Experimental laser parameters of Nd:YAG lasers at 1064 nm with effective pumping energy of 390W.
\r\n\tThe study of populations and plant communities in their different aspects; ecological, structural, functional and dynamic, it is essential to establish a posteriori models of forest and agricultural management.
\r\n\r\n\tFor this, the methodological approaches on the type of sampling are considered essential, since there are differences between the purely ecological and the phytosociological methods, despite the fact that both pursue the same objective.
\r\n\tAlthough the ecological method for the knowledge of the vegetation is widely extended, the phytosociological one is no less so, since in the European Union it has been developed as a consequence of policies on sustainability, through which regulations have been issued, such as the habitats directive.
\r\n\tOn the other hand, research on plant dynamics and knowledge of the landscape in an integral way, have multiplied in the last 30 years, which has favored a deep knowledge of the floristic and phytocenotic wealth, which is fundamental for agricultural management, livestock and forestry.
",isbn:"978-1-83969-386-1",printIsbn:"978-1-83969-385-4",pdfIsbn:"978-1-83969-387-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",keywords:"Climatic Factors, Bioclimate, Thermotype, Flora, Conservation, Phytocenosis, Plant Dynamics, Landscape, Cartography, Vegetation Series, Crops, Reforestation",numberOfDownloads:55,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 23rd 2020",dateEndSecondStepPublish:"January 25th 2021",dateEndThirdStepPublish:"March 26th 2021",dateEndFourthStepPublish:"June 14th 2021",dateEndFifthStepPublish:"August 13th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Cano Carmona and colleagues have directed 12 doctoral theses and more than 200 publications among articles, books, and book chapters. He has participated in national and international congresses with about 250 papers. He has held a number of different academic positions, including Dean of the Faculty of Experimental Sciences at the University of Jaen, Spain, and founder and director of the International Seminar on Management and Conservation of Biodiversity.",coeditorOneBiosketch:"Ricardo Jorge Quinto Canas is currently an Invited Assistant Professor in the Faculty of Sciences and Technology at the University of Algarve – Portugal, and a member of the Centre of Marine Sciences (CCMAR), University of Algarve. His current research projects focus on Botany, Vegetation Science (Geobotany), Biogeography, Plant Ecology, and Biology Conservation, aiming to support Nature Conservation.",coeditorTwoBiosketch:"Ana Cano Ortiz's fundamental line of research is related to botanical bioindicators. She has worked in Spain, Italy, Portugal, and Central America. It presents more than one hundred works published in various national and international journals, as well as books and book chapters; and has presented a hundred papers to national and international congresses.",coeditorThreeBiosketch:"Carmelo Maria Musarella is a biologist, specialized in Plant Biology. He is a member of the permanent scientific committee of the International Seminar on “Biodiversity Conservation and Management” guested by several European universities. He has participated in several international and national congresses, seminars, and workshops and presented oral communications and posters.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",middleName:null,surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona",profilePictureURL:"https://mts.intechopen.com/storage/users/87846/images/system/87846.png",biography:"Eusebio Cano Carmona obtained a PhD in Sciences from the\nUniversity of Granada, Spain. He is Professor of Botany at the\nUniversity of Jaén, Spain. His focus is flora and vegetation and he\nhas conducted research in Spain, Italy, Portugal, Palestine, the\nCaribbean islands and Mexico. As a result of these investigations,\nDr. Cano Carmona and colleagues have directed 12 doctoral theses\nand more than 200 publications among articles, books and book\nchapters. He has participated in national and international congresses with about\n250 papers/communications. He has held a number of different academic positions,\nincluding Dean of the Faculty of Experimental Sciences at the University of Jaen,\nSpain and founder and director of the International Seminar on Management and\nConservation of Biodiversity, a position he has held for 13 years. He is also a member of the Spanish, Portuguese and Italian societies of Geobotany.",institutionString:"University of Jaén",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Jaén",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"216982",title:"Dr.",name:"Ricardo Quinto",middleName:null,surname:"Canas",slug:"ricardo-quinto-canas",fullName:"Ricardo Quinto Canas",profilePictureURL:"https://mts.intechopen.com/storage/users/216982/images/system/216982.JPG",biography:"Ricardo Quinto Canas, Phd in Analysis and Management of Ecosystems, is currently an Invited Assistant Professor in the Faculty\nof Sciences and Technology at the University of Algarve, Portugal, and member of the Centre of Marine Sciences (CCMAR),\nUniversity of Algarve. He is also the Head of Division of Environmental Impact Assessment - Algarve Regional Coordination\nand Development Commission (CCDR - Algarve). His current\nresearch projects focus on Botany, Vegetation Science (Geobotany), Biogeography,\nPlant Ecology and Biology Conservation, aiming to support Nature Conservation.\nDr. Quinto Canas has co-authored many cited journal publication, conference articles and book chapters in above-mentioned topics.",institutionString:"University of Algarve",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"203697",title:"Dr.",name:"Ana",middleName:null,surname:"Cano Ortiz",slug:"ana-cano-ortiz",fullName:"Ana Cano Ortiz",profilePictureURL:"https://mts.intechopen.com/storage/users/203697/images/system/203697.png",biography:"Ana Cano Ortiz holds a PhD in Botany from the University of\nJaén, Spain. She has worked in private enterprise, in university\nand in secondary education. She is co-director of four doctoral\ntheses. Her research focus is related to botanical bioindicators.\nDr. Ortiz has worked in Spain, Italy, Portugal and Central America. She has published more than 100 works in various national\nand international journals, as well as books and book chapters.\nShe has also presented a great number of papers/communications to national and\ninternational congresses.",institutionString:"University of Jaén",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Jaén",institutionURL:null,country:{name:"Spain"}}},coeditorThree:{id:"276295",title:"Dr.",name:"Carmelo Maria",middleName:null,surname:"Musarella",slug:"carmelo-maria-musarella",fullName:"Carmelo Maria Musarella",profilePictureURL:"https://mts.intechopen.com/storage/users/276295/images/system/276295.jpg",biography:"Carmelo Maria Musarella, PhD (Reggio Calabria, Italy –\n23/01/1975) is a biologist, specializing in plant biology. He\nstudied and worked in several European Universities: Messina,\nCatania, Reggio Calabria, Rome (Italy), Valencia, Jaén, Almeria\n(Spain), and Evora (Portugal). He was the Adjunct Professor\nof Plant Biology at the “Mediterranea” University of Reggio\nCalabria (Italy). His research topics are: floristic, vegetation,\nhabitat, biogeography, taxonomy, ethnobotany, endemisms, alien species, and\nbiodiversity conservation. He has authored many research articles published in\nindexed journals and books. He has been the guest editor for Plant Biosystems and a\nreferee for this same journal and others. He is a member of the permanent scientific\ncommittee of International Seminar on “Biodiversity Conservation and Management”, which includes several European universities. He has participated in several\ninternational and national congresses, seminars, workshops, and presentations of\noral communications and posters.",institutionString:'"Mediterranea" University of Reggio Calabria',position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"75595",title:"Assessment of the State of Forest Plant Communities of Scots Pine (Pinus sylvestris L.) in the Conditions of Urban Ecosystems",slug:"assessment-of-the-state-of-forest-plant-communities-of-scots-pine-pinus-sylvestris-l-in-the-conditio",totalDownloads:31,totalCrossrefCites:0,authors:[null]},{id:"76010",title:"Predictive Models for Reforestation and Agricultural Reclamation: A Clearfield County, Pennsylvania Case Study",slug:"predictive-models-for-reforestation-and-agricultural-reclamation-a-clearfield-county-pennsylvania-ca",totalDownloads:24,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6893",title:"Endemic Species",subtitle:null,isOpenForSubmission:!1,hash:"3290be83fff5bc015f5bd3d78ae9c6c7",slug:"endemic-species",bookSignature:"Eusebio Cano Carmona, Carmelo Maria Musarella and Ana Cano Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/6893.jpg",editedByType:"Edited by",editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17616",title:"Laser Applications of Transparent Polycrystalline Ceramic",doi:"10.5772/17532",slug:"laser-applications-of-transparent-polycrystalline-ceramic",body:'\n\t\tHigh power lasers are widely used in a variety of applications, including materials processing, remote sensing, free-space communications, laser particle acceleration, gravitational wave interferometers, and even inertial confinement fusion (ICF) [1]. The optical gain media of the system is the key factor for efficient laser oscillation. Since Maiman discovered the first ruby laser in 1960, numerous materials have been developed and improved to achieve high efficiency and high power for all-solid-state lasers. There are three primary groups of solid state host materials: single crystals, glasses and ceramics. Among them Nd:YAG single crystal may be the most widely used laser media. But Nd:YAG single crystal grown by conventional Czochralski method has its own insurmountable disadvantages such as expensive, time-consuming, small size and low concentration [2], which has limited its applications in high power lasers. And for Nd-doped glass material, though it is very easy to get large size and high concentration, but its thermal conductivity and gain are quite low and the laser efficiencies were not satisfying. Polycrystalline ceramics is an aggregate of crystalline grains, each randomly oriented with respect to neighboring grains. Since the 1960s, it has been speculated that a dense polycrystal of an isotropic, pure material would be optically indistinguishable from a single crystal of the same material. The only problem has been finding a fabrication method. Now materials scientists in Japan have come up with a way to mass-produce polycrystalline ceramics materials that maintain high conversion efficiency and good optical characteristics as well as single crystals. Further more, the ceramics laser materials manufacturing method has five distinct advantages over single-crystal growth:
\n\t\t\tEase of manufacture: It takes 4-6 weeks to grow crystals using the Czochralski method, but thes method makes rods in just a few days.
Less expensive: Single crystals have to be grown in an expensive iridium crucible. Ceramics rod growth requires no crucible and is also faster. The cost of a single crystal increases dramatically with its size, unlike ceramics.
Fabrication of large size and high concentration laser medium: Size of rods Single-crystal growth limits crystal size, which in turn limits the potential output power. The maximum crystal size is about 23 cm long and the Nd3+ doping concentration is no more than 2 at.%. But polycrystalline ceramic YAG can be made as large as 1 m×1 m×0.02 m and up to 4 at.% doping with no gradient.
Multi-layer and multi-functionality Ceramics structure: Ceramics fabrication could enable the incorporation of Q-switching and Raman shifting within the source, which is impossible with a single crystal.
Mass-production: Suitability Ceramics materials can be fabricated in a production-line fashion, reducing the time and cost required for single-crystal YAG rod manufacturing.
