\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"3423",leadTitle:null,fullTitle:"Insights from Veterinary Medicine",title:"Insights from Veterinary Medicine",subtitle:null,reviewType:"peer-reviewed",abstract:'Under the title "Insights from Veterinary Medicine", this book presents original research results and reviews flashing several distinctive aspects of the Veterinary Medicine Sciences, in which the knowledge has continuously increased over the past decades. Veterinary and Human Medicine have been developed in close association, in part as a reflection of the intertwined relationship found between animals and humans since the establishment of first civilizations. Humans and animals share common mechanisms of disease, thus serving as spontaneous models for the study of particular disorders, such as tumors and cardiac diseases. Furthermore, concerns on the deleterious side-effects of contaminants, in particular over the endocrine axis regulating different body functions and fertility, are on the table, as animals may serve as sentinels for environmental quality. In addition, the quality of the animal life with regards to both health and welfare also contribute to the quality of human life, and food-animal health and safety are safeguards against the disruption of the food chain. The Veterinary Medicine field has broadened its scope of action, and nowadays it encompasses much more than the veterinary medical practice. Similarly, a wide field of knowledge was covered in this book. Even so, it was our goal to provide you with current advanced resources in different veterinary science disciplines.',isbn:null,printIsbn:"978-953-51-1005-7",pdfIsbn:"978-953-51-7103-4",doi:"10.5772/56196",price:119,priceEur:129,priceUsd:155,slug:"insights-from-veterinary-medicine",numberOfPages:292,isOpenForSubmission:!1,isInWos:1,hash:"8712769decefe74bd752ce339f476964",bookSignature:"Rita Payan-Carreira",publishedDate:"February 27th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3423.jpg",numberOfDownloads:45903,numberOfWosCitations:32,numberOfCrossrefCitations:19,numberOfDimensionsCitations:41,hasAltmetrics:0,numberOfTotalCitations:92,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 8th 2012",dateEndSecondStepPublish:"May 29th 2012",dateEndThirdStepPublish:"September 2nd 2012",dateEndFourthStepPublish:"December 1st 2012",dateEndFifthStepPublish:"December 31st 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her veterinary degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. degree (Veterinary Sciences) at the University of Trás-os-Montes e Alto Douro (Portugal). For some years, Rita parted from her activity as a veterinary practitioner and teacher. After almost 32 years teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora (Department of Veterinary Medicine), where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master\\'s or doctoral theses. She is also a frequent referee for various journals in the area.\n\nAdditional information can be found at http://orcid.org/0000-0001-5225-4510",institutionString:"University of Évora",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"299",title:"Cynology",slug:"cynology"}],chapters:[{id:"43169",title:"Dermatology in Dogs and Cats",doi:"10.5772/53660",slug:"dermatology-in-dogs-and-cats",totalDownloads:9391,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Elisa Bourguignon, Luciana Diegues Guimarães, Tássia Sell Ferreira and Evandro Silva Favarato",downloadPdfUrl:"/chapter/pdf-download/43169",previewPdfUrl:"/chapter/pdf-preview/43169",authors:[{id:"124361",title:"Mrs.",name:"Elisa",surname:"Bourguignon",slug:"elisa-bourguignon",fullName:"Elisa Bourguignon"}],corrections:null},{id:"43170",title:"Immunohistochemical Analysis of Progesterone Receptor and Proliferating Cell Nuclear Antigen in Canine Inflammatory Mammary Carcinoma",doi:"10.5772/54472",slug:"immunohistochemical-analysis-of-progesterone-receptor-and-proliferating-cell-nuclear-antigen-in-cani",totalDownloads:1890,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Anna M. Badowska-Kozakiewicz",downloadPdfUrl:"/chapter/pdf-download/43170",previewPdfUrl:"/chapter/pdf-preview/43170",authors:[{id:"82267",title:"Dr.",name:"Anna",surname:"Badowska-Kozakiewicz",slug:"anna-badowska-kozakiewicz",fullName:"Anna Badowska-Kozakiewicz"}],corrections:null},{id:"43171",title:"Indicators of Poor Welfare in Dairy Cows Within Smallholder Zero-Grazing Units in the Peri-Urban Areas of Nairobi, Kenya",doi:"10.5772/53678",slug:"indicators-of-poor-welfare-in-dairy-cows-within-smallholder-zero-grazing-units-in-the-peri-urban-are",totalDownloads:3887,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"James Nguhiu-Mwangi, Joshua W. Aleri, Eddy G. M. Mogoa and Peter M. F. Mbithi",downloadPdfUrl:"/chapter/pdf-download/43171",previewPdfUrl:"/chapter/pdf-preview/43171",authors:[{id:"79354",title:"Dr.",name:"James",surname:"Nguhiu-Mwangi",slug:"james-nguhiu-mwangi",fullName:"James Nguhiu-Mwangi"},{id:"166749",title:"Dr.",name:"Joshua",surname:"Aleri",slug:"joshua-aleri",fullName:"Joshua Aleri"},{id:"166750",title:"Dr.",name:"Eddy",surname:"Mogoa",slug:"eddy-mogoa",fullName:"Eddy Mogoa"},{id:"166751",title:"Prof.",name:"Peter",surname:"Mbithi",slug:"peter-mbithi",fullName:"Peter Mbithi"}],corrections:null},{id:"43190",title:"Mycobacterium avium Complex in Domestic and Wild Animals",doi:"10.5772/54323",slug:"mycobacterium-avium-complex-in-domestic-and-wild-animals",totalDownloads:2877,totalCrossrefCites:1,totalDimensionsCites:6,signatures:"Ana Cláudia Coelho, Maria de Lurdes Pinto, Ana Matos, Manuela Matos and Maria dos Anjos Pires",downloadPdfUrl:"/chapter/pdf-download/43190",previewPdfUrl:"/chapter/pdf-preview/43190",authors:[{id:"79217",title:"Prof.",name:"Manuela",surname:"Matos",slug:"manuela-matos",fullName:"Manuela Matos"},{id:"79219",title:"Prof.",name:"Ana Cláudia",surname:"Coelho",slug:"ana-claudia-coelho",fullName:"Ana Cláudia Coelho"},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires"},{id:"161692",title:"Prof.",name:"Maria De Lurdes",surname:"Pinto",slug:"maria-de-lurdes-pinto",fullName:"Maria De Lurdes Pinto"},{id:"161694",title:"Dr.",name:"Ana",surname:"Matos",slug:"ana-matos",fullName:"Ana Matos"}],corrections:null},{id:"43217",title:"Psittacosis",doi:"10.5772/53720",slug:"psittacosis",totalDownloads:2870,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"João Morais, Ana Cláudia Coelho and Maria dos Anjos Pires",downloadPdfUrl:"/chapter/pdf-download/43217",previewPdfUrl:"/chapter/pdf-preview/43217",authors:[{id:"79219",title:"Prof.",name:"Ana Cláudia",surname:"Coelho",slug:"ana-claudia-coelho",fullName:"Ana Cláudia Coelho"},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires"},{id:"161696",title:"MSc.",name:"João",surname:"Morais",slug:"joao-morais",fullName:"João Morais"}],corrections:null},{id:"43183",title:"The Endocrine Glands in the Dog: From the Cell to Hormone",doi:"10.5772/53577",slug:"the-endocrine-glands-in-the-dog-from-the-cell-to-hormone",totalDownloads:6168,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Helena Vala, João Rodrigo Mesquita, Fernando Esteves, Carla Santos, Rita Cruz, Cristina Mega and Carmen Nóbrega",downloadPdfUrl:"/chapter/pdf-download/43183",previewPdfUrl:"/chapter/pdf-preview/43183",authors:[{id:"161574",title:"Prof.",name:"Helena",surname:"Vala",slug:"helena-vala",fullName:"Helena Vala"},{id:"162506",title:"Dr.",name:"João",surname:"Mesquita",slug:"joao-mesquita",fullName:"João Mesquita"},{id:"162507",title:"Dr.",name:"Fernando",surname:"Esteves",slug:"fernando-esteves",fullName:"Fernando Esteves"},{id:"162508",title:"Prof.",name:"Carla",surname:"Santos",slug:"carla-santos",fullName:"Carla Santos"},{id:"162509",title:"Dr.",name:"Rita",surname:"Cruz",slug:"rita-cruz",fullName:"Rita Cruz"},{id:"162510",title:"Dr.",name:"Cristina",surname:"Mega",slug:"cristina-mega",fullName:"Cristina Mega"},{id:"162511",title:"Dr.",name:"Carmen",surname:"Nóbrega",slug:"carmen-nobrega",fullName:"Carmen Nóbrega"}],corrections:null},{id:"43194",title:"Sex Steroid Hormones and Tumors in Domestic Animals",doi:"10.5772/54324",slug:"sex-steroid-hormones-and-tumors-in-domestic-animals",totalDownloads:3443,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Yolanda Millán, Silvia Guil-Luna, Carlos Reymundo, Raquel Sánchez- Céspedes and Juana Martín de las Mulas",downloadPdfUrl:"/chapter/pdf-download/43194",previewPdfUrl:"/chapter/pdf-preview/43194",authors:[{id:"64839",title:"Dr.",name:"Yolanda",surname:"Millan",slug:"yolanda-millan",fullName:"Yolanda Millan"}],corrections:null},{id:"43196",title:"Feline Mammary Fibroepithelial Hyperplasia: A Clinical Approach",doi:"10.5772/55550",slug:"feline-mammary-fibroepithelial-hyperplasia-a-clinical-approach",totalDownloads:4056,totalCrossrefCites:4,totalDimensionsCites:7,signatures:"Rita Payan-Carreira",downloadPdfUrl:"/chapter/pdf-download/43196",previewPdfUrl:"/chapter/pdf-preview/43196",authors:[{id:"38652",title:"Dr.",name:"Rita",surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],corrections:null},{id:"42578",title:"Diseases of Thyroid in Animals and Their Management",doi:"10.5772/55377",slug:"diseases-of-thyroid-in-animals-and-their-management",totalDownloads:3995,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"R. Singh and S. A. Beigh",downloadPdfUrl:"/chapter/pdf-download/42578",previewPdfUrl:"/chapter/pdf-preview/42578",authors:[{id:"143663",title:"Dr.",name:"Rajiv",surname:"Singh",slug:"rajiv-singh",fullName:"Rajiv Singh"}],corrections:null},{id:"43197",title:"Crossregulation of the Thyroid Hormone and Corticosteroids in Amphibians and Fish: The Effects of Endocrine Disruption",doi:"10.5772/54314",slug:"crossregulation-of-the-thyroid-hormone-and-corticosteroids-in-amphibians-and-fish-the-effects-of-end",totalDownloads:2470,totalCrossrefCites:4,totalDimensionsCites:10,signatures:"Xavier Terrien and Patrick Prunet",downloadPdfUrl:"/chapter/pdf-download/43197",previewPdfUrl:"/chapter/pdf-preview/43197",authors:[{id:"140567",title:"Dr.",name:"Xavier",surname:"Terrien",slug:"xavier-terrien",fullName:"Xavier Terrien"}],corrections:null},{id:"43198",title:"Acute Toxicity Profiles of Aqueous and Ethanolic Extracts of Capsicum annum Seeds from South Western Uganda",doi:"10.5772/53599",slug:"acute-toxicity-profiles-of-aqueous-and-ethanolic-extracts-of-capsicum-annum-seeds-from-south-western",totalDownloads:2329,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Charles Lagu and Frederick I. B. Kayanja",downloadPdfUrl:"/chapter/pdf-download/43198",previewPdfUrl:"/chapter/pdf-preview/43198",authors:[{id:"80209",title:"Dr.",name:"Charles",surname:"Lagu",slug:"charles-lagu",fullName:"Charles Lagu"}],corrections:null},{id:"43199",title:"The in vitro Antihelminthic Efficacy of Erythrina Abyssinica Extracts on Ascaridia galli",doi:"10.5772/53708",slug:"the-in-vitro-antihelminthic-efficacy-of-erythrina-abyssinica-extracts-on-ascaridia-galli",totalDownloads:2541,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Charles Lagu and FIB Kayanja",downloadPdfUrl:"/chapter/pdf-download/43199",previewPdfUrl:"/chapter/pdf-preview/43199",authors:[{id:"80209",title:"Dr.",name:"Charles",surname:"Lagu",slug:"charles-lagu",fullName:"Charles Lagu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5861",title:"Theriogenology",subtitle:null,isOpenForSubmission:!1,hash:"b5aae519c030c5492d65c181d9c0ea57",slug:"theriogenology",bookSignature:"Rita Payan Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/5861.