\t\t\t\t\tCanny (1986) started the use of hysteresis thresholding, later applied by Kanaa et al. (2003)
\n\t\t\t\tAn approach based on the Laplace of Gaussian (LoG) and Difference of Gaussian (DoG) operators is described in Change et al. (1996) and Chen et al. (1997).
\n\t\t\t\t\n\t\t\t\t\tLiu et al. (1997) and Wu and Liu (2003) proposed the use of wavelet analysis in ocean feature detection, including oil spills. Mercier et al. (2003) suggest a segmentation method based on detecting local variations of the wave spectra. Fuzzy logic was investigated as a since mid 90s (Barni et al. 1995)
\n\t\t\t\tFractal mathematics is also used for classification purposes (Keller et al., 1989; Benelli and Garzelli 1999; Gade and Redondo 1999). The topic is still studied and new results presented (Marghany et al. 2009).
\n\t\t\t\tEven though we here focus on single frequency and single polarization SAR images, it is worth mentioning the possibility of a discrimination algorithm based on differences in multi-frequency and multi-polarization signatures. Gade et al. (1996) did some experiments to investigate whether spaceborne L-, C- and X-band multipolarization SARs are capable of discriminating between films of different chemical properties, and found that discrimination is only possible at low to moderate wind. Maio et al. (2001) propose such an algorithm for discrimination between oil spills and lookalikes.
\n\t\t\tIt must be observed that not always SAR is able to reveal oil spills; even when detection is made only the thicker part, typically covering only 10% of the whole oil spills area, is imaged (Sabins 1997).
\n\t\t\t\tThe detection of oil slicks/spills in SAR images strongly depends on the wind speed at the sea surface. Under low wind speed, typically between 0 and 2-3 ms-1, the sea surface looks dark on SAR images. In this case the wind-generated waves are not already developed and oil films look dark on a dark background: detection in this case is impossible. Wind speed between 3 and 6 ms-1 is ideal for oil slick detection, the sea surface roughness is developed and oil slicks appear as dark patches on a bright background. However, when wind speed reaches 10-12 ms-1, detection is impossible again or obstructed due to the redistribution of oil spills/slicks by the surface waves and wind-induced mixing in the upper ocean layer (Scott 1986); in this case becomes determinant the compactness of film. As the result slick disappears from the sea surface and SAR imagery. The upper wind speed threshold for spill detection with SAR is suggested to be between 10 and 14 ms-1 (Gade and Ufermann 1998, Ivanov 2000). In the Mediterranean Sea it was demonstrated that oil spills can be detected from SAR images if the wind speed results between 2 ms-1 to 10 ms-1; the SAR capability in detecting oil spills has given good results at open sea, while in the near-shore region the detection percentage drops quickly, because in these cases the effect of wind sheltering becomes determinant, that is, the wind screening effect caused by the local topography on the areas near-shore (Nirchio et al. 2005b).
\n\t\t\t\tWhen a slick is detected by SAR, it is not easy to know its evolution state and as a consequence its age. The behaviour of oil spill on the sea surface significantly depends on its important physical-chemical properties, such as viscosity, density, surface tension and elasticity. Moreover, crude oil is a complex mixture of different chemical components including heavy and light fractions. Typically, crude oil can be detected during its evolution in the sea in different phases of age: oil spill, oil film, emulsion (for the first time oil-water emulsion and then water-oil emulsion), blue shine and aggregates. During the lifetime of oil spill in the sea it will be exposed to a number of weathering processes, which dramatically influence physical-chemical properties: spreading, drift, evaporation, dispersion, emulsification, bacterial degradation and photo oxidation (Kotova et al. 1996). With time the physical-chemical properties of oil spills are changed due to effect of these processes. These processes play important role in oil spill detection using SAR sensors. But relative importance of each process is not still well understood. Direct observation seems to show that big slicks lifetime is greater than small ones; for example in the Prestige (Spain 2002) and Haven (Italy 1991) disasters, the great quantities of oil released into the sea stayed on for a long time, although their SAR detection was not been always possible. An estimate of the quantity of oil observed at sea is also crucial because oil thickness is difficult to measure especially the sea is rough. Moreover, water-in-oil emulsions and viscous oils like heavy crude and fuel oil can vary in thickness from millimetres to several centimetres.
\n\t\t\tThe State-Of-The-Art of sea surface SAR monitoring, as described by this paper, shows good results as well as the possibility of being applied for operational issues. However, some issues have yet to be resolved.
\n\t\t\tRevisit time is not yet optimal for real time applications; the preferred way to solve this issue is to combine observation with different satellites, by building constellations or by signing agreements between operators in order to exchange data.
\n\t\t\tSatellite availability is becoming wider with the launch, scheduled in 2010, of the fourth Cosmo-SkyMed satellite and the two SAOCOM (L-band SAR, managed by the Argentinean space agency CONAE).
\n\t\t\tWhile automatic oil spill detection shows good results, characterizing other pollutants is less straightforward; moreover, slick characterization (e.g. to define the chemical composition or slick thickness) is still an open issue. It is possible that the use of multi frequency and multi polarization data will lead to valuable results.
\n\t\tSustainability has been a crescent worldwide topic in this past decades, especially after the 2000s, as climate change, biodiversity loss, soil erosion, water crisis, among other challenges, are becoming more evident, leading to a crescent concern in the minds of consumers [1, 2]. In food systems (e.g., coffee value chain), sustainability is especially visible: in order to attend the growing population and to avoid economic and social impacts, food production should increase by 70% until 2050 [3, 4]. Hence, the big challenge is how to produce more without destabilizing the ecosystems on which we depend [5].
For coffee, the chain is faced with many challenges, such as water pollution, soil erosion, biodiversity loss, among other climate-related problems, and social impact. Coffee is one of the most traded commodities of the world, but the production is mainly done by millions of small farmers around the world who depend on coffee for their livelihood. Thus, climate change may affect the production areas of coffee and the livelihoods of the producers [4, 6, 7], increasing the concerns for sustainability in the chain.
According to Baumgärtner & Quaas [1], sustainability, per se, can be understood as a normative notion as to how humans should act toward nature and how they are responsible in relation to the people around them and the future generations. The concern with preserving the natural resources for the future is not just a concept of the modern human, but it was present since the Neolithic Revolution and later in many populations around the world. The topic was also studied by economists for a long time, since the shortage of resources is of central concern to the science [8, 9].
Yet the term “sustainability” became popular in policy-oriented research, with the concept of sustainable development, a common goal for society in the twenty-first century, introduced in 1987 by the report Our Common Future, also known as the Brundtland Report [10]. The ideas presented were also later discussed in the United Nations Conference on Environment and Development in 1992—known as the Rio Summit—where a consensus and commitment of the academia were agreed in engaging in development and environmental problems [11].
