Plant metabolism is a complex network. Pathways are correlated and affect each other. Secondary metabolic pathways in plant cells are regulated strictly, and upon an intra- or extra-stimuli (e.g. stress), the metabolic fluxes will change as a response on the stimuli, for example, to protect the plant against herbivores or against microbial infections. 13C-isotope-labeling experiment has been performed on cell cultures and hairy roots of Catharanthus roseus to measure fluxes through some pathways. However, due to the complexity of the total metabolic network in an intact plant, no experiments have yet been carried on C. roseus plants. In this study, [1-13C] glucose was first applied to C. roseus seedlings grown in Murashige and Skoog’s (MS) medium. In a time course, the amount and position of 13C incorporation into the metabolites were analyzed by proton nuclear magnetic resonance (1H NMR) and 1H-13C heteronuclear single quantum coherence (HSQC) NMR. The results show that the fed 13C-isotope was efficiently incorporated into and recycled in metabolism of the intact C. roseus plant. The C. roseus plants seem to be a good system for metabolic flux analysis.
Part of the book: Metabolomics