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5105",title:"Insights from Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"25cd16b683d1f098bc304cbbdb3206cd",slug:"insights-from-animal-reproduction",bookSignature:"Rita Payan Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/5105.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,isOpenForSubmission:!1,hash:"74f4147e3fb214dd050e5edd3aaf53bc",slug:"new-insights-into-theriogenology",bookSignature:"Rita Payan-Carreira",coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",editedByType:"Edited by",editors:[{id:"38652",title:"Dr.",name:"Rita",surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5469",title:"Canine Medicine",subtitle:"Recent Topics and Advanced Research",isOpenForSubmission:!1,hash:"a7e798d88413dd09f8a4af2b2e325b82",slug:"canine-medicine-recent-topics-and-advanced-research",bookSignature:"Hussein Abdelhay Elsayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/5469.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66064",slug:"corrigendum-to-textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high",title:"Corrigendum to: Textured BST Thin Film on Silicon Substrate: Preparation and Its Applications for High Frequency Tunable Devices",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66064.pdf",downloadPdfUrl:"/chapter/pdf-download/66064",previewPdfUrl:"/chapter/pdf-preview/66064",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66064",risUrl:"/chapter/ris/66064",chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]}},chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]},book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9886",leadTitle:null,title:"Fractal Analysis",subtitle:"Selected Examples",reviewType:"peer-reviewed",abstract:"Fractal analysis is becoming more and more common in all walks of life. This includes biomedical engineering, steganography and art. Writing one book on all these topics is a very difficult task. For this reason, this book covers only selected topics. Interested readers will find in this book the topics of image compression, groundwater quality, establishing the downscaling and spatio-temporal scale conversion models of NDVI, modelling and optimization of 3T fractional nonlinear generalized magneto-thermoelastic multi-material, algebraic fractals in steganography, strain induced microstructures in metals and much more. The book will definitely be of interest to scientists dealing with fractal analysis, as well as biomedical engineers or IT engineers. I encourage you to view individual chapters.",isbn:"978-1-83962-483-4",printIsbn:"978-1-83962-482-7",pdfIsbn:"978-1-83962-484-1",doi:"10.5772/intechopen.87695",price:119,priceEur:129,priceUsd:155,slug:"fractal-analysis-selected-examples",numberOfPages:128,isOpenForSubmission:!1,hash:"f0c3d700a69d15b52ff8a59fe7e99062",bookSignature:"Robert Koprowski",publishedDate:"September 9th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9886.jpg",keywords:null,numberOfDownloads:1093,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 1st 2019",dateEndSecondStepPublish:"March 3rd 2020",dateEndThirdStepPublish:"May 2nd 2020",dateEndFourthStepPublish:"July 21st 2020",dateEndFifthStepPublish:"September 19th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://mts.intechopen.com/storage/users/50150/images/system/50150.jpg",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia in Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years he has studied the analysis and processing of biomedical images with particular emphasis on the full automation of measurement for a large inter-individual variability of patients. He is the author of dozens of papers with the impact factor (IF) and more than a hundred other papers, as well as the author or co-author of six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in the field of biomedical engineering.",institutionString:"University of Silesia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1407",title:"Applied Mathematics",slug:"numerical-analysis-and-scientific-computing-applied-mathematics"}],chapters:[{id:"72917",title:"Optimization of Fractal Image Compression",slug:"optimization-of-fractal-image-compression",totalDownloads:190,totalCrossrefCites:0,authors:[null]},{id:"72577",title:"Fractal Analysis for Time Series Datasets: A Case Study of Groundwater Quality",slug:"fractal-analysis-for-time-series-datasets-a-case-study-of-groundwater-quality",totalDownloads:172,totalCrossrefCites:0,authors:[null]},{id:"71255",title:"Establishing the Downscaling and Spatiotemporal Scale Conversion Models of NDVI Based on Fractal Methodology",slug:"establishing-the-downscaling-and-spatiotemporal-scale-conversion-models-of-ndvi-based-on-fractal-met",totalDownloads:207,totalCrossrefCites:0,authors:[null]},{id:"72883",title:"A New BEM for Modeling and Optimization of 3T Fractional Nonlinear Generalized Magneto-Thermoelastic Multi-Material ISMFGA Structures Subjected to Moving Heat Source",slug:"a-new-bem-for-modeling-and-optimization-of-3t-fractional-nonlinear-generalized-magneto-thermoelastic",totalDownloads:154,totalCrossrefCites:0,authors:[{id:"233766",title:"Prof.",name:"Mohamed Abdelsabour",surname:"Fahmy",slug:"mohamed-abdelsabour-fahmy",fullName:"Mohamed Abdelsabour Fahmy"}]},{id:"71839",title:"Using Algebraic Fractals in Steganography",slug:"using-algebraic-fractals-in-steganography",totalDownloads:178,totalCrossrefCites:0,authors:[null]},{id:"71305",title:"Fractal Analysis of Strain-Induced Microstructures in Metals",slug:"fractal-analysis-of-strain-induced-microstructures-in-metals",totalDownloads:195,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,isOpenForSubmission:!1,hash:"e75f234a0fc1988d9816a94e4c724deb",slug:"medical-and-biological-image-analysis",bookSignature:"Robert Koprowski",coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",editedByType:"Edited by",editors:[{id:"50150",title:"Prof.",name:"Robert",surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6138",title:"Time Series Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d33ee38578b81585416062fea4979bbf",slug:"time-series-analysis-and-applications",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/6138.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9966",title:"Dynamic Data Assimilation",subtitle:"Beating the Uncertainties",isOpenForSubmission:!1,hash:"e7fde2a36354a2f5a4282fdf9c743380",slug:"dynamic-data-assimilation-beating-the-uncertainties",bookSignature:"Dinesh G. Harkut",coverURL:"https://cdn.intechopen.com/books/images_new/9966.jpg",editedByType:"Edited by",editors:[{id:"216122",title:"Dr.",name:"Dinesh G.",surname:"Harkut",slug:"dinesh-g.-harkut",fullName:"Dinesh G. Harkut"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editedByType:"Edited by",editors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6230",title:"Topics in Splines and Applications",subtitle:null,isOpenForSubmission:!1,hash:"93059c7907be129c419e4f9960b4e9c3",slug:"topics-in-splines-and-applications",bookSignature:"Young Kinh-Nhue Truong and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/6230.jpg",editedByType:"Edited by",editors:[{id:"207517",title:"Dr.",name:"Young Kinh-Nhue",surname:"Truong",slug:"young-kinh-nhue-truong",fullName:"Young Kinh-Nhue Truong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8655",title:"Advances in Complex Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"6abcaa5b5cf98a51a769d1bce7e5ebe5",slug:"advances-in-complex-analysis-and-applications",bookSignature:"Francisco Bulnes and Olga Hachay",coverURL:"https://cdn.intechopen.com/books/images_new/8655.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8600",title:"Recent Advances in Integral Equations",subtitle:null,isOpenForSubmission:!1,hash:"55d44e96dac2ef01fb52708933293c71",slug:"recent-advances-in-integral-equations",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/8600.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48612",title:"Dynamic Amplification of Optical Signals by Photorefractive Ferroelectric Liquid Crystals",doi:"10.5772/60776",slug:"dynamic-amplification-of-optical-signals-by-photorefractive-ferroelectric-liquid-crystals",body:'Ferroelectric liquid crystals (FLCs) have attracted significant interest from both fundamental and practical perspectives [1, 2]. Even though liquid crystals (LCs) are liquid, some of them exhibit ferroelectricity. The response of FLCs to an applied electric field is very fast, in the range of a few tens of microseconds to a few milliseconds. The fast response of FLCs is advantageous for display applications; however, the treatment of FLCs requires sophisticated techniques because FLCs are very viscous. Displays that employ FLCs are not commercially available nowadays, due to the difficulty of fabrication into wide area displays. Recently, the photorefractive effect in FLCs was investigated, and FLCs were found to exhibit very high performance. The photorefractive effect is a phenomenon in which a dynamic hologram is formed in a material. When two laser beams interfere in a photorefractive material, a refractive index grating is formed. This phenomenon is applicable to devices related to diffraction optics, including 3D displays, optical amplification, optical tomography, novelty filters, and phase-conjugate wave generators [3]. The unique feature of the photorefractive effect is the asymmetric energy exchange in two-beam coupling; when two laser beams interfere in a photorefractive material, the energy of one of the interfering beams is transferred to the other beam. The asymmetric energy exchange can be used to coherently amplify signal beams [4]; therefore, it has the potential to be used as a transistor for electrical circuits in a wide range of optical technologies (Figure 1). Optically transparent materials that possess both photovoltaic and electro-optic properties also exhibit the photorefractive effect. There have been a lot of studies to develop photorefractive materials, such as inorganic photoconductive ferroelectric crystals, organic photoconductive ferroelectric crystals, organic photoconductive polymers, amorphous organic photoconductive materials, photoconductive amphiphilic compounds, and photoconductive LCs [5-8]. Since 1991, organic materials have attracted significant interest because they exhibit large photorefractivity