Based on these ideas, sustainable development can be defined as “the development that meets the needs of the present without compromising the needs of future generations to meet their own needs,” and highlighted that, while environmental concerns are important, welfare and intergenerational equity should also be discussed. Thus, sustainability is not just about the environment, but has two more dimensions—economic and social. It is a multidisciplinary subject, and it is the intersection of these three dimensions that also allows the inclusion of socioeconomic factors, besides the environment aspect [9].
The social sphere is about improving poverty and having social inclusion; the economic sustainability regards perduring of renewable and nonrenewable resources of production system in the long run and the economic growth; lastly, environmental aspects are related to protection and conservation of living being (e.g., humans, animals, and plants) existing on Earth [12, 13, 14, 15]. This three-dimensional quality of sustainability is also embodied in the definition of the concept by the United Nations in its Sustainable Development Goals, recognizing that social improvement should walk alongside economic growth, while “tackling climate change and working to preserve our oceans and forests” [16].
According to Hajian & Jangchi Kashani [13], sustainability can also be seen in a weak or strong meaning. The former is based on an economic value, the resources are goods with capital value, while the latter sees resources as natural goods and services it delivers, based on biophysical principles, considering some functions that the environment does for humans.
Despite the definitions above, it is good to note that the term “sustainability” does not have an extremely clear meaning. According to Pretty [17], since the Brundtland Report, there have been over 70 definitions of sustainability, each in a subtle way that enhances different goals, values, and priorities. For example, there can be different types of visions of sustainability depending on from whose eyes we are looking through (e.g., people in underdeveloped country and developed countries) and the time period of the action, such as how many years are we talking about the future in terms of generations [13]. So, even with the three-dimensional diagram (economic, social, and environment) of sustainability already consolidated, we can still have some variations in the actions and challenges faced in different areas.
In the agriculture, for instance, one of the most important challenges regarding sustainability is how to reach food security in the future—that is, how to feed the growing population of the world—while facing climate changes, as appointed in the beginning of this chapter [18, 19]. Besides this goal, sustainability is also generally associated with economic viability for farmers, environmental conservation, and social responsibility. The goal is how to maintain or increase the production of goods, thinking about the economic viability fir farmers and food security, while working on the conservation of the resources, such as water, soil, and biodiversity [20].
To reach that, the sector already invested in some standards alongside the chain of certain agricultural product, in an attempt to cover the whole value chain from farmer to consumer [20]. According to Bager & Lambin [6], for the coffee sector, companies normally rely on the adoption of combined codes of conduct, voluntary sustainability standards (VSSs), corporate social responsibility (CSR) programs, direct relations with producers, and so on, to address the challenges of sustainability. It is good to note that the sector is also one of the models regarding sustainable actions, with third-party certification standards being widely used as VSSs, although internal standards and various supply chain interventions are gaining attention on the last years [6, 21, 22]. Other forms of addressing sustainability also include direct trade, single origin, and value chain transparency [6].
Brazil is the largest coffee producer in the world, being responsible for 40% of world total production, 69.9 million bags in 2021. The country is also the largest green coffee exporter, with 45.7 million bags, or 32% of total exports [23]. As for differentiated coffees, which includes sustainable certified ones, the country exported 7.7 million bags in 2021 [24], mainly to the United States, Germany, Belgium, Italy, Japan, and United Kingdom. That amount represents a 50% increase in comparison to 2017.
The enrichment of Brazilian coffee in quality and sustainability parameters over the years has positioned the country as an international reference for institutional and private strategies toward agricultural best practices aligned with sustainability goals.
This chapter aims to exploit the quality-sustainability-led strategies largely adopted by multiple stakeholders at the Brazilian coffee chain as a response for local and global demand for guaranteeing high quality for consumers along with fair prices and quality conditions for coffee famers.
Due to the history and importance of sustainability in the coffee sector, this chapter aimed to give an overview on how this theme has been worked on the coffee value chain in recent years and the possible lessons we can get of that. To reach that, the chapter was divided in the methodology, followed by the findings that contemplated broad aspects of coffee production and demand, as well as the specific aspects of sustainability in these topics. It also included the topic of the standards, certification, and governance regarding sustainability in coffee. Lastly, the authors presented the key findings of this study.
The method used was a qualitative review of the academic literature and private reports on the coffee value chain and sustainability, based on the importance of the publications. It applied a set of key search terms in two scholarly electronic databases (Web of Science and Science Direct) and on Google Scholar in January–February 2022 to identify relevant papers. The string of key search words used were combinations of “coffee” and “sustainability,” “production,” “demand,” “green,” “certification,” “standards,” “voluntary sustainability standards,” ‘Designation of Origin,” and “Geographic Indication.” It was searched within the abstract, title, and keyword database categories of original research papers published in peer-reviewed English and Portuguese language academic. These articles were then selected based on the relevance in the platform’s journals. It was also included relevant reports in the coffee sector by instructions and actors such as the International Coffee Organization (ICO), the Global Coffee Platform, and The Economist. Finally, statistics and figures about the sector were obtained from sectoral reports and official databases, such as the Production, Supply & Distribution Online Database, from the United States Department of Agriculture (USDA) and the Brazilian Coffee Exporters Council (CECAFÉ).
Coffee is a multibillionaire business and one of the most traded commodities of the word, involving thousands of companies and millions of coffee growers [6, 25]. According to ICO [26], since the 1990s, coffee production has had an increase of 60%, while the value of exports has more than quadrupled from USD 8.4 billion in 1991 to USD 35.6 billion in 2018, thanks to the rise in consumption and value in the chain. Regarding the production, it is condensed in more than 60 countries in the coffee belt (between the Tropics of Cancer and Capricorn), with Brazil begin the largest producer (33–35%). Yet, most of these countries remain marginal actors, with the international trade of processed coffee dominated by a small number of actors that capture a large value share of the global value chain (GVC), such as members of EU and North America. This is also reflected in the consumption, with the top consumers being mainly developed countries, such as the United States, Germany, Japan, Italy, and France (with the exception of Brazil, the second largest consumer) [26, 27].
This led to some implications in the GVC: today, the coffee value chain is characterized as a buyer-driven chain, where roasters and multinational companies hold the power to coordinate and impose control on the actor in the chain. In this case, while these buyers are subjected to sophisticated institutional regulation within their home countries, they can still exercise power on the producer’s end, which can affect their livelihoods and environment. This has led to concerns among consumers and NGOs, who hold large companies accountable for their impact on the environment and laborers. This was especially true in the last years, due to high fluctuation on prices and increase of production costs, caused by climate changes and, since 2020, global chain disruption by the COVID-19 pandemic [26, 28, 29].
