Post offices located on the central Adriatic islands.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5260",leadTitle:null,fullTitle:"Conducting Polymers",title:"Conducting Polymers",subtitle:null,reviewType:"peer-reviewed",abstract:"An authentic revolution took place in the area of solid-state chemistry and physics just after World War II. The century of solid state started from the modest beginnings of the transistor at Bell Laboratory. Since then, the area of science and technology has been directed primarily toward the study of alloys, ceramics, and inorganic semiconductors. The size of electronic devices became smaller and smaller, while the dimensionality of materials was also reduced just after the invention of the integrated circuit. It is at this point that the advent of the discovery of quasi one-dimensional conductors has opened up a whole new area of ''nonclassical'' solid-state chemistry and physics. In the modern world, plastic and electrical devices are always tightly integrated together. However, it was in 1977 that an electrically conductive, quasi one-dimensional organic polymer, polyacetylene, was discovered. During the past 30 years, a variety of different conducting polymers have been developed. Excitement about these polymeric materials is evidenced by the fact that the field of conducting polymers has attracted scientists from such diverse areas of interest as synthetic chemistry, electrochemistry, solid-state physics, materials science, polymer science, electronics, and electrical engineering.",isbn:"978-953-51-2691-1",printIsbn:"978-953-51-2690-4",pdfIsbn:"978-953-51-6683-2",doi:"10.5772/61723",price:119,priceEur:129,priceUsd:155,slug:"conducting-polymers",numberOfPages:266,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"5b1132e8d69de0d37de11869d8b87543",bookSignature:"Faris Yilmaz",publishedDate:"October 5th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5260.jpg",numberOfDownloads:26493,numberOfWosCitations:33,numberOfCrossrefCitations:24,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:49,numberOfDimensionsCitationsByBook:6,hasAltmetrics:1,numberOfTotalCitations:106,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 2nd 2015",dateEndSecondStepPublish:"November 23rd 2015",dateEndThirdStepPublish:"February 27th 2016",dateEndFourthStepPublish:"May 27th 2016",dateEndFifthStepPublish:"August 10th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz",profilePictureURL:"https://mts.intechopen.com/storage/users/36900/images/3513_n.jpg",biography:"Dr. Faris Yılmaz was born in Palestine on October 07th, 1969. After pre-college education in Jinin-West Bank, he was accepted to Chemical Engineering Department of Middle East Technical University (METU) in Ankara, Turkey. There he obtained his BSc degree in Chemical Engineering, Ms and PhD degree in Polymer Science and Technology. His research has mainly concentrated on the conducting polymers, their solution properties, composites and nanocoposites. He has publications in different polymer journals. He is married and has two children.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Middle East Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"915",title:"Polymers",slug:"materials-science-biochemistry-polymers"}],chapters:[{id:"51033",title:"Conductive Polymer-Based Membranes",doi:"10.5772/63560",slug:"conductive-polymer-based-membranes",totalDownloads:3074,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This review focuses on an important theme of conductive polymer domain: preparation and applications of advanced materials with permselective properties, such as conductive polymer-based membranes. The most common groups of conductive polymers, their particularities, their use in membranes preparation together with main specific obtaining methods/techniques and conductive polymer-based membrane applications are presented based on a comprehensive documentary study.",signatures:"Gheorghe Batrinescu, Lucian Alexandru Constantin, Adriana\nCuciureanu and Mirela Alina Constantin",downloadPdfUrl:"/chapter/pdf-download/51033",previewPdfUrl:"/chapter/pdf-preview/51033",authors:[{id:"181577",title:"Dr.",name:"Gheorghe",surname:"Batrinescu",slug:"gheorghe-batrinescu",fullName:"Gheorghe Batrinescu"}],corrections:null},{id:"50945",title:"Conducting Polymers in Sensor Design",doi:"10.5772/63227",slug:"conducting-polymers-in-sensor-design",totalDownloads:3189,totalCrossrefCites:5,totalDimensionsCites:10,hasAltmetrics:1,abstract:"Conducting polymers (CPs) as well as conducting polymer nanoparticles seem to be very applicable for the development of various analyte-recognizing elements of sensors and biosensors. This chapter reviews mainly fabrication methods as well as application of conducting polymers in sensors. Conducting polymers (CPs) have been applied in the design of catalytic and affinity biosensors as immobilization matrixes, signal transduction systems, and even analyte-recognizing components. Various types of conducting and electrochemically generated polymer-based electrochemical sensors were developed including amperometric catalytic and potentiodynamic affinity sensors. A very specific interaction of analyte with immobilized biological element results in the formation of reaction products.",signatures:"Jadwiga Sołoducho and Joanna Cabaj",downloadPdfUrl:"/chapter/pdf-download/50945",previewPdfUrl:"/chapter/pdf-preview/50945",authors:[{id:"183516",title:"Dr.",name:"Jadwiga",surname:"Soloducho",slug:"jadwiga-soloducho",fullName:"Jadwiga Soloducho"}],corrections:null},{id:"51136",title:"Conducting Polymer Aerogels",doi:"10.5772/63397",slug:"conducting-polymer-aerogels",totalDownloads:2312,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Conducting polymers are an important class of organic materials with electric conductivity and have experienced a rapid development. Meanwhile, as a novel class of porous nanomaterials, aerogels attract people’s great interest for their ultra-low densities, large specific areas, rich open pores, etc. Thus, conducting polymer aerogels, combining the unique merits of aerogels with physicochemical properties relevant to conducting polymers, become a newly developed area. In this chapter, we give a brief introduction describing (1) synthesis strategies of conducting polymer (PEDOT, PPy, and PANi) aerogels through rational design for oxidant, cross-linker, soft template, sol-gel process, drying process; (2) advantages of these aerogels in physical and chemical performance, compared with the counterparts in bulk or membrane; and (3) their applications in energy storage, adsorption to metal-ions/dye-molecules, stress sensing, Joule heating. The chapter ends with a reflection on limitations of already proposed materials and a prospection of how conducting polymer aerogels developing in the future. As such, this chapter can act as a roadmap to guide researchers toward how conducting polymer aerogels produced and how these materials can be utilized, while also highlighting the current advancements in the field.",signatures:"Weina He and Xuetong Zhang",downloadPdfUrl:"/chapter/pdf-download/51136",previewPdfUrl:"/chapter/pdf-preview/51136",authors:[{id:"181562",title:"Ph.D.",name:"Weina",surname:"He",slug:"weina-he",fullName:"Weina He"},{id:"182761",title:"Prof.",name:"Xuetong",surname:"Zhang",slug:"xuetong-zhang",fullName:"Xuetong Zhang"}],corrections:null},{id:"50580",title:"Coating of Conducting Polymers on Natural Cellulosic Fibers",doi:"10.5772/63304",slug:"coating-of-conducting-polymers-on-natural-cellulosic-fibers",totalDownloads:2284,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The process of combining natural cellulosic fibers with conducting polymers (CPs) is being pursued by scientist and researchers for their achievable synergistic electrical and biofriendly properties. CPs can be deposited on to a wide variety of cellulosic substrate and fibers, thus achieving good interactions between them. Various methods of deposition include in situ polymerization, physical coating, multilayering, and printing. Such materials are used for achieving more sustainable and low-cost CP-based applications.",signatures:"Saiful Izwan Abd Razak, Nor Syuhada Azmi, Khalida Fakhruddin,\nFarah Nuruljannah Dahli, Izzati Fatimah Wahab, Noor Fadzliana\nAhmad Sharif, Abdul Halim Mohd Yusof and Nadirul Hasraf Mat\nNayan",downloadPdfUrl:"/chapter/pdf-download/50580",previewPdfUrl:"/chapter/pdf-preview/50580",authors:[{id:"181477",title:"Dr.",name:"Saiful Izwan Abd",surname:"Razak",slug:"saiful-izwan-abd-razak",fullName:"Saiful Izwan Abd Razak"},{id:"183941",title:"MSc.",name:"Farah Nuuruljannah",surname:"Dahli",slug:"farah-nuuruljannah-dahli",fullName:"Farah Nuuruljannah Dahli"},{id:"183942",title:"Dr.",name:"Noor Fadzliana",surname:"Ahmad Sharif",slug:"noor-fadzliana-ahmad-sharif",fullName:"Noor Fadzliana Ahmad Sharif"},{id:"183953",title:"MSc.",name:"Izzati Fatimah",surname:"Wahab",slug:"izzati-fatimah-wahab",fullName:"Izzati Fatimah Wahab"},{id:"185063",title:"MSc.",name:"Nor Syuhada",surname:"Azmi",slug:"nor-syuhada-azmi",fullName:"Nor Syuhada Azmi"},{id:"185064",title:"Dr.",name:"Nadirul Hasraf",surname:"Mat Nayan",slug:"nadirul-hasraf-mat-nayan",fullName:"Nadirul Hasraf Mat Nayan"},{id:"185065",title:"MSc.",name:"Khalida",surname:"Fakhruddin",slug:"khalida-fakhruddin",fullName:"Khalida Fakhruddin"},{id:"185066",title:"Dr.",name:"Abdul Halim",surname:"Mohd Yusof",slug:"abdul-halim-mohd-yusof",fullName:"Abdul Halim Mohd Yusof"}],corrections:null},{id:"50847",title:"Space Charge–Limited Current Model for Polymers",doi:"10.5772/63527",slug:"space-charge-limited-current-model-for-polymers",totalDownloads:4134,totalCrossrefCites:15,totalDimensionsCites:23,hasAltmetrics:0,abstract:"Polymers have exceptional charge transport mechanism as a combination of delocalization and localization of charge carriers with intramolecular and intermolecular charge interaction, respectively, and most of the time, it is interpreted with Mott-Gurney space charge–limited current model. As polymers are full of traps, therefore, Mott-Gurney space charge–limited model is modified with various trap distributions as trapped space charge–limited model. The most crucial parameter affected by the nature and distribution of traps is the carrier mobility, and it is argued that space charge–limited model is an acceptable choice for the mobility measurement for polymer. Similarly, in order to account the commonly observed lowering of trap barrier height at higher electric field, the Mott-Gurney space charge–limited current is further modified with little variations, which are evaluated and discussed in detail.",signatures:"Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis and Khasan S.