and a shorter response time compared with that of inorganic crystals [3, 7, 8]. The photorefractive effect induces a change in the refractive index by a mechanism that involves both photovoltaic and electro-optic effects (Figure 2). An organic photorefractive material is composed of a photoconductive compound, an electro-optic compound, and an electron-trap reagent. Thus, the active wavelength can be determined by the selection of the photoconductive compound. With interfering two laser beams in an organic photorefractive material, charge generation occurs at the bright positions of the interference fringe and the generated charges diffuse within the material. The distances of the diffusions of positive and negative charges are different in an organic material because the mobilities of the positive and negative charges are different. That leads to a formation of charge-separated state. The higher mobility charge diffuses over a longer distance than the lower mobility charge. While the charges with low mobility stay in the bright areas, the charges with high mobility diffuse to the dark areas. Thus, the bright area and dark area are charged with opposite polarities, and an internal electric field (space charge field) is formed in the area between the brightest and the darkest positions. The refractive indices of the areas are changed by the electro-optic effect. In such a way, a refractive index grating is produced. A high electric field of 10–50 V/μm is typically applied to a polymer film, aside from the internal electric field, to obtain photorefractivity. The polymer material is typically 100 μm thick, so that a voltage of 1–5 kV is required to apply on the film to achieve photorefractivity, which is almost comparable to the breakdown voltage of the polymer film. This electric field is necessary for increasing the charge generation efficiency.
It is expected that a multiplex hologram display devices can be developed using photorefractive polymers [9, 10]. It was shown that clear 3D images were recorded in the photorefractive polymer film. However, if polymer photorefractive materials are put into practical uses, a high voltage (3–5 kV) required to activate the photorefractive effect in polymer materials must be improved. There have been reports on the photorefractive effect of LCs [11]. LCs can easily be driven by a low electric field because LCs are liquid in nature. The most well-known LC phases are nematic and smectic phases (Figure 3). LCs that show nematic phase are used in liquid crystal displays (LCDs). However, LCs that show smectic phases are very viscous so that they are seldom utilized in practical applications. The LCs of which the photorefractivity was firstly investigated were nematic LCs [11]. It was found that a large photorefractivity was obtained with the application of low activation voltage (a few volts). The photorefractivity of ferroelectric liquid crystals doped with photoconductive compounds has been reported [12-14]. FLCs are considered to be candidates for practical photorefractive materials. A sub-millisecond refractive index grating formation time and a large gain coefficient are easily obtained in photorefractive FLCs.
Transistor in electric circuit and photorefractive amplifier.
Schematic illustration of the mechanism for the photorefractive effect. (a) Two laser beams interfere in the photorefractive material; (b) charge generation occurs at the light areas of the interference fringes; (c) electrons are trapped at the trap sites in the light areas, holes migrate by diffusion or drift in the presence of an external electric field, and generate an internal electric field between the light and dark positions; (d) the refractive index of the corresponding area is altered by the internal electric field that is generated.
Structures of the nematic and smectic phases.
In 1974, Meyer suggested theoretically that LCs that form an LC phase with low symmetry should exhibit ferroelectricity [15]. Meyer instructed the synthesis of a liquid crystalline molecule that exhibits the smectic C (SmC) phase and also possesses chiral structure and permanent dipole moment. The structure of the LC molecule (DOBANBC) is shown in Figure 4. As Meyer had expected, DOBANBC was found to exhibit ferroelectricity. After the discovery of ferroelectricity in LCs, an intensive search for FLCs was conducted by many researchers, including LCD developers. As a result, it was determined that not only pure liquid crystalline compounds, but also mixtures of smectic LC compounds and chiral compounds exhibit ferroelectric phases. This was very advantageous for practical applications because clear, defect-free large-area panels could be realized using such mixtures and the properties of the mixtures could be adjusted by the selection of appropriate component compounds. In 1997, a fast FLC display panel was commercially released by Canon.
FLCs belong to the class of smectic LCs that have a layered structure [1, 2, 15]. A typical FLC molecule consists of a central core, a carbonyl group, and a chiral unit (Figure 4). The dipole moment of an FLC molecule is perpendicular to the long molecular axis. FLCs exhibit a chiral smectic C phase (SmC*) that possesses a helical structure. It should be noted here that to observe ferroelectricity in these materials, the FLCs must be formed into thin films [1] with a thickness of a few micrometers. When an FLC is sandwiched between glass plates to form a film with a thickness of a few micrometers, the helical structure of the SmC* phase uncoils and a surface-stabilized state (SS-state) is formed in which ferroelectricity appears (Figure 5). The thickness of the FLC film is typically 2 μm when it is used in display applications. The FLC molecules are restricted to only two directions in such thin films. The state is termed as SS-state. The direction of the alignment of FLC molecules is changed by the change in direction of the spontaneous polarization (Figure 6). When an alternating electric field is applied to the SS-FLC, the FLC molecules perform a continuous switching motion. The response time of the electrical switching in the FLCs is typically shorter than 1 ms. The direction of spontaneous polarization is governed by the applied electric field, which causes a change in the properties according to the direction of polarization. The mechanism for the photorefractive effect in FLCs is shown in Figure 7. When laser beams interfere in a mixture of an FLC and a photoconductive compound, internal electric fields are produced between the bright and dark positions of the interference fringe. The direction of spontaneous polarization in the area between the bright and dark positions of the interference fringes is changed by the internal electric field and a striped pattern of the FLC molecule orientations is induced. The process is different from those occur in other organic photorefractive materials. In a photorefractive FLC, the bulk polarization responds to the internal electric field. That is the base of the fast switching of FLC molecules.
Molecular structures of FLCs.
Structures of the SmC phase and the SS-state of the SmC phase (SS-FLC).
Electro-optical switching in the SS-state of FLCs.
Schematic illustration of the mechanism for the photorefractive effect in FLCs. (a) Two laser beams interfere in the SS-state of the FLC/photoconductive compound mixture; (b) charge generation occurs at the light areas of the interference fringes; (c) electrons are trapped at the trap sites in the light areas, and holes migrate by diffusion or drift in the presence of an external electric field to generate an internal electric field between the light and dark positions; (d) the orientation of the spontaneous polarization vector (i.e., orientation of mesogens in the FLCs) is altered by the internal electric field.
The phase of the refractive index grating formed by photorefractive effect is shifted from the interference fringe because the change in refractive index is induced between the bright and the dark positions of the interference fringe. In an ideal case, the phase of the refractive index grating is shifted from the interference fringe by π/2.This is a distinctive feature of the photorefractive effect. When a refractive index grating is formed via a photochemical reaction or thermal change in density, the change in refractive index occurs at the bright areas and forms a refractive index grating with the same phase as that of the interference fringe (Figure 8(a)). The induced grating diffracts the interfering laser beams; however, the apparent transmitted intensities of the laser beams do not change because beam 1 is diffracted to the direction of beam 2, and beam 2 is diffracted in the direction of beam 1. However, when the phase of the refractive index grating is shifted from that of the interference fringe (photorefractive grating), the apparent transmitted intensity of beam 1 increases and that of beam 2 decreases (Figure 8(b)). This phenomenon is known as the asymmetric energy exchange in the two-beam coupling [3]. The occurrence of the asymmetric energy exchange is the evidence for the photorefractive effect. Therefore, two-beam coupling measurement is the most straightforward way to unambiguously distinguish between the photorefractive effect and other types of grating. In LCs and low-glass-transition temperature polymers, the sign of the electro-optic coefficient is determined by the direction of the applied electric field. A change in the electric field polarity reverses the sign of the gain coefficient due to the change in sign of the electro-optic coefficient. Thus, the amplification and attenuation of beam 1 and beam 2 switches when the polarity of the applied electric field is reversed.
Schematic illustrations of (a) photochromic and (b) photorefractive gratings.
A schematic illustration of the setup used for the two-beam coupling experiment is shown in Figure 9(a). Laser beams (p-polarized) are interfered in the sample. An electric field (external electric field) is applied to the sample to increase the efficiency of charge generation in the film. The transmitted intensities of the laser beams through the sample are monitored. If a material exhibits photorefractive effect, an asymmetric energy exchange is observed. The magnitude of photorefractive effect is evaluated by the magnitude of gain coefficient, which is obtained from the two-beam coupling experiment [3]. According to the standard theory of the photorefractive effect with the limit of the ratio of beam intensities (pump/signal) >>1, the intensity of the transmitted signal beam is given by:
where
where
The two-beam coupling gain coefficient Γ (cm-1) for the Bragg diffraction condition is calculated according to the following equation [5]:
where
Schematic illustration of the experimental setup for the two-beam coupling experiment.