This increasing concern for sustainability by consumer (especially in tor consuming countries) is a trend occurring in all of GVCs and has led governments and companies to take action in addressing this matter and meet stakeholders expectations—also increasing income, protecting brand and reputation or differentiation—through the creation standards and regulations [6, 26, 30]. In 2021, the report “An Eco-Awakening” by The Economist Intelligence Unit (EIU) [31] showed an increase of 71% on searches for sustainable goods over the past 5 years (2016–2020) around the world, a trend that continued even during the COVID-19 pandemic. Consumers, waked by the social and environmental concerns, demand each year more actions by companies.
As for the coffee value chain, it is known as a pioneer in the adoption of VSSs, in particular “private” and multistakeholder initiatives, such as the third-party certifications (e.g., 4C, Rainforest Alliance, UTZ, Fairtrade, Organic, etc.) and standards by the private sector (e.g., Starbucks’ C.A.F.E. Practices and Nespresso’s AAA Guidelines) [6, 29, 32, 33, 34].
This trend has been present predominantly since the 2000s. Reinecke et al. [35] showed that the growth rate of coffee sustainable certification was 20% annually. Dietz et al. [36] saw that, while in 2008, the adoption of VSSs was made by 7% of exporters, in 2018, this number increased to 23%, while Panhuysen and Pierrot [37] showed that in the coffee year of 2019/20, 55% of total volume produced was certified with some VSSs. According to ICO [26], investments on sustainability in the coffee chain are estimated to reach USD 350 million annually, showing the great concern of the sector in attending sustainable goals.
As for the Global Coffee Platform [38], an inclusive and important multistakeholder membership organization that seeks sustainability in the coffee sector, the purchase of sustainable coffee (following third-party and second-party schemes) in 2020 reached 16,3 million bags of 60 kg, or 48% of total purchased, for the members. It is good to note that these players include the biggest coffee companies in the world, such as Nestlé, JDE, Melita and Strauss Coffee, which represented a share of 26.6% of world coffee exports and 20.5% of world coffee consumption in 2019/20. The increase in the sustainable coffee purchase between 2019 and 2020 was of 53.1%, with the major origins reported with sustainable coffee purchases being Vietnam, Brazil, Colombia, Honduras, and Mexico. As for the mainly sustainable schemes, 4c certified coffee was the most common (58%), with a high percentage for two or more sustainability schemes, especially triple certification with 4C-Rainforest Alliance-UTZ (10% of the sustainable purchase in 2020).
Most of the biggest coffee companies around the world also have goals to elevate sustainable coffee purchase in the next years, or for a target of “100% responsible coffee in the next decade,” such as JDE, Nestlé, and Melita [38]. Despise these optimistic numbers, it is important to point out that not all the sustainable coffee is sold as so: Panhuysen and Pierrot [37] point out that, in 2019, 75% of coffee with VSS schemes were sold as conventional coffee, which might be a challenge for the sustainable coffee sector, affecting price premiums and the differentiation strategies by producers.
Voluntary private standards (VSS) and sustainability certification schemes have taken a central role in discussions about the future of agricultural production and agri-food chains. VSSs are considered important mechanisms to promote sustainability and upgrading in agri-food value chains [39]. In coffee chain, certification schemes are major issues due its importance and impacts in the sustainability as well for farmer’s higher incomes [40].
Sustainability coffee certificates in the global coffee industry are present since the world coffee deregulation aiming to guarantee enhanced quality and sustainability in the production regions. The major certifications in the global coffee scenario are Fairtrade (FT), Organic, Rainforest Alliance / UTZ, and the 4C Common Code/Global Coffee Platform (4C/ GCP) [36, 41, 42]. Table 1 summarizes the main scope and objectives of those VSSs.
VSS | Scope and objectives |
---|---|
FairTrade (FT) | It comprises economic, social, and environmental sustainability for producers, with focus on social aspects, and the strength of labor rights and working conditions. It sets minimum prices and social premia for producers and producers’ organizations. |
4C Common Code/Global Coffee Platform (4C/GCP) | It comprises 27 principles across economic, social, and environmental dimensions, aiming to exclude worst practices and increasing sustainability in coffee production and processing. |
Organic | It promotes organic farming practices, intended to avoid harmful practices to the environment, prohibiting the adoption of agrochemicals and promoting environmental practices, such as deforestation restriction and soil erosion control. |
Rainforest Alliance (RA)/UTZ | UTZ merged with RainForest Alliance in 2018. It establishes standards for responsible production and delivery, aiming to ensure sustainable practices and the integration of biodiversity conservation, community development, labor issues, and agricultural practices. |
As observed in Table 1, most common VSSs in coffee value chain comprise the three-dimensional aspect of sustainability—economic, social, and environmental, although in different ways and considering different indicators and measures. Some of them are more focused on one of the dimensions, such as Fairtrade for social aspects, and organic for the environmental dimension. Another important aspect is the scope of VSS in value chain: some of them are more related to one specific segment of the chain (such as organic in production), while others depend more on actions in/from different parts of the chain, such as Fairtrade.
Discussion on the role of VSS for coffee sustainability abound in literature [26, 36, 42, 43, 44, 45, 46, 47]. Based on prior studies, Elliott [44] summarizes different impacts of VSS on prices, quality and productivity, income and livelihoods, working conditions, environment impacts, and other aspects, such as markets, training, and capacity building. The findings presented mixed results, which lead to a controversial discussion on the VSS adoption for coffee farmers’ income. The same perspective is pointed out for Piao [42] when analyzing the adoption of the 4C system by coffee farmers in Brazil in the perspective of value chain upgrading. The authors had identified five types of upgrading (product, process, functional, social, and environmental) although most of the improvements can be characterized as environmental. Yet, the main gains are associated with coffee beans differentiation thought high-quality agronomic practices and coffee processing, not necessarily resulting in premium prices for farmers.
Although literature presents a number of positive impacts linked to VSS and certifications in coffee value chains, especially considering coffee farmers “at the bottom of the pyramid” [48], some studies reveal uneven results from region to region. Jena and Grote [47], for instance, observed differences in terms of coffee yield and household income for certified coffee farmers in India, Ethiopia, and Nicaragua, shedding light to role of cooperatives in promoting collective actions and capacity building.
Other issues arise when coffee producers are brought to the center of that discussion: the adoption of certification at the farm level is not always economically viable, once it may bring higher production costs [49]; frequent changes, such as the adoption of new agricultural practices, do not necessarily mean a systemic change toward sustainability [50, 51]; certification is not a synonym of higher prices or better household living and poverty reduction for producers [52, 53].