\nKarimov",downloadPdfUrl:"/chapter/pdf-download/50847",previewPdfUrl:"/chapter/pdf-preview/50847",authors:[{id:"66696",title:"Prof.",name:"Khasan",surname:"Karimov",slug:"khasan-karimov",fullName:"Khasan Karimov"},{id:"180970",title:"Dr.",name:"Syed",surname:"Abdul Moiz",slug:"syed-abdul-moiz",fullName:"Syed Abdul Moiz"},{id:"182221",title:"Prof.",name:"Iqbal",surname:"Ahmed Khan",slug:"iqbal-ahmed-khan",fullName:"Iqbal Ahmed Khan"},{id:"182222",title:"Dr.",name:"Waheed",surname:"Younis",slug:"waheed-younis",fullName:"Waheed Younis"}],corrections:null},{id:"50833",title:"Perspectives of Conductive Polymers Toward Smart Biomaterials for Tissue Engineering",doi:"10.5772/63555",slug:"perspectives-of-conductive-polymers-toward-smart-biomaterials-for-tissue-engineering",totalDownloads:1952,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Developing the stimuli-responsive biomaterials with tailor properties represents an important goal of the tissue-engineering community. Such biomaterial promises to become the conductive polymers (CPs), as a novel generation of organic materials that have both electrical and optical properties similar to those of metals and inorganic semiconductors but which also exhibit the attractive properties associated with conventional polymers, that is, easy synthesis and flexibility in processing. The fact that several tissues are responsive to electrical fields and stimuli has made conductive polymers attractive for various biological and medical applications. In this context, the chapter provides information on the basic properties of the conductive polymers and how these polymers can be optimized to generate specific properties for biomedical applications. The synthesis routes of novel materials and specific design techniques, as well as the mechanisms by which electrical conduction affects cells/tissues, are examined, and the significant impact of the conductive polymers in the biomedical field, that is, biosensors, tissue engineering, and neural probes, is demonstrated.",signatures:"Anca Filimon",downloadPdfUrl:"/chapter/pdf-download/50833",previewPdfUrl:"/chapter/pdf-preview/50833",authors:[{id:"125105",title:"Dr.",name:"Anca",surname:"Filimon",slug:"anca-filimon",fullName:"Anca Filimon"}],corrections:null},{id:"51714",title:"Electrical Properties of Polymer Light-Emitting Devices",doi:"10.5772/64358",slug:"electrical-properties-of-polymer-light-emitting-devices",totalDownloads:1812,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"In this chapter, we present a brief introduction to semiconducting properties of conjugated polymers and the motivation to apply this class of materials in electronic/optoelectronic devices such as polymer light-emitting diodes (PLEDs). We describe, in detail, the operating mechanisms of PLEDs, with particular focus on the effects of charge injection and transport and their dependence on the external electric field and temperature. The mechanisms of current injection from the electrodes into the organic semiconductor are initially treated using traditional models for thermionic emission and tunnelling injection. More recent models considering the influence of metal/semiconductor interface recombination and of energetic and spatial disorder in the injection currents are also introduced and discussed. In addition, models considering space-charge-limited currents and trap-filling-limited currents are employed to describe the charge transport characteristics in the bulk. Furthermore, we present a brief discussion on ideas concerning the effects of the disorder on the charge-carrier transport behaviour.",signatures:"Lucas Fugikawa Santos and Giovani Gozzi",downloadPdfUrl:"/chapter/pdf-download/51714",previewPdfUrl:"/chapter/pdf-preview/51714",authors:[{id:"42208",title:"Prof.",name:"Lucas",surname:"Fugikawa Santos",slug:"lucas-fugikawa-santos",fullName:"Lucas Fugikawa Santos"}],corrections:null},{id:"50641",title:"Properties of Metal Oxide Pigments Surface Modified with Polyaniline Phosphate and Polypyrrole Phosphate in Corrosion Protective Organic Coatings",doi:"10.5772/63290",slug:"properties-of-metal-oxide-pigments-surface-modified-with-polyaniline-phosphate-and-polypyrrole-phosp",totalDownloads:1888,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The objective of this work was to describe the properties of metal oxide–based pigments whose surface has been coated with a conductive polymer, if used as pigments in organic coating materials. The perovskite‐type pigments were synthesized by high‐temperature solid‐phase reaction, and their surface was modified with a conductive polymer, specifically polyaniline phosphate or polypyrrole phosphate, by chemical oxidative polymerization. The pigments’ structure and physicochemical properties were examined by XRD, XRF, and SEM. The composite pigments (pigment/conductive polymer) were dispersed in a solvent‐type epoxy‐ester resin binder to obtain a series of paints whose anticorrosion properties were assessed by means of corrosion tests in simulated corrosion atmospheres and by the linear polarization method. The anticorrosion and mechanical properties of the paints were compared with those of a paint containing the routinely used zinc phosphate hydrate pigment as a reference material. The pigments were found to possess a high anticorrosion efficiency, comparable to or higher than that of the commercially available zinc phosphate–based anticorrosion pigment. The highest anticorrosion efficiency was observed with the paints containing the Ca–Ti, Sr–Ti, and Sr–Mn perovskite pigments modified with polypyrrole phosphate.",signatures:"Andréa Kalendová, Tereza Hájková, Miroslav Kohl and Jaroslav\nStejskal",downloadPdfUrl:"/chapter/pdf-download/50641",previewPdfUrl:"/chapter/pdf-preview/50641",authors:[{id:"175841",title:"Prof.",name:"Andréa",surname:"Kalendová",slug:"andrea-kalendova",fullName:"Andréa Kalendová"},{id:"182751",title:"Dr.",name:"Tereza",surname:"Hájková",slug:"tereza-hajkova",fullName:"Tereza Hájková"},{id:"182752",title:"Dr.",name:"Jaroslav",surname:"Stejskal",slug:"jaroslav-stejskal",fullName:"Jaroslav Stejskal"}],corrections:null},{id:"50759",title:"Exfoliated Nanocomposites Based on Polyaniline and Tungsten Disulfide",doi:"10.5772/63457",slug:"exfoliated-nanocomposites-based-on-polyaniline-and-tungsten-disulfide",totalDownloads:2077,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Nanocomposite materials consisting of polyaniline (PANI) and exfoliated WS2 were synthesized. The WS2 was prepared by reacting tungstic acid with thiourea at 500°C under nitrogen flow. Samples were prepared with a WS2 content of 1, 5, 7.5, 10, 12.5, 15, 20, 37, and 64% by mass. An improvement in the electronic conductivity value of the PANI was observed through the incorporation of exfoliated WS2. The electronic conductivity of PANI-15%WS2 was 24.5 S/cm, an eightfold increase when compared to pure PANI. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) provided evidence that the nanocomposites are in an exfoliated state. XRD and TEM showed that the nanocomposites were completely amorphous, suggesting lack of structural order in these materials, while their EPR signals were considerably narrower compared to pure PANI, indicating the formation of genuine exfoliated systems. Furthermore, our research showed that WS2 can be used as a filler to improve activation energy of decomposition of the polymer. By using the Ozawa method, we studied the decomposition kinetics for the nanocomposites, as well as for the pure polymer. The activation energy for the decomposition of pure PANI was found to be 131.2 kJ/mol. Increasing the amount of WS2 to 12.5% in the PANI increases the activation energy of decomposition to 165.4 kJ/mol, an enhancement of 34.2 kJ/mol over the pure polymer.",signatures:"Barrit C.S. Lane, Rabin Bissessur, Alaa S. Abd-El-Aziz, Wael H.\nAlsaedi, Douglas C. Dahn, Emma McDermott and Andrew Martin",downloadPdfUrl:"/chapter/pdf-download/50759",previewPdfUrl:"/chapter/pdf-preview/50759",authors:[{id:"30882",title:"Prof.",name:"Rabin",surname:"Bissessur",slug:"rabin-bissessur",fullName:"Rabin Bissessur"},{id:"39937",title:"Dr.",name:"Douglas",surname:"Dahn",slug:"douglas-dahn",fullName:"Douglas Dahn"},{id:"185839",title:"Mr.",name:"Barrit",surname:"Lane",slug:"barrit-lane",fullName:"Barrit Lane"},{id:"185840",title:"Dr.",name:"Alaa",surname:"Abd-El-Aziz",slug:"alaa-abd-el-aziz",fullName:"Alaa Abd-El-Aziz"},{id:"185841",title:"Mr.",name:"Wael",surname:"Alsaedi",slug:"wael-alsaedi",fullName:"Wael Alsaedi"},{id:"185842",title:"Ms.",name:"Emma",surname:"McDermott",slug:"emma-mcdermott",fullName:"Emma McDermott"},{id:"185844",title:"Mr.",name:"Andrew",surname:"Martin",slug:"andrew-martin",fullName:"Andrew Martin"}],corrections:null},{id:"51055",title:"Phenylenevinylene Systems: The Oligomer Approach",doi:"10.5772/63394",slug:"phenylenevinylene-systems-the-oligomer-approach",totalDownloads:1821,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Among conducting polymers, poly-p-phenylenevinylenes (PPVs) have attained a special place in polymer electronics. The optoelectronic properties initially exposed by PPVs in organic light-emitting diodes (OLEDs) turned these organic electronic conjugated systems from the solo academic interest into a technologically very promising area. The easiness of the tuning of their optoelectronic properties through synthetic modifications make PPVs an outstanding and suitable compound for technological applications and fundamental science development. Unfortunately, the synthesis and structural optoelectronic characterization of novel PPVs is a long and difficult task that sometimes yields unclear results. However, phenylenevinylene oligomers (oPV) can be synthesized and characterized in a very straightforward manner, and their performance in novel applications can be directly related to their structural analogue polymer, methodology designated as the oligomer approach. Herein, we describe the oligomer approach using the Mizoroki-Heck reaction as a synthetic route for oPVs and PPVs, and the importance of an extensive characterization for novel applications, such as photocatalysis and matrix-assisted laser desorption/ionization (MALDI) matrices, where these electronic conjugated systems have very promising applications.",signatures:"Juan C. Cárdenas, Cristian Ochoa-Puentes and Cesar A. Sierra",downloadPdfUrl:"/chapter/pdf-download/51055",previewPdfUrl:"/chapter/pdf-preview/51055",authors:[{id:"181975",title:"Dr.",name:"Cesar",surname:"Sierra",slug:"cesar-sierra",fullName:"Cesar Sierra"}],corrections:null},{id:"51779",title:"Intercalation of Poly(bis-(methoxyethoxyethoxy)phosphazene) into Lithium Hectorite",doi:"10.5772/64580",slug:"intercalation-of-poly-bis-methoxyethoxyethoxy-phosphazene-into-lithium-hectorite",totalDownloads:1954,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Poly(bis-(methoxyethoxyethoxy)phosphazene) (MEEP) intercalated into lithium hectorite was investigated for its potential application as a solid polymer electrolyte in lithium-ion polymer batteries. Varying amounts of MEEP were intercalated into lithium hectorite, and the physical properties of the nanocomposites were monitored using powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, and attenuated total reflectance spectroscopy. Alternating current (AC) impedance spectroscopy was used to determine the ionic conductivity of the nanocomposites when complexed with lithium triflate salt.",signatures:"Iskandar Saada, Rabin Bissessur, Douglas C. Dahn and Matthieu\nHughes",downloadPdfUrl:"/chapter/pdf-download/51779",previewPdfUrl:"/chapter/pdf-preview/51779",authors:[{id:"30882",title:"Prof.",name:"Rabin",surname:"Bissessur",slug:"rabin-bissessur",fullName:"Rabin Bissessur"},{id:"39937",title:"Dr.",name:"Douglas",surname:"Dahn",slug:"douglas-dahn",fullName:"Douglas Dahn"},{id:"185845",title:"Mr.",name:"Iskandar",surname:"Saada",slug:"iskandar-saada",fullName:"Iskandar Saada"},{id:"185846",title:"Mr.",name:"Hughes",surname:"Matthieu",slug:"hughes-matthieu",fullName:"Hughes Matthieu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2384",title:"Polymer Science",subtitle:null,isOpenForSubmission:!1,hash:"81a63051062489a860366c78c72a124d",slug:"polymer-science",bookSignature:"Faris Yılmaz",coverURL:"https://cdn.intechopen.com/books/images_new/2384.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5904",title:"Aspects of Polyurethanes",subtitle:null,isOpenForSubmission:!1,hash:"514b1dfa3811606d3dd5faf2c4f3ef30",slug:"aspects-of-polyurethanes",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/5904.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6671",title:"Paint and Coatings Industry",subtitle:null,isOpenForSubmission:!1,hash:"1dc37c2c972a253d544da9849049222f",slug:"paint-and-coatings-industry",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3043",title:"New Polymers for Special Applications",subtitle:null,isOpenForSubmission:!1,hash:"dd782fff3bea8992c224dfd3280d6cd1",slug:"new-polymers-for-special-applications",bookSignature:"Ailton De Souza Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/3043.jpg",editedByType:"Edited by",editors:[{id:"135416",title:"Dr.",name:"Ailton",surname:"De Souza Gomes",slug:"ailton-de-souza-gomes",fullName:"Ailton De Souza Gomes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1573",title:"Thermoplastic Elastomers",subtitle:null,isOpenForSubmission:!1,hash:"68733430093bd948f36fd95ab2ff4746",slug:"thermoplastic-elastomers",bookSignature:"Adel Zaki El-Sonbati",coverURL:"https://cdn.intechopen.com/books/images_new/1573.jpg",editedByType:"Edited by",editors:[{id:"98324",title:"Prof.",name:"Adel",surname:"El-Sonbati",slug:"adel-el-sonbati",fullName:"Adel El-Sonbati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"467",title:"Carbon Nanotubes",subtitle:"Polymer Nanocomposites",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-polymer-nanocomposites",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/467.