Investigations into the photorefractive effect of FLCs started in the year 2000 [12, 13]; the photorefractive FLC is a mixture of FLC and photoconductive compounds. Further details of the photorefractivity in FLC materials have since been investigated by Sasaki et al. and Talarico et al. [14-19]. The structures of the photoconductive compounds used are shown in Figure 10. A commercially available FLC, SCE8 (Clariant, SmC* 60 °C SmA 80 °C N* 104 °C I, spontaneous polarization = 4.5 nC/cm2), was used in preliminary investigations. SCE8 is a mixture of LC compounds and chiral compounds. Carbazole diphenylhydrazone (CDH) as a photoconductive compound and trinitrofluorenone (TNF) as a sensitizer were used at concentrations of 2 wt.% and 0.1 wt.%, respectively. The samples were injected into a 10 μm gap glass cell equipped with 1 cm2 indium tin oxide electrodes and a polyimide alignment layer (Figure 11). A typical example of asymmetric energy exchange observed in the FLC (SCE8)/CDH/TNF sample under an applied DC electric field of 0.1 V/μm [17] is shown in Figure 12. The grating formation was within the Bragg diffraction regime. Interference of the laser beams in the FLC medium resulted in increased transmittance of one beam and decreased transmittance of the other. The transmitted intensities of the two beams changed symmetrically, indicating that the phase of the refractive index grating is shifted from that of the interference fringe as shown in Figure 12.
The temperature dependence of the gain coefficient of the FLC (SCE8) doped with 2 wt.% CDH and 0.1 wt.% TNF is shown in Figure 13(a). In this sample, asymmetric energy exchange was observed only at temperatures below 46 °C. Figure 13(b) shows the temperature dependence of the spontaneous polarization of the identical sample. When the temperature was raised above 46 °C, the magnitude of the spontaneous polarization dropped to zero. Thus, the photorefractive effect of the FLC was observed only at temperatures where the sample exhibits ferroelectric phase. The reorientation associated with spontaneous polarization is induced by the internal electric field in the ferroelectric phase. The change in the direction of spontaneous polarization causes a change at the orientation of FLC molecules in the corresponding area. A maximum resolution of 0.8 μm was obtained for this sample [16].
Structures of the photoconductive compound CDH and the sensitizer TNF.
Laser beam incidence condition and the structure of the LC cell.
Typical example of asymmetric energy exchange observed in an FLC (SCE8) mixed with 2 wt.% CDH and 0.1 wt.% TNF with an electric field of +0.3 V/μm applied to the sample.
Temperature dependence of the (a) gain coefficient and (b) spontaneous polarization for an FLC (SCE8) mixed with 2 wt.% CDH and 0.1 wt.% TNF. For two-beam coupling experiments, an electric field of 0.1 V/μm was applied to the sample.
The strength of the externally applied electric field is a very important factor for polymeric photorefractive materials. An external electric field is necessary to sufficiently increase the charge separation efficiency to induce a photorefractive effect; the photorefractivity of the polymer is obtained only with an electric field larger than a few volts per micrometer. The typical thickness of the polymer film for investigation of photorefractive effect is 100 μm. The strength of the voltage necessary to activate the photorefractive effect in polymer materials reaches to a few kilovolts. In contrast, the photorefractive effect in FLCs can be activated by a very weak external electric field application. The maximum gain coefficient for the FLC (SCE8) sample was obtained by only 0.2–0.4 V/μm electric field. The typical thickness of the photorefractive FLC sample is 10 μm; therefore, the voltage necessary to activate the photorefractive effect is only a few volts. Figure 14 shows the electric field dependence of the gain coefficient for a mixture of FLC (SCE8)/CDH/TNF. As the strength of the external electric field increased, the gain coefficient of SCE8 doped with 0.5 wt.% to 1 wt.% CDH increased. On the other hand, the gain coefficient of SCE8 doped with 2 wt.% CDH decreased when the external electric field larger than 0.4 V/μm was applied. The same tendency was also observed for another commercially available FLC; M4851/050 (Clariant, SmC* 65 °C SmA 70 °C N* 74 °C I, spontaneous polarization=14 nC/cm2). The formation of an orientational grating is enhanced when the external electric field is increased from 0 to 0.2 V/μm due to the induced charge separation. However, when the external electric field exceeded 0.2 V/μm, a number of zigzag defects appeared in the SS-state, which caused light scattering and a decrease of the gain coefficient. The gain coefficient of FLC materials reported in the year 2003 (Figure 14) was much smaller than that of polymer materials [16].
Electric field dependence of the gain coefficient for SCE8 and M4851/050 mixed with several concentrations of CDH and 0.1 wt.% TNF in a 10 μm gap cell measured at 30 °C.
The formation of a refractive index grating involves charge separation and reorientation. The index grating formation time (response time of the photorefractive effect) is affected by these two processes, and both may act as rate-determining steps. The refractive index grating formation times for the commercially available FLCs examined (SCE8 and M4851/050) were determined on the basis of the simplest single-carrier model of photorefractivity [3, 5], wherein the gain transient is exponential. The rising signal of the diffracted beam was fitted using a single exponential function:
where
Electric field dependence of the index grating formation time. FLC (SCE8) mixed with 2 wt.% CDH and 0.1 wt.% TNF in a two-beam coupling experiment. ●: measured at 30 °C (T/TSmC* - SmA = 0.95); ▪: measured at 36 °C (T/TSmC* - SmA = 0.97).
FLCs are more crystalline than liquid, in comparison with nematic LCs; therefore several sophisticated techniques are required to prepare fine FLC films. Preparation of a uniformly aligned, defect-free SS-FLC using a single FLC compound is very difficult. In most cases, mixtures of LC compounds are typically used to obtain fine SS-FLC films. The composition of FLC mixture contains a base LC, which is a mixture of SmC phase forming LC compounds, and a chiral dopant. The chiral dopant introduces a helical structure into the LC phase. Utilization of an FLC as a photorefractive material requires the addition of photoconductive compounds to the FLC. However, the introduction of such non-LC compounds to the FLC often hinders the formation of a uniformly aligned SS-state. Thus, appropriate design of the photoconductive compounds is crucial. The photorefractive effect of FLC blends containing photoconductive chiral dopants has been investigated [17-19]. Terthiophene was selected as a photoconductive chromophore because it is a well-known semiconductor compound and has a rod-like structure (Figure 16), which increases the solubility into the rod-like structured LC material. The structures of the LC compounds, the electron acceptor TNF, and the photoconductive chiral compounds are shown in Figure 17. A ternary mixture of LC compounds was selected as a base LC. The mixing ratio of 8PP8, 8PP10, and 8PP6 was 1:1:2 since the 1:1:2 mixture exhibits the SmC phase over the widest temperature range. The textures of the FLC blends in 10 μm gap cells were observed using polarizing optical microscopy. The alignment of the FLC molecules is dominated not only by the properties of the FLCs but also by the affinity of FLC molecules with the alignment layer (polyimide). A homogeneous, anisotropic film can be obtained through interactions between LC molecules and the alignment layer. The FLC cell is fabricated by the precise assembly of indium tin oxide glasses coated with polyimide alignment layer into a cell of 10 μm gap determined by the diameter of the spacer bead. The appropriate preparation conditions for the fabrication of the LC cell differ from FLC to FLC. The thickness of the polyimide coating (Hitachi Chemicals LX-1400) was 20 to 30 nm and the surface of the polyimide was rubbed with a polyester velvet roll under specific conditions. Typical examples of textures observed in the 3T-2MB and 3T-2OC samples under a polarizing microscope are shown in Figures 18 and 19. On increasing the concentration of the photoconductive chiral dopant, defects appeared in the texture. The uniformly aligned state with few defects was obtained for samples with 3T-2MB concentrations lower than 8 wt.% (Figure 18). However, the 3T-2OC sample retained the uniformly aligned state with few defects for 3T-2OC concentrations less than 6 wt.% (Figure 19). The spontaneous polarization of the 3T-2MB samples was less than 1 nC/cm2. On the other hand, the spontaneous polarization of the 3T-2OC samples was approximately 5 nC/cm2. The smaller spontaneous polarization (and thus smaller intermolecular interactions) of the 3T-2MB sample may be advantageous for the formation of the uniformly aligned SS-state. A texture with a pattern of strips was observed in the 3T-2MB samples (Figure 18). It indicates that a complete SS-state was not formed in the 3T-2MB sample in the 10 μm gap cell and the helical structure existed. Zig-zag defect, which is the typical defect in the SS-state (book shelf structure), was also observed in the texture (Figure 18). The evidence shows that the FLC mixture exhibited the SS-state in the area close to the glass surface and formed a helical structure around the center of the thickness of the 10 μm gap cell.
Structure of terthiophene.
Structures of the smectic LCs (8PP8, 8PP10, and 8PP6), photoconductive chiral dopants (3T-2MB and 3T-2OC), and the sensitizer TNF.
Textures of FLC mixtures containing 3T-2MB in a 10 μm gap LC cell observed under a polarizing microscope. The strengths of the external electric field were +1.0, 0, and 1.0 V/μm. The direction of the applied electric field is shown in
Textures of FLC mixtures containing 3T-2OC in a 10 μm gap LC cell observed under a polarizing microscope. The strengths of the external electric field were +1.0, 0, and 1.0 V/μm. The direction of the applied electric field is shown in
The photorefractive effect of the FLC blends was measured by two-beam coupling experiments. A typical example of the asymmetric energy exchange observed for a mixture of the base LC, 3T-2MB, and TNF at 25 °C with an applied electric field of 1 V/μm is shown in Figure 20. When the laser beams interfered in the sample, the increase in transmitted intensity of one of the beams and the decrease in the transmitted intensity of the other beam were observed. When the polarity of the applied electric field was reversed, these transmittance characteristics were also reversed. Asymmetric energy exchange was not observed when the external electric field was not applied. This indicates that the beam coupling was not caused by a thermal grating or gratings formed through photochemical mechanisms. It was found that approximately 40% of the energy of the L2 laser beam migrated to the L1 beam.