Despite higher prices at the final market and some changes toward more sustainable production models, certification is not a panacea for sustainability. In that sense, the governance of certification and standards along the value chains plays a central role.
Chain governance agents need to drive more attention to smallholders’ inclusion and to support more vulnerable and poorest coffee producers to comply with sustainability standards and develop deep changes toward social and environmental issues [44, 50]. Another governance challenge is related to the producers’ awareness of certifications and its meanings, especially for producers in cooperatives or groups [44]. It represents an important alert: collective actions for smallholders’ certification may not bring benefits on information sharing, transparency, and administrative competence, compromising its performance in the long run.
The complexity and interactions among the impacts of certifications need to be addressed, to shed light on potential bias or distortions. Impacts on price, for instance, may be related to improvements on quality rather than on the social and environmental aspects of certification itself [44]. Although certification can trigger the development of good agricultural practices and higher levels of assets for producers, the relation may be the other way around: producers already compliant with or close to requirements, or producers already having a minimum level of technical, financial, and structural assets, are generally those who get certified, and not the opposite, which may favor the large-scale producers’ adhesion to RA, UTZ, and 4C/GCP certifications [44].
Finally, it is important to consider the interactions and networks for coffee sustainability. Grabs and Carodenutto [54] discuss the role of corporate actors in the governance of sustainable global coffee chain, pointing out benefits but also risks and challenges, such as goal conflict, information asymmetries, and power imbalances. According to Elliott [44], studies also report high levels of dependence on organizations such as NGOs and governmental extension agencies to promote certifications among producers, which sheds light on the need of external assistance and raises questions on the sustainability of certification schemes over time.
The role of the state and public institutions for global value chain upgrading is central. De Marchi and Alford [55] discuss the role of state policies in global value chains, including the coffee one. State regulation is potentially associated with improved social and environmental conditions through the support or requirement of certification schemes. In Brazil, Caldarelli et al. [56] emphasize the importance of public policies to face challenges in Brazilian coffee chain, including efforts to promote quality improvements and social and environmental aspects through voluntary standards and certification schemes.
VSS and sustainable certifications in coffee value chains can emphasize different aspects of sustainability. In general, the adoption of VSS and certifications in coffee value chains brings positive results to the chain and especially to coffee farmers. Promoting product quality, higher revenues, and access to market. Nevertheless, benefits are uneven and not always related to other important indicators, such as household income and coffee yield and producers’ empowerment. In that sense, the adoption of VSS and sustainable certifications demands tighter governance. The role of organizations such as cooperatives and governmental agents is crucial to support the adoption of sustainable practices, favor collective actions, and hinder power imbalances between segments, promoting more genuine sustainability in coffee value chains.
Coffee is produced in more than 60 countries in the coffee belt (between the Tropics of Cancer and Capricorn), but around 70% of the harvest is condensed in four countries: Brazil, Vietnam, Colombia, and Indonesia. Brazil is, by far, the largest producer, with around 33–35% of total production, harvesting both Arabica and Robusta coffee beans [26]. Brazil has been an important (if not the most notable) coffee producer since the eighteenth century, with the commodity having a big role in the history and economy of the country [57].
The first coffee seed came to Brazil in the begin of the eighteenth century in the Northeast, but it was at the end of the century that the plant was introduced in the states of São Paulo, Minas Gerais, Espírito Santo, Paraná, among others, with different types of coffee being planted and modified by genetic engineering [57, 58]. At this time, coffee was planted by the growing high class (centered especially in São Paulo and Rio de Janeiro) in big properties that used slave labor. Later, with the abolition of slavery, labor was due mainly by European immigrants. With the popularization of the brew around the world, coffee had then become the great economic lever for Brazil in the nineteenth century, contributing to the industrialization of the Southeast region. In this century, Brazil was already the largest producer and exporter of the bean [59, 60].
Nowadays, the most prominent regions of production in Brazil are Paraná, São Paulo, Espírito Santo, and Minas Gerais, although, in each one, the coffee had a different role through history, which led to distinct characteristics in production that will be discussed in the following paragraphs [58, 61, 62]. Minas Gerais is the largest producer in Brazil (from 40–50%), with harvest condensed in Sul de Minas, Zona da Mata, and Cerrado Mineiro regions and mainly for Arabica variety. The second largest producer is Espírito Santo (25–30%), harvesting both Arabica and Robusta coffee beans (the state is the biggest producer of Robusta). São Paulo follows, being the third largest producer (Arabica variety) in Brazil (close to 10%). As for Paraná, the state used to be a big and historical producer of Arabica coffee, but, in the last decades, climate adversity has drastically reduced the harvest [63].
The state of São Paulo is one of the oldest producers and the most affected historically and economically by the culture back in the eighteenth and nineteenth centuries. The most important areas of the state are the traditional regions of Alta Paulista and Alta Mogiana, and the relatively younger region of Garça, which begging production after the 1960s decade. The culture in the state applies mostly traditional techniques of cultivation, producing only Arabica beans in small properties [63, 64].
As for Minas Gerais states, the biggest producer, the regions of Zona da Mata and Sul de Minas coffee are also a century and traditional culture characterized by smaller farmers and traditional techniques of cultivation and lower production technology. While in Sul de Minas, only the Arabica variety is harvested, in Zona da Mata, both Arabica and Robusta are planted. As for the region of Cerrado Mineiro, coffee production is relativity new, when producers from São Paulo and Paraná migrated to this region in 1970, due to climate problems in these states and government incentive for a more modern cultivation in Minas Gerais. Due to this, the production of Arabica coffee in Cerrado Mineiro has a higher technological base and is mechanized, a differential from other Brazilian producer regions [57, 61].
In Espírito Santo, the production was initially concentrated in the Arabica variety. In the nineteenth century, the crop had come as a way to occupy the land, organized as big properties focused on the external market. Later, with economical changes, coffee was harvest majorly by small producers, especially in the South of the state, having similar characteristics as Zona da Mata in Minas Gerais [58]. In the North, however, Arabica coffee beans were not adapted for the high temperatures and low altitudes predominant in the area, and with the Programa Federal de Erradicação dos Cafezais (transl. Nation Program of Eradication of Coffee Plantations) in the 1960s decade, most of these crops were annihilated. Producers then started planting Robusta coffee beans, better adapted for the region. The variety had higher productivity and was benefited by the growth of the soluble coffee industry over the years and the expansion of the use of Robusta in blends with Arabica coffee [62].
The difference characteristic among these regions, on the other hand, is of great importance for coffee sustainable production in the context of origin-linked products. The interest in the origin of the coffee seeds began with the second wave of coffee consumption, only gaining more importance in the third wave, with the concept “seed to cup.” Coffee producers can then gain competitive advantage and economic benefits by differentiating its products by origin, mainly in the schemes of geographical indications (GIs) [45, 62, 65].