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2003",title:"Polyurethane",subtitle:null,isOpenForSubmission:!1,hash:"7391b5a0085d7c0aa0a5c75ee6f275b2",slug:"polyurethane",bookSignature:"Fahmina Zafar and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/2003.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2383",title:"Polyester",subtitle:null,isOpenForSubmission:!1,hash:"79fd9d6314f8e1abd60d7e21896ce878",slug:"polyester",bookSignature:"Hosam El-Din M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/2383.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2385",title:"Polymerization",subtitle:null,isOpenForSubmission:!1,hash:"e83b64f8e9875e507d879fede9f34d1a",slug:"polymerization",bookSignature:"Ailton De Souza Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/2385.jpg",editedByType:"Edited by",editors:[{id:"135416",title:"Dr.",name:"Ailton",surname:"De Souza Gomes",slug:"ailton-de-souza-gomes",fullName:"Ailton De Souza Gomes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2805",title:"High Performance Polymers - Polyimides Based",subtitle:"From Chemistry to Applications",isOpenForSubmission:!1,hash:"45412ef8f76c275a84f6052ab6076355",slug:"high-performance-polymers-polyimides-based-from-chemistry-to-applications",bookSignature:"Marc J.M. Abadie",coverURL:"https://cdn.intechopen.com/books/images_new/2805.jpg",editedByType:"Edited by",editors:[{id:"145543",title:"Prof.",name:"Marc",surname:"Abadie",slug:"marc-abadie",fullName:"Marc Abadie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68990",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9755",leadTitle:null,title:"G-quadruplex",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"2a7fb00b73202ce9b34eca359cc98f56",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9755.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 6th 2019",dateEndSecondStepPublish:"June 27th 2019",dateEndThirdStepPublish:"August 26th 2019",dateEndFourthStepPublish:"November 14th 2019",dateEndFifthStepPublish:"January 13th 2020",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"74396",title:"Design Considerations for Autonomous Cargo Transportation Multirotor UAVs",doi:"10.5772/intechopen.95060",slug:"design-considerations-for-autonomous-cargo-transportation-multirotor-uavs",body:'
In recent decades, technology has enabled the development of components and systems that have numerous capabilities in the field of autonomous vehicles and robots. From the aspect of the control system, developed control components with higher processing speed and integrated MEMS sensors allow a certain degree of autonomy of the vehicle. On the other hand, the development of the propulsion system and batteries has enabled a wide range of applications in various missions on the ground, in water, or in the air. Such as autonomous cars, unmanned ground vehicles (UGVs) can use existing infrastructure which is vulnerable to failure, and congestion that can be caused by other vehicles. These problems can potentially be overcome by using unmanned aerial vehicles (UAVs) as autonomous vehicles or/and robots.
There are different categories of UAVs that are used in various missions such as construction management [1, 2], agriculture [3], surveillance [4], search and rescue [5, 6], firefighting [7, 8], transport (delivery) [9] and many others. Aircraft can generally be divided according to the lifting mechanism into fixed-wing [10], rotary-wing [11, 12], and hybrid aircraft [13]. Because of its ability to vertically take-off and land (VTOL), rotary-wing (rotorcraft) UAVs do not need a launchpad or runway so the degree of autonomy can be higher and the cost of supporting infrastructure lower. Rotary-wing UAVs can be further divided into aircraft with variable-pitch propellers where the typical representative is a helicopter, and multirotor (multicopter) aircraft with fixed-pitch propellers. The advantages of the multirotor UAVs over other categories of aircraft are agility and maneuverability which is important in missions that include interaction with the environment and precise movements. Therefore this type of UAV is increasingly being considered as an alternative to UGVs in delivery and transport. The design of an autonomous heavy lift cargo transportation multirotor UAV is a quite challenging process since this type of aircraft is characterized by high energy consumption. Various conventional aircraft configurations such as quadrotor [14], hexarotor [15], or octorotor [16], allow a wide range of applications. Numerous research has recently been conducted with the aim of the design and development of new configurations with improved performance [17, 18].
There are several groups of researchers and companies engaged in the research and development of multirotor UAVs for the transportation of heavy loads. Brar et al. in their technical report [19] addressed several aspects of UAVs for deliveries such as the current market, available technology, regulation, and the impact on society. In general, multirotor cargo transport can be achieved with two basic transport strategies. The load can be attached to the multirotor body, or suspended through cables [20]. Ong at al presented design methodology for heavy-lift UAVs with coaxial rotors [21]. Several companies deal with the production of aircraft for the transportation of heavy cargo [22, 23]. The motivation to design an autonomous system stems from the fact that such a system can improve some aspects of society. Life on the islands is specific given the needs of the population and the infrastructure and institutions that exist on certain islands. On the larger islands, there are schools, ambulance, post offices. All other needs of the island’s inhabitants are met through the connections that exist with the mainland and are mostly met by sea. Transport of passengers, goods, transport vehicles, and others takes place by ferries and ships. The existing type of transport is characterized by limited line frequency and high transportation costs.
In this chapter, a conceptual solution of on-demand autonomous heavy lift cargo transportation is presented which can reduce operational costs and carbon emissions. The overall system consists of a network of multirotor UAVs and docking facilities with the purpose of transportation from the mainland to the islands and vice versa. Based on the distance analysis and the existing infrastructure on the considered central Adriatic islands in Croatia, the topology (network) of the system was proposed whose endpoints are Zadar ports (mainland). The main focus of this research is on the design of heavy lift multirotor UAVs which can carry loads from 10 kg up to 100 kg. The multirotor UAV system divided into four key subsystems allows a methodological approach to aircraft design. The performance of the multirotor UAV is determined by the parameters and components of the propulsion and energy subsystem. The parameter analysis of conventional configurations for five selected setups of electric propulsion units was performed and presented. Based on the analysis, it is possible to select the aircraft parameters and components for a particular cargo and planned flight route. Furthermore, the parametric design of the aircraft is presented and preliminary simulations are performed.
In this research, the aim is to show the benefits of the autonomous cargo transportation system (ACTS). The implementation of on-demand ACTS using multirotor UAVs can potentially reduce transport costs and increase the frequency and speed of transportation. This is of particular importance for the inhabitants of the islands, for whom such a system would enable better communication with the mainland, and thus would improve the standard of living on the islands. The concept of the system allows for a multi-purpose character and could be used for missions involving the delivery of postal packages, the transport of goods such as fresh fish and fruit, and such a system could even be used for fire prevention purposes. The system consists of docking facilities on certain islands and a fleet of multirotor UAVs deployed on an on-demand basis that connect islands facilities to the overall system.
A case study was considered for the central Adriatic islands, which administratively belong to the city of Zadar, which is located on the coast of the Croatian mainland (Figure 1). The archipelago consists of ten smaller and three larger inhabited islands, two of which are connected by a bridge. Common to all islands is that there is the infrastructure to accommodate smaller and/or larger ships and ferries. On these islands, among other facilities, there are 21 post offices as shown in Table 1, which is important from the aspect of the delivery and distribution of postal packages. The ACTS can consist of several to several dozen multirotor UAVs, depending on the needs and scope of purposes that such a system can perform. A fleet of aircraft is considered, consisting of five series of aircraft that can carry from 10 kg up to 100 kg of cargo. This also enables the modular character of the overall system, and the use of different aircraft series depending on the cargo they need to carry can potentially reduce the energy consumption. The idea is that the smaller islands are connected to the larger islands with the possibility of using particular islands as an intermediate docking, and the aircraft with the largest payload are provided for connection to the mainland.
Considered archipelago of central Adriatic islands in Croatia.
Pašman | 23,262 | Ugljan | 23,275 | Veli Rat | 23,287 |
Ždrelac | 23,263 | Sali | 23,281 | Sestrunj | 23,291 |
Neviđane | 23,264 | Žman | 23,282 | Molat | 23,292 |
Kukljica | 23,271 | Rava | 23,283 | Ist | 23,293 |
Kali | 23,272 | Veli Iž | 23,284 | Premuda | 23,294 |
Preko | 23,273 | Brbinj | 23,285 | Silba | 23,295 |
Lukoran | 23,274 | Božava | 23,286 | Olib | 23,296 |
Post offices located on the central Adriatic islands.
Docking facilities have several functions, among others, they need to perform a user-friendly interface that makes it simple to use for the residents of the island and the services bear in mind that this is an on-demand system. Taking into account the current state of available components and technologies, the docking facility could consist of a multirotor UAV docking assembly and storage for depositing or retrieving cargo. It can additionally be contained with other features such as a mini solar power plant or a battery charging module for electric cars or UGVs. The multirotor UAV docking assembly is connected to the aircraft via sensors and telemetry and have to be designed to allow take-off and landing of the aircraft. It consists of a module to recharge the multirotor UAV batteries or additionally replace the batteries when the aircraft needs to be used urgently. The storage for depositing or retrieving cargo is associated with the user interface and is connected to the docking assembly to allow the exchange of cargo between the user and the aircraft. Figure 2 schematically shows the possible topology of the overall ACTS where the most distant islands are connected to the mainland by three connections. It is important to note that the marked distances are for planned routes where flight over settlements and infrastructure is avoided.
Considered topology of the overall ACTS system.
Multirotor UAVs are mechanical systems represented as rigid bodies with six degrees of freedom. Common to all designs is that they consist of N rotors (propulsion units) whose geometric arrangement also determines the configuration of the aircraft. They are mathematically described by a dynamic model of a rigid body with six second-order differential equations, twelve state variables, and N input variables, making them a multivariable system. Conventional configurations are characterized by a planar arrangement of the rotors, where the typical and most common configurations with four (quadrotor), six (hexarotor), and eight (octorotor) rotors are shown in Figure 3. The propulsion units mainly consist of an electric motor, suitable motor driver, and fixed-pitch propeller. It follows that the rotor’s angular velocities are the only variables that have a direct impact on flight dynamics since propellers by their rotation create aerodynamic forces and moments.