The gain coefficients of the samples were measured as a function of the applied electric field strength (Figure 21(a)). The gain coefficient of 1200 cm–1 was obtained in the 10 wt.% 3T-2MB sample with application of 1.5 V/μm. This gain coefficient is much higher than the values for FLCs reported previously [16]. The higher transparency of the LC blend was considered to contribute to the large gain coefficient. The weak external electric field strength required for the photorefractive effect in FLCs is advantageous for the photorefractive applications. The response time decreased with an increase of the electric field strength due to the increased charge separation efficiency. The shortest formation time of 0.9 ms was obtained with application of an external electric field of 1.9 V/μm (Figure 21(b)). The large gain and fast response are advantageous for the realization of optical devices such as real-time image amplifiers and accurate measurement devices.
Typical results for two-beam coupling experiments with a ternary mixture base LC, 3T-2MB, and TNF measured at 25 °C. The pump beam was incident at 1 s and closed at 4 s.
Electric field dependence of the (a) gain coefficients and (b) refractive index grating formation times (response time) for mixtures of the base LC, 3T-2MB (10 wt.%), and TNF (0.1 wt.%) measured at 25 °C.
The temperature dependence of the gain coefficient for a photorefractive FLC blend with 3T-2MB is shown in Figure 22. Asymmetric energy exchange was observed at temperatures below the SmC*-SmA phase transition temperature. Figure 23 shows temperature dependence of the helical pitch of the 3T-2MB samples observed under polarizing microscopy. The helical pitch diverged when the temperature approached the phase transition temperature. It has been reported that the asymmetric energy exchange for an FLC sample was observed only in the temperature range where the sample exhibits spontaneous polarization [8]. Thus, asymmetric energy exchange was observed only in the temperature range where the sample exhibits ferroelectric properties (i.e., the SmC* phase).
Temperature dependence of gain coefficients for mixtures of the base LC with 3T-2MB concentrations of (a) 6 wt.% and (b) 10 wt.%.
Temperature dependence of helical pitch lengths for mixtures of the base LC with 3T-2MB concentrations of (a) 6 wt.% and (b) 10 wt.%.
The gain coefficients of samples with various 3T-2MB and 3T-2OC concentrations are plotted as a function of the external electric field magnitude in Figure 24. The gain coefficient increased with the strength of the external electric field up to 1.6 V/μm. The decrease in the gain coefficient at high external electric field is due to the realignment of the FLC molecules being restricted because the strength of the external electric field exceeds that of the internal electric field. The gain coefficient increased with the concentration of the photoconductive chiral dopants. The increase in the concentration of charge carriers in the FLC medium and an increase in the magnitude of spontaneous polarization contributes to a larger gain coefficient. The magnitude of the gain coefficient was independent of the concentration of TNF. It shows that charges are drifted through electric conduction based on a hopping mechanism, where electron holes hop between the photoconductive chiral dopants. The molecular weight of the photoconductive chiral dopant is similar to that of the LC molecules; therefore, in a 10 wt.% doped sample, approximately 10 photoconductive molecules are dispersed in 90 LC molecules. A cube, wherein each side includes 5 LC molecules, contains 125 LC molecules. Thus, the average distance between the photoconductive chiral dopant molecules in the LC is no more than 3 LC molecules. In this case, charge transport based on a hopping mechanism may be feasible. The gain coefficient of the 10 wt.% 3T-2MB sample was 1200 cm–1 with an applied electric field of only 1.6 V/μm (Figure 24(a)), which is twice as high as that of the 8 wt.% 3T-2OC sample at a similar external electric field (Figure 24(b)).
The response time of the samples is plotted as a function of the external electric field magnitude in Figure 25. The response time decreased with the increase of the electric field strength due to increased charge separation efficiency. The shortest formation time of 0.93 ms was obtained for the 10 wt.% 3T-2MB sample with an applied electric field of 2.0 V/μm. It was found that the response was faster than that of the 3T-2OC samples. The gain coefficient is lower and the response speed slower for the 3T-2OC sample even though the magnitude of the spontaneous polarization in the 3T-2OC samples (5 nC/cm2) is higher than that in the 3T-2MB sample (less than 1 nC/cm2). The transparency of the FLC film is more important for the photorefractive effect than the magnitude of spontaneous polarization.
Electric field dependence of the gain coefficients for (a) mixtures of the base LC, 3T-2MB (2-10 wt.%), and TNF (0.1 wt.%), and (b) mixtures of the base LC, 3T-2OC (2-8 wt.%), and TNF (0.1 wt.%) measured at 25 °C.
Refractive index grating formation times (response time) for (a) mixtures of the base LC, 3T-2MB (2-10 wt.%), and TNF (0.1 wt.%), and (b) mixtures of the base LC, 3T-2OC (2-8 wt.%), and TNF (0.1 wt.%) measured at 25 °C.
The most straightforward application of the photorefractive effect is the amplification of optical signals, which is one of the important elements of optical technologies. Light amplification based on stimulated emission and non-linear optical effects are well known. Distinct from these phenomena, the photorefractive effect enables selective amplification. The photorefractive effect is based on the formation of holograms in a material; therefore, it distinguishes a specific light signal from other light signals based on the difference in wavelength, polarization, and phase. Optical image amplification was demonstrated (Figure 26), where a computer-generated image was displayed on a spatial light modulator (SLM) and irradiated with a 473 nm diode-pumped solid-state laser beam [18]. A signal laser beam carrying a 2D image was transmitted through the FLC sample. The image was monitored with a charge-coupled device (CCD) camera. A pump beam (a beam divided from the signal beam before SLM) was interfered with the signal beam. The amplification of the signal beam transmitted through the FLC was observed. The intensities of the optical signal beam with and without the pump beam are shown in Figure 27. The intensity of the signal beam was amplified six-fold to the value without the pump beam.
Optical image amplification experiment. A computer-generated image was displayed on the SLM. The SLM modulated the object beam (473 nm), which was irradiated on the FLC sample and interfered with the pump beam. The image transmitted through the FLC sample (10 wt.% 3T-2MB) was monitored with a CCD camera.
Dynamic amplification of moving optical signal was demonstrated using a photorefractive FLC blend [18]. A rotating image was displayed on the SLM with the frame rate at 30 fps. A 473 nm beam was irradiated on the SLM and the reflected beam was incident on the FLC sample. A pump beam was then interfered with the beam from the SLM in the FLC sample. The laser beam containing the moving animation image was amplified by the incident pump beam (Figure 28). This result shows that the response of the photorefractive FLC was sufficiently fast to amplify the moving optical image. If a typical photorefractive polymer with a response time of ca. 100 ms was used in place of the FLC sample, then the moving image would not be amplified. In that case, although a still image could be amplified, the intensity of the video-rate moving image would not be amplified.
Signal beam intensities with and without the pump beam.
Optical image amplification experiment. A computer-generated animation was displayed on the SLM. The SLM modulated the object beam (473 nm), which was irradiated on the FLC sample, and interfered with the reference beam. The image transmitted through the FLC sample (10 wt.% 3T-2MB) was monitored with a CCD camera.
Dynamic hologram formation was demonstrated in an FLC blend [19]. A moving image was displayed on an SLM and a laser beam was irradiated onto the SLM. The reflected beam was incident on the FLC sample and a reference beam was then interfered with the beam within the FLC sample. The interference condition was set to a Raman–Nath diffraction regime. The multiple scattering was observed in this condition. A red beam from a He–Ne laser (633 nm) was incident on the FLC sample and the diffraction was observed. A moving image was observed in the diffracted beam (Figure 29). No image retention was observed, which indicates that the hologram image (refractive index grating) formed in the FLC was rewritten with sufficient speed to project a smooth reproduction of the holographic movie. This result shows that a hologram image was formed at the interference area in the FLC material and that contributes to the optical image amplification.
Dynamic hologram formation experiment on an FLC sample. A computer-generated animation was displayed on the SLM. The SLM modulated the object beam (488 nm), which was irradiated on the FLC sample and allowed to interfere with the reference beam. The readout beam (633 nm) was irradiated on the FLC and diffraction was observed.
Real-time dynamic amplification of optical image signals was demonstrated in photorefractive FLC blends. The response time was of sub-millisecond order and was dominated by the formation of an internal electric field. The photorefractive effect of FLCs was significantly dominated by the properties of the FLCs. Aside from spontaneous polarization, viscosity, and the phase transition temperature, the homogeneity of the SS-state was found to be a major factor. The gain coefficient and the response time were also significantly dominated by the homogeneity of the SS-state. Therefore, a highly homogeneous SS-state is necessary to create a photorefractive device. A gain coefficient higher than 1200 cm-1 and a response time shorter than 1 ms were obtained with application of only 1.5 V/μm in a photorefractive FLC blend. This response time is sufficiently short for real-time dynamic holograms. FLC mixtures containing photoconductive chiral dopants exhibited high gain coefficients and fast responses, which confirms their usefulness in photorefractive device applications.
The authors would like to thank the Japan Science and Technology Agency S-innovation and the Canon Foundation for support.
Metabolic alterations triggered by biotic and abiotic factors in the environment are the basis of a plant development and adaptation. They are closely related to the shifts in primary as well as secondary metabolism that are responsible for synthesis and accumulation of different regulatory and defensive metabolites [1, 2, 3]. Metabolic profiling is a useful tool for distinguishing these alterations. Powerful approaches to provide metabolomic investigations are based on recent technology such as GC–MS (gas chromatography–mass spectrometry), LC–MS (liquid chromatography–MS), CE–MS (capillary electrophoresis–MS), and FI-ICR–MS (Fourier transform ion cyclotron resonance–MS), combined with mass spectrometry (MS) and NMR (nuclear magnetic resonance spectroscopy) [4, 5, 6]. Detection of metabolites is followed by multivariate statistical analysis of the accumulated datasets. Qualitative and quantitative changes in metabolic profiles during development and under stress conditions are analyzed by metabolomics, a discipline known as a part of systems biology.