Since 1960’s, a number of researchers had speculated that a theoretically dense polycrystal of an isotropic, pure material would be optically indistinguishable from a single crystal of the same material. In 1966, Hot-pressed CaF2 doped dysprosium appears to be the first reported polycrystalline material which established laser oscillation [4]. Then several decades passed, no remarkable development had been acquired. The problem with making laser materials from ceramics material is that ceramics are polycrystalline and some of their characteristics, such as grain boundaries, pores, composition gradients and lattice imperfections, increase the scattering of light in the host. This adds to the opacity of the material, making it unsuitable for laser action. The key is to find a manufacturing method in which the crystals that make up the rod are very similar in size and small enough to have little effect on incident light with a wavelength of around 1 µm. Only in the last decade have ceramics laser materials received much attention, after manufacturing breakthrough coming with highly transparent nanocrystalline YAG doped with Ln3+ activators, in particular Nd3+ ions. In 1995, the first Nd:YAG ceramics laser was developed by Akio Ikesue and colleagues at Japan\'s Krosaki Corporation. Ikesue used a hot-press method to make the ceramics laser materials. [5] Later in 1999, another research team led by Ken-ichi Ueda improved Nd:YAG ceramics successfully by combining liquid-phase chemical reaction with vacuum sintering technique to produce the similarly-sized nanoparticles for ceramics formation. The nanoparticles are homogenous, so any pressure need not use. [6-7]. High quality, high transparent Nd:YAG ceramics with much low scattering losses have been fabricated. Optical absorption, fluorescence and emission spectra, physical and laser properties of Nd: YAG ceramics have been measured and compared with those of Nd: YAG single crystals, and almost identical superiority features have been obtained in qualitative analysis [8-10]. It shows that Nd:YAG ceramics are indeed potential superexcellent gain media for high efficient and high power lasers. Using these Nd:YAG ceramics samples, high slope efficiency of 68 % was achieved under end-pumping disk laser [11]. And for high power laser oscillation, output power from 499mW→31W→72W→88W→128W→1460W were reported one by one [12-15]. Now Nd:YAG ceramics slabs for solid-state heat capacity laser were reported hit 67kW high power. In order to suppress parasitic oscillation, Sm:YAG ceramics was fabricated as for an absorber, and its optical properties were investigated. Higher power ceramics laser is still-evolving. The biggest advantage is the scaling to the meter-size plate. As a result, the ceramics laser is the most promising active medium for the laser fusion drivers.
\n\t\t\tMaking ceramics YAG crystals is not restricted to neodymium-doped material or YAG crystals. Er3+, Yb3+, Nd3+, Eu3+, Dy3+ and Cr4+ as well as Sesquioxide host crystals can be made also. Nd:Y2O3 and Yb:Y2O3 ceramics laser materials as having an extra advantage over single crystals. It is very hard to grow a single Y2O3 crystal because its melting temperature is 2430 °C. The sintering temperature for Y2O3 is some 700 °C lower than its melting point, meaning that large Y2O3 ceramics could be manufactured using a vacuum sintering method. One of the advantages of Y2O3 is its thermal conductivity, which is twice that of YAG for ceramics materials. This could make it more appropriate for using in the femto-second lasers for industry. Ceramics Y2O3 laser generated Sub-200 fs Fourier-limited pulses in the SESAM mode locking.
\n\t\t\tAnother possibility is that ceramics laser rods could incorporate multiple-laser functionality. All ceramics passively Q-switched Yb:YAG/Cr4+:YAG microchip laser with shortest pulse width of 380 ps has been achieved.
\n\t\t\tThe still developing Nd:YAG ceramics are very good alternative to Nd:YAG single crystals for high energy pulse laser applications in the near future.
\n\t\tOptical absorption and emission measurements were carried out as follows. The normalized intensity of room temperature absorption spectrum of 1at.% Nd:YAG ceramics and 1.1at.% Nd:YAG single crystal is shown in Figure. 1(a). From this figure, we see that the main absorption peak of 2% ceramics is centered at 808.56 nm which is slightly red shifted compared to that of single crystal ~808.48 nm! Because of a slight change in the crystal field in the high neodymium concentration samples. Figure. 1(b) shows the room temperature fluorescence spectra for 1at.% Nd:YAG ceramics and 1.1at.% Nd:YAG single crystal, respectively. For comparison, the fluorescence spectrum for single crystal and ceramics are normalized and put together. A slight redshift was also observed in emission spectrum because of high neodymium concentration. The emission peak of Nd:YAG ceramics is centered at 1064.2 nm which is 0.1 nm redshifted away from that of Nd:YAG single crystal. Except the slight redshift, the two spectra are almost identical to each other.
\n\t\t\t\ta). Comparison of room-temperature absorption spectrum from 770 nm to 850 nm between Nd:YAG ceramic and single crystal. (b). Comparison of room-temperature fluorescence spectrum from 1045 to 1085nm between Nd:YAG ceramic and single crysPulse trains from Q-switched ceramic
As reported by Konoshima Chemical, Co., Ltd. and Ueda’s research group, [16] the fluorescence lifetime for single crystal and ceramics have been obtained through curve fitting on the fluorescence decay curve. The fluorescence lifetime of Nd:YAG ceramics and single crystal versus neodymium concentration. The fluorescence lifetime for 0.6% Nd:YAG single crystal and 0.9% Nd:YAG single crystal are 256.3 μs and 248.6 μs, respectively( Figure. 2), which agrees well with the earlier reports [17]. Fluorescence lifetimes of 257.6 μs, 237.6 μs, 184.2 μs and 95.6 μs have been measured, respectively, for 0.6%, 1%, 2% and 4% Nd:YAG ceramics. These data also agree well with the results in [17]. The fluorescence
\n\t\t\t\tFluorescence lifetime of Nd:YAG ceramics and single crystal versus neodymium concentration. Solid line is the fitted curve for ceramics fluorescence lifetime.
lifetime decreases dramatically when neodymium concentration exceeds 1%. The fluorescence lifetimes for 0.6% doped single crystal and ceramics are almost identical (only 1.3 μs difference). The fluorescence lifetime difference between 0.9% Nd:YAG single crystal and 1% Nd:YAG ceramics is 11 μs. It can be predicted that for the same concentration of Nd:YAG single crystal and ceramics, for example, 0.9% concentration, the lifetime difference should be less than 11 μs. From the fitted curve for ceramics fluorescence lifetime, the lifetime for 0.9% Nd:YAG ceramics is 244.2 μs, which is only 4.4 μs different from that of 0.9% Nd:YAG single crystal. It indicated that the neodymium ions inside the grain have the same conditions as those of single crystal, and the fluorescence lifetime difference is caused only by the neodymium ions in the vicinity of grain boundaries.
\n\t\t\t\tThe wavefront distortion picture of a single crystal YAG slab and ceramics YAG slab near the facet part measured by a Zygo interferometer is show in Figure. 3. From this figure, one can see that near the facet part, the wavefront was seriously distorted for the single crystal YAG. But for a ceramics Nd : YAG slab, because there is no facet problem, the wavefront distortion picture (right) shows a homogeneous pattern, which is much better than that of a single crystal. A crystalline YAG has poor optical homogeneity because of its facet structure during growing process. The optical homogeneity of ceramics YAG is good as well as glass.
\n\t\t\t\tThe wavefront distortion picture of a single crystal YAG and ceramics YAG slab
By using a quite uniformly side-around arranged compact pumping system, A high efficiency high power quasi-CW laser with a Nd:YAG ceramics rod has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 1064 nm, 236 W optimum output laser at 1064 nm was obtained. The optical-to-optical conversion efficiency was 52.5% and corresponding slope efficiency was 62%.
\n\t\t\t\tA schematic diagram of the laser setup is shown in Figure. 4. The Nd:YAG ceramics rod used in the experiment was 75 mm in length and 5 mm in diameter with neodymium doping level of 1 at.%. Both the end facets of the rod were flat and antireflection coated at 1064 nm in order to reduce the intra-cavity losses, and the lateral surface was frosted. The rear mirror of the laser cavity was high-reflection mirror at 1064 nm and a series of output coupling mirrors were prepared with reflectivity from 30% to 84% at 1064 nm. Thus we could find the optimized output in experiment. The cavity length was about 195 mm. The pump source was operated at 808 nm. Liquid cooling was employed to remove heat from the ceramics rod and diode heat sink. The operation temperature was kept at about 16 ℃.
\n\t\t\t\tSchematic diagram of experimental setup for side-pumped Nd:YAG ceramics rod laser.
In order to optimize the uniformity and radial profile of the pump distribution within the gain medium and decrease the coupling losses, we designed a compact side-around arranged direct radial-pumping head, of which cross-section configuration was illustrated in Figure. 5. The optical pump head consisted of nine LD stacked arrays mounted around the rod from 9 directions with proportional angle. The ceramics rod was mounted inside a flow-tube. The side-face of the ceramics rod and the emitting surface of the laser diodes were close proximity, and no coupling optics was employed between them. The coupling efficiency was by far the most desirable. Each LD stacked array consisted of five quasi-CW types LD bars, which were placed along the length of the laser rod and pumped perpendicularly to the direction of propagation of the laser radiation. Each bar generated 60 W peak powers. The arrays operating at 20% duty cycle were pulsed at a repetition rate of 1 kHz with a pulse width of 200 μs. The design of 9 LD arrays arranged around the ceramics rod symmetrical allowed optimizing the uniformity and radial profile of the pump distribution within the gain medium with good spatial overlap between pump radiation and low-order modes in the resonator, which in turn leads to a high-brightness laser output. Figure. 6 showed the 2D contour plot of pump intensity distribution simulated by computer with ray tracing method.
\n\t\t\t\tCross-section of large diode arrays compact side-pumped Nd:YAG ceramics laser head.
Contour plot of pump intensity distribution simulated by computer with ray tracing method.
By changing the rear mirror with different reflectivity of 30%, 50%, 62.5%, 78%, and 83.4%, we get a relationship laser output power as a function of the average pumping power, which was shown in Figure. 7. The output power increased almost linearly with the pumping power, and the optimum output appeared with the coupling mirror of the reflectivity near 78%. When the pump current rose to 60 A, the total average pump power was about 450 W, and the maximum average power of 236 W multi-mode laser output was obtained by using optimum output coupling mirror. The optical-to-optical conversion efficiency was as high as 52.5% and corresponding slope efficiency was 62%. No obvious evidence of saturation was observed from the output curve, which means higher output power is possible if higher pump power is available. It also indicated that the laser cavity is stable enough.
\n\t\t\t\tOutput power versus pump power for Nd:YAG ceramics laser with different coupling mirrors.
Referring to the former experimental record of a Nd:YAG single crystal with the same concentration and size using in this system with an output coupling mirror of T=70%, we made a comparison between ceramics and crystal, which was shown in Figure. 8. The optical to optical efficiencies were 29% and 27% for the ceramics laser and for the single crystal laser, respectively. The corresponding slope efficiency was 46% for ceramics laser, and 44% for single crystal laser. It showed that these two kinds of laser materials share extraordinary the same laser output properties in quasi-CW operating.
\n\t\t\t\tComparing output power of Nd:YAG ceramics and Nd:YAG single crystal at the same condition.
\n\t\t\t\t\tFigure. 9 showed the two and three-dimensional beam profiles of the Nd:YAG ceramics laser from CCD. Some interference stripes could be seen because the cavity length was fixed and the pass length differences between the transmitted beams were multiple numbers of the laser wavelength. It can be eliminated just by adjusting the cavity length slightly. The divergence angle of laser beam was measured about 12 mrad. For high power rod Nd:YAG lasers, thermal lensing and thermal stress-induced birefringence play very important roles. They would result a distortion of the laser beam and cause a significant decrease in beam quality and optical efficiencies. The detailed study will be explored later.
\n\t\t\t\tTwo and three-dimensional beam profiles o of a 236W Nd:YAG ceramics laser from CCD.
In conclusion, a high efficiency high power quasi-CW Nd:YAG ceramics rod laser operating at 1064 nm was demonstrated by using compact quasi-CW LD stacked arrays side-pumping system. High average output power of 236 W was achieved under 450 W pumping, corresponding to an optical-to-optical efficiency of 52.5% and slope-efficiency of 62%.