Conventional multirotor UAV configurations [
The development and design of multirotor UAVs are significantly limited by both their size and energy consumption. For simpler analysis, design, and construction of this type of UAV, the aircraft system is divided into four key subsystems regardless of the configuration or purpose of the aircraft. The propulsion subsystem consists of N rotors that generate the necessary forces and moments for the movement of the aircraft in 3D space. The energy subsystem consists of one or more lithium-polymer batteries with joined components that need to deliver a large amount of energy essential to achieve the desired performance. The control subsystem takes care of UAV navigation and the functioning of the overall system by managing and monitoring other subsystems. Another task for the control subsystem is to be the interface between the aircraft and the base station (docking facility). The multirotor payload subsystem includes all equipment and cargo required to perform a particular mission whereby, this paper discusses the missions of heavy lift cargo transportation. Generally, it can be said that the performance of the multirotor UAV is determined by the parameters and components of the propulsion and energy subsystem. Figure 4 schematically shows the multirotor UAV system which consists of four key subsystems.
Schematic representation of an electric multirotor UAV system.
From a control point of view, multirotor UAVs are inherently unstable and highly nonlinear systems. The inherent instability stems from the fact that this type of UAV cannot return to the equilibrium point on its own if it loses the functionality of the control loops. Furthermore, multirotor UAVs are highly nonlinear systems since the propulsion aerodynamic forces and moments are proportional to the square of the rotor angular velocity, and the transformations of the coordinate systems involve trigonometric functions. The basic task of the control subsystem is to navigate the multirotor UAV according to the given mission. The considered control subsystem is based on PX4 Autopilot. Generated control signals by the PX4 Autopilot, are sent to the electric propulsion units in order to achieve the desired movement in 3D space, ie to perform the mission. Orientation sensors are integrated into the PX4 Autopilot, while the position is estimated using compatible peripheral sensors. In considered concept, a global positioning system (GPS) and sensors for precise docking are incorporated in the control system. Given that the cargo mass in transport missions is unpredictable and there are real external disturbances such as wind gusts, it is necessary to consider robust control algorithms.
The propulsion subsystem provides the aircraft system with the necessary power to move in 3D space. The choice of propulsion subsystem configuration and propulsion unit type affects flight performance and it is a key step in designing a multirotor type of UAV. Electric motor based propulsion unit enables precise and fast control of forces and moments which directly affect the position and orientation of the aircraft. The reliability of electrical systems reduces the possibility of aircraft crash due to motor failure. The required performance of the aircraft, which depends on the type and profile of the mission, determines the choice of propulsion configuration and components. The electric propulsion unit consists of a control unit and a mechanical assembly of the motor on whose rotor a fixed-pitch propeller is mounted, which creates forces and moments by its rotation. Propulsion units with brushless DC (BLDC) motors coupled with electronic speed controllers (ESCs) are suitable for a wide range of tasks, including missions with heavy lift transportation (Figure 5).
Multirotor UAV electric propulsion unit.
In this case study, seven setups of electric propulsion units were considered which will be paired with the high voltage (HV) setup of the energy subsystem. Based on the component manufacturer’s specification, it is possible to characterize the propulsion units which is the first step in designing the aircraft propulsion subsystem for heavy lift multirotor system. Table 2 shows the considered electric propulsion components for which characterization is presented. Motor velocity constant (back EMF constant) Kv of motors intended for heavy payloads is typically small (Kv < 200), resulting in lower speeds and higher torques. The propeller designations in the table describe its geometry where the first two numbers indicate the diameter of the propeller, and the other two the propeller pitch, both in inch.
BLDC motor | Kv | ESC | Propeller |
---|---|---|---|
U15 II | 100 | FLAME 180A HV | 4013 (40 × 13.1) |
U13 II | 130 | ALPHA 120A HV | 3211 (32 × 11) |
U11 II | 120 | ALPHA 80A HV | 2892 (28 × 9.2) |
P80 | 100 | ALPHA 80A HV | 3211 (32 × 11) |
P60 | 170 | FLAME 60A HV | 2266 (22x6.6) |
Antigravity 1005 | 90 | FLAME 60A HV | 3211 (32 × 11) |
Antigravity 7005 | 115 | FLAME 60A HV | 2472 (24 × 7.2) |
Considered electric propulsion unit setups [25].
Characterization is necessary for the appropriate selection of propulsion components and analysis of the electric propulsion system which further allows system optimization. Figure 6 shows thrust force as a function of rotor angular velocity for seven considered setups. As expected, setups consisting of motors with a lower Kv achieve lower angular velocities, and propellers with larger diameter achieve higher thrust forces. Figure 7 shows the electric current as a function of the required thrust force, which is very important from the aspect of estimating the flight time. Figure 8 shows the overall efficiency of the propulsion unit which is expressed by the ratio of thrust and electric power. In this case, efficiency is represented as a function of electric power. From the graph, it can be concluded that the increase in efficiency can generally be achieved by choosing propulsion units consisting of a larger diameter propeller combined with a suitable motor.
Thrust force with respect to rotor angular velocity.
Electric current with respect to the thrust force.
The overall efficiency of the electric propulsion unit with respect to electric power.
The energy subsystem must provide sufficient energy for multirotor UAV system in order to perform the intended missions. Multirotor UAVs are characterized by high energy consumption as they consist of a minimum of four propulsion units. When choosing an energy subsystem, it is necessary to take into account several parameters, the most important of which is the type of propulsion subsystem. Electric propulsion units based on BLDC motors are combined with an energy subsystem consisting of one or more lithium-polymer (LiPo) batteries. Each LiPo battery contains one or more electrochemical cells to ensure a continuous flow of energy to power the propulsion and other subsystems. A very important feature of a LiPo battery is high energy density. Compared to other types of batteries such as nickel-metal hydride (NiMh), LiPo batteries have a higher discharge rate, which allows more power and consistent energy flow to the propulsion. LiPo batteries are defined by the capacity, discharge rate (C), and the number of cells that determine the operating voltage (S). The nominal voltage of a single battery cell is 3.7 V, and the voltage of a fully charged cell is 4.2 V.
When selecting batteries, the energy requirements of the propulsion subsystem must be taken into account, which in turn depends on the mass and size of the aircraft and the number of propulsion units. It follows that when designing a system, the relationship between mass and battery capacity is one of the key data. For the characterized propulsion units, commercial high voltage (12S) LiPo batteries of capacity 8000 mAh, 16,000 mAh, and 22,000 mAh, as shown in Figure 9, were selected for further analysis [26]. Since the mass of the batteries in relation to other system masses dominantly affects the aircraft dynamics, it is desirable to place the energy subsystem centrally, as close as possible to the aircraft center of gravity. Energy subsystems of large aircraft, such as in this research, have more sophisticated energy distribution circuits (Figure 10) that provide different voltage levels and also have the function of measuring the battery’s electrical parameters.
LiPo battery Tattu plus 12S, 22,000 mAh, 25C.
Power hub MAUCH power cube 4.
To ensure overall flight performance, it is necessary to determine the required thrust-to-weight ratio (TWR). As a rule, aircraft are designed with approximately twice the thrust force in comparison with aircraft weight, from which it can be concluded that the mass of the aircraft is a key parameter in the design of the system. The division of the multirotor UAV system into four key subsystems, where the subsystems are determined by masses as the basic parameters, represents the first step in the design of the aircraft. The equipment subsystem is directly determined by the type of mission which in this research is heavy lift transportation. The mass of this subsystem directly affects the selection of the propulsion and energy subsystem. These two subsystems are interdependent and when choosing components it is necessary to maintain a balance with the existing constraints defined by the mission. Parameters which significantly influence the dynamics and duration of the flight were analyzed for five selected aircraft series. The design of the propulsion subsystem affects the performance of the aircraft. Given the interdependence of the propulsion and energy subsystems, the parameters of LiPo batteries are included in the analysis.
Based on the division of the aircraft system into four key subsystems, the mass distributions of conventional multirotor configurations for five selected aircraft series (S, M, L, XL, XXL) are graphically shown. To ensure basic flight performance, the required TWR was determined according to the propulsion manufacturer’s recommendations and is approximately 1.8 for all five series. Figures 11–15 show the mass distributions of payload mass (mPL), energy subsystem mass (mES), propulsion subsystem mass (mPS), and control subsystem (avionics) mass (mAV) for five generic series of aircraft whose propulsion subsystem consists of four, six, and eight rotors. For the selected battery capacities and the number of rotors, the maximum masses of the payload subsystems for the assumed TWR are expressed in kilograms. The first aircraft series – S (Figure 11) whose propulsion subsystem is based on propulsion units with P60 BLDC motors, is considered for payloads up to 10 kg. The second series – M (Figure 12) based on propulsion units with Antigravity 1005 motors, is considered for payloads from 10 kg up to 15 kg. The third series – L (Figure 13) based on propulsion units with P80 motors, is considered for payloads from 15 kg up to 25 kg. The fourth series – XL (Figure 14) based on propulsion units with U13 motors, is considered for payloads from 25 kg up to 50 kg. And lastly, the fifth series – XXL (Figure 15) based on propulsion units with U15 motors, is considered for payloads from 50 kg up to 100 kg.
Mass distribution of the S aircraft series system (TWR = 1.8).
Mass distribution of the M aircraft series system (TWR = 1.8).
Mass distribution of the L aircraft series system (TWR = 1.8).
Mass distribution of the XL aircraft series system (TWR = 1.8).
Mass distribution of the XXL aircraft series system (TWR = 1.8).
The analysis of the multirotor UAV system mass distribution and the graphical representation, shown in Figures 11–15, was performed using a script written in the Matlab software package.
Very important information is the total time that the aircraft can be in the air, which depends on the mission itself, ie on the required flight performance and the cargo that the aircraft carries. Based on the characteristics of the propulsion units, an estimate of the flight time was performed for selected series of aircraft defined by the parameters of the propulsion and energy subsystem. The basic case is considered, a stationary flight of conventional configurations, assuming that the drop in battery voltage and the power consumption by the control subsystem (possibly also the payload subsystem) are ignored. The estimated flight time is calculated based on the available battery capacity and the electric current required to generate adequate thrust force. It is also important to note that the complete battery capacities were used in the calculation, which is not possible in practice since the batteries must not be completely discharged. The required thrust force to reach the steady state of the aircraft depends on the mass of the system.
Figure 16 shows the estimated stationary flight time for possible nine configurations of the first aircraft series – S. Configurations for each series are determined by the number of rotors (N) which is a parameter of the propulsion subsystem, and by battery capacity ie the number of considered batteries which is a parameter of the energy subsystem. The first series (S), as mentioned in the last subsection, is considered for payloads up to 10 kg. Furthermore, Figures 16–19 show the estimated stationary flight time for other aircraft series (M, L, XL, and XXL) which were considered and analyzed in the last subsection.
Estimated stationary flight time of the S aircraft series.
Estimated stationary flight time of the M aircraft series.
Estimated stationary flight time of the L aircraft series.
Estimated stationary flight time of the XL aircraft series.
The estimation of the multirotor UAV system stationary flight time and the graphical representation, shown in Figures 16–20, based on the parameters of the propulsion and energy subsystems, was performed using a script written in the Matlab software package.
Estimated stationary flight time of the XXL aircraft series.
