Dosage response
\r\n\t
",isbn:"978-1-83962-366-0",printIsbn:"978-1-83962-365-3",pdfIsbn:"978-1-83962-367-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"f7602ad192ad1dc79a6a37ce3b461769",bookSignature:"Prof. Hechmi Toumi and Dr. Eric Lespessailles",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11720.jpg",keywords:"Xray, MRI, Arthroscopy, Nonsteroidal Anti-inflammatory Drugs, Steroid Injections, Surgery, Muscle, Obesity, Age, Inflammation, Plants, Herbs",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2022",dateEndSecondStepPublish:"May 11th 2022",dateEndThirdStepPublish:"July 10th 2022",dateEndFourthStepPublish:"September 28th 2022",dateEndFifthStepPublish:"November 27th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Professor Hechmi Toumi is a researcher, and scientific director of the Transitional Medical Research PRIMMO, CHR Hospital Orleans. His research focuses on Bone, Cartilage, and soft tissue injuries. He has lectured worldwide on the Treatment and Prevention of muscular-skeletal injuries. He is the inventor of the international patent filing on the use of algorithmic analyses to identify and quantify ‘invisible’ detail in soft tissues in standard radiographs.",coeditorOneBiosketch:"Dr. Eric Lespessailles is a Medical Doctor in Rheumatology at the Regional Hospital of Orleans in France. He was awarded a Professorial title by CNU France (Conseil National Universitaire, section 66) in 2019. Eric is currently the medical director of the Translational Medicine Research Platform at the Regional Hospital of Orleans. He has published about 200 peer-reviewed manuscripts. His research focuses on osteoporosis, osteoarthritis, psoriatic arthritis, and musculoskeletal imaging.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"196403",title:"Prof.",name:"Hechmi",middleName:null,surname:"Toumi",slug:"hechmi-toumi",fullName:"Hechmi Toumi",profilePictureURL:"https://mts.intechopen.com/storage/users/196403/images/system/196403.png",biography:"Professor Hechmi Toumi graduated from Blaise Pascal University in France. He is a research assistant at the University of Wisconsin in the USA and at Cardiff University and is an awarded professor at the University of Wales, UK. He has acted as dean of the Faculty of Sciences at the University of Orleans from 2013 to 2020. Currently, Professor Toumi is the scientific director of Translational Medical Research Platform, PRIMMO, at the Orleans Hospital in France and vice president of the Institute of Research, Treatment, and Prevention of Osteoporosis. He is currently filing for an international patent application for his invention on the use of algorithmic analyses to identify and quantify invisible detail in soft tissues using standard radiographs. Professor Toumi has lectured worldwide on the pathologies, treatment, and prevention of muscular-skeletal injuries.",institutionString:"University of Orléans",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Orléans",institutionURL:null,country:{name:"France"}}}],coeditorOne:{id:"379966",title:"Dr.",name:"Eric",middleName:null,surname:"Lespessailles",slug:"eric-lespessailles",fullName:"Eric Lespessailles",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Eric Lespessailles is a Medical Doctor in Rheumatology at the Regional Hospital of Orleans in France. Eric obtained a Ph.D. in Sciences in 2009. He was awarded a Professorial title by CNU France (Conseil National Universitaire, section 66) in 2019. Eric is currently the medical director of the Translational Medicine Research Platform at the Regional Hospital of Orleans. He has published about 200 peer-reviewed manuscripts. His research focuses on osteoporosis, osteoarthritis, psoriatic arthritis, and musculoskeletal imaging.",institutionString:"University of Orléans",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"7565",title:"Osteoarthritis Biomarkers and Treatments",subtitle:null,isOpenForSubmission:!1,hash:"e1f50f84936fc4164de08483e43acc16",slug:"osteoarthritis-biomarkers-and-treatments",bookSignature:"Hechmi Toumi and Marija Mazor",coverURL:"https://cdn.intechopen.com/books/images_new/7565.jpg",editedByType:"Edited by",editors:[{id:"196403",title:"Prof.",name:"Hechmi",surname:"Toumi",slug:"hechmi-toumi",fullName:"Hechmi Toumi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11031",title:"Rheumatoid Arthritis",subtitle:null,isOpenForSubmission:!1,hash:"b27b90045995c761c0d2f975e895c5d4",slug:"rheumatoid-arthritis",bookSignature:"Hechmi Toumi",coverURL:"https://cdn.intechopen.com/books/images_new/11031.jpg",editedByType:"Edited by",editors:[{id:"196403",title:"Prof.",name:"Hechmi",surname:"Toumi",slug:"hechmi-toumi",fullName:"Hechmi Toumi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42343",title:"The Performance of Insecticides – A Critical Review",doi:"10.5772/53987",slug:"the-performance-of-insecticides-a-critical-review",body:'\nAs part of minimizing the risk of crop losses due to herbivorous arthropods (here, mainly referring to insects and mites), most of the World’s commercial food production systems are subjected to several applications of pesticides before being harvested. Some crops are sprayed 10-20 times, while most field crops are sprayed 1-5 times during the growing season. In the US alone, the average number of insecticide applications ranges from 1-3 for most of the major field crops, and the total annual costs of pesticide applications exceed $1.3 billion ([1], U.S. Department of Agriculture agricultural statistics services: www.nass.usda.gov/). Several large ag-producing countries publish extensive details on insecticide use, including Australia, and the data presented below were collected from a public website (http://usda01.library.cornell.edu/usda/nass/AgriChemUsFruits//2000s/2008/AgriChemUsFruits-05-21-2008.pdf) on pesticide applications in the US in 2006. A somewhat extreme but also important example is the fresh sweet maize production in the US, which was grown on about 85,000 ha. Based on data from 14 US states, 20 different active ingredients of herbicides were applied an average 1.04 times to fresh sweet maize and amounted to about 2.6 kg of active ingredients of herbicides per ha. The same data suggested that about 3.5 kg of 23 different active ingredients of insecticides were applied on average 2.10 times per ha. Similarly, tomato fields (grown on about 42,000 ha in the US in 2006) were treated with 12 different active ingredients of herbicides, which were applied, on average, 1.14 times and the equivalent of about 0.7 kg of active ingredients per ha. Regarding insecticides, the same tomato fields were treated with 32 different active ingredients, which were applied an average of 3.6 times and equal to about 4.9 kg of active ingredients per ha. While tomatoes and sweet corn may be close to the top of the list of growing crops receiving pesticide treatments, cauliflower, celery, and many other horticultural crops and fruits are also subjected to intensive pesticide spraying regimes. Thus, farmers acknowledge that weeds and arthropods can potentially cause significant economic losses, and total pesticide application costs are low enough to economically justify a very significant and consistent number of applications in almost all crops. It is beyond the scope of this chapter to address the gradually growing market for organic produce and the possible human health and environmental impacts of intensive pesticide spraying regimes. However, it is worth mentioning that – going back to the fresh sweet maize – applying 47 different active ingredients of pesticides (insecticides = 23, herbicides = 20, and fungicides = 4) at a total dosage of 6,7 kg per ha means that (assuming a maize plant density around 65,000 per ha and that about 50% of the applied pesticide ended up on treated plants) each maize plant received about 0.3 g of active ingredient of agrochemicals. How much active ingredient ends up in the edible portions of crops varies considerably based on exposure of the harvested plant part, the longevity of chemicals (residual effect) and timing of applications in relation to harvest time. Extensive research efforts are being committed to the short and long term effects of pesticide residues in the food products [2, 3]. Despite high levels of pesticides being applied, it is encouraging that publicly available reports, like http://www.ewg.org/foodnews/, suggest that fresh sweet maize does not contain detectable levels of pesticide residues. However according to the same report, other food products (i.e. apples, celery, and bell peppers) quite frequently test positive for pesticide residues.
\nSeveral environmental and agronomic/operational factors affect the likelihood of insecticides being applied to a crop. For instance, a comparatively “good growing season”, with the right amount and ideal seasonal distribution of rainfall, is equivalent to a high yield potential. A high yield potential means increased risk of potentially high losses incurred by arthropods and weeds, so growers are typically more inclined to apply pesticides to protect a high yield potential. In addition, a “good growing season” may also be conducive to growth of weeds and arthropod pests, which further increases the justifications for applying pesticides, even as a precautionary measure. Among the agronomic factors affecting the likelihood of insecticides being applied, the price of seeds is quite important. A grower may, especially if the prediction is to have a good growing season, decide to plant high-value seeds due to their high yield potential, or because those seeds possess a particular qualitative trait. Similarly, the grower may decide to apply additional (expensive) fertilizer to ensure that the crop grows and yields to its full potential. Planting high-value seeds and “investing” in the crop by applying high levels of fertilizer generally means that growers have lower threshold tolerances for losses incurred. That is, as described in the conventional description of economic injury level and action threshold [4], there is generally a negative relationship between overall value of the crop and the likelihood of pesticides being applied as growers want to protect the growing crop. In other words, investing in high-yielding seeds under favourable conditions may be associated with additional crop protection inputs (such as, pesticide, irrigation, and fertilizer applications), because growers want to take full advantage of the yield potential of the given crop. Another factor increasing the likelihood of insecticide applications is the convenience of “tank mixtures”, in which multiple agro-chemicals are applied simultaneously. For instance, growers may decide to spray a herbicide just before crop emergence and decide to add a residual insecticide to the formulation to target establishment pests that may or may not be present. That is, growers want to optimize labour and fuel costs, so if they are going to spray fertilizer or herbicides anyway – they might as well add a low-cost insecticide to the tank mix and possibly get an added benefit. Estimates suggest that insecticide applications constitute 2-10% of the crop yield [5-7], but use of tank mixtures obviously decreases the overall application costs. The three examples provided (“good growing season”, value of seeds, and tank mixing) are important, because they are not directly related to actual estimates of the pest population density, but they may still lead to a grower applying insecticides. That is, they are factors that raise the concern about possible pest infestations (“good growing season”, value of seeds), or they provide economic justification (tank mix) of a pesticide spray application, irrespectively of whether pest populations have been detected in fields. Finally, it is worthwhile to highlight a psychological dimension to pesticide applications, which is that applying pesticides rather than “doing nothing” may give farmers the feeling of “doing something” (in this case spraying pesticides). This aspect is of particular importance in cropping systems in which sampling/monitoring programs are either not an important part of the operational practices, and/or they are deemed practically unfeasible. Increasing sizes of farms mean that the grower may only get to a certain portion of a field every 2-3 weeks or at even less frequent occasions. Obviously, many things can go wrong in a field that is unattended for long time periods, so growers may feel that they cannot afford NOT to apply insecticides – simply as a preventative measure. Frequent and widespread applications of insecticides are understandable, when very little is known about the actual pest population density, large farming areas are managed by only a few people, and when an insecticide can be easily added at a low cost to an existing spray application. Thus, even though growers are generally considered to be “conservative” in their management style, the brief review above clearly outlines many operational and agronomical factors reasons why most crops are treated with numerous insecticide applications in each growing season. Growers are generally low-risk takers, and are therefore accepting to spend considerable resources on pesticide applications according to a philosophy of rather safe than sorry.