\n\t\t\tBased on previous work, we improved the system and thus demonstrated a high energy electro-optical Q-switched Nd:YAG ceramics laser. With 420 W quasi-CW LDA pumping at 808 nm and Q-switched repetition rate at 100 Hz, 50 mJ pulsed laser at 1064 nm was obtained with pulse width of 10 ns, an average output power of 5 W and peak power of 5 MW. Its corresponding slope-efficiency was 29.8%.
\n\t\t\t\tThe experimental setup of LDA side-pumped electro-optical Q-switched Nd:YAG laser was shown schematically in figure. 10. The radiation light emitted from the ceramics rod was first linearly polarized by a polarizer and then introduced a phase difference of a quarter of a wavelength through the quarter-wave plate. A KD*P nonlinear crystal was employed as a Pockels cell Q-switch with longitudinal field. The total length of the cavity was about 260 mm.
\n\t\t\t\tSchematic diagram of experimental setup for side-pumped E-O switched Nd:YAG ceramics rod laser.
We employed two Nd:YAG samples with the same concentration and size in our experiment. One was ceramics, and the other was single crystal. Figure. 11. showed the comparative laser output power of the two samples with different conditions. At first, the two Nd:YAG lasers were easy to operate at quasi-CW mode without the polarizer, quarter-wave plate and KD*P Q-switch. Their average output power and pulse energy increased almost linearly with the increasing of the pumping energy. The corresponding slope efficiency was 46% for ceramics laser, and 44% for single crystal laser. And the optical to optical efficiencies were 29% and 27% for the ceramics laser and for the single crystal laser, respectively. When those modulating devices were inserted into the laser cavity, the actively
\n\t\t\t\tComparing output power of Nd:YAG ceramics and single crystal at the same condition.
Q-switched operation has been observed. Both of the single crystal and ceramics Nd:YAG lasers are affected by the thermal depolarization losses, so caused a little roll over of the E-O Q-switched output power curves and a significant decrease of the optical efficiencies when compared with quasi-CW operations.
\n\t\t\t\tSingle pulse waveform of Electro-Optical Q-switched Nd:YAG lasers under modulating repetition rate of 1 kHz. (a) ceramics; (b) single crystal.
Under the max average pumping power of 420 W and 1 kHz modulating rate, the slope efficiency of ceramics sample was 15.2 % and its pulse width is 12 ns and those of single crystal sample were 17.5 % and 9.6 ns. Figure. 12. showed the single pulse shape from electro-optical Q-switched Nd:YAG crystal and ceramics lasers. The above data showed that these two kinds of laser material shared very similar laser output characteristics. The ceramics has a little better performance in quasi-CW operating while the single crystal was better in pulse operation. We speculated that the polycrystalline structure inside the ceramics body, which changes the path length of photons in the rod and adds the scattering losses of the cavity, extended the waveform distortion of the Q-switched laser pulse, and resulted in lower efficiency and broaden pulse width. As well as Nd:YAG single crystal, Nd:YAG ceramics are affected by the thermal effects when high energy pulse operation. The detail research on the thermal-optical effects of Nd:YAG ceramics laser is to be explored in another paper.
\n\t\t\t\tPaverage power, pulse energy vs. Ppump and repetition rate of Nd:YAG ceramics laser.
Next we changing the pumping condition and modulating rate to 100 Hz operation, and compared the pulse performances of Nd:YAG ceramics laser under different repetition rates. The average output power and pulse energy as functions of the pumping energy with different repetition rates have been measured and plotted in Figure. 13. With 420 W max average pumping power, an average output power of 28.3 W was achieved under the repetition rate of 1 kHz. The pulse energy was 28.3 mJ and its peak power was 2.36 MW with pulse width of 12 ns. Its slope-efficiency was 15.2%. While under the modulating repetition rate of 100 Hz, the average output power of 5 W with pulse width of 10 ns was observed. The pulse energy was 50 mJ and its peak power was 5 MW. And the corresponding slope-efficiency was 29.8%. Electro-optical Q-switched ceramics laser with higher modulating repetition rates generated higher average output power but broader pulse width and lower pulse energy and peak power. No saturation phenomenon was observed and higher output energy could be in expectation. Because the thermal build up of higher repetition rate pulse laser is more serious than that of lower repetition rate pulse laser, so the thermal depolarization losses of 1k Hz pulse laser were higher than those of 100 Hz pulse laser, which resulted lower efficiency than the latter.
\n\t\t\t\tBeam profile of Nd:YAG ceramics laser under different modulating rates from CCD.
\n\t\t\t\t\tFigure. 14. showed the three-dimensional beam profiles of the pulse Nd:YAG ceramics laser with different modulating rates and under the max pumping power of 420 W from CCD. They were approximate Gaussian beam intensity distribution, but a little distortion indicated some thermal stress-induced birefringence was existed.
\n\t\t\t\tIn conclusion, a high energy electro-optical Q-switched Nd:YAG ceramics laser has been demonstrated by employing a quite uniformly compact side-pumping system. The laser parameters between ceramics and single crystal Nd:YAG lasers have been compared and the pulse characteristics of ceramics laser with different repetition rates have been discussed in detail. With 100 Hz modulating rate, output energy of 50 mJ has been attained with pulse width of 10 ns and average output power of 5 W. And its corresponding peak power was 5 MW. While with 1 kHz modulating rate, output energy of 28.3 mJ has been achieved with pulse width of 12 ns and an average output power of 28.3 W. Table.1. Summarized the measured laser parameters with the effective pumping energy of 420 mJ at 1064 nm. It approved in experimental that Nd:YAG ceramics has comparable good performance with Nd:YAG single crystal in mJ-level energy laser output. By optimizing the design of the laser cavity, adopting higher pumping power and choosing proper repetition rate, the Nd:YAG ceramics Electro-optical Q-switched laser will obtain better performance with higher pulse energy and narrower line width as well as better beam quality.
\n\t\t\t\t1at.% Ceramics | \n\t\t\t\t\t\t\tAverage output Power | \n\t\t\t\t\t\t\tPulse energy | \n\t\t\t\t\t\t\tPulse width | \n\t\t\t\t\t\t\tPeak power | \n\t\t\t\t\t\t\tSlope efficiency | \n\t\t\t\t\t\t
Quasi-CW | \n\t\t\t\t\t\t\t236 W | \n\t\t\t\t\t\t\t236 mJ | \n\t\t\t\t\t\t\t160μs | \n\t\t\t\t\t\t\t1.6 kW | \n\t\t\t\t\t\t\t62 % | \n\t\t\t\t\t\t
Pulse (1 kHz) | \n\t\t\t\t\t\t\t28.3 W | \n\t\t\t\t\t\t\t28.3 mJ | \n\t\t\t\t\t\t\t12 ns | \n\t\t\t\t\t\t\t2.36 MW | \n\t\t\t\t\t\t\t15.2 % | \n\t\t\t\t\t\t
Pulse (100 Hz) | \n\t\t\t\t\t\t\t5 W | \n\t\t\t\t\t\t\t50 mJ | \n\t\t\t\t\t\t\t10 ns | \n\t\t\t\t\t\t\t5 MW | \n\t\t\t\t\t\t\t29.8 % | \n\t\t\t\t\t\t
Experimental laser parameters of Nd:YAG lasers at 1064 nm with effective pumping energy of 390W.
Since the emergence of semiconductor laser diodes (LD) that emit at 900 ~ 1100 nm, high power LD array are used as stabilized pumping source. The Yb doped laser material with the pumping wavelength requirement at this wavelength range attracts a lot of attention. [17] Figure. 15. shows the energy level of Yb3+ ion in the crystal Yb:YAG.[18] Yb3+ ion has very simple energy diagram with 2F7/2 as lower level and 2F5/2 as excited state manifolds separated by about 10,000 cm-1. The laser wavelength of ~ 1030 nm with transition of 2F5/2 - 2F7/2 has a terminal level of 612 cm-1 above the ground states. While the thermal energy at room temperature is 200 cm-1, the terminal state is thermally populated making the Yb:YAG a quasi-three level system. At room temperature, the thermal population of the lower laser level is about 5.5%.
\n\t\t\t\tEnergy level of Yb [
\n\t\t\t\t\tTable 2 summarized physical, chemical and laser properties of Yb:YAG single crystal. [19-21] Comparing to the Nd:YAG laser material, Yb doped laser material have the merits of (1) wide pumping range, (2) high quantum efficiency of over 90%, (3) longer upper-state lifetime of ~1ms, (4) no excited state absorption, (5) no up-conversion, and (6) minimal concentration quenching. With the fast development of the Nd:YAG transparent ceramics, the Yb doped laser ceramics also shows its potential as one of the ideal candidates for high-power laser application.
\n\t\t\t\tCrystal Structure | \n\t\t\t\t\t\t\tCubic | \n\t\t\t\t\t\t
Lattice Parameters (nm) | \n\t\t\t\t\t\t\t1.201 | \n\t\t\t\t\t\t
Melting Point (K) | \n\t\t\t\t\t\t\t2243 | \n\t\t\t\t\t\t
Moh Hardness | \n\t\t\t\t\t\t\t8.5 | \n\t\t\t\t\t\t
Density (g/cm3) | \n\t\t\t\t\t\t\t4.56±0.04 | \n\t\t\t\t\t\t
Specific Heat (0-20) (J/g.cm3) | \n\t\t\t\t\t\t\t0.59 | \n\t\t\t\t\t\t
Modulus of Elasticity (GPa) | \n\t\t\t\t\t\t\t310 | \n\t\t\t\t\t\t
Young\'s Modulus (Kg/mm2) | \n\t\t\t\t\t\t\t3.17*104 | \n\t\t\t\t\t\t
Poisson Ratio (est.) | \n\t\t\t\t\t\t\t0.3 | \n\t\t\t\t\t\t
Tensile Strength (GPa) | \n\t\t\t\t\t\t\t0.13 ~ 0.26 | \n\t\t\t\t\t\t
Thermal Expansion Coefficient(/K) (0~250℃) | \n\t\t\t\t\t\t|
[100]Direction | \n\t\t\t\t\t\t\t8.2*10-6\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
[110]Direction | \n\t\t\t\t\t\t\t7.7*10-6\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
[111]Direction | \n\t\t\t\t\t\t\t7.8*10-6\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Thermal Conductivity (W/m/K) | \n\t\t\t\t\t\t\t14 @ 20℃, 10.5 @ 100℃ | \n\t\t\t\t\t\t
Thermal Optical Coefficient (dn/dT, /K ) | \n\t\t\t\t\t\t\t7.3*10-6\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Thermal Shock Resistance(W/m) | \n\t\t\t\t\t\t\t790 | \n\t\t\t\t\t\t
Laser Transition | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t2F5/2 →2F7/2\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Laser Wavelength | \n\t\t\t\t\t\t\t1030nm,1048nm | \n\t\t\t\t\t\t
Photon Energy (J) | \n\t\t\t\t\t\t\t1.93*10-19 @ 1030nm | \n\t\t\t\t\t\t
Emission Linewidth (nm) | \n\t\t\t\t\t\t\t9 | \n\t\t\t\t\t\t
Emission Cross Section (cm2) | \n\t\t\t\t\t\t\t2.0*10-20\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Fluorescence Lifetime (ms) | \n\t\t\t\t\t\t\t1.2 | \n\t\t\t\t\t\t
Diode Pump Band (nm) | \n\t\t\t\t\t\t\t940 or 970 | \n\t\t\t\t\t\t
Pump Absorption Band Width (nm) | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t
Index of Refraction | \n\t\t\t\t\t\t\t1.82 | \n\t\t\t\t\t\t
Thermal Optical Coefficient (/K) | \n\t\t\t\t\t\t\t9*10-6\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Loss Coefficient (cm-1) | \n\t\t\t\t\t\t\t0.003 | \n\t\t\t\t\t\t
Physical and chemical property of Yb:YAG
Comparing to rod shape medium in which heat is along the radius of the rod, so there is strong thermal gradient induced lensing and birefringence, in the thin disk shaped gain medium heat is extracted through the large faces with thermal gradients which is established across the smallest dimension and aligned with the beam propagation direction. [22] But thermo-mechanical distortion is still the bottleneck of high-power thin disk laser. Researchers brought up the idea of using composite media. During the pumping process, the undoped part of the medium helps to defuse the heat generated by the doped part, because the thermal conductivity of undoped part is usually higher than that of doped part. In the case of Yb:YAG/YAG medium, the undoped YAG acts as a passive heat sink and rebuilds the temperature field, especially along the thickness direction, and it seems that there is an imaginary cooling effect on the front face of the gain medium. [23] So by using a composite gain medium, which consists of both Yb:YAG and undoped YAG, the bending of the medium can be eliminated to some degree. Additionally, the composite medium eliminates the radiation trapping to a larger degree because the undoped YAG mitigates the effects of total internal reflection at the undoped-YAG-air interface. [24]
\n\t\t\t\t\n\t\t\t\t\tFigure. 16. shows the pictures of the composite Yb:YAG/YAG thin disk ceramics made by BAIKOWSKI, Japan. The thin disk is ~10 mm in diameter with very thin absorbing part of the disk (~0.6 mm) bonded together with a thicker undoped piece of YAG ceramics (~2.5 mm). The doping concentration is 9.8 at.% in the doped part. The composite ceramics disk is AR coated for the wavelength of ~930-970 nm and laser radiation 1030 nm at the front side and HR coated for both wavelengths at the back side. Figure.17. shows the double-pass absorptivity of the disk ceramics. There are mainly three absorption peaks in the range of 900 nm ~ 1100 nm: 937nm,968nm and 1027nm, with absorption efficiency of ~ 75%, 58% and 38.7%, absorption bandwidth of ~ 37nm, 10nm and 14nm respectively.