Based on the analysis, it is possible to select the aircraft parameters and components for a particular cargo and planned flight route. In considered design, the propulsion unit (rotor) is defined by the propeller diameter and the propulsion subsystem by the number of rotors. The size of the aircraft, which is defined by the aircraft diameter, derives from these two parameters. For given propulsion units defined with propeller diameter (d) in inch, and with the number of rotors (N), Table 3 shows the propulsion subsystem diameter (D) in mm, which actually defines the construction parameters of the aircraft. In order to reduce the cost of prototyping and the potential production of system parts, it is necessary to achieve a certain degree of modularity. The idea is to turn predefined aircraft subsystems into modules that can be easily connected to each other. Of particular importance is the modularity of the propulsion subsystem. One of the ways to achieve this goal is by parameterizing the propulsion construction that connects the propulsion components with other subsystems.
d = 22″ | d = 24″ | d = 28″ | d = 32″ | d = 40″ | |
---|---|---|---|---|---|
N = 4 | 1100 | 1200 | 1400 | 1600 | 2000 |
N = 6 | 1400 | 1600 | 1800 | 2000 | 2500 |
N = 8 | 1800 | 2000 | 2200 | 2500 | 3000 |
Conventional multirotor configuration sizes (D).
In this chapter, the concept of on-demand autonomous cargo transportation is presented by employing multirotor UAVs. The topology of a network of docking facilities and a multirotor UAV fleet was proposed for the considered autonomous transport within the central Adriatic islands in Croatia. Currently available technologies allow relatively simple implementation of the proposed concept, however, regulations applicable in a particular area should also be considered in the future. The market of commercially available components for propulsion and energy subsystem was investigated and it was found that it is possible to develop multirotor UAVs that can carry up to 100 kg of cargo. Based on the considered setups of electric propulsion units, the analysis of the Multirotor UAV propulsion and energy subsystems parameters were performed. In the multirotor UAV design process, the mass of five series of aircraft is considered and the flight time with respect to the payload mass is approximated and shown. The proposed concept of an autonomous cargo transportation system has great potential for future development and implementation since it can reduce transport costs, increase the frequency and speed of transport, and reduce carbon emissions.
This research was funded by European Regional Development Fund, Operational programme competitiveness and cohesion 2014-2020, as part of the call for proposals entitled “Investing in science and innovation – first call”, grant number KK.01.1.1.04.0092.
unmanned aerial vehicle micro-electromechanical systems unmanned ground vehicle vertically take-off and land autonomous cargo transportation system global positioning system brushless direct current electronic speed controller high voltage electromotive force lithium-polymer nickel-metal hydride thrust-to-weight ratio
Chalcogenide thin films have attracted a great deal of attention for decades because of several reasons such as earth abundancy, environmental friendly [1, 2, 3], excellent structural [4, 5, 6], electrical [7, 8, 9], and optical properties [10, 11, 12]. These materials could be employed in various applications such as solar cells [13, 14, 15], ultraviolet light emitters, laser devices [16], spin functional devices, gas sensors, transparent electronics, corrosion resistant coating [17], microelectronics [18], optics, magnetic and acoustic wave devices. Several deposition methods including chemical vapor deposition [19], physical vapor deposition [20], sputtering [21], SILAR, spray pyrolysis [22], chemical bath deposition [23, 24, 25, 26], vacuum evaporation method [27], and electro deposition method [28, 29] have been used to produce thin films. Generally, these deposition methods could be divided into physical method and chemical techniques. Researchers highlighted that the chemical deposition method has many advantages such as inexpensive, and convenient for large area deposition [30, 31, 32].
Supercapacitor has been considered as one of the potential energy storage systems. The redox electrochemical capacitors and the electrochemical double layer capacitor have been extensively investigated by many researchers. Researcher reported that transition metal oxide, conducting polymers, and metal oxide thin films have been tested in supercapacitors. The perovskite structure consisted of the crystal structure of calcium titanium oxide. This material showed high absorption coefficient with a sharp absorption edge. The organic-inorganic hybrid perovskites based solar cell was made from sandwiching a perovskite absorber layer between the electron transport layer and hole transport layer. The obtained solar cells showed some unique advantages such as low-temperature processes for all sub cells, compatibility with flexible and lightweight applications. The thin film-based sensor could be used to convert physical or chemical quantity into equivalent electrical for measurement. Sensor is critical in improving the reliability and efficiency of manufacturing operations by providing faster and more accurate feedback regarding product quality.
In this book chapter, thin film based solar cell, thin film based supercapacitor and thin film based sensor will be discussed. The properties of the obtained films were reported. Lastly, the advantages and limitations of these materials will be highlighted.
Recently electronic devices such as computers, roll-up displays smartwatches, mobile phones and other portable devices abound in the twenty-first century. For greater performance, improved energy storage devices are required to reduce the energy consumption of these smart electronic devices [33]. As a result, devices with long-lasting battery, high power outputs, and quick recharge times are required. As a consequence, it is critical to create innovative energy storage materials and devices. The realities of scarcity of fossil fuels, and environmental damage should all be considered in this endeavor [34]. By modify the surface properties of the electrodes with a long life cycle, the supercapacitor (SC) is such an effective energy-saving technology that is environmentally friendly with quick charging, and high energy density are just a few of the benefits [35]. However, this redeemer (supercapacitor) has issues. Nevertheless, in comparison to lithium batteries, such savior (supercapacitor) has challenges such as poorer energy density, unavailability, and the high cost of ruthenium (IV) oxide (RuO2) and platinum electrode materials, all of whom have stymied the supercapacitor development. Supercapacitors, which are versatile, compact, ecologically benign, and yet still economical energy storage devices, are in growing market. The flexible supercapacitors, which bridges the gap between batteries and traditional capacitors, is a bright spot in the realm of energy-saving engineering. Flexible-all-solid-state thin film supercapacitor, an innovative novel thing, has gotten a lot of interest as unique energy storage devices because of its friendly construction, compact size, easy handling, and excellent power density with a quick charging-discharging rate. The supercapacitor is called as electrochemical capacitors it has a fast charging and discharging properties, excellent power density and high specific capacitance with compact construction, and inexpensive cost of maintenance. The three primary mechanisms of supercapacitor can be classified (Figure 1), which is depending of the reversible redox reactions and the accumulation of charge. There is electric double layer capacitors (EDLC), pseudo capacitor, and the combination of EDLC and pseudo capacitor called the hybrid supercapacitor [36].
Classification of supercapacitors.
Thin films are very intriguing in modern research for a variety of applications in ethanol sensor, photocatalytic, thermoelectric and supercapacitor [37, 38, 39, 40]. The supercapacitors can store the electrical energy for all the electronic devices to stabilize the power supply. Generally, to prepare a pseudo capacitive electrode transition metal oxide (TMO) is the most popular approach, however relatively higher electrical resistivity restricts whose use several fields. As a consequence, the focus of researchers is turning to metal chalcogenides, which have a lower electrical resistivity than oxygen due to sulfur’s low electronegativity. The preponderance of these metal chalcogenides, mostly sulfides, are made from inexpensive and abundant transition metals. For example, Dai and co-workers [41] have prepared hierarchically structured Ni3S2 and multi-walled carbon nanotube (MWCNT) composites using the hydrothermal methods and the prepared device can have obtained the maximum Cs of 55.8 F g−1, it provides a highest energy density of 19.8 Wh/kg at power density of 789 W/kg. Xiao and co-workers [42] prepared a nickel cobalt sulfide nanoparticle graphene-based sheet (NiCo2S4@GR) there is no surfactant through simple one-step solvo thermal method, which results revealed the maximum Cs of 1708 F g−1 at a current density of 1.0 A g−1, while comparing without graphene. Mukkabla and co-workers [43] reported a Poly(3,4-ethylenedioxypyrrole) (PEDOP) Enwrapped bismuth sulfide (Bi2S3) nano flowers hybrid flexible SCS, and composite offered a maximum Cs of 329 F g−1 at 0.4 A g−1. Furthermore, these are usually undergoing redox reactions between the metallic ions valence states. Besides, TMO and transition metal chalcogenides, various metal nitrides have previously been observed has outstanding results as electrodes in supercapacitors and lithium ion batteries with impressive results. Recently, metal nitrates also have superior abilities in electrochemical properties with excellent chemical stability. Metal nitrides have gotten a lot of interest as supercapacitors electrodes since they have a lot of benefits. Metal nitrates have three major advantages. (1) It has a high σ (electrical conductivity) of 55,500 S/cm−1 while compared to the metal oxides as a result shows the excellent power density, (2) compared to the metal oxides and carbon based materials metal nitrates have a higher specific capacitance, which results shows the higher energy density, and (3) high mechanical stability. These characteristics make them extremely promising as high-performance supercapacitor electrodes. Balogun and co-workers [44] have summarized the performance of different metal nitrides like molybdenum nitrides (MoN), nickel nitride, titanium nitride. Among these metal nitrides, molybdenum nitride was considered as the first metal nitride which could be used as supercapacitor electrode materials. However, for supercapacitor applications, researchers mostly considering their materials cost and electrochemical performance. There are many transition metals and metal oxides are considerable for supercapacitor applications such as CuO, NiO, Mn3O4, Co3O4, Ni or CuCo2O4 and Ni or CuFe2O4 [45, 46, 47, 48, 49, 50]. Compared to the other metal oxides, the metal ferrite based materials much attracted to the researchers. For example, Fe, Ni or Cu based Fe2O4 materials have an excellent performance in the energy storage applications. There are two major methods could be used to prepare the thin films supercapacitors, namely physical technique (physical vapor deposition and sputtering) and chemical method. The successive ionic layer adsorption and reaction (SILAR), spin coater, and chemical bath deposition (CBD) are some examples for chemical deposition method (Figure 2).
Thin films deposition techniques.
Bandgar and co-workers [51] studied the nature of starting materials on the properties of NiFe2O4 thin films for flexible supercapacitors. There are several morphologies could be observed (nanosheet, flower, and feather) through different salts such as nickel(II) chloride hexahydrate (NiCl2·6H2O), nickel nitrate [Ni(NO3)2·6H2O], and nickel sulfate hexahydrate (NiSO4·6H2O), respectively. The nanosheet based electrode material received the maximum Cs of 1139 Fg−1, nanoflower and feather achieved the good Cs of 677 and 435 F g−1, respectively. Immanuel and co-workers [52] have optimized the Cr doped Mn3O4 thin films for high performance supercapacitors using the SILAR method. The experimental results showed that 3 wt % of Cr doped Mn3O4 thin films exhibited the maximum Cs of 181 Fg−1 at the current density of 1 Ag−1.
Jesuraj and co-workers [53] studied the pristine and Li doped NiO thin films using the spin coating method. Kin and co-workers [54] prepared the carbon based flexible supercapacitors using the chemical vapor deposition. Yu and co-workers [55] have prepared the cobalt nickel oxide and sulfide heterostructure thin films through electrodeposition method for supercapacitor applications. The obtained findings revealed the maximum energy density of 78.2 Wh·kg−1 at 542.8 W·kg−1 and the high power density of 5440.2 W·kg−1. Recently, Immanuel and co-workers [56] synthesized Mn3O4 nanorod thin films via SILAR method. The prepared Mn3O4 thin films showed the maximum Cs value of 295 Fg−1 at the scan rate of 2 mVs−1. Vivek and co-workers [57] prepared a reliable electrode material, and results obtained a maximum Cs of 426.40 Fg−1 at a current density of 1 Ag−1. Arulraj and co-workers [58] prepared the cubic shaped Ag2S using the CBD method on Ni mesh. The prepared Ag2S used a working electrode, which electrochemical performance showed the highest Cs of 179 C/g at constant charge and discharge current density of 1 A/g.