Coffee Geographical Indication Certification was a standard that emerged due to the contributions from representatives of companies, exporters, farmers, and coffee sector stakeholders as a way to increase productivity in farms, to improve market access and the livelihood of coffee famers through sustainable improvement, helping with protection of natural resources and biodiversity [66]. GIs is based on the specific features of products on determined locations, due to a combination of natural resources, traditional local skills and knowledge, and historical and cultural aspects of the origin in question. Producers can then use these different characteristics to add value and promote their products, also protecting the local resources and culture, playing an important role in the sustainable development of local communities [45, 67].
In the economical aspect, GIs have positive impacts by different mechanism, such as providing legal protection for the geographical name of the origin of the product; recognizing the role of primary producers and increase farmer acceptance; boosting competitiveness; positive correlation of GI with intention to pay (premium prices), helping improve farm efficiency and coffee quality; creating new strategies beyond the product (e.g., local ecotourism area [45, 65, 66]. In the coffee scene, the IGs are already commonly used by countries such as Colombia, Indonesia, and Thailand as a way to obtain economic, environmental, and social benefits, such as premium prices, brand value, increase in profit, and decrease in production cost, and improve livelihood of farmers, etc. [66, 67, 68].
As for Brazil, the use of GIs in coffee has gained significant importance in the last decades. The protection of GI was determined in Law No. 9.279/1996 in articles 176–182, with the National Institute for Industrial Protection (INPI) responsible for defining procedures for creating GIs and the regulation and control made by the Ministry of Agriculture and Supply (MAPA). According to the law, there are two ways to indicate the geographical region of a product: by Indication of Origin (IP) and Designation of Origin (D.O) [60, 61, 62]. The difference between the two of them can be checked in Table 2.
Indication of origin (IO) | Designation of origin (D.O) |
---|---|
An indication of origin is the geographical name of a country, city, region or locality in its territory, which has become known as a center for the extraction, production or manufacture of a particular product or the provision of a particular service. | Denomination of origin is the geographical name of a country, city, region or locality in its territory, which designates a product or service whose qualities or characteristics are exclusively or essentially due to the geographical environment, including natural and human factors. |
In Table 2, we can see the difference between the Indication of Origin (IO) and Designation of Origin (D.O), the two kinds of geographic indications find in Brazil. The first one, IO, explicated the name of the origin, functioning based on the notoriety or reputation of the region. As for D.O, works as the very designation of an agricultural or extractive product, whose qualities are intrinsically linked in an exclusive or essential way to the geographical environment.
In 2022, eight IOs and five D.Os for coffee production exist in Brazil [69]. The oldest GI used in the country is the IO for the Cerrado Mineiro region, created in 2005, and according to Almeida and Tabaral [61], it’s the first region in the world to issue a D.O. seal for green coffee as well for roasting coffee in 2013. Other GIs in Brazil are issued in the main producing regions of coffee of Minas Gerais, São Paulo, Paraná, Espírito Santo, Rondônia, and Bahia states, accounting for more than 400 cities around the country [69].
A crescent investment for producers in the last years is regarding the Robusta Beans that are achieving recognition in the global market. Thus, the last GI appointed by the government is the IOs for Espírito Santo and Matas de Rondônia. For this last IO, there is a crest adoption of the denomination “Amazonian Robustas,” which also reflects the concerns of coffee producers with sustainability [69]. All of the IOs and D.Os can be observed in Table 3 and Figure 1.
GI of coffee in Brazil. Source: Adapted from Brazil [
In Table 3 and Figure 1, the multiple IOs and D.Os of coffee in Brazil are shown. Table 3 presents the variety of coffee in question, as well as the state, creation date, and the logo of each geographic indication. In Figure 1, the same IO and D.O are shown in the map of Brazil. As we can see, these geographical indications are present in six states, but are concentrated in Minas Gerais state, the largest producer in Brazil.
The differentiation strategy aiming value creation for coffee farmers in Brazil has been in place since the deregulation of coffee market in mid-1990s [70]. Industry played an important role to define quality standards through the Brazilian Coffee Quality Program since 1989 with continual enrichment aiming to match the growing interest of the consumers toward the coffee origin and quality. The private and public prizes rewarding famers and roasters for good practices have been another salient institutional tool to achieve and enhance quality and sustainable practices along the coffee chain.
Nevertheless, the VSS adoption and GI’s creation have been modern strategies for quality and suitability achievement as demonstrated in this chapter. Brazil, as the largest global coffee producer, has also a great potential regarding GI strategies, which can lead to differentiation strategies and economic benefits for small farmers, also contributing to sustainable production and valorization of the cultural environmental of these regions. However, public and private action should consider economic and social barriers to achieve the VSS and VI’s protocols, developing means to foster, maintain, and enhance a quality and sustainability mind set along the coffee chain [60, 65, 71].
The coffee value chain has great importance in the agribusiness, involving a huge number of actors from its production to its consumption, and Brazil has a huge part in this as the largest producer and second largest consumer. Thus, in the context of sustainability in the GVC, it’s important to look more thoroughly in the aspects of the Brazilian coffee scenario. Around the world, the sector is already considered a pioneer in the adoption of VSSs, in particular, “private” and multistakeholder initiatives, such as Fair Trade and Organic certifications, which are also applied in Brazil.
Yet, these VSSs are mainly driven by the consumer ends, and there has been contrasting evidence of the real effectiveness of these standards in the incomes and livelihood of producers, thus presenting a possible challenge in the sustainability of the chain. What is known is that these standards may have different effects depending on the country studied.