\n\t\t\t\tPictures of Yb:YAG/YAG composite transparent ceramics disk
Double-pass absorptivity of the composite ceramics
In order to lengthen the effective absorbing length in the thin-disk medium and make a good overlap between pump and resonator mode, a face-pumped CAMIL structure is chosen. With this structure, diode pump radiation is injected into the back face of the disk and then reflected by the face several times. The schematic diagram of the experimental setup is shown in 18. The laser medium is a composite Yb:YAG/YAG thin disk ceramics as described above. It is fixed with a layer of indium onto a heat sink, which is cooled with water from the back side. A collimated LD array with central wavelength at 970 nm working at 15 oC is used as pump source. By a focal length of ~ 9.4 cm lens, the pumping light is focused on the back side of the ceramics and the unabsorbed pumped radiation is reflected for another turn of absorption, i.e., the effective absorbing length is twice the length of the doped ceramics. A dichroic beam splitter (45o) which is coated with AR film at 970nm and HR film at 1030nm is inserted between the focusing lens and the composite ceramics for redirecting the laser to the output couplers.
\n\t\t\t\tIn the CW mode, output couplers with the same radius of curvature of 100 mm, and transmissions of 1%, 2%, 5% and 10% are used respectively. The whole cavity length is ~80 mm. In the Q-switched mode, output coupler with transmission of 10% is used. The output laser power is measured by a power meter (OPHIR, NOVA II) and the spectrum is recorded by a spectroscopy (YOKOGAWA, AQ6370), while the pulse width is recorded by an oscillograph (Lecroy, WR62XR).
\n\t\t\t\tIn the CW mode, the laser output power increases as the pump power increases with different output couplers, as shown in figure. 19. Up to 1.05W CW power is achieved with optical to optical efficiency of 5.25% with 2% output coupler. Central laser wavelength is at 1031 nm, as shown in Fig.20. We also get Q-switched output of the laser using an acousto-optic (A-O) Q-switch. We insert the A-O Q-switch device (Gooch & Housego, M080-2G) into the cavity with 10% transmission output coupler. Stable operation is achieved with the repetition rate of 1 kHz, 5 kHz, 10 kHz, 20 kHz and 30 kHz, along with the average output power of 0.44 W, 0.446 W, 0.452 W, 0.461 W and 0.47 W respectively. Figure. 21. shows the width of the pulse enlarges with the increasing repetition rate. Figure 22 shows the pulse waveform at 1 kHz: a minimal pulse width of 166 ns and corresponding peak power of 2.6 kW. Figure. 22. inset also shows the pulse serial, which appears to be a bit unstable but acceptable.
\n\t\t\t\tSchematic diagram of the experimental setup
CW laser output power vs. Pump power with different output transmission
Laser output spectrum
Average output power and Pulse width vs. Repetition rate
Both for CW and AO Q-switched mode, the optical to optical efficiency is low according to the data figure 19 and figure 21. But when we considered the actual absorbed pump power, the case would be different. There is only 53.5% of the pump power can be absorbed at the pump wavelength 970 nm, as shown in Fig.17. Moreover, further measurement reveals that the pumping wavelength drifted dramatically along with the increasing pump power. Figure 23 shows the measured relationship of pump wavelength and pump power while maintaining the temperature of the cooling water at 15oC. The pumping central wavelength drifts from 970 nm to 979 nm with the decreased pumping absorptivity from 53.5% to 38%, respectively. Figure. 19. also suggests that in higher pump power region, the laser power tended to be “saturated”, which is possibly caused by the decreasing absorption efficiency of the medium. Form this experiment, we found that it’s difficult to control the pump wavelength only by cooling in this pump source. Figure 17 indicates that the lengthened absorbing length inside the laser medium brought about 28% background absorption of the pump power, which might be caused by the quality of the media. It would raise the laser threshold. Figure 17 also shows that there is another absorption peak at around 1031 nm where is exactly the output laser wavelength located, indicating the reabsorption effect at 1031 nm. Thus, the increasing pumping power would lead to a stronger reabsorption results in a quick saturation at this wavelength. Moreover, the unabsorbed pump energy would contribute to the difficulty of the population inversion, thermal lensing, which would further reduce the efficiency and the laser output power.
\n\t\t\t\tPulse profile of minimum pulse width at 1 kHz. Inset shows the pulse serial.
Pump wavelength drifted with pump power and their corresponding absorptivity
We also study the CW and AO Q-switched laser performance of this Yb:YAG/YAG composite ceramics disk under the pumping wavelength of ~933 nm in order to further explore the high-power potential of this material by increasing the media absorption of pumping power.
\n\t\t\t\t\n\t\t\t\t\tFigure 24 shows the schematic diagram of the experimental setup using 933 nm pump source. The experimental setup is similar to that of ~970 nm pump source. The pump source is a fiber coupled LD array with central wavelength at 933 nm working at 20℃.
\n\t\t\t\tSchematic diagram of the experimental setup
In the CW mode, output couplers with the same radius of curvature of 100 mm, and transmissions of 1%, 2%, 5% and 10% are used respectively. The whole cavity length is ~80 mm. In the Q-switched mode, output coupler with transmission of 10% is used. The output laser power is measured by a power meter (OPHIR, NOVA II) and the spectrum is recorded by a spectroscopy (YOKOGAWA, AQ6370), while the pulse width is recorded by an oscillograph (Lecroy, WR62XR).
\n\t\t\t\tIn the CW mode, the laser output power increases as the pump power increase with different output couplers, as shown in Figure. 25. When the transmission of the output coupler is 2%, up to 2.575 W CW power is achieved with optical-optical efficiency of 17.6% and slope efficiency of 31.2%. Central laser wavelength is at 1030.2 nm, as shown in Fig.26. Because of the limited output power of the pump source, the maximum output laser power is not high enough. But from figure 25, the output laser shows no saturated intention, which means higher laser output can be achieved in the future.
\n\t\t\t\tWe also get Q-switched output of the laser using an acousto-optic (A-O) Q-switch. We insert the A-O Q-switch device (Gooch & Housego, M080-2G) into the cavity with 10% transmission output coupler. Stable operation is achieved with the repetition rate of 1.1 kHz, 5 kHz, 10 kHz, 20 kHz, 30 kHz, and 40 kHz along with the average output power of 1.29 W, 2.119 W, 2.221 W, 2.237 W, 2.246 W and 2.249W respectively. Figure 27 shows the width of the pulse enlarges and the maximum peak power of the pulse decreases with the increasing repetition rate. Fig.. shows the pulse waveform at 1.1 kHz: a minimal pulse width of 29 ns and corresponding peak power of 40.4 kW, single pulse energy of 1.17mJ.
\n\t\t\t\tCW laser output power vs. Pump power with different output transmission
Laser spectrum
Maximum peak power and Pulse width vs. Repetition rate
Pulse profile of minimum pulse width at 1.1 kHz.
We demonstrated a CW and Q-switched laser with composite Yb:YAG/YAG ceramics pumped by 970 nm and 933 nm LD. For the 970 nm pumping experiment, a maximum laser power of 1.05W with central wavelength at 1031 nm is obtained. A minimal pulse-width of 166ns and the maximal peak power of 2.6KW at 1 kHz are achieved, corresponding to an average output power of 0.44W. The repetition ranged from 1 kHz to 30 kHz. For the 933 nm pumping experiment, a maximum laser power of 2.575 W with central wavelength at 1030.2 nm is obtained. A minimal pulse-width of 29ns and the maximal peak power of 40.4 KW at 1.1 kHz are achieved. The repetition ranged from 1.1 kHz to 40 kHz. Table 3 summarizes the detailed results.