Any materials which have the crystal structure of calcium titanium oxide (CaTiO3), were known as the perovskite structure and the materials have stoichiometry of ABX3; where “A” is the larger cation, “B” is the smaller cation and “X” is the anion. Each unit cell of ABX3 crystal comprises of corner sharing BX6 octahedra, with the “A” moiety cubo-octahedral cavity. In case of organic-inorganic hybrid perovskites (OIHP), halide anions (I−, Br−, Cl−) are found at the “X”-site anion instead of oxygen, while monovalent (CH3NH3+, CH(NH2)2+) and bivalent (Pb2+, Sn2+) cations occupy the “A” and “B” sites, respectively. Halide perovskites were first reported by Moller in 1958 for cesium lead halides [59]. Further, it was also observed that small organic molecules with effective radii less than 260 pm [methylammonium (MA), formamidinium (FA), hydrazinium, hydroxylammonium) can also accommodate inside the PbX6 octahedrons. The word “hybrid” indicates that the crystal is made specifically by the combination of “organic” and “inorganic” components. The architecture of OIHP-based solar cell is quite simple and prepared by sandwiching a perovskite absorber layer between the electron transport layer (ETL) and hole transport layer (HTL). A standard OIHP based solar cell device has a structure composed of glass/ transparent conductive oxide (TCO)/TiO2 (ETL)/ mesoporous TiO2 (mp-TiO2)/ perovskite (~500 nm)/ HTL/ metal and a quite high efficiency exceeding 20% can be realized without including complicated processing steps. The operation of the perovskite device is sstraight forward; namely, the photo-electrons and holes created by light absorption are collected in the ETL and HTL, respectively, and the electrons flow through the outer circuit and recombine with holes at the HTL/metal interface. The efficiencies of OIHP-based solar cells have increased all the way from 3.8% in 2009 to 25.5% for single-junction solar cells, and 29.15% for the highest publicly disclosed perovskite/silicon (Si) tandem [60].
The properties of perovskite solar cells were discussed in terms of crystal structure and phase transition, electronic structure, optical properties and electrical properties. One of the interesting aspect of the crystal structure of halide perovskite is the structural flexibility of organic cation. Taking MAPbI3 as an example, the disorder-order transition of MA+ cation is believed to trigger the phase transition with the decrease of temperature. At high temperature MAPbI3 takes a cubic structure (space group: Pm-3 m; Z = 1). Since MA+ has a lower symmetry of C3v, the orientation of MA+ ion should be disordered to satisfy the Oh symmetry. As the temperature is lowered, tetragonal and orthorhombic phases are realized by an accompanying ordering of methylammonium ion. Structural transition from cubic to tetragonal phase occurs due to the reorientation of MA+ ion, as observed by nuclear magnetic resonance (NMR) studies where lowering the number of disorder states of MA+ was observed from 24 in the cubic phase to 8 in tetragonal phase [61]. Below a critical temperature (tetragonal-orthorhombic phase transition), the MA+ molecule is frozen (only 1 degree of freedom) and the symmetry of MAPbI3 become orthorhombic. Similar crystallographic phase transition can be realized with replacing I by Br and Cl [62].
The band structure of MAPbI3 exhibits a direct bandgap of 1.6 eV at the R point. Calculated band structure suggests conduction band minima (CBM) is dominated by the Pb-
Organic-inorganic hybrid perovskites are direct band gap semiconductor and the direct transition produces large absorption coefficients of the order of 104–105 cm−1. In the case of perovskite thin films, the optical properties of perovskites are dramatically affected by the quality, composition and morphology of the film [67]. Sizes of the halide anions (X = I, Br, Cl) affected the electronic band structure of the system. Large anion (iodine based materials) showed a smaller bandgap and corresponded the absorption edge at 780 nm; whereas substituting iodine with smaller bromine (chlorine) anion shifts the absorption edge to 535 nm (408 nm) for MA+ based perovskite system [68]. A systematic blue shift of the PL emission peak is observed with the increase of Br concentration in mixed halide perovskite of the type MAPb(I1−xBrx)3. Further, replacing MA with CH(NH2)2 red shifts the absorption spectra by 40 nm, which makes CH(NH2)2PbI3 more suitable for high-performance solar cell applications [69]. Intermediated solid solutions of MASn1−xPbxI3 with x = 0.25 and 0.5 exhibited the smallest band gap of 1.17 eV [70]. Irrespective of bandgap tuning, fundamental understanding of absorption and PL spectra are essential to study the basic photo physical properties of hybrid perovskite. In spite of several optical investigations performed at different temperatures, there have been a lot of ambiguities in the data as well as its interpretations, especially observation of multiple peaks in the photoluminescence (PL) spectrum of organic-inorganic hybrid perovskites. Literature reports excitonic emission, tetragonal inclusion in orthorhombic phase, order-disorder transition, surface-bulk effects are responsible for these multiple PL emissions [71].
Space charge limited current (SCLC) is one of the effective approaches to measure mobility, diffusion length and trap density of hybrid perovskites. Due to the advancement in fabrication techniques, the diffusion length of hybrid perovskite has increased from 1 to ~10 μm in about 3 years [72]. This improvement reflects the progress that has been recently made in producing samples with better structural order and morphology. Further, it is also observed that the diffusion length has a strong dependence on the grain size of the film. The results showed that more than 1 μm diffusion length has been achieved by realizing films with an average grain size of 2 μm. The perovskite single crystal was found the highest measured diffusion length (10 μm) [73]. Carrier mobility of hybrid perovskite has also been improved over the years and exhibited morphology dependence. Mobility values exceeding 10 cm2V−1 s−1 have been measured in perovskite film [74] and above 100 cm2V−1 s−1 in perovskite single crystals. Further, it is also observed that the mobility (and also diffusion length) did not exhibit a strong dependence on the material composition. Further, the dielectric constant (relative permittivity) is a complex number given by, ε = ε/−ε//, where the real part ε/ is the charge storage ability and the imaginary part ε// is the energyloss. For MAPbI3, a small ε/ is obtained (ε/= 6.5 in experiment, while 5.6 to 6.5 in calculation) at optical frequency and only electronic polarization takes part in dielectric process [75]. With the decrease of frequency, ionic polarization and dipolar polarization (contribution from MA+ dipoles) leading to enhanced ε/ (ε/low ~ 60 at 100 KHz).This large dielectric constant facilitates the screening effect of Coulombic attraction between photoexcited electron-hole pairs (excitons), so that they can be separated easily. Also, noncentro symmetric crystal structure in tetragonal and orthorhombic phases proposed OIHP are ferroelectric in nature. It is also believed that ferroelectricity may give rise to hysteresis observed in current-voltage (I-V) curves. However, observation of ferroelectricity in hybrid perovskite is not well justified from polarization-electric field (P-E) hysteresis loop and second harmonic generation experiments. Despite the above controversies, it is of great interest to study the order-disorder transition of hybrid perovskites due to MA+ orientation inside the PbX6 octahedral [76].
Perovskite solar cell has gained attention due to favorable material properties of OIHP, which include a high absorption coefficient with a sharp absorption edge, high photoluminescence quantum yield, long charge carrier diffusion lengths, large mobility, high defect tolerance, and low surface recombination velocity. At the same time, easy solution processability and completely tunable optical bandgap from blue to red regions of wavelength just by mixing the B-site cation (Pb-Sn) and the X-site anion (I-Br-Cl), while maintaining the sharp absorption edge makes the OIHP family a potential candidate for application in multijunction/tandem solar cells. Another strong advantage of hybrid perovskite solar cells is quite high
Although OIHP solar cells produced quite impressive efficiency, they have several limitations too and to overcome these limitations are the major challenge for the commercialization of these devices. One significant drawback of OIHP is degradation of these perovskite materials under a range of environmental factors such as humidity, illumination, oxygen, and thermal stress. OIHP solar cells are ionic crystals, and the presence of H2O leads to the decomposition of the perovskite structures to hexagonal-shaped PbI2/hydrate crystals; which can be suppressed by introducing protective (passivation) layers. In case of mixed halide perovskites strong photo-induced phase segregation occurred under illumination and judicial choice of A-site cation can minimize this instability. Further, it is observed that a higher level of performance in OIHP solar cell is hindered by anomalous hysteretic behavior and large discrepancy between the forward and reverse scans put a question on the reproducibility of power conversion efficiency (PCE) of the device. In searching for the possible origins of hysteresis, several explanations such as ion migration, charge trapping/detrapping, photoinduced capacitive effect, and ferroelectricity have been imposed. Among them, ion migration and ferroelectricity are believed as feasible origins of the hysteresis in transport measurements. Extensive research efforts continue to find the long-term stability of OIHP solar cells.
Another major challenge is the realization of large-area module due to its fabrication limitations. Till now high efficiency of 17.9% has been realized for the large-area module with a size of 30 × 30 cm2 (aperture area: 802 cm2), which was formed by an inkjet printing technology. Thus development of proper fabrication technique is essential to make pinhole free large-area OIHP devices. Also in the large area tandem cells, current matching conditions for the top and bottom cells as well as each sub cell need to be established; which can be improved through technological advances.
High toxicity of heavy metal (lead) is a serious problem which cannot be neglected in OIHP-based solar cells. Although the content of lead (Pb) in OIHP solar panel (~1m2) is only a few hundred milligrams, could be severe problems in environmental impact. As an alternative people are trying to replace Pb2+ with Sn2+; but the efficiency of Sn-based photovoltaic devices are extremely poor. Thus, roof-top application of OIHP modules is difficult and large-area operations as solar farms are more appropriate. Also, encapsulation of photovoltaic module and environmentally friendly 100% recycling programs are essential for OIHP-based solar modules.
The future of perovskite solar cells was highlighted. As discussed earlier, the significantly reduced efficiency upon solar module area scaling-up is still the main challenge to face for the commercialization of OIHP-based solar cell. It is observed that efficiency decreases to 19.6% when the aperture area increases from 0.1 cm2 to about 10 cm2, and further drops to 17.9% with the area approaching 1000 cm2, which still lags far behind that of the crystalline silicon cells (26.7% at 79 cm2 and 24.4% at 13,177 cm2). Thus, intensive works should be conducted to precisely control the uniformity of the crystallization process in large-area perovskite films. Also, the fundamental photophysical mechanisms relative to the efficiency loss in OIHP modules should be further studied to understand role of surface and interface. Development of green solvent systems or the solvent-free deposition technology for fabricating large-area perovskite film will be an important research topic in the future. Besides the efficiency, more and more attention need to invest in the long-term stability of OIHP solar modules. Recently, Okinawa Institute of Science and Technology Graduate University in Japan reported over 1100-h operational lifetime for a 10 × 10 cm2 solar module. Although many research groups and companies claimed that their devices have passed International Electro Technical Commission (IEC) standard test, there are still some stability issues needed to be addressed at the next stage. Thus proper development of encapsulation technology is essential and we believe that a growing number of studies will move to exploit such multifunctional encapsulation materials in the near future. The single-junction OIHP cells with efficiency above 24% and long-term stability can be more cost-effective than tandem cells which may work at a PCE of 27–28%. Thus, more efforts should be made in fabrication and scaling up of single-junction OIHP-based solar cells with high efficiency, high yield, and long-term stability. Development of low-cost large-scale fabrication methods with highly reproducible results is required for commercialization of OIHP-based photovoltaic cells.
A thin film-based sensor is a type of transducer which converts a physical or chemical quantity into equivalent electrical for measurement. It is used to detect the presence of stimulus to very low concentrations of toxic or harmful target environment (gases) of importance, such as ammonia [77], carbon monoxide [78], carbon dioxide [79], nitrogen dioxide [80], sulfur dioxide [81], propane [82], liquefied petroleum gas [83], hydrogen sulfide [84], and volatile organic compounds. Worldwide thin film gas sensing technology is playing a major role in protecting the environment and improving homeland security. Sensors are also critical in improving the reliability and efficiency of manufacturing operations by providing faster and more accurate feedback regarding product quality. In the area of environmental health and safety, lowering the limits of detection can improve the quality of life through precise information regarding the pollutants in air, water and soil. High-performance thin-film sensors and systems are essential to monitoring various kinds and quantities of analysts.