Aside from native metabolic alterations, metabolome profiling is used to detect the changes in plant metabolism brought about by genetic engineering. Such improvements in metabolites serve to elevate the economic importance and environmental sustainability of agricultural plants by increasing herbicide tolerance and resistance to pests and pathogens. Plants possess a high biochemical potential of synthesizing an enormous number of various natural substances: fatty acids, phenolics, terpenoids, alkaloids, glucosinolates and other biologically active compounds; many of which are of great value to pharmacology [7]. Advances in metabolomics have enabled the decoding of many metabolic networks and provide for the active genetic engineering of pathways. These offer the opportunity to manipulate the biosynthesis of valuable, biologically active substances of interest, and to create “design” biochemicals. They also can serve to considerably alter the secondary metabolism thus improving a plant’s capacities to synthesize new substances or, on the contrary, reduce their toxicity by switching off such metabolic pathways [8, 9, 10]. This is a direct effect of genetic engineering on the metabolome. Nevertheless, activation of one key enzyme will not always result in facilitation of the whole metabolic pathway. Thus metabolic profiling is an important tool to evaluate results of such genetic modification. The technology of genetic engineering is widely used in modern agriculture. Frequently plants are genetically engineered to improve their productivity or tolerance to adverse environment. Among the modified crops are maize, cotton, soybean, canola, rice, tomato, potato, among others [2, 11, 12, 13]. Other promising approaches are the use of biotech plant systems as a platform for the production of various heterologous proteins for the pharmaceutical industry [7, 14, 15]. The major advantage of plants as bioreactors, aside from their autotrophic type of nutrition, is that the edible plant with the recombinant protein of interest can be eaten directly, skipping rather expensive procedure of purifying the target protein. The production of immunogenic fragments of recombinant antigens in a bioreactor plant is called “plant-based vaccine”. Apart from vaccines, biotech plants are used to synthesize numerous antibodies, cytokines, hormones, and other proteins [7, 14, 15, 16].
Social, ethical, economic, and ecological norms demand that biotech crops be subjected to intense scrutiny [17]. A very important question is whether accumulation of a large amount of “foreign protein” could be considered a stress factor by the engineered plant and be accompanied by an accumulation of compounds that would pose an ancillary potential risk. A series of investigations were focused on the evaluation of differences in the metabolic profiles of transgenic plants in comparison with wild types (WT). The main conclusion is that metabolism after transgenesis suffered only insignificant alterations or about the same in comparison to that of WT plants [12]. Moreover, results indicate that environmental variations usually produce greater major differences in metabolome composition than genetic modifications. To uncover a possible problem, we used inbred lines of
In this study two separate inbred lines of tobacco harboring a heterologous gene of bovine interferon-gamma
Total plant RNA was extracted from tobacco leaves with a Pure-ZOL™ reagent according to the manufacturer’s protocol (Bio-Rad Laboratories, Hercules, CA, USA). Samples were then treated with DNase I (Thermo Fisher Scientific, Waltham, MA, USA) (5 U/sample). After that the RNA was precipitated with ethanol to remove residual DNase I. Purified RNA was dissolved in sterile water and stored at −80 °C until analysis.
Two μg of total RNA were taken for cDNA synthesis using MMLV RT kit (Evrogen, Moscow, Russia) in accordance with manufacturer’s protocol. cDNA samples were precipitated with 0.1 M sodium acetate in ethanol, diluted with sterile deionized water, aliquoted and stored at −80 °C until analysis.
The PCR reaction mixture included Taq-polymerase (Evrogen), a mixture of 2 μM dNTP, magnesium-containing Taq-buffer, cDNA template (100–200 ng), the forward and reverse primers sIFNG-1 (5’-AGGAGTATGGACATCATCAAGCA-3′) and sIFNG-2 (5’-AGTCGTCGACCGGAATTTGA-3′) for
95°C, 2 min —
{95°C, 20 s,
60°C, 30 s,
72°C, 30 s} — 32 cycles,
72°C, 1 min
in CFX96 Touch Deep Well Real-Time PCR Detection System (Bio-Rad Laboratories).
Electrophoresis was performed in a 1% agarose gel in a TAE buffer with the addition of ethidium bromide (0.5 μg/mL) for 40 min at a voltage of 120 V. PCR fragments were visualized in UV light.
Average samples of 3–5 leaves were prepared in four biological replicates. The plant material (0.2 g) was frozen in microtubes with liquid nitrogen and ground three times in a Tissue Lyser LT (Quiagen, Düsseldorf, Germany) bead mill with metal balls 5 mm in diameter (50 hits/s, 2 min) and subjected to a single-stage extraction with two mL of methanol. After the centrifugation at 15,000 g for 15 min at 4 °C the supernatant was collected and evaporated in a refrigerated CentriVap centrifugal concentrator (Labconco, Kansas City, MO, USA) at 10 °C. The dried residue was dissolved in pyridine with tricosane (nC23) as an internal standard. The samples were then supplied with the silylating agent BSTFA: TMCS 99:1 (Sigma-Aldrich, St. Louis, MO, USA) and derivatizated at 90 °C for 20 min [21, 22].
An Agilent 5860 gas chromatograph (Agilent Technologies, Santa Clara, CA, USA) with Agilent 7893 autosampler, and Agilent ChemStation E.02.02.1431 software were used for analysis. The samples were separated on a J&W HP-5MS capillary column 30 m long, 0.25 mm in diameter, stationary phase film (95% dimethylpolyoxane, 5% diphenyl), thickness 0.1 mm. The helium gas constant flow was 1 mL/min and the inlet temperature was 250 °C. The temperature parameters of the oven included an initial temperature of 70 °C and a linear increase to 320 °C at the rate of 4 °C/min. Chromatograms were registered with an Agilent 5975C mass selective detector. Metabolite profiling was performed using equipment of the Center for Molecular and Cell Technologies of Research park of St. Petersburg State University.
GC–MS data was processed using the PARADISe program (Department of Food Science Faculty of Science, University of Copenhagen, Denmark, [23]) coupled with NIST MS Search (National Institute of Standards and Technology (NIST), USA). In addition, the AMDIS (Automated Mass Spectral Deconvolution and Identification System, NIST, USA) was used. The following mass-spectrometer libraries were applied: NIST2010, library of the Resource Center of the Science Park “Center for Molecular and Cell Technologies” (St. Petersburg State University), the Golm Metabolome Database (GMD) and MoNA (Massbank of North America). Retention index (RI) was determined by calibration with standard alkanes.
Data analysis was performed in the environment of the R language 3.6.3 “Holding the Windsock” [24]. Data were normalized by internal standard (nC23) as well as by sample median. The data were log-transformed and standardized. Metabolite that was not detected but present in other replicated samples was considered a technical error and missing values were imputed. Missing data imputation was performed by KNN (k-nearest neighbors) with an
For enrichment analysis, the
Previous studies generated two different families of transgenic tobacco harboring the heterologous gene of bovine interferon-gamma
Electrophoresis of RT-PCR products of cDNAs obtained from WT plant grown in a pot (WT1), or
Therefore plants of transgenic inbred lines used in the study were shown to possess and express
The production of recombinant human interferon-gamma expressed in
Another interferon-producing system on the basis of rice suspension culture was shown to accumulate intracellular human interferon-gamma protein of up to 699.79 ng/g of cells [35]. The most effective genetic construction used was starvation-inducible endogenous rice αAmy3 promoter.
An example of intensive synthesis of functionally active endogenous plant protein in leaf cells is the accumulation of the major photosynthetic enzyme – RUBISCO (D-Ribulose-1,5-bisphosphate carboxylase/oxygenase), which is claimed to be the most abundant plant protein on earth, even if recently the exact value of the carboxylase has come under revision [36]. The amount of the RUBISCO protein ranged from 30 to 50% of total soluble protein in leaf cell.
Synthesis of protein due to heterologous expression might seriously affect amino acid balance and/or cause alterations in carbohydrates as sources of energy. But along with that, an unregulated accumulation of “foreign” protein inside a plant cell could become a stress signal itself which would lead to production of defensive metabolites. For example, in microbial-based bioreactor systems overproduction of recombinant protein led to formation of an insoluble protein bodies in cytosol and development of oxidative stress as was shown in
Metabolite profiles of tobacco leaves were performed by GS-MS analysis. In total profiles included 350 metabolites (Figure 2). 80 of these were identified up to the exact metabolite and 150 were identified up to the metabolite class. Metabolic profiles were characterized by a wide variety of carbohydrates and their derivatives (about 90), including pentoses, hexoses and oligosaccharides and their derivatives such as sugar alcohols and sugar acids. This pattern is typical for profiling plant metabolites. The profiles were completed with 19 amino acids, including proteinogenic ones; about 20 carboxylic acids, mainly energy metabolism intermediates; and quite a few fatty acids and their derivatives (only 8). Moreover, some secondary metabolites were also identified.