\n\t\t\t\tPump source | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Ceramics absorptivity of pump power | \n\t\t\t\t\t\t\t53.5%@970 nm | \n\t\t\t\t\t\t\t73%@933 nm | \n\t\t\t\t\t\t
Diameter of footprint of focusing pump laser | \n\t\t\t\t\t\t\t500 μm | \n\t\t\t\t\t\t\t600 μm | \n\t\t\t\t\t\t
Central wavelength of laser output | \n\t\t\t\t\t\t\t1031 nm | \n\t\t\t\t\t\t\t1030.2 nm | \n\t\t\t\t\t\t
FWHM of output laser | \n\t\t\t\t\t\t\t2 nm | \n\t\t\t\t\t\t\t5 nm | \n\t\t\t\t\t\t
CW maximum output power | \n\t\t\t\t\t\t\t1.05 W | \n\t\t\t\t\t\t\t2.575 W | \n\t\t\t\t\t\t
CW optical-optical efficiency | \n\t\t\t\t\t\t\t5.25% | \n\t\t\t\t\t\t\t17.6% | \n\t\t\t\t\t\t
CW slope efficiency | \n\t\t\t\t\t\t\t7% | \n\t\t\t\t\t\t\t31.2% | \n\t\t\t\t\t\t
Q-switched repetition rate | \n\t\t\t\t\t\t\t1 kHz-30 kHz | \n\t\t\t\t\t\t\t1.1 kHz-40 kHz | \n\t\t\t\t\t\t
Maximum average power under Q-switched mode | \n\t\t\t\t\t\t\t0.47 W | \n\t\t\t\t\t\t\t2.249 W | \n\t\t\t\t\t\t
Shortest pulse-width | \n\t\t\t\t\t\t\t166 ns | \n\t\t\t\t\t\t\t29 ns | \n\t\t\t\t\t\t
Maximum peak power | \n\t\t\t\t\t\t\t2.6 kW | \n\t\t\t\t\t\t\t40.4 kW | \n\t\t\t\t\t\t
Experimental results of 970nm and 933nm pumping experiment
The Nd:YAG ceramics has proven its advanced merits [25,26] and can be manufactured commercially. But scientists also exploree forward to develop new kind of ceramics in order to overcome the disadvantage exists in Nd:YAG single crystal. Recently, a new kind of laser material based on Nd:YAG-Nd:YSAG has been prepared, in which Sc3+ replaces Al3+ in YAG. Because Sc3+ has a larger size than Al3+, the entrance of Sc3+ leads to lattice expansion. In this way, more Nd3+ can be accommodated in the lattice, in other words, higher doping level is expected comparing to Nd:YAG. By far, highly and homogeneous doped Nd:YSAG has been fabricated successfully. Due to the associated increase of the absorption coefficient, it’s possible for us to use thinner laser media, which promises a higher cooling efficiency because of the higher surface area per unit volume. Thus we can reduce optical distortion and thermal stress, which are important for improving the laser beam quality. Moreover, the enhanced emission intensity, prolonged fluorescence lifetime [27, 28] and lower threshold comparing to the quasi-four-level Yb3+ doped material together highlight this novel material. It’s a suitable media for short-pulse microchip laser. 10ps ultra short-pulse laser has been generated from a passive mode-locked Nd:YSAG ceramics laser [29]. Therefore, transparent ceramics Nd:YSAG will find its way to the application of thin-disk laser and high-power miniature laser.
\n\t\t\tBut Nd:YSAG ceramics is an interesting material besides its merits discussed above. In our experiment, we demonstrated a dual-wavelength competitive laser output in Nd:Y3Sc1.5Al3.5O12 ceramics disk. In former published papers, many scientists have reported dual-wavelength in many laser materials, such as J. Lu et al. [30]. Yoichi Sato et al. also reported the appearance of dual-wavelength in Nd:YSAG [29]. We further compare the laser spectra in Nd:YAG and Nd:YSAG and then figures out possible reasons for this interesting phenomenon from the view of the material structure. The competitiveve behavior of these two wavelengths prognosticates a possible simpler way to generate Terahertz radiation.
\n\t\t\tSplitting laser level of Nd3+ in YSAG and Fluorescence spectra of Nd:YSAG ceramics
\n\t\t\tSince introducing Sc3+ into the Nd:YAG, which means that the surrounding of the optical center Nd3+ is modified, the energy level structure would be altered. By using a model Hamiltonian that assumes D2 site symmetry for the Nd3+ ions in the garnet lattice, John B. Gruber et al. figured out the energy level of Nd:YSAG [31]. The splitting laser levels of Nd3+ in YSAG-4F3/2 and 4I11/2 -are shown in Figure. 29.
\n\t\t\tThe splitting laser level of Nd3+ in YSAG, 4F3/2 and 4I11/2\n\t\t\t\t\t
Fluorescence spectra is influenced by x in Nd:Y3ScxAl5-xO12\n\t\t\t\t\t
The Nd:YSAG ceramics disks used in our experiment are made by Shanghai Institute of Ceramics, Chinese Academy of Science. By changing the x in Nd:Y3ScxAl5-xO12, we obtain the fluorescence spectra, as shown in figure 30. The two strongest peaks locate from 1060.5nm to 1062.5nm depending on the concentration of Sc, corresponding to the transition of R1-Y1 and R2-Y3 in in figure 29.Along with the increasing amount of Sc3+, the bandwidth of fluorescence broadens. Moreover, the branching ratio and position of emission peaks also change. We attributed this inhomogeneous line broadening to the expansion of lattice and complex surroundings of Nd3+ ions in the disordered YSAG lattice.
\n\t\t\tThe schematic diagram of experiment setup is shown in Figure. 31. The size of Nd:Y3Sc1.5Al3.5O12 ceramics disk is Ø12mm*1mm with Nd3+ 4 at. % doped and both the surfaces of the sample are coated with antireflection-film at 1064nm. The laser experiments are carried out at room temperature without active cooling system. A fiber-coupled LD working at the central wavelength of 808nm is used as pump source. The fiber core diameter is 200 μm with the numerical aperture of 0.22. By 2 lenses coupling system, the pump beam is focused on the ceramics’ surface to produce a pump light footprint of about 60μm in diameter. We apply a plan-plan cavity with an overall length of ~7 mm. The front mirror is antireflection coated at 808nm and highly reflecting at 1064nm. The rear mirror is the plane-parallel one as output coupler. A dichroic beam splitter (450) is used to reflect the laser and filter out the pump light. The laser output characteristics are analyzed for their spectral content and power with an optical spectrum analyzer (YOKOGAWA AQ6370) and a power meter (Spectra-Physics 407A), respectively.
\n\t\t\tSchematic diagram of the experimental setup
In the experiment, the ceramics absorbs about 64% of the pump power set on its surface. The output couplers with different transmission 3%, 3.9%, 6% and 10% at 1064nm are used for laser output experiments respectively. The results are shown in Figure. 32. The laser threshold increases from 0.345W to 1.03W with the increasing of transmission of the output coupler. The maximum output power of 0.356W is achieved at absorbed pumping power of 1.96W with the output coupler of Toc=10%. Correspondingly, the optical-optical efficiency is 18.2% and the slope efficiency is 23.2%. The emission spectra of the laser output is shown in Figure. 33., in which the absorbed pump power is 1.52 W with the output coupler transmission of 10 %. We observes two wavelengths oscillate simultaneously.
\n\t\t\tOutput power of the laser emission vs. absorbed pump power for different output couplers
Emission spectra of the laser: two wavelengths oscillates simultaneously
In order to make a comparison and get more conclusive results, we apply the same experimental environment to another 2 at. % doped Nd:YAG ceramics disk. The output transmission is Toc=3%. During the experiment, two-wavelengths’ oscillation is also observed in Nd:YAG ceramics disk. But the behavior of the two wavelengths in Nd:YAG is totally different with that in Nd:YSAG when the pump power is increasing. In Figure. 34(a), at the absorbed pump power of 0.347W which is just above the threshold, only 1064nm can oscillate in Nd:YAG. When the pumping intensity enhanced, another wavelength at 1061nm appears. Further increasing the pumping power, the intensity of 1061nm and 1064nm increase synchronously. In Figure. 34 (b), the first laser wavelength operated at 1059.9nm in Nd:YSAG. Increasing the pump power, signal laser at the wavelength of 1063.8nm and 1059.9nm radiate form Nd:YSAG simultaneously. Boosting the pumping power, a competitive laser output is shown, in which the intensity of laser at 1059.9nm decreases and that of laser at 1063.8nm increases.
\n\t\t\tDifferent behavior of (a) Nd:YAG and (b) Nd:YSAG along with increasing pump power.
Experimental and deducted data of the two wavelengths
By assuming that the total laser output only contains the power of 1059.9nm and 1063.8nm, which ignores noise, we can safely calculate the ratio of each wavelength contributed to the laser output power from the recorded 6 groups of spectrum data for different absorbed pump power. The results are shown in Figure. 35.(a), the ring (o) for 1059.9nm and the plus (+) for 1063.8nm. The green solid line is polynomial fitting curve for 1059.9nm,and the red line is for 1063.8nm. Correspondingly, the output power of each wavelength can be deducted from the recorded experimental data for Toc=3%, as shown in Figure. 35. (b). We also work out the fitted functions of the power of 1059.9nm and 1063.8nm. Laser 1059.9nm experienced a whole climbing-hill process, in which its power ascended when absorbed pump power is under 1.7W and then descended. On the other hand, laser 1063.8nm exhibited an always-climbing process. The blue line, corresponding to the sum up fitted function, is consistent with the experimental data obtained by power meter marked by start (*) in (b).
\n\t\t\tWhile considering the different laser behavior of the two ceramics samples, we attribute these to the different structure of the ceramics. By inviting Sc3+ to the Nd:YAG to make Nd:YSAG, we actually change the structure of the crystal lattice within the ceramics. When the Sc3+ ions (with ion radii larger than Al3+ ions but smaller than Y3+ and Nd3+ ions) enter the lattice, part of the Al3+ will be replaced. But the replacement is random. The difference of ion radii, chemical and physical properties between Sc3+ and Al3+ ions would lead to an almost unpredictable replacing situation. It is highly possible that around the optical center-Nd3+, one site is covered with Al3+ and the other site covered with both Al3+ and Sc3+, as illustrated in Figure.36. Besides, at different part within the ceramics, Nd3+ are affected by different but similar crystal field, originated from the disorder nature of this new material. Thus the introduction of Sc3+ creates different local environments for the Nd3+ ions which results in multiple sites having different symmetries. The effect of this substitutional disorder is also illustrated: the more Sc3+ enters YAG, the more asymmetric the lattice is, and the more evident the inhomogeneous broadening is presented. Moreover, the transition possibility between different stark levels is also changed. We assume it as multi-sites. The grain boundary within the ceramics material would produce even more complex multi-sites of optical centers, such as Nd3+ ions right at the grain boundary or within a single-crystal grain, for instance.
\n\t\t\t\tPositions of Y3+, Al3+ in YAG lattice: when Sc3+ enters the lattice, the replacement of Al3+ in octahedral site is random
In order to give a reasonable explanation of this competitive phenomenon, mutual interactions between ions (instead of isolated ion) are considered and an energy transfer model is applied, as illustrated in Figure.37. When the concentration of active ions is increased, such as in high doped materials, long before the appearance of new lines due to pairs or modifications in radiative transition probabilities, a migration of energy between centers is found. In fact, the energy transfer probability is proportional to the activator concentration [32]:
\n\t\t\t\tWt=UNA,
\n\t\t\t\twhere U is a constant that depends on the type of interaction; NA is the activator concentration.
\n\t\t\t\tLet us consider the simple case of two ions with excited states of different energies, see Figure.37. (a). Then for small energy mismatch (about 100cm-1), energy transfer assisted by one or two phonons can take place [33]. As far as Nd:Y3Sc1.5Al3.5O12 ceramics is concerned, the fluorescent intensity around 1059nm is stronger than that of around 1062.5nm. Without any control of the output laser, laser at 1059.9nm will certainly oscillate first. Meanwhile, when energy transfers from one particular site to another which has slightly different surroundings, the lattice will absorb energy as non-radiative transitions. Thus the “losing of frequency” (lowered energy) leads to the switching to longer wavelength. From the fluorescence spectra, the second highest peak is at around 1062.5nm. Since the energy mismatch between R1 (upper laser state for 1059.9nm) and R2 (upper laser state for 1063.8nm) is small (~ 82cm-1), along with the high doping concentration (4 at. % doped), it is possible that energy transfers from centers (lattice A) which radiate mainly at 1059. 9nm, to the other centers (lattice B) mainly radiating at 1063.8nm. In fact, we can assume the 1059.9nm center as sensitizer and the 1063.8nm center as activator see Figure.37. (a). With the increasing of pumping intensity, more and more transfer would take place. As a result, the 1063.8nm reaches its threshold later and forms the second laser. For there is no outside assistance to influence the transfer, it is natural that higher energy from part of active ions is transferred to other different part of ions and emitted photon with lower energy there. The thermal load of the ceramics will enhance such process. That is the reason for the competitiveve output between 1059.9nm and 1063.8nm.