\nDue to the emphasis and reliance on insecticide applications, it is worthwhile briefly reviewing some of the basic considerations regarding volume of insecticide formulations and other factors affecting spray coverage and canopy penetration, when insecticides are applied to growing agricultural crops [8, 9]. Insecticide labels provide information about required application rates for registered combinations of pests and crops and also about volumes of carrier (most commonly water) to be used. Interestingly, these vary considerably mong countries, so the same pesticide may be applied at a considerable range of dosages among different countries [10]. “Adjuvants” are compounds added to spray applications with the purpose of increasing “stickiness” (adherence to crops), provide UV-light protection (increase the residual effect), increase crop leaf penetration, and/or modify droplet sizes (i.e. reduce drift and increase canopy penetration). Use of adjuvants is therefore a very important aspect of spray application performance. Due to costs and logistics of transporting water, aerial fixed-wing insecticide sprays are applied with much lower spray volumes (rarely applied in formulations above 50 L per ha) than when the same insecticides are applied with ground rigs (50-200 L per ha). Other more specialized insecticide delivery systems include fumigations of post-harvest products or of soils, seed treatments (insecticides coated onto planted seeds) and transgenic insertion of toxin producing genes into growing crop plants (i.e. genes from
Redlegged earth mite mortality in response to bifenthrin dosage in no-contact bioassay
However, it should be pointed out that insecticides categorized as “contact insecticides” may not always require physical contact in order to cause target pest mortality. Contact insecticides are believed only to kill pests, when insects ingest or get in direct contact with the active ingredient. As an example, bifentrhin is in IRAC (http://www.irac-online.org/eClassification/) class 3A (pyrethroids and pyrethrins), which are sodium channel modulators, and bifenthrin is labelled as a contact insecticide. A simple study was conducted in which formulations of bifenthrin were transferred to a 2 ml Eppendorf tube, which was placed inside a 50 ml plastic container with a lid. We tested the following dosages (% by volume) of bifenthrin in separate trials: 0% (positive control), 0.02, 0.20, 2.00, and 20.00. The recommended application rate for control of redlegged earth mite [
Acknowledging the magnitude of resources spent on insecticide applications, and the possible risk of low insecticide performance due to low and inconsistent insecticide applications - it is somewhat noteworthy that there are no widely used quality control measures available. As discussed by [13] and many others, there are numerous factors which can contribute to low performance of a given insecticide application, including: incorrect storage, water pH, wrong concentration of insecticide, nozzles not being turned on, and incorrect application volume. An interesting, but under-utilized resource for assessment of spray coverage, is water sensitive spray cards, which enable growers, consultants, and pesticide applicators to quantify the spray coverage obtained. Water sensitive spray cards are coated with bromoethyl blue, which reacts with water and turn blue-purple depending on dosage of water [14] (Fig. 2b). Although mainly used in applied research projects, they are commercially available through a number of companies and can be used quite effectively to make quantitative assessments of spray applications in response to agronomic variables and weather conditions. [1] used water sensitive spray cards to analyse spray coverage during commercial spray applications in potato fields, of which eight were applied with fixed-wing airplane (spray volume of 48 liter per ha) and six with ground rig (spray volume of 194 liter per ha). During each spray application, 10 water sensitive spray cards were deployed at the top of the canopy in different parts of the field, and both average and range of spray coverages were analysed (N = 140). Canopy penetration data were also obtained from nine of the 14 commercial spray treatments by having additional spray cards placed about 15 cm from the bottom of the potato canopy. In a recent study conducted in Western Australia, we quantified the “potential spray coverage” of commercial spray rigs by placing water sensitive spray cards at the ground level in a bare field (Fig. 2c). Thus, there was no crop, so the obtained spray coverage represented the highest possible under the given conditions.
\nGround spray rig applications and use of water sensitive spray cards
Weather conditions were recorded, and spray volume (30-130 liter per ha), tractor speed (15-25 km/h) and nozzles type (various types tested) were experimentally manipulated to obtain spray data from a wide range of commercial spray scenarios. Spray data for this study were collected in three combinations of fields and locations, and we obtained data from 77 unique combinations of spray conditions (location, date, spray volume, tractor speed, and nozzle types) and with four replicated spray cards for each combination (N = 308). Fig. 3a shows average spray coverage at the top of the canopy or above bare ground in response to spray volume, and, as expected, there was a highly positive correlation (df = 1,90, adjusted R2 = 0.790, F = 340.48, P < 0.001). Thus, despite high variability in spraying conditions, spray coverage is clearly driven by volume and reached about 40%, when the equivalent of 200 liter per ha was applied. Average spray coverages for the three data sets (aerial and ground rig applications in Texas and ground rig applications in Western Australia) were examined, and spray coverage was divided by the spray volume applied as a measure of spray performance (Fig. 3b). When applying spray formulations with airplanes, the spray coverage performance was about 0.15 (meaning that for each extra liter per ha, the spray coverage increased, on average, by 0.15%), while it was about 0.17 in experimental studies conducted in Western Australia and about 0.24 in ground rig applications in Texas. Thus in terms of “conversion efficiency” (converting spray volume into spray coverage), the ground rig applications in Texas appeared to be most efficient. In addition to comparison of averages, it is important to examine the range of consistency (difference between minimum and maximum) within a given spray application. This information is important, because it may be used to assess the risk of certain portions of treated fields receiving sub-lethal treatment levels. Of the 91 spray trials, 66 (73%) produced spray coverages, in which the lowest spray coverage on a single spray card was below 10% (Fig. 4). At the same time, the spray range (maximum/minimum) was above 110 in two of the spray applications with airplane and was above 5-fold in 17 (19%) of the spray trials. Low and less uniform spray coverage, especially with airplane applications, is most likely attributed to using smaller spray volumes and nozzles, which deliver smaller spray droplets and therefore increases the risk of spray drift [12]. Among the spray trial data obtained from Western Australia, the highest spray coverage obtained from a single spray card was about 40%, which is an indicator of the “maximum spray potential”. That is, bare ground was sprayed with up to 130 liter per ha, and most growers in this region do not apply more than 90 liter per ha. Consequently, the data collected suggest that it will be very difficult to exceed this level of spray coverage of a growing crop.
\nSpray coverage in response to spray volume
Minimum and range of spray applications
The final aspect of spray applications discussed here is “canopy penetration” – or the level of insecticide being deposited in the lower portion of a given crop canopy. The spray data presented so far were all collected either from the top of the canopy or above bare ground. Based on analysis of nine of the spray trials from Texas, it was possible to compare spray coverages at the top of the canopy with in the lower portion of a potato canopy above 35 cm tall. On average, the bottom portion of the canopy received about half the spray coverage of the top portion, and only one of the nine applications provided over 10% average spray coverage in the bottom portion of the canopy. Published spray coverage studies using water sensitive spray cards have shown that it is not uncommon, especially with aerial spray applications, to obtain spray coverages below 1% [15-17].
\nThese spray results obtained across a wide range of operational conditions clearly highlight that, although spray volume is the most important variable, other variables need to be taken into account if the goal is to predict the obtained spray coverage. Furthermore, these results underscore that most insecticide spray coverages are likely quite low and highly influenced by weather variables and spray application settings. Thus, it is paramount to develop decision support tools to optimize timing of applications in accordance to weather variables, so that farmers are in a position to apply insecticides with highest likelihood of obtaining good coverage and therefore high performance. Otherwise, it is possible that spray applications of low and inconsistent insecticide dosages contribute to resistance development in target pest populations [10, 18].
\n[13] pointed out that insecticide resistance is among the most significant challenges to food production systems and to public health through management of insect vector born diseases. There are clear indications that many major pests are able to develop physiological and or behavioural insecticide resistance to a large number of insecticides. In this context, physiological insecticide resistance is defined as genotypes being able to tolerate high dosages of neurotoxic ingredients, which are lethal to most individuals of the same species. The most common physiological resistance mechanisms are [19]: 1) catabolic processing of the active ingredient, 2) changes in binding sites that are targeted with a given toxin, 3) decreased uptake rate, and 4) binding of toxin to sites with no toxic effect. Behavioural resistance [20] has been documented for the past 40 years, and it is interpreted as a behavioural adaptation, which reduces the likelihood of target pests acquiring a lethal dosage of insecticide. Behavioural insecticide resistance has mainly been discussed in the context of “bait aversion”, in which, for instance glucose based bait for control of cockroaches [21-23] no longer works, because the cockroaches avoid the bait. However as discussed below, it also seems plausible that behavioural insecticide resistance may develop in response to low and incomplete spray coverage. Concerns about behavioural insecticide resistance may be of particular concern when target pests predominantly occur on the abaxial (lower) side of crop leaves and insecticides are not translaminar or systemic. For instance, in a simple study in which either one or both sides of potato leaflets were treated, [24] showed that for some insecticides potato psyllid mortality was much lower when only one side was treated compared to when both sides of the leaflet were treated. These findings were interpreted as potato psyllids [
The first reported incidence of physiological pesticide resistance was of San Jose scale [
When addressing concerns about risk of insect pest populations developing physiological resistance and how management practices can be developed under commercial settings to reduce this risk, it is worthwhile setting the general context. Firstly, we wish to emphasize that there are only two extreme scenarios, which do not potentially lead to development of physiological resistance in target pest populations: 1) always applying an insecticide dosage low enough so that all genotypes survive, 2) applying a high enough dosage to ensure that individuals of all genotypes die. Obviously, the first option is of no interest to growers, as it means zero pest control, and therefore represents waste of resources. As already described in detail based on the analysis of water sensitive spray cards, the second option is in most cases unfeasible from a practical standpoint, and it may also imply very high economical costs. This means that under real-world conditions, applications of insecticides are always imposing a selection pressure on target pest populations.
