Target motion tracking found its application in interdisciplinary fields, including but not limited to surveillance and security, forensic science, intelligent transportation system, driving assistance, monitoring prohibited area, medical science, robotics, action and expression recognition, individual speaker discrimination in multi‐speaker environments and video conferencing in the fields of computer vision and signal processing. Among these applications, speaker tracking in enclosed spaces has been gaining relevance due to the widespread advances of devices and technologies and the necessity for seamless solutions in real‐time tracking and localization of speakers. However, speaker tracking is a challenging task in real‐life scenarios as several distinctive issues influence the tracking process, such as occlusions and an unknown number of speakers. One approach to overcome these issues is to use multi‐modal information, as it conveys complementary information about the state of the speakers compared to single‐modal tracking. To use multi‐modal information, several approaches have been proposed which can be classified into two categories, namely deterministic and stochastic. This chapter aims at providing multimedia researchers with a state‐of‐the‐art overview of tracking methods, which are used for combining multiple modalities to accomplish various multimedia analysis tasks, classifying them into different categories and listing new and future trends in this field.
Part of the book: Motion Tracking and Gesture Recognition
Smartphone-based spectrometer and colorimetry have been gaining relevance due to the widespread advances of devices with increasing computational power, their relatively low cost and portable designs with user-friendly interfaces, and their compatibility with data acquisition and processing for “lab-on-a-chip” systems. They find applications in interdisciplinary fields, including but not limited to medical science, water monitoring, agriculture, and chemical and biological sensing. However, spectrometer and colorimetry designs are challenging tasks in real-life scenarios as several distinctive issues influence the quantitative evaluation process, such as ambient light conditions and device independence. Several approaches have been proposed to overcome the aforementioned challenges and to enhance the performance of smartphone-based colorimetric analysis. This chapter aims at providing researchers with a state-of-the-art overview of smartphone-based spectrometer and colorimetry, which includes hardware designs with 3D printers and sensors and software designs with image processing algorithms and smartphone applications. In addition, assay preparation to mimic the real-life testing environments and performance metrics for quantitative evaluation of proposed designs are presented with the list of new and future trends in this field.
Part of the book: Color Detection