\n\t\t\t\tDifferent energy transfer styles between Nd:YAG and Nd:YSAG
If now we consider another situation: two ions with their nearly equal energy of the excited state, which is the case of Nd:YAG. Bbecause the Nd3+ ions occupy identical sites in the ordered lattice and the doping concentration is much lower (2 at. % doped), the excitation will jump from one ion (lattice A) to the nearby ion (lattice B) and resulted in almost no energy loss, see Figure. 37. (b). Therefore, with the development of pumping intensity, both the two laser output power increased correspondingly. Again, this proves that the dual-wavelength output behavior is the result of Nd:YSAG’s own special and complex structure.
\n\t\t\t\tTerahertz wave attracts many scientists because of its ability to penetrate common materials without harming human tissue like typical X-rays. Several methods are developed to generate it. A very effective way to achieve that is by Difference Frequency Mixing (DFM) of near-IR lasers, usually using 2 seed sources. One of these outstanding jobs is done by Daniel Greeden et al. [9]. Since they used two seed diodes whose wavelengths are 1064.2nm and 1059nm respectively, there is highly possible that this kind of Nd:YSAG ceramics disk can be used to replace the two seed sources in the future. From Figure. 33., when absorbed pump power is 1.96W, the output of 1059.9nm and 1063.8nm are the same. From this point, utilizing this kind of ceramics laser as seed source to output two near-IR lasers amplified by double-clad fiber laser and then applying DFM methods to generate Terahertz radiation is our future blueprint of a compact Terahertz source.
\n\t\t\tIn our experiment on Nd:YSAG thin disk ceramics, we get CW laser output and demonstrated the dual-wavelength competitive output phenomenon. By comparing the different laser performance between Nd:YAG and Nd:YSAG and applying an energy transfer model, we discuss and give reasonable explanation for the dual-wavelength competetive output in Nd:YSAG as the disordered replacing of Al3+ ions by Sc3+ ions. This disordered replacing leads to a different energy transfer system in Nd:YSAG. Through the analysis of the behavior of the two wavelengths, we proposed a possible solution to make compact Terahertz source by using one laser source in the future.
\n\t\tAs already mentioned in other chapters, milk whey is a liquid by-product generated after obtaining cottage cheese or curd (proteins coagulated by acid and heat), also known as cheese whey, that for many years has been considered a waste product, and sent to bodies of water, soil, and sewage systems. However, currently it is used due to its multiple nutritional and functional properties [1].
In Mexico, the production of whey in 2016 was estimated at 1,010,000 tons, 47% of which was discharged to soil, drains, and bodies of water. Despite the fact that multiple uses have been found to cheese whey, this has become a serious environmental problem [2]. This by-product is composed of water, lactose, proteins, peptides, fat, and mineral salts [3]. One of the peptides of interest is glycomacropeptide (GMP), which is obtained after the coagulation of milk κ-casein during cheese production and represents 15–20% (w/w) of the total proteins contained in milk whey [4].
GMP is the C-terminal fragment released by the proteolytic action of the endopeptidase chymosin (renin) on κ-casein during the initial stages of cheese making, or by the action of pepsin during the gastric digestion. κ-casein is hydrolyzed at phenylalanine105-methionine106 bond, forming two very different polypeptides. One is called para-κ-casein (residues 1–105), and it is slightly cationic at pH 6.6, hydrophobic and poorly soluble, which remains in cheese curd; and the other is GMP (residues 106–169), that is strongly polar so diffuses into the aqueous phase, being eliminated during the draining with the cheese whey (as reviewed in [5]).
GMP has 64 amino acid residues, with an isoelectric point (pI) between 4 and 5. Fifty percent of GMP is deglycosylated and is known as caseinomacropeptide (CMP) [5]. However, milk GMP can present different types of carbohydrates, such as: sialic acid, galactosyl, and N-acetylgalactosamine, which generate different glycosylated forms of the molecule. GMP is rich in amino acids such as proline, glutamine, serine, and threonine, but deficient in tryptophan, tyrosine, phenylalanine, and cysteine. The absence of aromatic amino acids in its primary structure causes that GMP does not present absorption at the wavelength of 280 nm. However, GMP can be detected at wavelengths between 205 and 226 nm and absorption differences between 210 and 280 nm are used for the characterization of GMP (as reviewed in [5]). The composition of GMP can be variable and depends on the source of serum and the fractionation technology used in its isolation [3] (Figure 1).
Primary structure of bovine GMP variant A and B, where ● indicates its three phosphorylation sites and ▲ the most important glycosylation sites. Modified from Thomä-Worringer et al. [
As reviewed by Neelima [7], the three-dimensional structure of GMP cannot be evaluated due to its crystallization which is not possible, so it can only be seen from a purely theoretical approach. GMP is a peptide that does not possess defined secondary and tertiary structure. However, three-dimensional structure of GMP has been predicted by means of protein modeling and shows that a large part of the peptide has a strong negative charge, whereas there are three small domains with a positive charge at the N-terminal end. At pH 7.0, its mean value of the hydropathy is −0.322, and GMP is more hydrophilic than hydrophobic. The hydropathy value decreases when glycosylation of GMP increases, due to the greater amount of sialic acid residues.
The use of GMP is growing, since it is a bioactive peptide with unique nutritional and nutraceutical properties. Many biological activities of GMP have been reported, highlighting antimicrobial, anticariogenic, gastric acid inhibitory, cholecystokinin (CCK) releasing, prebiotic, and immune modulatory. Of particular interest is GMP’s capacity to modulate the immune response, due to its potential use in treatment or prevention of different immunopathologies.
One of the first antimicrobial effects observed in GMP was due to its ability to bind cholera toxin and
There are several
In association with this antimicrobial effect, an anticariogenic activity to GMP has been demonstrated. Firstly,
Several studies have related GMP with the inhibition of gastric secretion. First ones were mostly developed using dogs by a group of Russian researchers. The first evidence that GMP inhibits gastric secretion was showed by Shlygin and co-workers [18] using gastrin to evoke it. Subsequent works demonstrated similar effect using different gastric secretion stimulants [19]. Some years later, it was proposed that this inhibitory effect was caused by a GMP fragment rather than the whole molecule [20, 21]. Later, injecting dogs with a protein fraction obtained from the gastric content of unweaned rats, it was observed an inhibition in dog gastric secretion to a food stimulus [22]. This inhibitory action was similar to that induced by GMP in dogs. GMP was also demonstrated to inhibit gastric motility after its intravenous injection in dogs [23]. All these experiments point out that at physiological conditions GMP may be playing a crucial role in the preservation of active milk proteins in newborn animal during natural breast feeding. In addition to dogs, other experimental models such as rats, pigs, and calves and also isolated organs were used to demonstrate that GMP induces gastric secretion inhibition in association with a decrease in blood of some regulatory digestive hormones, as gastrin and CCK (as reviewed in [24]). However, variations in used gastric stimuli, GMP dose, and origin, via of administration and experimental approach may be the cause of the differences in the reported intensity to this GMP activity.
Related with the effect of this bioactive peptide on digestive hormones, GMP has also been associated with appetite control. Several
For many years, the prebiotic properties of GMP have been discussed. The first evidence that GMP might possess prebiotic activity arose with the bifidobacterial growth promoting effect of human’s colostrums and milk by
In the last years, several research groups have demonstrated that oral treatment with GMP modifies
GMP has been shown to modulate the immune response in a number of different ways. First, we summarize literature reports about regulatory activity of GMP on immune cells demonstrated by
In relation to the immunomodulatory effects of GMP on immune cells, different
On the other hand, GMP is also able to downregulate dendritic cell response to LPS by inducing a slight but significant decrease in the production of IL-6, IL-1β, and TNF-α, but without changing the production of IL-12 and IL-10 [49]. Strikingly, the regulatory effect of GMP on neutrophils is the opposite, as it improves proliferation and phagocytic activity of the human macrophage like cells U937 [52]. However, the observation that both polypeptide and carbohydrate portions are essential for GMP biological effects is reinforced in this study, as peptides of pepsin-digested GMP and sialic acid-rich GMP fractions significantly enhanced cell proliferation and phagocytic activities stimulated by non-digested or asialo-GMP on U937 cell. Also, an upregulatory effect of GMP on production of IgA by LPS-stimulated splenocytes has been reported, being correlated with an increase in the population of IgA positive cells [53].
There are several studies that analyze the immunomodulatory activity of GMP on immune response when it is orally administered to experimental animals. In the context of splenocytes response to mitogens, two
The effect of orally administered GMP on humoral immunity has also been studied. Mice fed with GMP have shown suppressed levels of specific IgG to dietary and injected antigens, with no change in IgM, IgA, and IgE antibody response [54]. In this regard, a recent study showed that oral administration of GMP to mice resulted in a greater number of IgA positive plasma cells in the intestinal lamina propria [56]. All these results [54, 56] plus
Martínez-Augustin and co-workers [57, 58] have studied the immunomodulatory action of GMP in experimental models of intestinal inflammation. They have demonstrated that GMP administered orally to rats exerts an anti-inflammatory effect in ileitis and colitis induced with trinitrobenzenesulfonic acid (TNBS); said anti-inflammatory effect shows a degree of efficacy similar to that of sulfasalazine, a drug widely used in the treatment of inflammatory bowel disease. GMP was shown to protect rats from TNBS-induced colonic and ileal inflammatory damage, by reducing the damage score and the extent of necrosis, and also by diminishing the increased alkaline phosphatase colonic activity and inducible oxide nitric synthase expression. IL-1β and IL-1ra messenger RNA levels were significantly decreased in colon as a consequence of GMP administration; and myeloperoxidase activity and levels of IL-1β and IL-17 were decreased in ileum. Initially, the authors assumed that the action mechanism of GMP was not related to anti-oxidative activity or to regulatory cell induction, as glutathione or TGF-β levels in colon and Foxp-3 in ileum were not affected [57, 58]. However, when GMP was orally administered to rats, an increase on Foxp3 expression in spleen cells was observed, although secretion of cytokines by
In recent years, a Mexican laboratory led by Salinas [55, 59, 60, 61] has focused on the study of the immunomodulatory activity of GMP in experimental allergy models. They found that oral administration of GMP to rats before and during sensitization with allergen significantly reduces the level of allergen-specific IgE in serum, and also decreases the proliferative response and the production of IL-13 by splenocytes stimulated by the allergen [55]. Treatment of animals with GMP also protected them from systemic anaphylaxis as GMP administration increased survival rates and lessened signs of severity of anaphylactic shock. Moreover, GMP reduced the intensity of urticarial inflammatory reaction when sensitized animals were intradermically challenged with the allergen [55]. With these results, it was demonstrated the immunomodulatory properties of GMP on allergic sensitization and its beneficial effect on clinical signs associated to early-phase allergic reaction. Then, they investigated whether GMP may impact on late-phase and chronic inflammatory allergic reactions, using two experimental models that after repetitive exposure to allergens displayed local recruitment and activation of immune cells with persistent production of inflammatory mediators in affected tissues, together with substantial changes in the extracellular matrix and alterations in structural cells [62]. Specifically, they used experimental models of asthma and atopic dermatitis prophylactically administered with GMP, that is to say, prior to and during pathology establishment. As expected, GMP intake resulted in reduction of IgE titers in serum. In addition to this, in asthma model, GMP substantially decreased blood eosinophilia and suppressed the recruitment of inflammatory cells to the bronchoalveolar compartment. GMP also inhibited eosinophils infiltration, goblet cells hyperplasia, and collagen deposit in lung tissue [59]. Equivalent results were obtained in allergen-induced atopic dermatitis model, where GMP reduced the intensity of cutaneous inflammatory process and edema, abolished pruritus, and reduced eosinophils recruitment and mast cells hyperplasia in dermis [60]. In both models, expression of IL-5 and IL-13 was markedly inhibited in lung and skin, while expression of IL-10 was increased. Their research then turned to the mechanism by which GMP modulates the allergic response. They demonstrated that GMP administration increases the amount of
Finally, there are few studies that analyze the role of GMP on cancer. In a rat model of pharmacological-induced colorectal cancer, oral administration of 100 mg/kg of GMP decreased the number of aberrant crypt foci although no effect was observed at doses of 10 and 50 mg/kg. On the other hand, there was no change in methylation and expression level of p16 and MUC2, two tumor suppressor genes [63]. Additionally, through an
Although more studies are needed in relation to some biological activities, current results propose GMP as a good candidate to be used as a functional ingredient in food industry.