The typically thin film-based sensors are described using the main characteristics such as sensing response, stability, repeatability, reproducibility, linearity, response time, and recovery time. An efficient thin-film sensor;
Must have a high sensing response towards a very low concentration of target gas.
Would give the same sensing characteristics after repeated usage (stability) and for different sensors of the same kind.
Should be capable of responding fast towards a target gas.
Must regain initial characteristics as soon as the target gas is flushed.
Thin-film sensor response should increase linearly with increasing the concentration of target gas.
The thin film-based gas sensors are used for equally the identification and quantification of gases, and hence should be both selective and sensitive to a required target gas in a mixture of gases. Sensitivity defines the smallest concentration of gas/vapour that can be fruitfully and repeatedly sensed by a thin film sensor.
Thin film-based semiconductor is commonly used materials as sensor application as indicated in Table 1. This is because of its versatile advantages like high sensitivity and low manufacturing is metal oxide which contain the elements having one oxidation state because it requires more energy to form more than one oxidation states. Semiconductor metal oxide films have been exploited for the sensing of various toxic and harmful gases in the form of ceramics, thick films, thin films or nanostructures. Sensors based on ceramics have shown advantages in terms of their mechanical strength, large resistance to chemical attack and good thermal and physical stability and most of the available commercial sensors are based on ceramics only. One of the additional attractive features associated with low temperature operated semiconductor thin film sensor is that it can lead to a complete integration with well-established Si based micro-electronics technology.
S. No. | Material/modifier | Temperature (°C) | Gas concentration (ppm) | Response | Response/recovery time | Reference |
---|---|---|---|---|---|---|
1. | SnO2/Pt | 200 | 1000 | 89 | 20/27 sec | [85] |
2. | ZnO/PANI | 36 | 1000 | 13 | 3.3/9.8 min | [86] |
3. | TiO2/PANI | 273 | 0.1 vol% | 0.63 | 3.3/3.0 min | [87] |
4. | TiO2/Ni | 250 | 1000 | 37 | −/− | [88] |
5. | ZnO/PEDOT: PSS | 27 | 1000 | 0.58 | 3.7/3.1 min | [89] |
6. | ZnO/MWCNT | 30 | 1500 | 61 | 5.8/3 min | [90] |
7. | h-BN/− | RT | 3.0 vol% | 6.17 | 55/40 sec | [91] |
8. | PANI/− | RT | 100 | 12.10 | 11/07 sec | [92] |
9. | ZnO-TiO2/PANI | 30 | 20 | 412 | 35/54 sec | [93] |
10. | CdS/− | 70 | 20 | 173 | 5.52/3.46 min | [94] |
11. | Ag-BaTiO3/CuO | 250 | 5000 | 0.28 | 15/10 min | [95] |
12. | CuO-CuxFe3−xO4 | 250 | 3000 | 0.50 | 9.5/− min | [96] |
13. | CdO | 250 | 5000 | 0.01 | 3.33/5 min | [97] |
14. | PEDOT-BPEI | RT | 1000 | 0.03 | −/60 min | [98] |
15. | La1−xSrxFeO3 | 380 | 2000 | 0.25 | 11/15 min | [99] |
16. | ZnO | 200 | 3000 | 0.03 | 8 /40 sec | [100] |
17. | ZnO-La (50%) | 400 | 5000 | 0.65 | 90/38 sec | [101] |
18. | SnO2/PANI/Ag | 30 | 1000 | 67 | 1000/900 sec | [102] |
19. | TiO2/Zn | RT | 1.5 vol% | 2.92 | 120/− Sec | [103] |
20. | Fe2O3/ PANI | RT | 20 | 229 | 2.35/3.8 min | [104] |
Literature survey of various gas sensing characteristics of different metal oxidebased nanomaterials with different modifiers.
The limitation of thin film based sensor was described. A number of thin film sensors might be recognized from sensor arrays which yield slightly different responses to various target gases. The availability of thin film gas sensor potentially creates a complicated selection problem, and is more important in view of cost and technology limitations. Many researchers have self-sufficiently confirmed practical limitations to thin film gas detection at low temperature and have attributed it to the requirement of high activation energy which can be attained only at elevated temperatures. A reduction in the number of sensors to be involved in E-Nose is advantageous due to several reasons as discussed. Sensors which exhibit an insignificant response to target gases, increase variance (noise) in E-Nose and do not assist pattern recognition process. Furthermore, sensors exhibiting similar responses to the target gases provide no additional information and are redundant.
In future, low temperature operation of the thin film sensors is an attractive proposition for the industry since it not only holds a promise to cut down the costs but also overcome technological limitations of miniature heaters of high wattage. In order to identify the target gases other classification technique such as artificial neural network approach is required where the selected features/variables obtained from principal component analysis (PCA) could be used as input features, and will be carried out in future. Therefore, a new methodology or novel design approach is essentially required in order to fulfil the essential requirements of future sensor in the market.
Metal chalcogenide materials are considered as excellent absorber materials in photovoltaic cell applications. These materials exhibited excellent absorption co-efficient and suitable band gap value to adsorb the maximum number of photons from sun radiation. Photovoltaic cell can be used to convert sunlight into electricity. These materials have a several advantages such as flexible, lower in weight, have less drag and very thin layer (from nanometer to micrometers). Preparation of the films has been reported by many researchers via different deposition methods. The properties of obtained films were studied by using various tools. The obtained experimental findings revealed that these materials could be classified into two groups, namely p-type and n-type materials. Experimental results confirmed that electron (n-type material) can absorb the energy from photons, following that, jump to the p-type materials, to produce electric potential.
Metal chalcogenide materials are considered as excellent absorber materials in photovoltaic cell applications [105, 106]. These materials exhibited excellent absorption co-efficient and suitable band gap value to adsorb the maximum number of photons from sun radiation [107, 108]. Photovoltaic cell can be used to convert sunlight into electricity. These materials have a several advantages such as flexible, lower in weight, have less drag and very thin layer (from nanometer to micrometers). Preparation of the films has been reported by many researchers via different deposition methods [109]. The properties of obtained films were studied by using various tools [110]. The obtained experimental findings revealed that these materials could be classified into two groups [111, 112], namely p-type and n-type materials. Experimental results confirmed that electron (n-type material) can absorb the energy from photons, following that, jump to the p-type materials, to produce electric potential.
Based on the global photovoltaic market [113], the market shares of silicon based solar cell decreased from 92% (in 2014) to 73.3% in 2020. Silicon based solar cell accountable for the highest percentage of market share due to the abundant raw material availability and high efficiency value. The thin film based solar cells increased from 2014 (7%) to 2020 (10.4%). Solar cell market is expected to growth rapidly due to the rising demand for commercial, residential and utility applications. According to the market share of thin film technologies [114], there are three common thin film materials such as amorphous silicon, cadmium telluride and copper indium gallium selenide. Amorphous silicon based solar cell was the oldest thin film technologies, and it dominates overall market from 2000 to 2003. This type of solar cell can absorb a wide range of the light spectrum, did excellent in low light, but loses efficiency rapidly. The CdTe films have been deposited successfully onto glass. Quaternary thin films such as copper indium gallium selenide were prepared via co-evaporation method. The global demand for CdTe films and CIGS films was expected to drive the market start from 2004 and onwards [114].
The cadmium telluride thin films could be used as solar absorber due to suitable band gap value and high absorption coefficient in the visible light region [115]. The materials have high absorption coefficient was able a low absorber thickness (about 1 μm) to absorb sufficient sunlight. Generally, several researchers reported the synthesis of CdTe films by using various deposition methods such as chemical bath deposition [116], spray pyrolysis [117], thermal evaporation [118], molecular beam epitaxy [119], close space sublimation [120], pulsed laser deposition method [121], hydrothermal method, electrochemical deposition technique. Researchers pointed out that the CdTe films deposited onto glass substrates showed some problems such as heavy and fragile. Currently, more and more research activities are focusing on the synthesis of CdTe films onto metal foils in order to lower the investment in equipment and infrastructure. The thin film deposited onto flexible substrates could be folded in any shape, and the researcher concluded that the supporting structure requirements are minimum if compared to heavy glass substrates. Table 2 showed the advantages, limitations, power conversion efficiency of CdTe films. Also, the solar power plant was described in the table. So far, the First Solar Company is the main producer of CdTe film.
Advantages | Limitations | Solar power plant | Power conversion efficiency (%) |
---|---|---|---|
CdTe has band gap about 1.5 eV, it can absorb sunlight at close to ideal wavelength, it captures energy at shorter wavelength. | Toxic effect of cadmium | The Topaz Solar Farm was located in California, United States. The photovoltaic power station includes 9 million CdTe thin film modules [122]. | 19% as reported by Gloeckler and co-workers [123] |
The cadmium is abundant | Very limited availability of tellurium | In the Desert Sunlight Solar Farm (California, United States), it employed 8.8 million CdTe film modules [124]. | 13.3% as highlighted by Kamala and coworkers [125] |
CdTe film based solar cell showed the shortest energy payback time and the smallest carbon footprint. | It does not remain stable under severe stress | The Waldpolenz Solar Park was located in Germany, has used CdTe film modules, was 52megawatt photovoltaic power station [126]. | 15% as pointed out by Devendra and co-workers [127] |
It is very important to enhance the efficiency of solar cells | Templin solar power plant was located in Germany, has installed more than 1.5 million CdTe film modules [128]. | 17.8% as concluded by Deb and coworkers [129] | |
9.59% as described by Xixing and coworkers [130] |
Advantages, limitations, power conversion efficiencies and CdTe film based solar power plant.
The copper indium gallium selenide (CIGS) thin films have been prepared by using different deposition methods such as thermal evaporation method [131], spray pyrolysis [132], solvothermal method [133], physical vapor deposition [134], and electro deposition method [135]. Table 3 showed the advantages, limitations and power conversion efficiency of CIGS thin films. These films showed p-type absorbing layer materials and the tunable band gap (1.07–1.7 eV) value [141]. Researcher highlighted that there are 99% of the light will be successfully absorbed in the first micrometer of the materials [142]. The solar cell is classified as heterojunction structures [143]. Generally, the junction is produced between thin films having various band gap values. Experimental results showed that the addition of small amount of gallium can improve the voltage, boost band gap value and enhance the power conversion efficiency of solar cell [144]. There are several companies produced CIGS solar cell such as Solar Frontier, Solyndra, SoloPower, Global Solar, SulfurCell, MiaSole and Nanosolar. The solar cell showed open circuit voltage, short circuit current and the maximum power values of 5 V Dc, 95 mA and 0.25 watts, respectively.