\nDosage response
\n | \n
Dosage response
The important point is that the mortality of a given pest individual is NOT random within a pest population: an individual will only succumb to an insecticide application, if the individual is actually susceptible to the pesticide and exposed to a dosage above a certain level (minimum lethal dosage). Moreover, pest individuals within a population vary in their ability to tolerate an insecticide, and – based on their behaviour – vary in likelihood of getting exposed to the insecticide. The intraspecific variation in tolerance to an insecticide is linked to the fact that the mode of action of the vast majority of insecticides is very specific and associated with allelic variation at one (monogenic) or two loci. That is, the insecticide operates by interfering with a very specific metabolic function, but even the slightest change in binding site (induced by mutation at a single locus) may compromise the performance of the insecticide, so pest individuals possessing such changes will have a higher chance of survival, while individuals without the specific allele will be eliminated. If the insecticide resistance is monogenic, and only two alleles exist (r = resistant and s = susceptible) - dosage response curves for the three genotypes are typically presented with mortality increasing along a logarithmic dosage scale [27]. In a theoretical example of a pest population of 10,000 individuals (Fig. 5), individuals of genotype ss may be expected to succumb when the insecticide dosage ranges between 0.3-0.6 ppm, sr individuals when the insecticide dosage ranges between 0.6-1.2 ppm, and rr individuals when the insecticide dosage is above 30 ppm. If p = 0.001 is the allele frequency of r and q= 0.999 is the allele frequency of s, and the genotypes occur in Hardy-Weinberg proportions, then the demographic composition of the pest population in response to insecticide dosage is as outlined in Table 1. It is seen that subjecting a pest population to a dosage above 0.5 ppm causes a >99% reduction of the overall population, but if it less than 60 ppm it also increases the proportion of resistant individuals in the remaining pest population. And although this fairly simple relationship between survival of genotypes and insecticide dosage has been investigated intensively over the last 3-4 decades and been greatly expended upon – it illustrates the core challenge that insecticide based pest control is faced with: Growers want to suppress as large a proportion of the pest population as possible to minimize the economic loss they incur, and therefore apply high dosages of insecticides. However, they are not able to apply a high enough dosage to completely suppress all pest individuals, so a selection pressure is imposed on the pest populations and the end result may be that the pest population develops physiological resistance because it is practically impossible to kill all the homozygous resistant genotypes.
\nIn this brief and very general discussion of the importance of insecticide dosages, it is important also to mention that the efficiency or performance of an applied insecticide declines over time. The term “residual effect” is used to describe the longevity of the time period in which a given insecticide provides effective pest control, and rarely (continuous expression of Bt toxins in transgenic Bt crops would be an exception) will an insecticide have a residual effect after 7-10 days. In a study of abamectin, [24] conducted experimental sprays of potato leaflets in different vertical portions of a potato canopy under field conditions. During time intervals after spraying, treated and untreated leaflets were collected and used in bioassays with potato psyllids to determine the adult psyllid mortality over time. Based on this study, [24] concluded that the residual effect of abamectin is less than 48 hours. Although most insecticides have longer residual effect than abamectin, the example highlights the challenge that the effective dosage applied will decline over time, so pest individuals that are not affected immediately after application may not be exposed to a lethal dosage. For instance at the time of application, pest individuals may not be present at a vulnerable stage (for example mite eggs are not killed by systematic sprays whereas active adult mites will be killed), or the life stage may not be exposed to contact with chemicals (this is especially important for larvae of insects feeding on roots of plants in the soil). This problem or challenge, with not all life stages being equally susceptible to an insecticides application, becomes an even larger issue, if multiple pest species are present, and these different species occur in different parts of the crop canopy, have different movement patterns within the canopy, show difference in terms of seasonal population dynamics, and also have different migration patterns between the given crop and neighbouring alternative hosts. Immigration by pest populations deserves to be highlighted as a serious constraint: if a pasture or field is treated and all present pest individuals are killed but high immigration means that a new population of pest individuals move into the given field or pasture a shortly after. If so, a grower might think that the insecticide application “didn’t work” – but the reality is that the immigration rate of the pest needs to be taken into account when assessing what insecticide to apply and when to apply it. It is not practically feasible to apply insecticide specifically for each pest present separately and so inevitably each application event may effectively control some species or life stage, while other pest individuals will be exposed to sublethal dosages.
\nIn addition to concerns associated with physiological resistance of target pest populations, behavioural resistance may possibly develop in response to incomplete pesticide coverage, as target pests are given a “choice” between treated and untreated surfaces. If the target pest is able to discriminate between treated from untreated surfaces and eventually avoid treated surfaces, the pest will be less exposed to the insecticide. Consequently, the ability to avoid treated surface becomes a strong selection pressure, which can lead to development of behavioural-based resistance, and it has been demonstrated in diamondback moth populations [35, 36], German cockroaches (
Summarizing this section, the ability to develop physiological resistance to insecticides is one of the key characteristics of the most economically important arthropod pests. There are widespread examples of pests developing behavioural resistance by avoiding treated leaf surfaces or baits containing the active ingredient. With regards to contact insecticides, it is possible that a combination of frequent and low performing pesticide applications creates a selection pressure which favours pest individuals avoiding treated portions of crop leaves, as individuals: 1) have ample opportunity to recover after sub-lethal exposures and therefore “learn” to avoid insecticide treated surfaces, and 2) will be under a directional selection pressure for non-feeding on treated surfaces. However, we are unaware of experimental studies actually addressing the possible relationship between insecticide spray coverage in agricultural field pest populations and behavioural resistance in target pest populations. It is likely that the most important pests will continue to develop resistance to insecticides, as certain traits in their biology and/or ecology appear to enable them to adapt to these severe selection pressures. Thus, continued emphasis on almost exclusive insecticide-based pest control may be a strategy that deserves serious revision, as it seems to play to one of the key “strengths” (their adaptability) of the most important pests. The fundamental challenge is therefore to develop management practices, which minimize the risk of resistance development, and theoretical modelling is critically important in this context, because it can be used as a working tool to examine changes in population genetics over time and under different selection pressures. That is, instead of waiting until growers actually face the severe consequences of insecticide resistance, we can use theoretical modelling to predict its progress and hopefully find ways to slow it down.
\nStudying resistance development in controlled populations is, in addition to being highly laborious, associated with some basic concerns. The frequency of resistance alleles in a given pest population is typically extremely low (one in a 1,000 or less) and therefore requires individual analysis of very large numbers (millions or billions) of individuals. And when small laboratory populations are subjected to intensive insecticide based selection pressure, there is a considerable risk of unforeseen recessive genetic defects being expressed and affecting the observed population dynamics. [27] provided an in depth discussion and review of the concerns related to rearing of laboratory cultures for studies of how fast pest populations are able to develop resistance. In brief, they mentioned how the rearing may lead to “genetic bottlenecks” or selection pressures, which are different from those imposed on field populations. Consequently, it is highly likely that a laboratory strain carries major resistance alleles at frequencies that are very different from field pest populations and that studies of resistance development in laboratory strains therefore are unable to mimic actual field conditions. Finally, numerous factors are considered important when assessing the likelihood of a pest population developing physiological resistance, and based on [41], they can be divided into four categories: 1) genetic factors (i.e. frequency, dominance, and expressivity of resistant alleles and their interactions with other alleles, past selection pressures in pest population, and whether the resistance is monogenic or polygenic), 2) biological factors (fecundity, generation and development times, mating behaviour, level of polyphagy, migration/dispersal and mobility, fitness costs of resistance development, and feeding biology), 3) operational (mode of action of insecticide, residual effect of the insecticide, adjuvants added to sprayed formulations, timing of applications in relation to pest population development (which life stages are targeted), dosage applied, crop density at the time of application, type of spray nozzles used, height of spray boom, and 4) weather conditions (which are known to greatly affect spray depositions, see above). With such complexity of factors involved, it is not surprising that much of the current understanding of pesticide resistance development in pest populations is based on genetic population modelling and theoretical sensitivity analyses [10, 42-45]. Such modelling efforts are in many ways constructive and can be used to develop strong justifications for specific research projects and management practices. However at the same time, their validity depends on the assumptions used in their construction [46, 47].