Heatmap of metabolite content in WT and transgenic (tg) tobacco plants grown in pot or
Simple unsupervised dimension reduction methods (PCA, Figure 3) showed differences in tobacco leaf metabolome due to both the type of growth and to genetic status. Metabolite profiles are visualized in the score space of the first two principal components (PC). Metabolomes were grouped along to PC1 according to the type of growth (35% dispersion) and were grouped along with PC2 accordingly to the absence/presence of
Representation of metabolite profiles of WT (Δ) and transgenic (o) tobacco in low-dimensional spaces. PCA score plot, % - percent of variance, ellipses - 90% CI. red - pot cultivation, green -
Representation of metabolite profiles in low-dimensional spaces. Metabolite profiles in the space revealed using MDS with 1-
Further comparison of metabolite profiles of WT and Inter311.2.7.2-1 transgenic tobacco plants grown in pots was detailed by supervised methods such as PLS-DA. The predictive component of PLS-DA has a 31% rate of dispersion (R2Y = 0.99, Q2Y = 0.83). So the metabolic shifts prompted by the transgenic construct were significant. A bar plot of factor loadings of the predictive component from OPLS-DA is presented in Figure 5. Positive values correspond to higher content in the WT. According to results, leaves of the WT tobacco plant contain a higher amount of lipophilic compounds, including acylglycerols, sterols, and some fatty acids. WT was also characterized by a higher content of amino acids, amines and carboxylates. Leaves of transgenic plants accumulated high levels of oligosaccharides. Subsequent enrichment analysis revealed metabolic processes that occurred in WT and transgenic tobacco plants (Figure 6). In agreement with the bar plot, the results of enrichment analysis of WT plants indicated an intensive wide spectrum of metabolic pathways responsive for the balance of amino acids, carboxylates, lipophilic metabolites, and others. Furthermore, biotech tobacco was characterized by an intensification of only the carbohydrate metabolism pathways. Thus the procedure of growing a plant in soil pot culture exerted significant effects on its metabolism. Such cultivation activated different aspects of WT plant metabolism involving the developmental activity of young leaves. Surprisingly, the presence of an interferon-gamma synthesis-encoding heterologous construct intensified carbohydrate metabolism. The possible higher amount of amino acids required for excessive synthesis of heterologous protein were not distinguished, perhaps because of the intensification of protein synthesis itself.
Differences between metabolomes of WT and transgenic plants cultivated in pots. Barplot of factor loadings of the predictive component from OPLS-DA. Positive values correspond to a higher content in the wild type. Colors mirror chemical class (legend same as in
Enrichment analysis based on predictive component loadings from OPLS-DA model for WT and transgenic tobacco plants cultivated in pots. The network of biochemical pathways (nodes) of tobacco, if the paths have common metabolites, then they are connected by edges. Colors mark significance of enrichment (FDR - false discovery rate), size reflects level of enrichment (|NES| - normalized enrichment score), upward direction - activation (NES > 0) in WT, downward - repression (NES <0) in WT.
Another pair of plants were grown in sterile conditions with the application of
Differences between metabolomes of WT and transgenic plants cultivated
Enrichment analysis based on predictive component loadings from OPLS-DA model for WT and transgenic plants cultivated
Taken together data obtained for WT and transgenic plants grown in pots and
Comparative analysis of the transformation effects
An additional criterion that would be of an interest is the crosslink between different metabolic pathways. Thus one can expect some correlative alterations in metabolite content. Changes in the correlations of the metabolite content may reflect systemic metabolic changes. Therefore, we examined the frequency distribution of the correlation coefficients in plants of different genetic status, grown under different conditions. Based on the analysis of the frequency distribution of the Pearson correlation coefficient (Figure 10), it was determined that in transgenic plants the number of strong correlations increases when cultivated in a pot in comparison with
Influence of transformation and cultivation method on the correlation of metabolite content. Histograms of frequencies of Pearson’s correlation coefficient.
Analysis of selected literature sources revealed that the majority of work on genetically-modified plant metabolome was carried out with plants expressing heterologous genes encoding different enzymes [12]; i.e. these types of transgenes directly affect the metabolome by enhancing pathways operated by the target enzyme protein. The bovine interferon-gamma used in this study belongs to cytokines and has no enzymatic activity. Therefore, its effects on metabolism would be indirect. There is no doubt that introduction of excessively synthesized “foreign” protein would interfere with the cellular metabolism at least at the level of consumption of an additional amount of amino acids and energy (i.e., sugars and carboxylates). The results obtained showed accumulation of oligosaccharides in the transgenic plant Inter311.2.7.2-1 (compared to WT), grown in soil pot culture (Figures 2 and 5) and stimulation of amino acid and sterol metabolism in InterB.6.13.8-1 cultivated
There are quite a few studies of the metabolome of transgenic plants synthesizing non-enzymatic heterologous protein which can be compared with the system producing bovine interferon-gamma and they mostly concern different types of Bt-toxin expressing plants [12, 13, 40]. It was shown that both cultivation conditions and gene modification induced similar alterations of metabolomes. Moreover, in many cases the growing conditions or developmental stage of plants had a greater effect on the metabolome than the presence of a transgenic insert.
So further investigations of biotech plant metabolomics are strongly required, especially those focused on the metabolomics of bioreactor plants.
Taken together, the data of this investigation clearly showed that metabolic profiles are dynamic parameters which characterize plant development. Metabolic profile changes in tobacco plants specialized in the synthesis of bovine interferon-gamma were discovered. The presence of heterologous of
Research was performed at the Center for Molecular and Cell Technologies of Research park of St. Petersburg State University. The chapter was written under the support of the Ministry of Science and Higher Education of the Russian Federation in accordance with agreement № 075-15-2020-922, dated 16.11.2020 providing a grant in the form of subsidies from the Federal budget of the Russian Federation. The grant was provided for state support for the creation and development of the World-class Scientific Center “Agrotechnologies for the Future”.
The authors declare no conflict of interest.
FDR | false discovery rate |
GC–MS | gas chromatography–mass spectrometry |
MDS | multidimensional scaling |
NES | normalized enrichment score |
OPLS-DA | orthogonal partial least squares discriminant analysis |
PC | principal component |
PCA | principal component analysis |
PCR | polymerase chain reaction |
PLS-DA | partial least squares discriminant analysis |
RI | retention index |
SUS | shared and unique structures |
TX generation | generation of transgenic plants |
T0 | transformed plants |
T1 | first generation, obtained after self-pollination of T0 plants |
T2 | second generation, obtained after self-pollination of T1 plants, etc. |
WT | wild type |
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119061},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"1175"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:45},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1021",title:"Hepatology",slug:"gastroenterology-hepatology",parent:{title:"Gastroenterology",slug:"gastroenterology"},numberOfBooks:56,numberOfAuthorsAndEditors:1687,numberOfWosCitations:492,numberOfCrossrefCitations:385,numberOfDimensionsCitations:921,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"gastroenterology-hepatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7888",title:"Hepatitis A and Other Associated Hepatobiliary Diseases",subtitle:null,isOpenForSubmission:!1,hash:"e027bb08025546d9beb242d55e87c84c",slug:"hepatitis-a-and-other-associated-hepatobiliary-diseases",bookSignature:"Costin Teodor Streba, Cristin Constantin Vere, Ion Rogoveanu, Valeria Tripodi and Silvia Lucangioli",coverURL:"https://cdn.intechopen.com/books/images_new/7888.jpg",editedByType:"Edited by",editors:[{id:"55546",title:"Dr.",name:"Costin Teodor",middleName:"Teodor",surname:"Streba",slug:"costin-teodor-streba",fullName:"Costin Teodor Streba"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,isOpenForSubmission:!1,hash:"8dd6dab483cf505d83caddaeaf497f2c",slug:"hepatitis-b-and-c",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8330",title:"Nonalcoholic Fatty Liver Disease",subtitle:"An Update",isOpenForSubmission:!1,hash:"d0f8ff2a0673b7be22f7e7c531a2e410",slug:"nonalcoholic-fatty-liver-disease-an-update",bookSignature:"Emad Hamdy Gad",coverURL:"https://cdn.intechopen.com/books/images_new/8330.jpg",editedByType:"Edited by",editors:[{id:"222727",title:"Associate Prof.",name:"Emad Hamdy",middleName:null,surname:"Gad",slug:"emad-hamdy-gad",fullName:"Emad Hamdy Gad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8838",title:"Liver Cirrhosis",subtitle:"Debates and Current Challenges",isOpenForSubmission:!1,hash:"17163eb18a082da0fe70ccc20b7fe69a",slug:"liver-cirrhosis-debates-and-current-challenges",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/8838.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6718",title:"Hepatitis C",subtitle:"From Infection to Cure",isOpenForSubmission:!1,hash:"7448805e61bfa52ce552c427ad6f16fc",slug:"hepatitis-c-from-infection-to-cure",bookSignature:"Imran Shahid",coverURL:"https://cdn.intechopen.com/books/images_new/6718.jpg",editedByType:"Edited by",editors:[{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6663",title:"Management of Chronic Liver Diseases",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"833ebcb9a2596f81deff0246ed7c9642",slug:"management-of-chronic-liver-diseases-recent-advances",bookSignature:"Xingshun Qi",coverURL:"https://cdn.intechopen.com/books/images_new/6663.jpg",editedByType:"Edited by",editors:[{id:"197501",title:"Dr.",name:"Xingshun",middleName:null,surname:"Qi",slug:"xingshun-qi",fullName:"Xingshun Qi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6440",title:"Liver Research and Clinical Management",subtitle:null,isOpenForSubmission:!1,hash:"e4bbd66ccead286ab737f23feb053cf8",slug:"liver-research-and-clinical-management",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6440.