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6655},{group:"region",caption:"Middle and South America",value:2,count:5946},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12678},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17699}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-T-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12307",title:"New Insights Into Dystonia",subtitle:null,isOpenForSubmission:!0,hash:"1b011946aab26d18e0f4cfa61eb4249a",slug:null,bookSignature:" Tamer Rizk",coverURL:"https://cdn.intechopen.com/books/images_new/12307.jpg",editedByType:null,editors:[{id:"170531",title:null,name:"Tamer",surname:"Rizk",slug:"tamer-rizk",fullName:"Tamer Rizk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11856",title:"Testosterone - Functions, Uses, Deficiencies, and Substitution",subtitle:null,isOpenForSubmission:!0,hash:"8549d2b1fcd1242f85a6a70447b1db10",slug:null,bookSignature:"Associate Prof. Hirokazu Doi",coverURL:"https://cdn.intechopen.com/books/images_new/11856.jpg",editedByType:null,editors:[{id:"473383",title:"Associate Prof.",name:"Hirokazu",surname:"Doi",slug:"hirokazu-doi",fullName:"Hirokazu Doi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Prof. Jose Marti",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12387",title:"Natural Killer Cells - Lessons and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"5576cda9d50adf4e4256e47427560510",slug:null,bookSignature:"Associate Prof. Leisheng Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/12387.jpg",editedByType:null,editors:[{id:"439674",title:"Associate Prof.",name:"Leisheng",surname:"Zhang",slug:"leisheng-zhang",fullName:"Leisheng Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12072",title:"Finite Element Method and Its Extensions",subtitle:null,isOpenForSubmission:!0,hash:"3b9656ca1f591fcc44f127e12a6ef28f",slug:null,bookSignature:"Prof. Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/12072.jpg",editedByType:null,editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11994",title:"MXenes - Fabrications and Applications",subtitle:null,isOpenForSubmission:!0,hash:"184e1a0c9b5e62ebb3c7ebc53103db9f",slug:null,bookSignature:"Prof. Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11994.jpg",editedByType:null,editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12143",title:"Herbs and Spices - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"dbbc40b4b09244389b52ca80dcc10768",slug:null,bookSignature:"Dr. Eva Ivanišová",coverURL:"https://cdn.intechopen.com/books/images_new/12143.jpg",editedByType:null,editors:[{id:"352448",title:"Dr.",name:"Eva",surname:"Ivanišová",slug:"eva-ivanisova",fullName:"Eva Ivanišová"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:40},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:8},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:10},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:434},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4424},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"115",title:"Control Engineering",slug:"engineering-control-engineering",parent:{id:"11",title:"Engineering",slug:"engineering"},numberOfBooks:51,numberOfSeries:0,numberOfAuthorsAndEditors:1216,numberOfWosCitations:1462,numberOfCrossrefCitations:1060,numberOfDimensionsCitations:1854,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"115",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10972",title:"Control Systems in Engineering and Optimization Techniques",subtitle:null,isOpenForSubmission:!1,hash:"f92f65447d0f90b67465865d41a61cd1",slug:"control-systems-in-engineering-and-optimization-techniques",bookSignature:"P. Balasubramaniam, Sathiyaraj Thambiayya, Kuru Ratnavelu and JinRong Wang",coverURL:"https://cdn.intechopen.com/books/images_new/10972.jpg",editedByType:"Edited by",editors:[{id:"252215",title:"Dr.",name:"P.",middleName:null,surname:"Balasubramaniam",slug:"p.-balasubramaniam",fullName:"P. Balasubramaniam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9976",title:"Fuzzy Systems",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"5c4c0d41cf25d2e8fda944450ac46d95",slug:"fuzzy-systems-theory-and-applications",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/9976.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9887",title:"Control Based on PID Framework",subtitle:"The Mutual Promotion of Control and Identification for Complex Systems",isOpenForSubmission:!1,hash:"d2dae75adf13d3e082893264d82967fb",slug:"control-based-on-pid-framework-the-mutual-promotion-of-control-and-identification-for-complex-systems",bookSignature:"Wei Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9887.jpg",editedByType:"Edited by",editors:[{id:"101176",title:"Prof.",name:"Wei",middleName:null,surname:"Wang",slug:"wei-wang",fullName:"Wei Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9287",title:"Control Theory in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7c584de5f40193b636833aa812dab9d5",slug:"control-theory-in-engineering",bookSignature:"Constantin Volosencu, Ali Saghafinia, Xian Du and Sohom Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/9287.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7485",title:"Applied Modern Control",subtitle:null,isOpenForSubmission:!1,hash:"c7a7be73f7232e08867ed81bdf9850c6",slug:"applied-modern-control",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/7485.jpg",editedByType:"Edited by",editors:[{id:"180550",title:"Dr.",name:"Le",middleName:null,surname:"Anh Tuan",slug:"le-anh-tuan",fullName:"Le Anh Tuan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6806",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"fedf4479b910cbcee3025e391f073417",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",bookSignature:"Ali Sadollah",coverURL:"https://cdn.intechopen.com/books/images_new/6806.jpg",editedByType:"Edited by",editors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6323",title:"PID Control for Industrial Processes",subtitle:null,isOpenForSubmission:!1,hash:"3994459e0812cf44a04b3f6c3e28e9c1",slug:"pid-control-for-industrial-processes",bookSignature:"Mohammad Shamsuzzoha",coverURL:"https://cdn.intechopen.com/books/images_new/6323.jpg",editedByType:"Edited by",editors:[{id:"87344",title:"Dr.",name:"Mohammad",middleName:null,surname:"Shamsuzzoha",slug:"mohammad-shamsuzzoha",fullName:"Mohammad Shamsuzzoha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6101",title:"Advances in Some Hypersonic Vehicles Technologies",subtitle:null,isOpenForSubmission:!1,hash:"5ecc3136420d6f6cc0de2da29f9d749c",slug:"advances-in-some-hypersonic-vehicles-technologies",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/6101.