\nThe following section is a sensitivity analysis based on genetic population modelling, which expands on work presented in two theoretical modelling papers [26, 41]. Although published almost 40 years ago, these studies present the basic modelling framework needed to examine fairly simple/basic questions about resistance development. Results presented here are based on a theoretical arthropod pest population “X” with an initial population of 11,000 individuals followed over 20 subsequent generations, and it is assumed that: 1) adults only give offspring in one generation, 2) each generation was exposed to a single insecticide application, 3) resistance development occurs in a single locus with two alleles, r (resistant) and s (susceptible), 4) p = 0.0001 is the gene frequency of r and q= 0.9999 is the gene frequency of s, 5) genotypes occur in Hardy-Weinberg proportions, 6) dominance is assumed to be intermediate, so that, under insecticide based selection pressure, the survival of genotypes is rr > rs > ss, and 7) resistance was associated with a “fitness cost”, which is defined as resistant genotypes having lower fitness than susceptible genotypes in the absence of the particular insecticide [45]. Based on a review by [45] of 77 studies of Bt resistance, it was assumed that physiological insecticide resistance was associated with a “fitness cost” of 15.5% for each allele. Although the possible importance of “incomplete resistance” [42] and “hybrid vigor” [45] have been highlighted, these factors were not included in this analysis. The following sensitivity analysis of r allele frequency and pest population density is based on 1,000 simulations of different scenarios with random variables. Similar to [26], the population density after each discrete generation, N’, was assumed to be density-dependent and described by the following equation 1:
\nIn which W denotes the survival of each genotype, N denotes the number of adults in the previous generation, K denotes the carrying capacity, and Na denotes the initial population.
\nIn the following, we present modelling results from two scenarios, and the main point is to demonstrate some of the advantages of using modelling as part of demonstrating how physiological insecticide resistance appears to develop across a very wide range of scenarios.
\nScenario 1: Effects of reproductive fitness and crop suitability on resistance development. Using Equation 1 to estimate total population and r allele frequency over 20 generations, the following settings for allele frequencies were kept constant: p = 0.0001 and q = 0.9999, and survival rates of the 3 genotypes (W) were: Wrr = 1, Wrs = 0.5, Wss = 0. Thus, in this scenario, none of the susceptible individuals (Wss) were expected to survive and did therefore not contribute to the sensitivity analysis. [26, 41] assumed the reproductive fitness of pest population X, “r”, to be constant and equal to ln(5) between generations, and many subsequent and more recent studies have also been based this assumption. Here, the reproductive fitness of the resistant genotype was assumed to vary randomly from ln(3)-ln(7) (random numbers with two-decimal points) between generations. With the reproductive fitness of the resistant genotype varying randomly between ln(3)-ln(7) and the fitness cost of resistance being 15.5%, that of the heterozygous genotype, rrs = rrr × 1.155. A constant carrying capacity implies that a certain habitat can sustain the same pest population in all growing seasons and irrespectively of regional differences in environmental conditions. Seasonal variations in growing conditions (i.e. drought stress levels and fertilizer regimes) clearly cause marked variations in number of pest individuals a crop plant can harbour. For instance, nutritional composition of crops can vary considerably in response to drought stress [48-51] and is known to vary considerably between growing seasons [52, 53]. [54] estimated varying carrying capacity of the milkweed-oleander aphid [
In all 1,000 scenarios, the initial pest population was reduced by >99.9% after the initial infestation (N = 11,000) was exposed to the first insecticide application. After the initial knock-down, the pest population remained low for about eight generations, after which the pest population density started to increase steadily (Fig. 6a). Almost complete insecticide failure (back to initial pest population density due to complete physiological resistance) was achieved within 20 generations. Comparison of the average curve of the pest population density under varying reproductive rate and carrying capacity and that of fixed variables [with constant reproductive fitness (Wrr = 5, Wrs = 5.775 and carrying capacity (K = 11,000)] suggested that incorporation of variability into reproductive fitness and carrying capacity had limited effect. That is, the average of the 1,000 simulations was very similar to that of fixed variables except for a few and rare simulations (indicated by the curve of maximum pest population) reduced the time to complete physiological resistance by a few years (shifted the curve to the left). Fig. 6b showed that varying crop carrying capacity and reproductive fitness had almost negligible impact on the r allele frequency in the pest population (as expressed by the range of minimum and maximum curves). Most sensitivity studies of genetic populations are based on large populations (i.e. 10,000 individuals), and it is assumed that individuals mate randomly within these large populations. This is highly unlikely and is the main reason why recent genetic population modelling uses a meta-population modelling approach, in which a large population is considered to be composed of many smaller and somewhat segregated populations. Such meta-population based approaches include assumptions about movement between populations and sizes of sub-populations, and these assumptions were not included in this analysis. Another approach is to use individual-based modelling [10]. Based on the analysis of scenario 1, we have highlighted that the influences of incorporating varying crop carrying capacity and reproductive fitness into modelling predictions of population densities over 20 generations were modest, when the fitness cost was kept constant (15.5%), and they had negligible effect influence on r allele frequency.
\nEffects of varying reproductive fitness and carrying capacity
Scenario 2: Effect of varying pesticide spray performance. In this scenario, varying reproductive fitness rates and carrying capacity were maintained as described in scenario 1. The survival rate due to pesticide applications was kept constant for the homozygous resistant (Wrr = 1), but this scenario was conducted with varying survival rates of Wrs and Wss. That is, it was assumed that low and inconsistent spray coverage would in some generations increase the survival of Wrs and Wss. The basis for investigating this scenario with varying survival rates of Wrs and Wss was supported by the field spray data presented in Fig. 3: Out of the 91 insecticide spray data sets, several data sets showed spray coverage ranges above 50 times (difference between minimum and maximum). It therefore seems reasonable to assume that there is considerable variation in insecticide dosages and therefore survival rates of subsequent pest population generations. Consequently, a random number function was used to generate survival rates from 0.3 to 0.7 for Wrs, and survival rates below 0.5 were considered to be equal to 0.5. In other words, the random function generated one of five outcomes (0.3, 0.4, 0.5, 0.6, or 0.7) with equal probability, and three of these (0.3, 0.4, and 0.5 or 60% of the outcomes) were equal to 0.5, and there was a 50% chance [(0.7-0.5)×100/(0.7-0.3)] of increased survival due to low and inconsistent spray coverage for Wrs genotypes. Regarding genotype Wss, the same random function approach was applied to generate random survival rates from -0.2 to 0.2, and all rates equal to or below 0 denoted no survival. In other words, there was about 50% chance of Wss genotypes contributing at least some offspring to the next generation. As in scenario 1, a 15.5% fitness cost was maintained for each resistant allele, which meant that the reproductive fitness of rrs = rrr × 1.155 and that of rss = rrs × 1.155. In other words, the survival of Wss genotypes had the potential of contributing substantially to subsequent generations in simulations with Wss > 0.
\nIn this scenario with varying survival rates of Wrs and Wss, the population density after the initial knock-down was, on average, 95%, but there were simulations in which it was below 80%. It should be expected, that increased survival due to low and inconsistent pesticide applications increased the pest population growth during 20 generations, but, in comparison with scenario 1, the effect on pest population was actually quite modest (Fig. 7a). As an example, in scenario 1 (with no survival of homozygous susceptible individuals) the average population density was about 6,000 individuals after 15 generations, while it was about 7,000 individuals in scenario 2. Thus, with half of the simulations allowing 1-20% survival of homozygous susceptible individuals there was only a modest increase in average pest population density. However as indicated by the maximum curve, there were indeed scenarios in which high pest populations were achieved within about 11 generations. With fixed variables and assumption about Hardy-Weinberg allele frequencies, the r allele frequency obviously stayed above 50% and increased as the homozygous resistant genotype increased in relative proportion. Fig. 7b showed, as expected, that the varying survival of homozygous susceptible individuals (when Wss > 0) led to a decrease in r allele frequency. In fact after 20 generations, none of the 1,000 simulations led to a higher r allele frequency than 93%, while with fixed variables it was >96%. In other words, this simple exercise suggested that by allowing susceptible genotypes some level of survival, low and inconsistent pesticide applications appear to postpone development of complete resistance. However, low and inconsistent pesticide applications also lead to higher risk of high pest population densities (comparing Fig. 6 a and 7 a) and therefore crop damage and corresponding yield losses. Thus, here it is highlighted that with a consistent selection pressure (all generations of pest individuals subjected to a pesticide applications) the performance of pesticides and negligible development of resistance are antagonistic. In other words, growers should not expect to accomplish both: a high-performing pesticide application will create a strong selection pressure and therefore lead to resistance development. On the other hand, low and inconsistent pesticide applications appear to reduce the likelihood of pest populations developing resistance, but it will also reduce the performance of pesticide applications. However, it is likely that low and inconsistent insecticide applications increase the risk of target pest populations developing behavioural resistance, but that is not incorporated into the modelling presented here. A recent modelling based study of herbicide resistance in weeds addressed this specific question about the effect of dosage [10]. The authors concluded that in cases of monogenic resistance, pesticide dosage had negligible effect on the number of generations before complete failure. However, they also pointed out that in cases of resistance being “non-target specific” (i.e. metabolic and/or polygenic resistance), there is growing evidence of herbicide resistance developing faster under low-dosage selection pressure. There are important differences in factors leading to resistance in weed and insect pest populations (i.e. reproduction/mating biology, generation time, and dispersal strategies), so it may not be accurate to assume the exact same responses by insects and weeds. However, it is clear that reliable and accurate sensitivity analysis of how certain variables affect the likelihood of a pest population developing resistance requires that the underlying genetics are sufficiently understood (especially whether resistance in mono- or polygenic).