Today, one of the objectives of the food industry is the development of novel food products with beneficial properties for health. For its different health benefits, GMP can be used in therapeutic and dietary foods, or as a functional ingredient in various special products, like oral care products.
It is crucial to demonstrate that GMP is hypoallergenic to be used in food compositions. In this regard, Takahashi and collaborators patented a food composition that contained GMP and a mixture of free amino acids (leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, tryptophan, arginine, histidine, and glycine) [65]. The composition presented good taste, good absorption and digestion properties, and a high nutritional value. They demonstrated that this composition was hypoallergenic, as after repeated injections of the GMP composition together with an adjuvant used to induce experimental allergy in mice, no antibody against GMP was detected in serum by Ouchterlony. Although this method is not very accurate, GMP hypoallergenicity was later corroborated by Milkkelsen and collaborators using ELISA test to show absence of specific antibodies in mice after being sensitized both systemically or orally with GMP [66].
Due to the particular amino acid composition of GMP, devoid of aromatics amino acids (phenylalanine, tryptophan, and tyrosine), it can be used for special diets of people suffering from phenylketonuria (PKU), being an adequate choice as a source of proteins [67]. On the other hand, GMP has low amount of methionine but high amount of branched chain amino acids (valine and isoleucine), which makes this peptide an excellent candidate to be used for the control of liver diseases, as this type of amino acids are good as caloric sources [68]. There is a patent to use of GMP to improve female’s health [69]. The inventors claim that administration of a composition comprising GMP can improve the health of the females. They used murine models fed with GMP composition and showed that females decreased final fat mass and percent body fat, when comparing with females that received a diet based on caseins or free amino acids as source of proteins. In relation to bone characteristics, femur length was larger in GMP administered mice, although only females showed less femoral weakness and greater bone mineral content and density as compared to those fed with amino acids or casein diets, respectively.
As previously mentioned, research results suggest that GMP has an effect on the feeling of fullness but this does not translate into a lower food intake [27, 28]. For an application in food intake regulation and in potentially body weight management, more work is required. Understanding dose, timing, and delivery mode, including food form and composition, in relation to the pattern of release of CCK, is needed for the use of GMP as appetite suppressant [70].
GMP has physicochemical properties that make it attractive for use as an additive in food products. According to studies on the functional properties of GMP, it can act as an emulsifier, foaming, and gelling agent.
GMP as an emulsifier presents stability to pH variations, which is attractive for foods that undergo pH changes during their process, such as the case of fermented milk products [71]. The best emulsifying capacity was obtained at alkaline pH. However, it has been observed that emulsions with GMP as emulsifying agent are not stable during storage when they have received thermal treatment [72]. Besides, GMP modified covalently with disaccharides or fatty acids can present an improved function and even increase its biological activity [73, 74]. Therefore, in order to modify the emulsification activity of GMP, this peptide has been conjugated with other molecules such as lactose [73] and fatty acids [74]. The conjugation of GMP with lactose was carried out through the reaction of Maillard, and this conjugate showed a better emulsifying capacity without significantly reducing the solubility of GMP [73].
Currently, foams have many industrial uses of great importance in the production of beer, soaps, whipped cream, shaving cream, aerosols, etc. The formation of a foam requires the participation of a surfactant capable of diffusing to the air/water interface to lower the surface tension. GMP complies with this property, although the foams formed with GMP are stronger or more stable when combined with other foaming proteins [75, 76]. In order to improve the foam properties of the proteins, synergistic mixtures of biopolymers and pH variations have been made that can modify their charge and, consequently, their foam ability. In relation to this, by combining sodium caseinate with GMP, synergistic interactions take place between these molecules on foaming and on stability at pH 5.5 [77]. Non-glycosylated GMP has better foaming properties than glycosylated GMP [78]. This is due to the glycosidic structures favor a combination of hydrophilic and electrostatic effects, which prevents an orderly adsorption of the glycosylated GMP molecules at the air/water interface; whereas, non-glycosylated GMP forms a very stable network at the interface.
On the other hand, gels are semi-solid systems that consist of a network of solids (three-dimensional network of polymers) with an inside trapped-liquid. They are of great importance in food and pharmaceutical industry as many gelled products are manufactured throughout the world (gummies, gelatins, jelly jams, bakery fillings, and therapeutic or cleaning agents). Generally, gelling agents are proteins and polysaccharides. Gelling properties of GMP has been studied and it is known that its gelation depends on pH and temperature, reporting that even aqueous solutions with low GMP amounts can be gelled at pH below 4 [79]. Besides, GMP can potentiate gellying capacity of other substances. Thus, by fermenting goat milk to which GMP was added, a more ordered and structured gel was obtained, in addition to obtaining a better elasticity in it, as compared to that obtained when whey protein concentrate was added [80]. The influence of GMP on the gelation made by gelatin has also been studied and when these two compounds are mixed, lower concentration of both substances are need to get a gel as compared with the ones need when they are used separately [81]. This synergistic effect in gelation is very important in the food industry for the preparation of desserts and foods based on gels.
Dental caries is one of the chronic diseases that most often affect humans. Due to the anticariogenic and remineralization properties demonstrated to GMP and previously reviewed in biological activities section, nowadays GMP is being incorporated to some oral care products [15, 16, 17].
One of the problems presented by the dairy industry is the adulteration of milk with whey cheese, which is very cheap and not detected by sensorial tests. Cheese whey does not cause harm to health, however, it affects milk-derived products manufacturers financially and can affect the consumers nutritionally, so the addition of cheese whey is considered a fraud. Due to GMP present in cheese whey, the detection of this peptide may indicate the addition of cheese whey to milk. Some of the methods that detect GMP as an indicator of the presence of cheese whey are described below.
High performance liquid chromatography (HPLC) has been widely used to identify GMP as indicative of milk adulteration with cheese whey. In order to carry out the analysis, it is necessary to pre-treat the samples with TCA to precipitate proteins that can interfere (k-casein) and to concentrate GMP [86]. Similarly, a rapid and sensitive HPLC method on a gel permeation column was developed to detect GMP to follow the hydrolysis of k-casein by chymosin in milk [87]. The only pretreatment given to samples was addition of TCA (final concentration 8%) to precipitate the interfering caseins and whey proteins. This method was widely used by several researchers to analyze different samples, such as skimmed milk powder [88]. Cation-exchange chromatography has also been used to detect GMP, previously removing caseins from whey samples by precipitation with HCl at pH 4.6, neutralizing with TCA at 2–8% and analyzing supernatants [89]. On the other hand, a Reversed-Phase HPLC (RP-HPLC) method was developed and validated to separate and quantify GMP and was demonstrated to be precise, sensitive, and reliable [90]. The determinations were performed in the linear range of 15–200 μg/mL and the detection limit was 2 μg/mL. The method was applied to the analysis of rennet and acid whey, whey protein concentrates produced by the dairy industry, and also for the detection of rennet whey in powdered milks.
The European Commission uses two methods to detect the presence of cheese whey in milk: a gel permeation chromatography and subsequently a RP-HPLC as a confirmatory test [91]. However, it has been shown that the sensitivity of this method is affected by the presence of acidified rennet whey, which makes it difficult to detect the addition of whey [92]. Besides, the HPLC methodology used to analyze compounds like GMP in dairy products usually includes extractions with solvents, sample’s preparation require a lot of time and reactives, the equipment is very sophisticated and demands trained personal.
Spectroscopy has also been used to detect GMP. The medium infrared spectroscopy (MIR) was used to analyze milk powder in order to detect GMP as adulteration parameter. Although this method is fast, it is not widely used because derived spectra are not very easy to interpret, in addition to its high cost [93]. On the other hand, by liquid chromatography/electrospray coupled to mass spectrometry, milk products were analyzed and it was able to quantify GMP from concentration of 10 pmol, although the method was not used to detect milk adulteration [94].
Immunoassays are analytical methods of great application in the food area, and have the advantages that they are quick, sensitive, and that the sample to be analyzed requires little or no treatment. Several immunochemical methods have been developed in order to identify and quantify GMP in milk. Firstly, it is necessary to produce antibodies against GMP and later, these antibodies can be used for the development of the different immunochemical methods that detect it. Some of these assays are described below:
In summary, different techniques and methods have been developed and used to detect GMP as an index of adulteration of milk with cheese whey. Some of them can also be used to quantify GMP in food products. The aim of this area of research is to achieve one that bring together being cheap, fast, easy to develop, and to interpret the results, with high sensitivity and a limited sample processing. These characteristics will allow people to use them at the time and place of milk reception.
GMP possesses several nutritional and health promoting properties. Among them, it exerts important modulatory effects on the immune system that are beneficial in a number of different inflammatory conditions. GMP immune response mechanism of action might be mediated by increasing healthy intestinal microbiota, by inhibiting splenocyte proliferation, by promoting both local and systemic regulatory environment, and also by directly modulating immune cell functions. More research is needed to support these findings, as we cannot exclude a possible effect of products derived from GMP digestion on
We appreciate the support given to the Autonomous University of Aguascalientes for the publication of this chapter.
Authors declare that there is no conflict of interest between the authors of the chapter entitled: “Glycomacropeptide: Biological activities and uses.”