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6240",title:"Adaptive Robust Control Systems",subtitle:null,isOpenForSubmission:!1,hash:"19601f78e28ac1956912e5eeb6b834ac",slug:"adaptive-robust-control-systems",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/6240.jpg",editedByType:"Edited by",editors:[{id:"180551",title:"Prof.",name:"Anh Tuan",middleName:null,surname:"Le",slug:"anh-tuan-le",fullName:"Anh Tuan Le"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5823",title:"Recent Developments in Sliding Mode Control",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"1075a2f87196085bae2babfac6bc3d52",slug:"recent-developments-in-sliding-mode-control-theory-and-applications",bookSignature:"Andrzej Bartoszewicz",coverURL:"https://cdn.intechopen.com/books/images_new/5823.jpg",editedByType:"Edited by",editors:[{id:"18337",title:"Prof.",name:"Andrzej",middleName:null,surname:"Bartoszewicz",slug:"andrzej-bartoszewicz",fullName:"Andrzej Bartoszewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:51,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"34221",doi:"10.5772/36321",title:"A Mamdani Type Fuzzy Logic Controller",slug:"a-mamdani-type-fuzzy-logic-controller",totalDownloads:12538,totalCrossrefCites:40,totalDimensionsCites:67,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Ion Iancu",authors:[{id:"107854",title:"Prof.",name:"Ion",middleName:null,surname:"Iancu",slug:"ion-iancu",fullName:"Ion Iancu"}]},{id:"29691",doi:"10.5772/37638",title:"A Real-Time Gradient Method for Nonlinear Model Predictive Control",slug:"a-real-time-gradient-method-for-nonlinear-model-predictive-control",totalDownloads:2665,totalCrossrefCites:52,totalDimensionsCites:66,abstract:null,book:{id:"2091",slug:"frontiers-of-model-predictive-control",title:"Frontiers of Model Predictive Control",fullTitle:"Frontiers of Model Predictive Control"},signatures:"Knut Graichen and Bartosz Käpernick",authors:[{id:"113632",title:"Prof.",name:"Knut",middleName:null,surname:"Graichen",slug:"knut-graichen",fullName:"Knut Graichen"},{id:"139321",title:"MSc.",name:"Bartosz",middleName:null,surname:"Kaepernick",slug:"bartosz-kaepernick",fullName:"Bartosz Kaepernick"}]},{id:"62600",doi:"10.5772/intechopen.79552",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1919,totalCrossrefCites:31,totalDimensionsCites:53,abstract:null,book:{id:"6806",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"4579",doi:"10.5772/5812",title:"Cumulative Vehicle Routing Problems",slug:"cumulative_vehicle_routing_problems",totalDownloads:3400,totalCrossrefCites:24,totalDimensionsCites:46,abstract:null,book:{id:"5332",slug:"vehicle_routing_problem",title:"Vehicle Routing Problem",fullTitle:"Vehicle Routing Problem"},signatures:"İmdat Kara, Bahar Yetiş Kara and M. Kadri Yetiş",authors:null},{id:"15216",doi:"10.5772/14532",title:"Super-Twisting Sliding Mode in Motion Control Systems",slug:"super-twisting-sliding-mode-in-motion-control-systems",totalDownloads:5828,totalCrossrefCites:19,totalDimensionsCites:40,abstract:null,book:{id:"103",slug:"sliding-mode-control",title:"Sliding Mode Control",fullTitle:"Sliding Mode Control"},signatures:"Jorge Rivera, Luis Garcia, Christian Mora, 0Juan J. Raygoza and Susana Ortega",authors:[{id:"18069",title:"Dr.",name:"Jorge",middleName:null,surname:"Rivera",slug:"jorge-rivera",fullName:"Jorge Rivera"},{id:"22689",title:"Prof.",name:"Luis",middleName:null,surname:"Garcia",slug:"luis-garcia",fullName:"Luis Garcia"},{id:"22690",title:"Prof.",name:"Christian",middleName:null,surname:"Mora",slug:"christian-mora",fullName:"Christian Mora"},{id:"23671",title:"Dr.",name:"Juan José",middleName:null,surname:"Raygoza",slug:"juan-jose-raygoza",fullName:"Juan José Raygoza"},{id:"23672",title:"Dr.",name:"Susana",middleName:null,surname:"Ortega",slug:"susana-ortega",fullName:"Susana Ortega"}]}],mostDownloadedChaptersLast30Days:[{id:"53024",title:"Key Aspects for Implementing ISO/IEC 17025 Quality Management Systems at Materials Science Laboratories",slug:"key-aspects-for-implementing-iso-iec-17025-quality-management-systems-at-materials-science-laborator",totalDownloads:2819,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Implementing a quality management system based on the requirements specified in ISO/IEC 17025 standard at materials science laboratories is challenging, mainly due to two main factors: (i) the high technical complexity degree of some tests used for materials characterization and (ii) the fact that most materials science laboratories provide materials characterization tests and also carry out research and development activities. In this context, this chapter presents key subjects while implementing a quality management system at materials science laboratories and some considerations on strategies for effectively implementing such systems.",book:{id:"5486",slug:"quality-control-and-assurance-an-ancient-greek-term-re-mastered",title:"Quality Control and Assurance",fullTitle:"Quality Control and Assurance - An Ancient Greek Term Re-Mastered"},signatures:"Rodrigo S. Neves, Daniel P. Da Silva, Carlos E. C. Galhardo, Erlon H.\nM. Ferreira, Rafael M. Trommer and Jailton C. Damasceno",authors:[{id:"20571",title:"Prof.",name:"Erlon H.",middleName:null,surname:"Martins Ferreira",slug:"erlon-h.-martins-ferreira",fullName:"Erlon H. Martins Ferreira"},{id:"145815",title:"Dr.",name:"Rodrigo",middleName:null,surname:"De Santis Neves",slug:"rodrigo-de-santis-neves",fullName:"Rodrigo De Santis Neves"},{id:"145816",title:"Dr.",name:"Carlos",middleName:null,surname:"Eduardo Cardoso Galhardo",slug:"carlos-eduardo-cardoso-galhardo",fullName:"Carlos Eduardo Cardoso Galhardo"},{id:"159056",title:"Dr.",name:"Jailton",middleName:null,surname:"Damasceno",slug:"jailton-damasceno",fullName:"Jailton Damasceno"},{id:"191863",title:"Dr.",name:"Daniel",middleName:"Pereira Da Silva",surname:"Fernandes",slug:"daniel-fernandes",fullName:"Daniel Fernandes"},{id:"191865",title:"Dr.",name:"Rafael",middleName:null,surname:"Mello Trommer",slug:"rafael-mello-trommer",fullName:"Rafael Mello Trommer"}]},{id:"53946",title:"The Evolution of Quality Concepts and the Related Quality Management",slug:"the-evolution-of-quality-concepts-and-the-related-quality-management",totalDownloads:4433,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"Enterprises usually adopt some quality practices to control the product quality during the manufacturing process in order to assure the delivery of qualitative good products to customers. The quality practices or quality management systems adopted by industries will further evolve due to the changes of quality concepts as time goes by. This chapter discusses the change of quality concepts and the related revolution of quality management systems in the past century. The quality concepts were gradually changed from the achievement of quality standards, satisfaction of customer needs, and expectations to customer delight. Since merely satisfying customers is not enough to ensure customer loyalty, the enterprises gradually focus on customers’ emotional responses and their delight in order to pursue their loyalty. The emotion of “delight” is composed of “joy” and “surprise,” which can be achieved as the customers’ latent requirements are satisfied. Thus, the concept of “customer delight” and the means to provide the innovative quality so as to meet the unsatisfied customers’ latent needs are elaborated on. Finally, a framework of innovation creation is developed that is based on the mining of customer's latent requirements. This outline will manifest the essential elements of the related operation steps.",book:{id:"5486",slug:"quality-control-and-assurance-an-ancient-greek-term-re-mastered",title:"Quality Control and Assurance",fullTitle:"Quality Control and Assurance - An Ancient Greek Term Re-Mastered"},signatures:"Ching-Chow Yang",authors:[{id:"11862",title:"Prof.",name:"Ching-Chow",middleName:null,surname:"Yang",slug:"ching-chow-yang",fullName:"Ching-Chow Yang"}]},{id:"62915",title:"Advanced Methods of PID Controller Tuning for Specified Performance",slug:"advanced-methods-of-pid-controller-tuning-for-specified-performance",totalDownloads:3468,totalCrossrefCites:10,totalDimensionsCites:16,abstract:"This chapter provides a concise survey, classification and historical perspective of practice-oriented methods for designing proportional-integral-derivative (PID) controllers and autotuners showing the persistent demand