\nEffects of varying spray application performance
It may be argued that the scenarios outlined above are far too simplistic and do not take into account that growers are rotating insecticides as part of resistance management practices. The core of resistance management programs is to rotate between active ingredients, as cross-resistance to multiple insecticides is much less likely to develop. Regarding transgenic crops expressing Bt toxins, incorporation of non-treated refuges in cropping systems is also being advocated [see [45] for review). We are unaware of recommendations about non-treated refuges for any other insecticide treatments. Consequently rotation of classes of active ingredients is the only widespread resistance management strategy, but there are crop-pest systems in which only a few active ingredients are registered for use. For instance in Western Australia, there are three species of aphids [The cabbage aphid,
Integrated pest management (IPM) has been an applied research discipline since it was first defined by [55]. One of the initial drivers for development of IPM was the recognition of pest populations developing resistance to pesticides [56]. Many definitions and in-depth descriptions of IPM have been provided [4, 57-59]. Broadly speaking, IPM involves integration of different tactics such as pesticides, biological control, measures to prevent initial pest establishment, use of plant resistance and cultural control. Consequently, IPM requires in-depth understanding of a given target pest’s biology and ecology so that cropping systems can be established and managed in ways that minimize risk of pest infestations and subsequent yield losses. IPM is expected to reduce dependence on pesticides, and [60] argued that in several respects IPM may be viewed as “IIM”, or integrated insecticide management. However, the most important difference between IPM and other crop management systems is that IPM is based on two fundamental assumptions about yield loss: 1) that it is correlated with pest density and 2) predictable and therefore can be modelled and/or forecasted. Thus, an IPM approach implies that if the pest population density can be accurately estimated, it is possible to determine when and where deployment of responsive management options (such as pesticide applications and/or releases of natural enemies) are needed. Reliable and practically feasible sampling or monitoring plans are therefore needed to estimate the pest population density. The pest density estimate is converted into a decision based on an “economic threshold” (ET), which represents the pest density at which the value of estimated yield loss equals the cost of responsive intervention. If it is assumed that yield loss can be predicted or forecasted based on a given pest population density, then the economic injury level (EIL) can be used as benchmark for when to take action. Consequently, responsive intervention, such as applying an insecticide, should only be deployed, when/if the pest density estimate is expected to exceed the EIL or the ET. The “textbook” concept of EIL (i.e. [4] includes the following variables (Equation 2):
\nIn which “C” denotes the cost of action (i.e. application of an insecticide), “V” denotes the market value of the crop, “D” denotes the relationships between pest density and damage, and “K” denotes a coefficient of unavoidable loss (between 0-1). With IPM being an approach based on knowledge about the pest density and the relationship between pest density and economic loss, we argue that costs associated with sampling and the willingness to accept risk should also be included in the calculation of EIL. In development of sequential sampling plans, it is inherently assumed that there is a positive correlation between the precision of the population density estimate and the required sampling effort. In most cases, this relationship is probably asymptotic – so the question becomes how much is gained by collecting, for instance, 25 leaf samples compared to 20, or 47 instead of 42? The answer to this question is not necessarily straight forward, because the “cost” or effort associated with sampling should be taken into account, and the relative cost or effort per data point is not necessarily linear. In other words, most of the sampling costs may be associated with actually driving to the field, and once you are there, it may cost almost the same to take 20 or 25 samples. However for simplicity, we have added two variables to the calculation of the EIL (Equation 3)
\nWith “S” denoting the cost of collecting one sample (i.e. counting number of nymphs on a crop leaf) and “P” denotes the required precision of the sampling effort (0 < P <1). Thus with these additions to Equation 2, it is acknowledged that “expensive” or labour intensive sampling will increase the pest population density which triggers action, and that requirements of high precision of pest population estimates will increase the needed sampling effort and therefore the the EIL. The concept of adding precision or tolerance of error to sampling methods is expanded further in sequential sampling [4, 61].
\nThe concept of IPM – or only taking action on a when-needed basis- is supported by the fact that in most cropping systems, densities of pest species and their economic importance (expressed in crop damage or yield loss) are markedly influenced by weather and agronomic factors and therefore not constant across growing seasons or regions. Thus, individual growers face “low risk” and “high risk” growing seasons, and this is tightly linked to the often opportunistic character of arthropod pest populations – that they are able to take advantage of certain combinations of environmental and agronomic conditions; but they also suffer under other combinations, and in those years insecticide applications may not be warranted. As an example, the diamondback moth is among the most important pests on growing canola in Australia (winter crop). [62] summarized the widely accepted hypothesis regarding the ecological mechanisms driving diamondback moths outbreaks in winter rainfall regions of Australia: in years with good summer rainfall, supporting various cruciferous plants, including wild radish, turnip weeds and volunteer canola before the growing season. These host plants provide a “green bridge” during the summer months and enable early establishment of diamondback moth populations. At the same time, good summer and autumn rainfall means that canola is planted comparatively early and therefore establishes well under those growing conditions. Canola is a highly preferred host by diamondback moth [63], so populations developing in weeds and non-agricultural habitats may migrate into canola and cause economic damage. The risk of severe diamondback moth infestations seem to be further increased if, after early rains, the canola becomes slightly drought stressed. During the last 10 years, seasonal weather patterns characterized by good summer and autumn rainfall seem to explain a couple of growing seasons with high losses in large canola growing regions due to diamondback moth infestations. However in most years, diamondback moth is not considered a major pest on a wide geographical scale. As already mentioned, diamondback moth is one of the most adaptable arthropod pests regarding insecticide treatments, as it was the first pest to develop resistance to DDT and Bt, and, as a species, it is considered resistant to at least 82 active ingredients (may vary among local populations). Thus, for long-term sustainable management of diamondback moth, it is highly important that its somewhat sporadic pest status is taken into account and that insecticides are only applied when and where they are deemed necessary. The important aspect of arthropod pest densities only occasionally leading to significant economic losses is that it provides justification for some times (in some growing seasons and/or in some cropping systems) NOT to apply insecticides, when pest populations are below a given threshold. However, diamondback moth being a sporadic pest in canola in Western Australia is by no means a unique pest–crop system, as most insect pests vary economic importance across seasons. For a wide range of orchards pests [including a moth pest complex of peach [64] and
Based on the description of EIL in IPM based approaches to pest management, Fig. 8a shows average pest population densities for the Scenario 2 simulations (see above) after including a pesticide spray application threshold ranging from 0-10% of the carrying capacity (11,000 pest individuals) for the particular sampling universe (i.e. a field). In other words, it was assumed that sampling was conducted and that the average number of pests per plant was used as an action threshold for insecticide application. If the action threshold = 0, all pest generations were subjected to an insecticide application, while an action threshold = 2.5% meant that insecticide applications were only deployed if the estimated population density exceeded 275 pest individuals (or 2.5% of 11,000). Quite interestingly, the simulations suggested that using an action threshold led to slightly lower population density after 20 generations compared to a threshold = 0. In addition, the zero threshold showed a gradual increase in population densities from 18 generations and onwards, while those simulations with a threshold showed a population density stabilizing after about 12 generations. More importantly, the increase in r allele frequency was markedly reduced when a threshold was used, and it stabilized at about 50%, while it continued to increase in the scenarios without a threshold = 0 (Fig. 8b). Another interesting aspect of this analysis was that with 1,000 simulations and 20 generations, there was a total of 20,000 combinations of generations and simulations, and: 1) threshold = 0 obviously triggered 20,000 insecticide applications, 2) threshold = 2.5% of carrying capacity triggered 13,890 insecticide applications, 3) threshold = 5.0% of carrying capacity triggered 13,340 insecticide applications, and 4) threshold = 10% of carrying capacity triggered 12,517 insecticide applications. This means that, in addition to postponing complete insecticide failure (development of complete resistance development in the pest population), even a fairly low threshold of 2.5% of the carrying capacity reduced costs associated with insecticide applications by 31% [(20,000 - 13,890) × 100 / 20,000].
\nThis exercise highlights some of the possible benefits of allowing some individuals of the homozygous susceptible genotype (with a higher reproductive fitness) to survive. They will obviously impose some level of crop damage and therefore cause yield losses, but their beneficial “dilution effect” is clearly outlined in the results from this simple exercise. In addition, it seems plausible that only spraying when the population density is above a certain threshold may enable natural enemies to become established and at least partially suppress the target pest populations. Incorporation of a pest density threshold as part of resistance management is analogous to the use of refuges as part of managing risk of arthropod resistance in transgenic crops (see [45] for review). Of course, the potential of taking advantage of benefits from reduced insecticide application is based on the assumption that a combination of detection/monitoring and degree-day modelling can be converted into accurate and reliable decision support tools. Thus, it is paramount to envision the development of arthropod pest population growth models under field conditions as an essential part of optimizing use of insecticides – both in terms of when application is needed and as part of resistance management.