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5818},{group:"region",caption:"Middle and South America",value:2,count:5287},{group:"region",caption:"Africa",value:3,count:1757},{group:"region",caption:"Asia",value:4,count:10539},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15929}],offset:12,limit:12,total:119317},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"qngrRaqGuveqFgrcChoyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"55",title:"Immunology",slug:"immunology",parent:{title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:4,numberOfAuthorsAndEditors:103,numberOfWosCitations:50,numberOfCrossrefCitations:42,numberOfDimensionsCitations:77,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"immunology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6243",title:"Autoantibodies and Cytokines",subtitle:null,isOpenForSubmission:!1,hash:"6b5642d13358449f5e7bb5eaec28ead9",slug:"autoantibodies-and-cytokines",bookSignature:"Wahid Ali Khan",coverURL:"https://cdn.intechopen.com/books/images_new/6243.jpg",editedByType:"Edited by",editors:[{id:"64042",title:"Dr.",name:"Wahid Ali",middleName:null,surname:"Khan",slug:"wahid-ali-khan",fullName:"Wahid Ali Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7248",title:"Dendritic Cells",subtitle:null,isOpenForSubmission:!1,hash:"ce3caba88847e8b12beb992e7a63e1dc",slug:"dendritic-cells",bookSignature:"Svetlana P. Chapoval",coverURL:"https://cdn.intechopen.com/books/images_new/7248.jpg",editedByType:"Edited by",editors:[{id:"70021",title:"Dr.",name:"Svetlana P.",middleName:null,surname:"Chapoval",slug:"svetlana-p.-chapoval",fullName:"Svetlana P. Chapoval"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5300",title:"Advanced Biosignal Processing and Diagnostic Methods",subtitle:null,isOpenForSubmission:!1,hash:"6ff0e362b66214cde5c72df4c671f32c",slug:"advanced-biosignal-processing-and-diagnostic-methods",bookSignature:"Christoph Hintermüller",coverURL:"https://cdn.intechopen.com/books/images_new/5300.jpg",editedByType:"Edited by",editors:[{id:"180972",title:"Dr.",name:"Christoph",middleName:null,surname:"Hintermüller",slug:"christoph-hintermuller",fullName:"Christoph Hintermüller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1436",title:"Applications of Immunocytochemistry",subtitle:null,isOpenForSubmission:!1,hash:"ebd0373d5312e8911e528f4d6f6a1905",slug:"applications-of-immunocytochemistry",bookSignature:"Hesam Dehghani",coverURL:"https://cdn.intechopen.com/books/images_new/1436.jpg",editedByType:"Edited by",editors:[{id:"94972",title:"Dr.",name:"Hesam",middleName:null,surname:"Dehghani",slug:"hesam-dehghani",fullName:"Hesam Dehghani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"59914",doi:"10.5772/intechopen.74550",title:"Cytokines and Interferons: Types and Functions",slug:"cytokines-and-interferons-types-and-functions",totalDownloads:4297,totalCrossrefCites:5,totalDimensionsCites:12,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Vinicius L. Ferreira, Helena H.L. Borba, Aline de F. Bonetti, Leticia P.\nLeonart and Roberto Pontarolo",authors:null},{id:"30339",doi:"10.5772/33108",title:"Immunoelectron Microscopy: A Reliable Tool for the Analysis of Cellular Processes",slug:"immunoelectron-microscopy-a-reliable-tool-for-the-analysis-of-biological-processes",totalDownloads:7070,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"applications-of-immunocytochemistry",title:"Applications of Immunocytochemistry",fullTitle:"Applications of Immunocytochemistry"},signatures:"Ana L. De Paul, Jorge H. Mukdsi, Juan P. Petiti, Silvina Gutiérrez, Amado A. Quintar, Cristina A. Maldonado and Alicia I. Torres",authors:[{id:"94062",title:"Dr.",name:"Ana",middleName:"LucÃa",surname:"De Paul",slug:"ana-de-paul",fullName:"Ana De Paul"},{id:"107542",title:"Dr.",name:"Jorge",middleName:null,surname:"Mukdsi",slug:"jorge-mukdsi",fullName:"Jorge Mukdsi"},{id:"107544",title:"Dr.",name:"Juan Pablo",middleName:null,surname:"Petiti",slug:"juan-pablo-petiti",fullName:"Juan Pablo Petiti"},{id:"107545",title:"Dr.",name:"Silvina",middleName:null,surname:"Gutiérrez",slug:"silvina-gutierrez",fullName:"Silvina Gutiérrez"},{id:"107546",title:"Dr.",name:"Amado",middleName:null,surname:"Quintar",slug:"amado-quintar",fullName:"Amado Quintar"},{id:"107548",title:"Dr.",name:"Cristina",middleName:null,surname:"Maldonado",slug:"cristina-maldonado",fullName:"Cristina Maldonado"},{id:"107551",title:"Dr.",name:"Alicia",middleName:null,surname:"Torres",slug:"alicia-torres",fullName:"Alicia Torres"}]},{id:"63198",doi:"10.5772/intechopen.79273",title:"Dendritic Cells: The Tools for Cancer Treatment",slug:"dendritic-cells-the-tools-for-cancer-treatment",totalDownloads:750,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"dendritic-cells",title:"Dendritic Cells",fullTitle:"Dendritic Cells"},signatures:"Hanne Locy, Sarah Melhaoui, Sarah K. Maenhout and Kris\nThielemans",authors:[{id:"253469",title:"Prof.",name:"Kris",middleName:null,surname:"Thielemans",slug:"kris-thielemans",fullName:"Kris Thielemans"},{id:"260847",title:"Mrs.",name:"Hanne",middleName:null,surname:"Locy",slug:"hanne-locy",fullName:"Hanne Locy"},{id:"260848",title:"MSc.",name:"Sarah",middleName:null,surname:"Melhaoui",slug:"sarah-melhaoui",fullName:"Sarah Melhaoui"},{id:"260849",title:"Dr.",name:"Sarah Karen",middleName:null,surname:"Maenhout",slug:"sarah-karen-maenhout",fullName:"Sarah Karen Maenhout"}]}],mostDownloadedChaptersLast30Days:[{id:"59914",title:"Cytokines and Interferons: Types and Functions",slug:"cytokines-and-interferons-types-and-functions",totalDownloads:4297,totalCrossrefCites:5,totalDimensionsCites:12,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Vinicius L. Ferreira, Helena H.L. Borba, Aline de F. Bonetti, Leticia P.\nLeonart and Roberto Pontarolo",authors:null},{id:"61458",title:"Introductory Chapter: Autoantibodies and Their Types",slug:"introductory-chapter-autoantibodies-and-their-types",totalDownloads:702,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Wahid Ali Khan",authors:[{id:"64042",title:"Dr.",name:"Wahid Ali",middleName:null,surname:"Khan",slug:"wahid-ali-khan",fullName:"Wahid Ali Khan"}]},{id:"62204",title:"Highlighting the Role of DC-NK Cell Interplay in Immunobiology and Immunotherapy",slug:"highlighting-the-role-of-dc-nk-cell-interplay-in-immunobiology-and-immunotherapy",totalDownloads:1314,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"dendritic-cells",title:"Dendritic Cells",fullTitle:"Dendritic Cells"},signatures:"João Calmeiro, Mylene Carrascal, Célia Gomes, Amílcar Falcão,\nMaria Teresa Cruz and Bruno Miguel Neves",authors:[{id:"114266",title:"Prof.",name:"Bruno",middleName:"Miguel",surname:"Neves",slug:"bruno-neves",fullName:"Bruno Neves"},{id:"115592",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Cruz",slug:"maria-teresa-cruz",fullName:"Maria Teresa Cruz"},{id:"233883",title:"Prof.",name:"Amílcar",middleName:null,surname:"Falcão",slug:"amilcar-falcao",fullName:"Amílcar Falcão"},{id:"243998",title:"MSc.",name:"João",middleName:null,surname:"Calmeiro",slug:"joao-calmeiro",fullName:"João Calmeiro"},{id:"244001",title:"Dr.",name:"Mylene",middleName:null,surname:"Carrascal",slug:"mylene-carrascal",fullName:"Mylene Carrascal"},{id:"244004",title:"Dr.",name:"Célia",middleName:null,surname:"Gomes",slug:"celia-gomes",fullName:"Célia Gomes"}]},{id:"62945",title:"Dendritic Cell Subsets, Maturation and Function",slug:"dendritic-cell-subsets-maturation-and-function",totalDownloads:1497,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"dendritic-cells",title:"Dendritic Cells",fullTitle:"Dendritic Cells"},signatures:"Ghada Mohammad Zaki Al-Ashmawy",authors:[{id:"255240",title:"Dr.",name:"Ghada",middleName:null,surname:"Al-Ashmawy",slug:"ghada-al-ashmawy",fullName:"Ghada Al-Ashmawy"}]},{id:"58627",title:"Autoantibodies in Silicosis Patients: Silica-Induced Dysregulation of Autoimmunity",slug:"autoantibodies-in-silicosis-patients-silica-induced-dysregulation-of-autoimmunity",totalDownloads:465,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Suni Lee, Hiroaki Hayashi, Naoko Kumaga-Takei, Hidenori Mastzaki,\nKei Yoshitome, Nagisa Sada, Masayasu Kusaka, Kozo Uragami,\nYasumitsu Nishimura and Takemi Otsuki",authors:null},{id:"60035",title:"Autoantibody-Based Diagnostic Biomarkers: Technological Approaches to Discovery and Validation",slug:"autoantibody-based-diagnostic-biomarkers-technological-approaches-to-discovery-and-validation",totalDownloads:863,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Farhanah Aziz, Muneera Smith and Jonathan M Blackburn",authors:null},{id:"63424",title:"Autoantibodies in Viral Infections",slug:"autoantibodies-in-viral-infections",totalDownloads:595,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Subuhi Sherwani, Mushtaq Ahmed Khan and Mohammed Suliman\nAlmogbel",authors:null},{id:"59246",title:"Autoantibodies: Key Mediators of Autoimmune Infertility",slug:"autoantibodies-key-mediators-of-autoimmune-infertility",totalDownloads:707,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Kaushiki M. Kadam, Purvi Mande and Asmita Choudhury",authors:null},{id:"59988",title:"Primary Sjögren’s Syndrome and Autoantibodies",slug:"primary-sj-gren-s-syndrome-and-autoantibodies",totalDownloads:610,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"autoantibodies-and-cytokines",title:"Autoantibodies and Cytokines",fullTitle:"Autoantibodies and Cytokines"},signatures:"Maria Maślińska and Brygida Kwiatkowska",authors:[{id:"66582",title:"Dr.",name:"Brygida",middleName:null,surname:"Kwiatkowska",slug:"brygida-kwiatkowska",fullName:"Brygida Kwiatkowska"},{id:"77007",title:"Dr.",name:"Maria",middleName:null,surname:"Maślińska",slug:"maria-maslinska",fullName:"Maria Maślińska"}]},{id:"30337",title:"Optimizing Multiple Immunostaining of Neural Tissue",slug:"optimizing-multiple-immunostaining-of-neural-tissue",totalDownloads:8e3,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"applications-of-immunocytochemistry",title:"Applications of Immunocytochemistry",fullTitle:"Applications of Immunocytochemistry"},signatures:"Araceli Diez-Fraile, Nico Van Hecke, Christopher J. Guérin and Katharina D’Herde",authors:[{id:"100799",title:"Prof.",name:"Katharina",middleName:null,surname:"DHerde",slug:"katharina-dherde",fullName:"Katharina DHerde"},{id:"119044",title:"Dr.",name:"Araceli",middleName:null,surname:"Diez-Fraile",slug:"araceli-diez-fraile",fullName:"Araceli Diez-Fraile"},{id:"119045",title:"Dr.",name:"Christopher J.",middleName:null,surname:"Guérin",slug:"christopher-j.-guerin",fullName:"Christopher J. Guérin"},{id:"119046",title:"MSc.",name:"Nico",middleName:null,surname:"Van Hecke",slug:"nico-van-hecke",fullName:"Nico Van Hecke"}]}],onlineFirstChaptersFilter:{topicSlug:"immunology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/202060/catalina-fajardo",hash:"",query:{},params:{id:"202060",slug:"catalina-fajardo"},fullPath:"/profiles/202060/catalina-fajardo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()