for PID tuning algorithms that integrate performance requirements into the tuning algorithm. The proposed frequency-domain PID controller design method guarantees closed-loop performance in terms of commonly used time-domain specifications. One of its major benefits is universal applicability for both slow and fast-controlled plants with unknown mathematical model. Special charts called B-parabolas were developed as a practical design tool that enables consistent and systematic shaping of the closed-loop step response with regard to specified performance and dynamics of the uncertain controlled plant.",book:{id:"6323",slug:"pid-control-for-industrial-processes",title:"PID Control for Industrial Processes",fullTitle:"PID Control for Industrial Processes"},signatures:"Štefan Bucz and Alena Kozáková",authors:[{id:"21933",title:"Ms.",name:"Alena",middleName:null,surname:"Kozakova",slug:"alena-kozakova",fullName:"Alena Kozakova"},{id:"213658",title:"Dr.",name:"Štefan",middleName:null,surname:"Bucz",slug:"stefan-bucz",fullName:"Štefan Bucz"}]},{id:"75699",title:"Data Clustering for Fuzzyfier Value Derivation",slug:"data-clustering-for-fuzzyfier-value-derivation",totalDownloads:291,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The fuzzifier value m is improving significant factor for achieving the accuracy of data. Therefore, in this chapter, various clustering method is introduced with the definition of important values for clustering. To adaptively calculate the appropriate purge value of the gap type −2 fuzzy c-means, two fuzzy values m1 and m2 are provided by extracting information from individual data points using a histogram scheme. Most of the clustering in this chapter automatically obtains determination of m1 and m2 values that depended on existent repeated experiments. Also, in order to increase efficiency on deriving valid fuzzifier value, we introduce the Interval type-2 possibilistic fuzzy C-means (IT2PFCM), as one of advanced fuzzy clustering method to classify a fixed pattern. In Efficient IT2PFCM method, proper fuzzifier values for each data is obtained from an algorithm including histogram analysis and Gaussian Curve Fitting method. Using the extracted information form fuzzifier values, two modified fuzzifier value m1 and m2 are determined. These updated fuzzifier values are used to calculated the new membership values. Determining these updated values improve not only the clustering accuracy rate of the measured sensor data, but also can be used without additional procedure such as data labeling. It is also efficient at monitoring numerous sensors, managing and verifying sensor data obtained in real time such as smart cities.",book:{id:"9976",slug:"fuzzy-systems-theory-and-applications",title:"Fuzzy Systems",fullTitle:"Fuzzy Systems - Theory and Applications"},signatures:"JaeHyuk Cho",authors:[{id:"329648",title:"Prof.",name:"JaeHyuk",middleName:null,surname:"Cho",slug:"jaehyuk-cho",fullName:"JaeHyuk Cho"}]},{id:"39778",title:"GPS and the One-Way Speed of Light",slug:"gps-and-the-one-way-speed-of-light",totalDownloads:3476,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2387",slug:"new-approach-of-indoor-and-outdoor-localization-systems",title:"New Approach of Indoor and Outdoor Localization Systems",fullTitle:"New Approach of Indoor and Outdoor Localization Systems"},signatures:"Stephan J.G. Gift",authors:[{id:"141106",title:"Prof.",name:"Stephan",middleName:null,surname:"Gift",slug:"stephan-gift",fullName:"Stephan Gift"}]}],onlineFirstChaptersFilter:{topicId:"115",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"77466",title:"Optimization of Model Predictive Control Weights for Control of Permanent Magnet Synchronous Motor by Using the Multi Objective Bees Algorithm",slug:"optimization-of-model-predictive-control-weights-for-control-of-permanent-magnet-synchronous-motor-b",totalDownloads:138,totalDimensionsCites:0,doi:"10.5772/intechopen.98810",abstract:"In this study, the model predictive control (MPC) method was used within the scope of the control of the permanent magnet synchronous motor (PMSM). The strongest aspect of the MPC, the ability to control multiple components with a single function, is also one of the most difficult parts of its design. The fact that each component of the function has different effects requires assigning different weight coefficients to these components. In this study, the Bees Algorithm (BA) is used to determine the weights. Using the multi-objective function in BA, it has been tried to determine the weights that reduce the current values together with the speed error. Three different PI controllers have been designed to compare the MPC method. The coefficients of one of these are tuned with BA. Good Gain Method and Tyreus-Luyben Method were used in the other two. As a result of experimental studies, it has been observed that MPC can control PMSM more smoothly and accurately than PI controllers, with weights optimized with BA. With MPC, PMSM has been controlled with 15% settling time than other controllers and also with no overshoot.",book:{id:"10778",title:"Model-Based Control Engineering - Recent Design and Implementations for Varied Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg"},signatures:"Murat Sahin"},{id:"78164",title:"Use of Discrete-Time Forecast Modeling to Enhance Feedback Control and Physically Unrealizable Feedforward Control with Applications",slug:"use-of-discrete-time-forecast-modeling-to-enhance-feedback-control-and-physically-unrealizable-feedf",totalDownloads:60,totalDimensionsCites:0,doi:"10.5772/intechopen.99340",abstract:"When the manipulated variable (MV) has significantly large time delay in changing the control variable (CV), use of the currently measured CV in the feedback error can result in very deficient feedback control (FBC). However, control strategies that use forecast modeling to estimate future CV values and use them in the feedback error have the potential to control as well as a feedback controller with no MV deadtime using the measured value of CV. This work evaluates and compares FBC algorithms using discrete-time forecast modeling when MV has a large deadtime. When a feedforward control (FFC) law results in a physically unrealizable (PU) controller, the common approach is to use approximations to obtain a physically realizable feedforward controller. Using a discrete-time forecast modeling method, this work demonstrates an effective approach for PU FFC. The Smith Predictor is a popular control strategy when CV has measurement deadtime but not MV deadtime. The work demonstrates equivalency of this discrete-time forecast modeling approach to the Smith Predictor FBC approach. Thus, this work demonstrates effectiveness of the discrete-time forecast modeling approach for FBC with MV or DV deadtime and PU FFC.",book:{id:"10778",title:"Model-Based Control Engineering - Recent Design and Implementations for Varied Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg"},signatures:"Derrick K. Rollins"}],onlineFirstChaptersTotal:2},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:13,paginationItems:[{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 24th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:5,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"18",type:"subseries",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:117,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/213868",hash:"",query:{},params:{id:"213868"},fullPath:"/profiles/213868",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()