\nEffects of incorporating an action threshold
Above, it was established that, mainly as “peace of mind” or because of operational convenience and less as a response to actual emerging pest infestations, insecticides are being sprayed/applied more often than what is economically justifiable and/or necessary to control target pest populations below action thresholds. In addition, we highlighted some practical/operational circumstances, like tank mix, which may justify insecticide application even without knowing whether emerging pest populations are present or not. It was also shown, based on detailed analysis of water sensitive spray cards deployed under commercial pesticide applications, that expected performance of spray applications may often be below optimal due to quite low spray coverage and canopy penetration. That is, we have outlined the heavy reliance on insecticide applications and also shown that most of the quantitative data available in published reports suggests that insecticide spray coverages are often quite low. In many situations, the benefits of applying insecticides are clear and pest control is being effective, but for other major pests chemical control does not seem to work. Further research into the biology and ecology of these pests can provide valuable clues to how we can reduce our reliance on insecticide based management of important pests. For example, in regions of southern Australia with summer rainfall, root-feeding larvae of scarab beetles at times can destroy all the roots of pasture grasses, so that the pasture can be rolled up like a carpet. During 1970-1975 some 20,000-40,000 ha pasture were estimated to be sprayed annually at a cost of about $AUD 10 per ha. However, research showed the presence of potentially damaging populations was only evident after the damage had occurred and spraying at this time not only failed to prevent damage but also killed valuable natural enemies [70]. Larvae of the root-feeding scarab species selectively feed on living roots of the grasses in the soil [71], which initially causes a reduction in root growth, but a reduction in foliage growth was observed only when the plants were also defoliated (grazed), and these plants are vulnerable to any periods of water stress due to lack of rainfall [72]. At times when younger larvae are feeding actively and plants are growing well damage is not evident, and it is at a later time when older larvae are present that the plants may die due to drought. Spraying at this time does not prevent the appearance of damage because the plants were damaged previously. In addition when roots are growing actively and larvae are feeding strongly it is the lower densities of larvae that cause greatest reduction in the root yield [72]. A model of the interaction between plant growth, sheep grazing and insect feeding indicate that greatest impacts of the insect on pastures are occurring at low grazing pressures and low insect densities when plants are growing well [73]. An adjustment of spraying strategy is needed for these root-feeding scarabs. The redlegged earth mite is a major foliage-feeding pest in regions of southern Australia with winter rainfall, feeding on annual clovers in pastures. Potential economic losses due to redlegged earth mite damage in pastures are estimated at $200 million a year [74]. Pesticides are applied mainly in autumn as bare earth treatment before the mites emerge or in autumn and spring as foliar sprays without any one approach to control being consistently superior. Mites feed on annual crops and pastures during the cooler wet winter but avoid the hot dry summer as diapausing eggs. Emergence of mites in autumn varies from year to year depending on rainfall and temperature, but the onset of diapause in spring in this species remains the same for any one site from year to year [75]. A very accurate prediction for the onset of summer diapause was made for redlegged earth mites based on day length and length of long term growing season everywhere in southern Australia where this species was present [76]. This model was used to give an optimal spring spray date for a single well timed spray, which has resulted in very effective control (over 95%) to the populations emerging the following autumn 8 months after the spray [77]. In both of these examples growers need to make decisions to control the pests long before the actual damage occurs. The mites are easier to see than the root-feeding scarabs which may make it easier to decide on the future risk of damage occurring but the strategy in both cases is to reduce the risk of damage occurring. Growth of plants also affects the plant-insect interaction. Grazing management can affect the populations of some pasture pests, as pastures have a carrying capacity for pests as they do for sheep. Heavy grazing can be used to suppress pest populations in the pasture [78, 79]. Other factors affecting plant growth will also interact with the populations of pests feeding on them. The risk of spider mite (Acari: Tetranychidae) infestations, have been shown to increase in response to crops being grown under drought stressed conditions [for sorghum,
Pest insects tend to feed mainly on one stage of growth of the plant. For many crop plants it is the seed which is harvested and sold and damage at this stage or post-harvest has a very direct impact on yield. Feeding damage by redlegged earth mite on seedlings can carry through to loss of seed yield by mature plants. In a carefully controlled study on yellow lupins (
When concerns are raised about efficacy of currently available pest management programs, it is important to remember that humans have battled arthropod pests for as long as we have had agricultural production. There are 4,500-year old records of insecticide-based management practices for control of insect pests in pre- and post-harvest agricultural products. Even biological control has been practiced for over 2,000 years [58, 59]. Yet, we have not been able to develop arthropod pest management Systems based on pesticide applications, which consistently (across many growing seasons and in most growing regions) maintain individual pest species below densities of economic concern. In stored grain, orchards, horticulture, row crops. As a consequence, we are today researching management programs for the same pests as we did 50-100 years ago, or even before that. Despite incredible technological advances and scientific innovations during the development of human civilizations, we are still unable to “outsmart” the insects and mites in our food production, processing, and storage systems. On the other hand, there are several important examples of how classical biological control has provided almost complete control of different pests (i.e. weevils to control water hyacinth infestations in rivers and lakes, parasitoids to control cassava mealybugs in Western Africa, and moths to control prickly pear in Australia). Transgenic Bt technology may be considered an encouraging exception, as it has provided remarkable control of several key coleopteran and lepidopteran pests with high levels of resistance to other insecticides. However, even here there is widely reported documentation of Bt resistance (http://www.pesticideresistance.com/irac.php), and/or examples of how secondary pests, unaffected by Bt toxins, have adapted and taken advantage of the absence of Bt-controlled competitors. Thus for growers, Bt may have solved one pest problem but at the same time created other problems. Even after more than 50 years of IPM, and with growing challenges with target pest populations developing resistance, it is somewhat striking that the number of documented IPM “successes” is fairly low. A simple scientific literature review search provided the following number of hits (based the literature search engine, Agricola, from 1972-2012): 1) “insecticide” = 17,629, 2) “insecticide resistance” = 4,900, 3), “IPM” = 2,243, and 4) “IPM” and “success” = 23. This recognition of our to-date inability to eliminate or completely control pests leads to an important question–what benchmarks should be used to determine whether a pest management program was successful or not? [59] highlighted this aspect as being one of the leading short-comings in current IPM programs.
\nIt is indisputable, that insecticides are very important in our food production systems, and that they will continue to play a very important role far into the future. The purpose of this chapter is by no means to diminish their importance and the benefits associated with their usage in food production – in fact it is closer to the opposite: that exactly because of their importance and value, it is paramount that we understand how to use them effectively and that their performance is not being eroded due to resistance development. Another intended message from this chapter is that, when an insecticide “is not working” it is likely attributed to application failure rather than the insecticide not being effective against the given target pest. In short, we would be in serious trouble if we could not rely on insecticides, and that is precisely why they have to be used as wisely as possible. With the continuously growing list of insecticides becoming ineffective due to resistance, insecticides being faced out due to concerns about their adverse environmental effects, and with chemical companies having to spend increasing amounts of resources on getting new active ingredients registered for commercial use – it seems reasonable to reflect on the long-term sustainability of pest management practices based almost exclusively on insecticide applications.
\nBesides poor treatment and vaccination programs, a healthy immune system and antioxidant mechanism are the essential defenders considering the current viral diseases. The viral diseases hosted in a body has several impacts on organs and systems. Also, long-term drug use or vaccination programs can cause some acute side effects on the body, such as gut microbiota, immunity, lung tissue, etc. Therefore, probiotics, prebiotics, vitamins, natural antioxidants have been generally recommended over the years. Probiotics named live microorganisms have beneficial effects on systems, and they have been used successfully. Prebiotics are non-digestible foods that stimulate intestinal tissue growth and modulate immunity. Vitamins, minerals, and natural antioxidants have been used to enhance immune activity and health in viral diseases. It can be said that all these supplements are essential for adequate homeostasis.
Today, evaluate the most effective, economical, and safe vaccines is a significant challenge. Thus, some crucial organisms have been interested in vaccine production as well as nutrition. Among the different vaccination process, yeasts have a broad interest in the scientific area (Figure 1). These unicellular and saprotrophic fungi have been used as a biological model. They have also been accepted as critical models for experiments due to their cellular structure, components, and rapid growth. Yeast also can be cultured easily and manipulated genetically. These features showed that yeasts are beneficial to identify the cellular mechanism of virus and vaccine programs safely [1, 2].
Biomedical applications of yeasts.
The yeast Saccharomyces, the essential eukaryotic organism, have been used as a biological model. Nevertheless, there is a notable gene homology in this yeast with human genes. In this chapter, we try to identify the Saccharomyces yeast as a useful model for biological experiments and observe the importance of viruses, viral diseases, and vaccines.
Saccharomyces, which is a genus belonging to the Saccharomyces fungus kingdom, includes many yeast species. The name of Saccharomyces is derived from the Latin words saccharo- (sugar) and - Greek mikes (mushrooms). These yeasts were initially suggested in 1680, and named Saccharomyces in 1837. A successful systemic concept on these higher eukaryotes was designed by Mayr [4]. Yeasts’ cultured forms have been used for thousands of years due to rapid reproduction and essential components. Typical features of Saccharomyces are the usage of nitrate and ability for the fermentation of carbohydrates. Saccharomyces have an excellent capacity for ethanol production, and they are suitable yeasts for large-scale fermentation [5]. These important yeasts can be used for the food industry to produce several foods such as bread, beer, wine, distilled spirits, and industrial alcohols. The most knows are
Saccharomyces yeasts focus on the dietary field as a probiotic and the process of treating the disease. Belong the probiotic action; these yeasts have several vital roles on mechanisms such as bacterial adhesion, enhancement of immune cells and responses, modulation of the signaling pathways of the host, and improvement of the strengthening of enterocytes [17]. Nevertheless, Saccharomyces are used as model organisms in biological studies, particularly chemicals and pharmaceuticals.
Over the last fifty years, remarkable progress in our ability to produce advanced drugs has improved people’s health and longevity. Pharmaceutical proteins are one of the fastest-growing groups of medicines and are currently critical to treating many diseases [18].
Proteins have a catalyzer role in several metabolic reactions as well as an essential responsibility for cellular mechanisms. There are unique systems that can be used to produce proteins for the pharmaceutical industry from a single cell to multiple organisms, including eukaryotes, especially yeasts. Dozens of pharmaceutical proteins, including insulin, vaccines, and blood factors, produced by
The yeast Saccharomyces has been accepted as the significant organism for several metabolisms such as cell cycle, biogenesis, protein folding, genetic manipulation, recombination, etc. [20].
Bioparhamaceutical products | Category | References |
---|---|---|
Human serum albumin | Blood factors | Payne et al. [24] |
Recombinant proteins | Protein | Huang et al. [18], Ferrer-Millares et al. [19], Ma et al. [25], Cino [26] |
Insulin | Hormone | Martinez et al. [27] |
Glucagon | Hormone | Egel-Mitani et al. [28] |
Human parathyroid hormone | Hormone | Song et al. [29] |
Purified protein for vaccines | Protein | Hadiji-Abbes et al. [30], Zhang et al. [31], King et al. [32], Kaslow and Shiloach [33], Fazlalipour et al. [34]. |
Virus like particles | Protein | Jacobs et al. [35], Kim et al. [36], Kim et al. [37]. |
Gene expression systems | Gene | Malak et al. [38], van Ooyen et al. [39], Vierira Gomes et al. [40]. |
Examples of bioparhamaceutical products of Saccharomyces.
Nevertheless,
Recombinant proteins are recognized as an important part of the drug industry. Among these proteins, Saccharomyces has greater attention than others due to their eukaryotic properties, easy genetic manipulation, and capable of modifications.
