The application of magnetic nanoparticles for biomedical research is an interdisciplinary problem. The use of nano‐ and microsized powder materials as developed technology for obtaining bionanomaterials with magnetocatalytic properties has been investigated. Control over immobilization can be carried by means of magnetic properties. Synthesis of superparamagnetic nanoparticles is developed not only for the benefit of fundamental science, but also for many technologies, such as technologies of magnetic storage media, magnetic ink for printers, but mainly for biosensors and medical applications. All the biomedical applications require that the nanoparticles have high enough levels of saturation of magnetization; their size should be less than 100 nm with a small deviation in size. Appropriate coating of the surface of magnetic nanoparticles should be nontoxic, biocompatible with the target of bioorganic compound. The techniques of measurement of magnetic nanoparticle properties by means of vibrational magnetometers, as well as by means of a set of smart sensor devices in accordance with new concept of Internet of Things (IoTh), were described. The first method is based on vibrating sample magnetometer technique. The second method is based on direct measurement of three dimensions (3D) of nanoparticles’ magnetic field components.
Part of the book: Biomaterials in Regenerative Medicine