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6073",title:"Non-Alcoholic Fatty Liver Disease",subtitle:"Molecular Bases, Prevention and Treatment",isOpenForSubmission:!1,hash:"6141320881651ddc40a3f35893c209e7",slug:"non-alcoholic-fatty-liver-disease-molecular-bases-prevention-and-treatment",bookSignature:"Rodrigo Valenzuela",coverURL:"https://cdn.intechopen.com/books/images_new/6073.jpg",editedByType:"Edited by",editors:[{id:"72355",title:"Prof.",name:"Rodrigo",middleName:null,surname:"Valenzuela Baez",slug:"rodrigo-valenzuela-baez",fullName:"Rodrigo Valenzuela Baez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5931",title:"Stomach Disorders",subtitle:null,isOpenForSubmission:!1,hash:"489f823dd49e3fa397e477a8101ca4ff",slug:"stomach-disorders",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5931.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5714",title:"Esophageal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"132a5e5097b78a76535fde4196596ac9",slug:"esophageal-abnormalities",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5714.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6061",title:"Ascites",subtitle:"Physiopathology, Treatment, Complications and Prognosis",isOpenForSubmission:!1,hash:"ead9b3e5c36413f9ff2c3129fbc57574",slug:"ascites-physiopathology-treatment-complications-and-prognosis",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6061.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6014",title:"Update on Hepatitis C",subtitle:null,isOpenForSubmission:!1,hash:"b812442f63938a061f1c84b2338bb187",slug:"update-on-hepatitis-c",bookSignature:"Martina Smolic, Aleksandar Vcev and George Y. Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6014.jpg",editedByType:"Edited by",editors:[{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:56,mostCitedChapters:[{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:85,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"22945",doi:"10.5772/17640",title:"Pathophysiology of Gastric Ulcer Development and Healing: Molecular Mechanisms and Novel Therapeutic Options",slug:"pathophysiology-of-gastric-ulcer-development-and-healing-molecular-mechanisms-and-novel-therapeutic-",totalDownloads:11792,totalCrossrefCites:8,totalDimensionsCites:21,book:{slug:"peptic-ulcer-disease",title:"Peptic Ulcer Disease",fullTitle:"Peptic Ulcer Disease"},signatures:"Matteo Fornai, Luca Antonioli, Rocchina Colucci, Marco Tuccori and Corrado Blandizzi",authors:[{id:"28973",title:"Prof.",name:"Corrado",middleName:null,surname:"Blandizzi",slug:"corrado-blandizzi",fullName:"Corrado Blandizzi"},{id:"44227",title:"Dr.",name:"Matteo",middleName:null,surname:"Fornai",slug:"matteo-fornai",fullName:"Matteo Fornai"},{id:"44229",title:"Dr.",name:"Luca",middleName:null,surname:"Antonioli",slug:"luca-antonioli",fullName:"Luca Antonioli"},{id:"44230",title:"Dr.",name:"Rocchina",middleName:null,surname:"Colucci",slug:"rocchina-colucci",fullName:"Rocchina Colucci"},{id:"44231",title:"Dr.",name:"Marco",middleName:null,surname:"Tuccori",slug:"marco-tuccori",fullName:"Marco Tuccori"}]},{id:"35446",doi:"10.5772/47946",title:"Delivery of Probiotic Microorganisms into Gastrointestinal Tract by Food Products",slug:"delivery-of-probiotic-microorganisms-into-gastrointestinal-tract-by-food-products",totalDownloads:5861,totalCrossrefCites:0,totalDimensionsCites:19,book:{slug:"new-advances-in-the-basic-and-clinical-gastroenterology",title:"New Advances in the Basic and Clinical Gastroenterology",fullTitle:"New Advances in the Basic and Clinical Gastroenterology"},signatures:"Amir Mohammad Mortazavian, Reza Mohammadi and Sara Sohrabvandi",authors:[{id:"97458",title:"Dr.",name:"Amir M.",middleName:null,surname:"Mortazavian",slug:"amir-m.-mortazavian",fullName:"Amir M. Mortazavian"},{id:"99974",title:"Dr.",name:"Sarah",middleName:null,surname:"Sohrabvandi",slug:"sarah-sohrabvandi",fullName:"Sarah Sohrabvandi"}]}],mostDownloadedChaptersLast30Days:[{id:"45493",title:"Biliary Dyspepsia: Functional Gallbladder and Sphincter of Oddi Disorders",slug:"biliary-dyspepsia-functional-gallbladder-and-sphincter-of-oddi-disorders",totalDownloads:5553,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"dyspepsia-advances-in-understanding-and-management",title:"Dyspepsia",fullTitle:"Dyspepsia - Advances in Understanding and Management"},signatures:"Meena Mathivanan, Liisa Meddings and Eldon A. Shaffer",authors:[{id:"165693",title:"Dr.",name:"Eldon",middleName:null,surname:"Shaffer",slug:"eldon-shaffer",fullName:"Eldon Shaffer"}]},{id:"56262",title:"Anatomy of Esophagus",slug:"anatomy-of-esophagus",totalDownloads:2872,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Murat Ferhat Ferhatoglu and Taner Kıvılcım",authors:[{id:"200126",title:"M.D.",name:"Murat Ferhat",middleName:null,surname:"Ferhatoglu",slug:"murat-ferhat-ferhatoglu",fullName:"Murat Ferhat Ferhatoglu"},{id:"206240",title:"Dr.",name:"Taner",middleName:null,surname:"Kivilcim",slug:"taner-kivilcim",fullName:"Taner Kivilcim"}]},{id:"56068",title:"Minimally Invasive Esophagectomy",slug:"minimally-invasive-esophagectomy",totalDownloads:924,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Rafael Cholvi Calduch, Isabel Mora Oliver, Fernando Lopez Mozos\nand Roberto Martí Obiol",authors:[{id:"203292",title:"Ph.D.",name:"Fernando",middleName:null,surname:"Lopez",slug:"fernando-lopez",fullName:"Fernando Lopez"},{id:"203687",title:"Dr.",name:"Roberto",middleName:null,surname:"Martí",slug:"roberto-marti",fullName:"Roberto Martí"},{id:"204943",title:"Dr.",name:"Rafael",middleName:null,surname:"Cholvi",slug:"rafael-cholvi",fullName:"Rafael Cholvi"},{id:"204944",title:"Dr.",name:"Isabel",middleName:null,surname:"Mora",slug:"isabel-mora",fullName:"Isabel Mora"}]},{id:"21425",title:"Histopathological Diagnosis of Non-Alcoholic and Alcoholic Fatty Liver Disease",slug:"histopathological-diagnosis-of-non-alcoholic-and-alcoholic-fatty-liver-disease",totalDownloads:2948,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"liver-biopsy-in-modern-medicine",title:"Liver Biopsy in Modern Medicine",fullTitle:"Liver Biopsy in Modern Medicine"},signatures:"Andrea Tannapfel and Berenike Flott-Rahmel",authors:[{id:"34863",title:"Dr.",name:"Andrea",middleName:null,surname:"Tannapfel",slug:"andrea-tannapfel",fullName:"Andrea Tannapfel"},{id:"53108",title:"Prof.",name:"Berenike",middleName:null,surname:"Flott-Rahmel",slug:"berenike-flott-rahmel",fullName:"Berenike Flott-Rahmel"}]},{id:"55879",title:"Portal Hypertensive Gastropathy (PHG)",slug:"portal-hypertensive-gastropathy-phg-",totalDownloads:1115,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"stomach-disorders",title:"Stomach Disorders",fullTitle:"Stomach Disorders"},signatures:"Samia Ali Gamie",authors:[{id:"204157",title:"Prof.",name:"Samia",middleName:null,surname:"Ali Abdo Gamie",slug:"samia-ali-abdo-gamie",fullName:"Samia Ali Abdo Gamie"}]},{id:"57005",title:"Health-Related Quality of Life in Antiviral-Treated Chronic Hepatitis C Patients",slug:"health-related-quality-of-life-in-antiviral-treated-chronic-hepatitis-c-patients",totalDownloads:988,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-on-hepatitis-c",title:"Update on Hepatitis C",fullTitle:"Update on Hepatitis C"},signatures:"Aleksandar Včev, Jelena Jakab, Lucija Kuna and Martina Smolić",authors:[{id:"154595",title:"Prof.",name:"Aleksandar",middleName:null,surname:"Vcev",slug:"aleksandar-vcev",fullName:"Aleksandar Vcev"},{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"},{id:"204953",title:"Ms.",name:"Lucija",middleName:null,surname:"Kuna",slug:"lucija-kuna",fullName:"Lucija Kuna"},{id:"205159",title:"Dr.",name:"Jelena",middleName:null,surname:"Jakab",slug:"jelena-jakab",fullName:"Jelena Jakab"}]},{id:"55818",title:"Tissue Engineering of Esophagus",slug:"tissue-engineering-of-esophagus",totalDownloads:998,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Yabin Zhu, Mi Zhou and Ruixia Hou",authors:[{id:"40618",title:"Prof.",name:"Yabin",middleName:null,surname:"Zhu",slug:"yabin-zhu",fullName:"Yabin Zhu"}]},{id:"55045",title:"Hemodynamic Optimization Strategies in Anesthesia Care for Liver Transplantation",slug:"hemodynamic-optimization-strategies-in-anesthesia-care-for-liver-transplantation",totalDownloads:1298,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"liver-cirrhosis-update-and-current-challenges",title:"Liver Cirrhosis",fullTitle:"Liver Cirrhosis - Update and Current Challenges"},signatures:"Alexander A. Vitin, Dana Tomescu and Leonard Azamfirei",authors:[{id:"201176",title:"Associate Prof.",name:"Alexander",middleName:null,surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"},{id:"202442",title:"Dr.",name:"Dana",middleName:null,surname:"Tomescu",slug:"dana-tomescu",fullName:"Dana Tomescu"},{id:"202600",title:"Prof.",name:"Leonard",middleName:null,surname:"Azamfirei",slug:"leonard-azamfirei",fullName:"Leonard Azamfirei"}]},{id:"56177",title:"Nutritional Management of Esophageal Cancer Patients",slug:"nutritional-management-of-esophageal-cancer-patients",totalDownloads:1240,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Dimitrios Schizas, Irene Lidoriki, Demetrios Moris and Theodore\nLiakakos",authors:[{id:"203349",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Schizas",slug:"dimitrios-schizas",fullName:"Dimitrios Schizas"},{id:"204000",title:"MSc.",name:"Irene",middleName:null,surname:"Lidoriki",slug:"irene-lidoriki",fullName:"Irene Lidoriki"},{id:"204001",title:"Dr.",name:"Demetrios",middleName:null,surname:"Moris",slug:"demetrios-moris",fullName:"Demetrios Moris"},{id:"204002",title:"Prof.",name:"Theodore",middleName:null,surname:"Liakakos",slug:"theodore-liakakos",fullName:"Theodore Liakakos"}]},{id:"46479",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:86,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]}],onlineFirstChaptersFilter:{topicSlug:"gastroenterology-hepatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/208088/ksenia-orlova",hash:"",query:{},params:{id:"208088",slug:"ksenia-orlova"},fullPath:"/profiles/208088/ksenia-orlova",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()