While the vaccines currently available have proven invaluable in the fight against infectious diseases and eradicating viruses, there are many drawbacks to the current vaccine preparation or application regimen despite these successes. Certain limitations of conventional vaccines require multiple adjuvants and injections to induce a necessary or optimal immune response. Another reason is the constant increase in the number of post-vaccination allergic reactions or hypersensitivities in a specific group of people [47, 48].
Today, there are several critical viral diseases such as human hepatitis B and C, immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS), coronavirus-disease 2019 (COVID19), etc. Due to the inadequacy of treatment options for these infections, new antiviral strategies and model organisms, particularly yeast, were of interest to the researchers.
Yeasts have a delivery system for nucleic acids, and thus they can be an alternative for virus description. Besides, a humanized yeast system was identified for yeast/virus systems to study diseases [49]. Yeasts are used for subunit vaccine formulations with producing antigens against viruses. It was reviewed that yeast can be used for vaccine development in such strategies; whole recombinant yeast, virus-like particles, yeast display, and purified protein immunogens [50]. Among yeasts,
Rosenfeld and Racaniello [51] reported that hepatitis C virus (HCV) was demonstrated in
All things considered, the yeast-based carrier system can be a potential model to develop the vaccine insights of virus-host interactions. The yeast strategies can improve the recognition of pathogen antigens peptides, activate the immune response, and also modulate the yeast-based vaccines. Researchers for further pioneering findings have still endured the studies.
There have been many illnesses that have not been controlled by vaccination and new ones as well. Mutation, genetic exchange, environmental and interspecific transference, or human contact are the most emerging diseases. However, new scientific technologies, model organisms and a number of researchers have proven beneficial to vaccination strategies. In this respect, it is possible to observe yeasts for the upcoming vaccines for several diseases.
Yeast engineered to the virus has been accepted as an ideal therapeutic approach. This vaccine’s strategy is improving humoral immunity due to the ability of yeast to the generation of immune responses.
There is a numerous increasing study to obtain the vaccine strategy of yeasts. Studies in yeast proteins and cell wall components, including beta-glucan, may become more critical for vaccine strategies under different phases of clinical trials on animals or humans. According to the essential features of yeast, the yeast-based vaccine strategy is being necessary for vaccine development. It has foreseen that diversity of yeast strains will improve in the future.
The yeast system provides invaluable antiviral strategies. Significant studies have been conducted on yeast progression in the identification of viral diseases and antiviral strategies. Based on a better understanding of yeast protein and viruses, the search for new vaccines and medications for viral or pandemic diseases is safer and more effective. However, experiments with animal models and human cells are still underway in many types of yeast. Knowledge of these new biological systems and technologies, models, and organisms will open up new science avenues.
The authors declare no conflict of interest.
Yeast | The most important eukaryote; Saccharomyces. |
Single celled organism | Saccharomyces cerevisiae |
Nucleosomes | DNA, RNA |
Biopharmaceuticals | insulin and its analogs |
Eukaryotes | The organisms whose cells have a nucleus enclosed within a nuclear envelope |
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Identifying Occupational Stress and Coping Strategies",subtitle:null,isOpenForSubmission:!0,hash:"09a2f5fe50b90b20637b7aceccf1cfdd",slug:null,bookSignature:"Dr. Kavitha Palaniappan",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:[{id:"311189",title:"Dr.",name:"Kavitha",surname:"Palaniappan",slug:"kavitha-palaniappan",fullName:"Kavitha Palaniappan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12127",title:"The Psychology of Sports",subtitle:null,isOpenForSubmission:!0,hash:"4bf52abfe589a320744c40ca5fe41a89",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12127.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12135",title:"Parenting",subtitle:null,isOpenForSubmission:!0,hash:"5fcfe3872ea161c9c879e0667a220ca8",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:14},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"743",title:"Engineering Dynamics",slug:"electrical-and-electronic-engineering-engineering-dynamics",parent:{id:"116",title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:11,numberOfWosCitations:27,numberOfCrossrefCitations:8,numberOfDimensionsCitations:9,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"743",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6017",title:"Switched Reluctance Motor",subtitle:"Concept, Control and Applications",isOpenForSubmission:!1,hash:"ea21009431eeed49e94d3a693d47f09d",slug:"switched-reluctance-motor-concept-control-and-applications",bookSignature:"Ahmed Tahour and Abdel Ghani Aissaoui",coverURL:"https://cdn.intechopen.com/books/images_new/6017.jpg",editedByType:"Edited by",editors:[{id:"26712",title:"Dr.",name:"Ahmed",middleName:null,surname:"Tahour",slug:"ahmed-tahour",fullName:"Ahmed Tahour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"55670",doi:"10.5772/intechopen.69149",title:"Switched Reluctance Motor Topologies: A Comprehensive Review",slug:"switched-reluctance-motor-topologies-a-comprehensive-review",totalDownloads:4958,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Switched reluctance motor (SRM) is gaining much interest in industrial applications such as wind energy systems and electric vehicles due to its simple and rugged construction, high‐speed operation ability, insensitivity to high temperature, and its features of fault tolerance. With continued research, different topologies have emerged presenting less torque ripple, high efficiency, high power factor, and high power density. However, there has always been a trade‐off between gaining some of the advantageous and losing some with each new technology. In this chapter, various SRM topologies, design, principle of operation, and respective phase switching schemes are extensively reviewed, and their advantages and drawbacks are discussed. On the other hand, some of SRM limitations (such as excitation penalty, control complexity, noise, and vibration) have prompted research into the incorporation of permanent magnets into the basic SRM structure, and therefore, the chapter also includes discussion on a new class of SRM with permanent magnet assist (PM‐assist) called doubly salient permanent magnet (DSPMM). The DSPM motor incorporates the merits of both the PM brushless motor and the SRM.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Mohammad Mahdi Bouiabady, Aliakbar Damaki Aliabad and\nEbrahim Amiri",authors:[{id:"175468",title:"Dr.",name:"Ebrahim",middleName:null,surname:"Amiri",slug:"ebrahim-amiri",fullName:"Ebrahim Amiri"},{id:"203202",title:"Mr.",name:"Mohammad Mahdi",middleName:null,surname:"Bouiabady",slug:"mohammad-mahdi-bouiabady",fullName:"Mohammad Mahdi Bouiabady"},{id:"203203",title:"Dr.",name:"Aliakbar",middleName:null,surname:"Damaki Aliabad",slug:"aliakbar-damaki-aliabad",fullName:"Aliakbar Damaki Aliabad"}]},{id:"55383",doi:"10.5772/intechopen.68911",title:"Switched Reluctance Motor Drives for Hybrid Electric Vehicles",slug:"switched-reluctance-motor-drives-for-hybrid-electric-vehicles",totalDownloads:3344,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Because of the ever‐increasing concerns on the energy utilization and environmental protection, the development of hybrid electric vehicles (HEVs) has become a hot research topic. As the major part of HEV technologies, the electric motor drives have to offer high efficiency, high power density, high controllability, wide‐speed operating range, and maintenance‐free operation. In particular, the switched reluctance (SR) motor drive can achieve most of these goals; therefore, this motor type has drawn much attention in the past. This chapter aims to serve as an overview of the latest developments of the SR motor drive, purposely for HEV applications. To be specific, the discussions on motor structures for torque density enhancement and torque ripple minimization are covered.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Christopher H.T. Lee, James L. Kirtley, Jr. and M. Angle",authors:[{id:"201412",title:"Dr.",name:"Christopher H. T.",middleName:null,surname:"Lee",slug:"christopher-h.-t.-lee",fullName:"Christopher H. T. Lee"}]},{id:"55535",doi:"10.5772/intechopen.69228",title:"Four‐Quadrant Control of Switched Reluctance Machine",slug:"four-quadrant-control-of-switched-reluctance-machine",totalDownloads:1639,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter illustrates modeling techniques and software simulation of the switched reluctance machine (SRM) machine models with controllers for efficient operation. The first model is based on torque and flux data generated through finite element analysis (FEA) and the second model is geometry-based machine model, which are used to develop the operation logic for four-quadrant control of an SRM. The results obtained from these models were used to develop a control strategy to adapt turn-on and turn-off (commutation) angles efficiently. Two digital controllers, namely the phase current controller for regulating current with a hysteresis band and the PI (proportional-integral) speed controller for regulating the speed, are developed to deliver the desired output torque. The controller is based on a negative feedback closed-loop control system.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Sandeep Narla",authors:[{id:"201434",title:"M.Sc.",name:"Sandeep",middleName:null,surname:"Narla",slug:"sandeep-narla",fullName:"Sandeep Narla"}]},{id:"55678",doi:"10.5772/intechopen.69280",title:"Direct Instantaneous Torque Controlled Switched Reluctance Motor Drive for Fan Type Load and Constant Torque Load",slug:"direct-instantaneous-torque-controlled-switched-reluctance-motor-drive-for-fan-type-load-and-constan",totalDownloads:1544,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Switched reluctance motor (SRM) drives can be a good competitor to conventional induction and permanent magnet motors in variable speed applications because of advantages, such as simple construction, no rotor windings, high torque to inertia ratio, adaptability to hostile conditions, etc. Due to its high nonlinearity, the torque ripple is high in switched reluctance motor. The sophisticated direct instantaneous torque control (DITC) can maintain the torque developed by the motor within hysteresis band by suitably selecting the switching states of the converter. Hence, DITC controller minimizes the torque ripples and also provides fast response to the torque changes. The performance of DITC controlled SRM drive is analyzed through simulations during acceleration and also in steady state for two types of load torques namely fan type and constant torque. The variation of the switching frequency of the converter is analyzed by changing the torque hysteresis band. It has been observed that as the hysteresis band decreases, the switching frequency increases. So, the hysteresis band cannot be increased beyond a certain limit so as to ensure that the switching frequency of the device cannot increase beyond its operating limit.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Srinivas Pratapgiri",authors:[{id:"193348",title:"Dr.",name:"Srinivas",middleName:null,surname:"Pratapgiri",slug:"srinivas-pratapgiri",fullName:"Srinivas Pratapgiri"}]},{id:"55557",doi:"10.5772/intechopen.69270",title:"Design, Power Electronics and Torque Control of Switched Reluctance Machines",slug:"design-power-electronics-and-torque-control-of-switched-reluctance-machines",totalDownloads:1754,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In the last decade, increased tendency in the field of automotive industry was focused on the development of highly efficient and low-cost electric propulsion systems to replace the existing internal combustion solutions. The aim is to reduce the pollution due to carbon dioxide emissions into the air. Several electric machine topologies with their power electronics, control and supply units are continuously in the development process to reach the desired goal. One such machine is the switched reluctance machine (SRM), reaching increased power density, low cost and possibility of continuous operation despite fault occurrence. Designing the machine, choosing its power electronics and controlling the machine to diminish the negative effect of the torque ripples are key points in reaching the proper propulsion system. The main topics presented in detail in this chapter are managing the reader’s skills with an analytic design breviary, presenting the machine’s control strategies for instantaneous torque linearization and finally, showing a power converter topology with increased performances in low voltage applications. To be more close to such an application, the exampled machine is developed for a light electric vehicle for people with physical disabilities. Operational skills of the machine will be validated based on complex simulations.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Mircea Ruba and Petre Dorel Teodosescu",authors:[{id:"190371",title:"Dr.",name:"Mircea",middleName:null,surname:"Ruba",slug:"mircea-ruba",fullName:"Mircea Ruba"},{id:"195867",title:"Dr.",name:"Petre",middleName:"Dorel",surname:"Teodosescu",slug:"petre-teodosescu",fullName:"Petre Teodosescu"}]}],mostDownloadedChaptersLast30Days:[{id:"55670",title:"Switched Reluctance Motor Topologies: A Comprehensive Review",slug:"switched-reluctance-motor-topologies-a-comprehensive-review",totalDownloads:4958,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Switched reluctance motor (SRM) is gaining much interest in industrial applications such as wind energy systems and electric vehicles due to its simple and rugged construction, high‐speed operation ability, insensitivity to high temperature, and its features of fault tolerance. With continued research, different topologies have emerged presenting less torque ripple, high efficiency, high power factor, and high power density. However, there has always been a trade‐off between gaining some of the advantageous and losing some with each new technology. In this chapter, various SRM topologies, design, principle of operation, and respective phase switching schemes are extensively reviewed, and their advantages and drawbacks are discussed. On the other hand, some of SRM limitations (such as excitation penalty, control complexity, noise, and vibration) have prompted research into the incorporation of permanent magnets into the basic SRM structure, and therefore, the chapter also includes discussion on a new class of SRM with permanent magnet assist (PM‐assist) called doubly salient permanent magnet (DSPMM). The DSPM motor incorporates the merits of both the PM brushless motor and the SRM.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Mohammad Mahdi Bouiabady, Aliakbar Damaki Aliabad and\nEbrahim Amiri",authors:[{id:"175468",title:"Dr.",name:"Ebrahim",middleName:null,surname:"Amiri",slug:"ebrahim-amiri",fullName:"Ebrahim Amiri"},{id:"203202",title:"Mr.",name:"Mohammad Mahdi",middleName:null,surname:"Bouiabady",slug:"mohammad-mahdi-bouiabady",fullName:"Mohammad Mahdi Bouiabady"},{id:"203203",title:"Dr.",name:"Aliakbar",middleName:null,surname:"Damaki Aliabad",slug:"aliakbar-damaki-aliabad",fullName:"Aliakbar Damaki Aliabad"}]},{id:"55383",title:"Switched Reluctance Motor Drives for Hybrid Electric Vehicles",slug:"switched-reluctance-motor-drives-for-hybrid-electric-vehicles",totalDownloads:3344,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Because of the ever‐increasing concerns on the energy utilization and environmental protection, the development of hybrid electric vehicles (HEVs) has become a hot research topic. As the major part of HEV technologies, the electric motor drives have to offer high efficiency, high power density, high controllability, wide‐speed operating range, and maintenance‐free operation. In particular, the switched reluctance (SR) motor drive can achieve most of these goals; therefore, this motor type has drawn much attention in the past. This chapter aims to serve as an overview of the latest developments of the SR motor drive, purposely for HEV applications. To be specific, the discussions on motor structures for torque density enhancement and torque ripple minimization are covered.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Christopher H.T. Lee, James L. Kirtley, Jr. and M. Angle",authors:[{id:"201412",title:"Dr.",name:"Christopher H. T.",middleName:null,surname:"Lee",slug:"christopher-h.-t.-lee",fullName:"Christopher H. T. Lee"}]},{id:"55535",title:"Four‐Quadrant Control of Switched Reluctance Machine",slug:"four-quadrant-control-of-switched-reluctance-machine",totalDownloads:1639,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter illustrates modeling techniques and software simulation of the switched reluctance machine (SRM) machine models with controllers for efficient operation. The first model is based on torque and flux data generated through finite element analysis (FEA) and the second model is geometry-based machine model, which are used to develop the operation logic for four-quadrant control of an SRM. The results obtained from these models were used to develop a control strategy to adapt turn-on and turn-off (commutation) angles efficiently. Two digital controllers, namely the phase current controller for regulating current with a hysteresis band and the PI (proportional-integral) speed controller for regulating the speed, are developed to deliver the desired output torque. The controller is based on a negative feedback closed-loop control system.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Sandeep Narla",authors:[{id:"201434",title:"M.Sc.",name:"Sandeep",middleName:null,surname:"Narla",slug:"sandeep-narla",fullName:"Sandeep Narla"}]},{id:"55557",title:"Design, Power Electronics and Torque Control of Switched Reluctance Machines",slug:"design-power-electronics-and-torque-control-of-switched-reluctance-machines",totalDownloads:1754,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In the last decade, increased tendency in the field of automotive industry was focused on the development of highly efficient and low-cost electric propulsion systems to replace the existing internal combustion solutions. The aim is to reduce the pollution due to carbon dioxide emissions into the air. Several electric machine topologies with their power electronics, control and supply units are continuously in the development process to reach the desired goal. One such machine is the switched reluctance machine (SRM), reaching increased power density, low cost and possibility of continuous operation despite fault occurrence. Designing the machine, choosing its power electronics and controlling the machine to diminish the negative effect of the torque ripples are key points in reaching the proper propulsion system. The main topics presented in detail in this chapter are managing the reader’s skills with an analytic design breviary, presenting the machine’s control strategies for instantaneous torque linearization and finally, showing a power converter topology with increased performances in low voltage applications. To be more close to such an application, the exampled machine is developed for a light electric vehicle for people with physical disabilities. Operational skills of the machine will be validated based on complex simulations.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Mircea Ruba and Petre Dorel Teodosescu",authors:[{id:"190371",title:"Dr.",name:"Mircea",middleName:null,surname:"Ruba",slug:"mircea-ruba",fullName:"Mircea Ruba"},{id:"195867",title:"Dr.",name:"Petre",middleName:"Dorel",surname:"Teodosescu",slug:"petre-teodosescu",fullName:"Petre Teodosescu"}]},{id:"55614",title:"Current‐Controlled SRM Fed by Three‐Phase Boost PFC",slug:"current-controlled-srm-fed-by-three-phase-boost-pfc",totalDownloads:1651,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, firstly, converter types of switched reluctance motor (SRM) are described. Current control structure of SRM, which has six stator and four rotor poles, over an asymmetric bridge converter, is also explained. While feeding SRM by an AC grid, grid voltages have to be converted to DC voltage; to realize this conversion, in order to obtain high power factor and sinusoidal grid current, power factor correction (PFC) circuits must be used. In this study, an asymmetric bridge converter of SRM is fed by three‐phase PFC boost converter that consists of uncontrolled diode rectifier and DC‐DC boost converter with high frequency operation. PFC boost converter is controlled by nonlinear control algorithm. By means of the simulations that are conducted by MATLAB/Simulink, grid voltage and current, current harmonics of each phase, three‐phase currents of phases, flux, and current of SRM are presented. Simulation results show that proposed SRM that is fed by three‐phase PFC boost converter system gives the desired performance, for both grid and SRM side.",book:{id:"6017",slug:"switched-reluctance-motor-concept-control-and-applications",title:"Switched Reluctance Motor",fullTitle:"Switched Reluctance Motor - Concept, Control and Applications"},signatures:"Erdal Şehirli and Meral Altınay",authors:[{id:"119997",title:"Mr.",name:"Erdal",middleName:null,surname:"Sehirli",slug:"erdal-sehirli",fullName:"Erdal Sehirli"},{id:"119998",title:"Dr.",name:"Meral",middleName:null,surname:"Altınay",slug:"meral-altinay",fullName:"Meral Altınay"}]}],onlineFirstChaptersFilter:{topicId:"743",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"
\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"June 27th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!0,editor:{id:"203609",title:"Associate Prof.",name:"Hanna",middleName:null,surname:"Gorska-Warsewicz",slug:"hanna-gorska-warsewicz",fullName:"Hanna Gorska-Warsewicz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSD9pQAG/Profile_Picture_2022-06-14T11:58:32.jpeg",biography:"Hanna Górska-Warsewicz, Ph.D. is Associate Professor at Warsaw University of Life Sciences and Head of Department of Food Market and Consumption Research. She specializes in the subject of brands, brand equity, and brand management in production, service, and trade enterprises. She combines this subject with marketing and marketing management in both theoretical and practical aspects. Prof. Hanna Górska-Warsewicz also analyzes brands in the context of trademarks, legal regulations and the protection of intangible. She is an author or co-author of over 200 publications in this field, including 8 books. She works with the business sector and has participated in projects for the Ministry of Agriculture and Rural Development and the Ministry of Education and Science in Poland.",institutionString:null,institution:{name:"Warsaw University of Life Sciences",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:3,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:4,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/188786",hash:"",query:{},params:{id:"188786"},fullPath:"/profiles/188786",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()