Advantages | Limitations | Power conversion efficiency (%) |
---|---|---|
CIGS thin films have been deposited onto substrates (flexible) | Less efficient if compared to silicon based solar panels | Conventional solar cell: 22.67%. Adding the BSF (PbS) layer in solar cell: 24.22% as reported by Barman and Kalita [136] |
The active layer could be deposited in polycrystalline form. | Higher production costs if compared to other thin film technologies. | The highest efficiency is 25.5% as highlighted by Sobayel and coworkers [137] |
Much lower level of cadmium will be used during the synthesis of thin films | Complex structures | The highest power conversion efficiency was 26.4% as concluded by Sobayel and co-workers [138] |
CIGS thin films based solar panel indicated better resistance to heat. | Boubakeur et al. have achieved power conversion efficiency of 21.08%. [139] | |
Much less expensive if compared to silicon based solar cells. | Nour and Patane reported the highest power conversion efficacy about 24.5%. [140] |
The advantages, limitations and power conversion efficiency of CIGS thin films.
The copper rich p-type CuInS2 films were synthesized by using thermal co-evaporation method. The obtained results showed that small (less than 10%) solar to electrical conversion losses when the copper to indium ration between 1 and 1.8. The highest power conversion efficiency was 10.2% as reported by Scheer and co-workers [145].
The chemical bath deposition was used to produce Ni3Pb2S2 thin films [146]. The photovoltaic parameters such as open circuit voltage (0.61 V), short circuit current density (9.9 mA/cm2), fill factor (0.47) and power conversion efficiency (2.7%) were studied. The band gap was calculated based on the absorption spectra and was about 1.4 eV.
The atomic layer deposition was employed to produce SnS films [147] as highlighted by Rafael and co-workers. These materials are non-toxic solar cell, and the power conversion efficiency was 4.36%. Vera and co-workers [148] reported that SnS heterojunction solar cell was made, and reached power conversion efficiency about 3.88%.
The performance of p-type InSe films for solar cell was reported. The open circuit voltage (0.55 V), short circuit current density (7.09 mA/cm2), fill factor (53.85%, and power conversion efficiency (0.52%) were highlighted. Researchers explained that higher series resistance and reduced shunt resistance lead to lower value of efficiency. The band gap values are in the range of 1.75–1.95 eV in as-deposited films, annealed films at 250 and 300°C as concluded by Teena and co-workers [149].
The electrochemical technique was used to produce CdSe film MnCdSe films as described by Shinde and co-workers [150]. XRD analysis showed the obtained films are polycrystalline with hexagonal crystal phase. The SEM images revealed that nanosphere morphology and nanonest structure for CdSe and MnCdSe films respectively. The band gap value was measured, and the reduced from 1.81 eV (CdSe) to 1.6 eV (MnCdSe). The fill factor and power conversion efficiency of CdSe films 0.71 and 0.67%, respectively. The MnCdSe films showed power conversion efficiency about 0.37%.
The ternary compound such as Cu2SnS3 (CTS) films showed high absorption coefficient (104 cm−1) and wider range of band gap energy (0.9–1.7 eV). Researchers reported that easy to control the secondary phase during the synthesis of CTS films. The formation of cubic, monoclinic, tetragonal and orthorhombic structure strongly depended on deposition method and annealing process. The magnetron sputtering method was used to produce CTS films. The films reached the highest power conversion efficiency about 2.2%, due to the formation of pure phase of CTS, lowest sheet resistance (8.2 Ω/cm2), highest shunt resistance (111.1 Ω/cm2) and uniform morphology [151]. The p-type CTS films have been produced via co-evaporation method [152]. The photovoltaic parameters such as open circuit voltage (248 mV), short circuit current density (33.5 mA/cm2), fill factor (0.439) and power conversion efficiency (3.66%) were highlighted. Mingrui and co-workers [153] described the preparation of CTS films by using sputtering method. The films prepared at 2812 seconds indicated the highest efficiency value (2.39%), with fill factor (39.7%), open circuit current voltage (208 mV) and short circuit current density (28.92 mA/cm2).
The Cu4SnS4 films showed p-type electrical conductivity and the band gap values (0.93–1.84 eV). Chen et al., have reported the synthesis of thin films by a combination of mechanochemical and doctor blade techniques [154]. The highest power conversion efficiency reached 2.34%. The influence of the film thickness on the properties of samples was study. Based on the absorption spectra, the absorption edge moved towards longer wavelength with increasing the film thickness (0.25–1 μm). Also, band gap reduced (1.47–1.21 eV) due to reduction of structural disorder and the increase in the crystalline size.
The Table 4 showed the power conversion efficiency of the various thin films. The obtained experimental results confirmed that metal sulfide, metal selenide and metal telluride thin films could be used in solar cell applications. The photovoltaic parameters were strongly depended on various experimental conditions. Researchers also highlighted a lot of research activities have been carried put in order to enhance the power conversion efficiency of thin film based solar cell.
thin films | Power conversion efficiency (%) | References |
---|---|---|
Cu2ZnSnS4 | 5.74 | Kazuo and co-workers [155] |
Cu2ZnSnS4 | 2.62 | Hironori and co-workers [156] |
Cu2ZnSnS4 | 6.8 | Wang and co-workers [157] |
Cu2ZnSnS4 | 4.1 | Schubert and co-workers [158] |
Cu2ZnSnS4 | 0.23 | Chet and co-workers [159] |
Cu2ZnSnS4 | 3.2 | Jonathan and co-workers [160] |
Cu2ZnSnS4 | 3.4 | Ennaoui and co-workers [161] |
Cu2ZnSnS4 | 0.396 | Sawanta and co-workers [162] |
Cu2ZnSnS4 | 6.03 | Tsukasa and co-workers [163] |
Cu2ZnSnS4 | 0.12 | Shinde and co-workers [164] |
CuS | 0.39 | Donghyeok and co-workers [165] |
CdS | 8 | Karl [166] |
ZnS | 8.83 | Qiu and co-workers [167] |
PbS | 2.02 | Omer and co-workers [168] |
PbS:Mo | 2.16 | Omer and co-workers [168] |
Sb2Se3 | 7.6 | Wen and co-workers [169] |
Sb2Se3 | 5.93 | Liang and co-workers [170] |
Sb2Se3 | 5.6 | Chao and co-workers [171] |
CuInTe2 | 3.8 | Manorama and co-workers [172] |
CuInTe2 | 4.13 | Lakhe and co-workers [173] |
CuInTe2 | 1.22 | Jia and co-workers [174] |
CuInSe2 | 1.75 | Hyun and co-workers [175] |
CuInSe2 | 2 | Se and co-workers [176] |
CuInSe2 | 4.57 | Prabukanthan and co-workers [177] |
MnCuInSe2 | 6.38 | Prabukanthan and co-workers [177] |
Power conversion efficiencies of different types of thin films.
Chalcogenide thin films have received a great deal of attention for decades due to some unique properties. The thin film based supercapacitor can have store the electrical energy for all the electronic devices to stabilize the power supply. Metal nitrates have gotten a lot of interest as supercapacitors electrodes due to showed higher electrical conductivity, higher specific capacitance, good energy density, and excellent mechanical stability. Perovskite solar cell indicated higher power conversion efficiency value. The organic inorganic hybrid perovskite solar cells are very simple, and prepared by sandwiching a perovskite absorber layer between the electron transport layer and hole transport layer, reached power conversion efficiency exceeding 20%. The thin film-based sensors showed high sensitivity and low manufacturing cost. In future, low temperature operation of the thin film sensors is an attractive proposition for the industry. The market shares of silicon based solar cell decreased, while thin film based solar cells increased in the global photovoltaic market due to the low material consumption, low manufacturing cost, shorter energy pack back period. Solar cell market is expected to growth rapidly due to the rising demand for commercial, residential and utility applications.
The author (HO SM) gratefully acknowledge the financial support provided by the INTI International University.
The authors declare no conflict of interest.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",src:"R-SLS"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",subtitle:null,isOpenForSubmission:!0,hash:"3d72ae651ee2a04b2368bf798a3183ca",slug:null,bookSignature:"Prof. Elisa Pieragostini",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",editedByType:null,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11641",title:"Updates on Fermentation",subtitle:null,isOpenForSubmission:!0,hash:"a40ca422d610cac17d09b0df36469351",slug:null,bookSignature:"Dr. Raúl Ferrer-Gallego",coverURL:"https://cdn.intechopen.com/books/images_new/11641.jpg",editedByType:null,editors:[{id:"353129",title:"Dr.",name:"Raúl",surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11524",title:"Fuzzy Control Systems",subtitle:null,isOpenForSubmission:!0,hash:"84908e027f884ec3fcbaea42eb69b698",slug:null,bookSignature:"Dr. Hayri Baytan Ozmen",coverURL:"https://cdn.intechopen.com/books/images_new/11524.jpg",editedByType:null,editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11703",title:"Fluorescence Imaging - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"728ff3bfc75ad2c9a39c338b52ae1893",slug:null,bookSignature:"Dr. Raffaello Papadakis",coverURL:"https://cdn.intechopen.com/books/images_new/11703.jpg",editedByType:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11729",title:"Circumcision - Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"d4761c03b5694edec9f7fc48092549ce",slug:null,bookSignature:"Dr. Ahmad Zaghal and Dr. Ali El Safadi",coverURL:"https://cdn.intechopen.com/books/images_new/11729.jpg",editedByType:null,editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:424},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"131",title:"Environmental Microbiology",slug:"environmental-microbiology",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:149,numberOfWosCitations:345,numberOfCrossrefCitations:173,numberOfDimensionsCitations:501,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"131",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:"Edited by",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4645",title:"Biodegradation and Bioremediation of Polluted Systems",subtitle:"New Advances and Technologies",isOpenForSubmission:!1,hash:"de86e2d98b4cc7ee51ca11a65f08079f",slug:"biodegradation-and-bioremediation-of-polluted-systems-new-advances-and-technologies",bookSignature:"Rolando Chamy, Francisca Rosenkranz and Lorena Soler",coverURL:"https://cdn.intechopen.com/books/images_new/4645.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",middleName:null,surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3426",title:"Organic Pollutants",subtitle:"Monitoring, Risk and Treatment",isOpenForSubmission:!1,hash:"4dafb52ed4f5e21f079ab4b2f6825e78",slug:"organic-pollutants-monitoring-risk-and-treatment",bookSignature:"M. Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/3426.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"42059",doi:"10.5772/54048",title:"Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater",slug:"adsorption-technique-for-the-removal-of-organic-pollutants-from-water-and-wastewater",totalDownloads:29962,totalCrossrefCites:51,totalDimensionsCites:210,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Mohamed Nageeb Rashed",authors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}]},{id:"42060",doi:"10.5772/53699",title:"Photocatalytic Degradation of Organic Pollutants in Water",slug:"photocatalytic-degradation-of-organic-pollutants-in-water",totalDownloads:11593,totalCrossrefCites:42,totalDimensionsCites:115,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Muhammad Umar and Hamidi Abdul Aziz",authors:[{id:"160119",title:"Dr.",name:"Hamidi Abdul",middleName:null,surname:"Aziz",slug:"hamidi-abdul-aziz",fullName:"Hamidi Abdul Aziz"}]},{id:"42061",doi:"10.5772/54334",title:"Advances in Electrokinetic Remediation for the Removal of Organic Contaminants in Soils",slug:"advances-in-electrokinetic-remediation-for-the-removal-of-organic-contaminants-in-soils",totalDownloads:6866,totalCrossrefCites:20,totalDimensionsCites:45,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Claudio Cameselle, Susana Gouveia, Djamal Eddine Akretche and Boualem Belhadj",authors:[{id:"160810",title:"Dr.",name:"Claudio",middleName:null,surname:"Cameselle",slug:"claudio-cameselle",fullName:"Claudio Cameselle"},{id:"161546",title:"Prof.",name:"Djamal Eddine",middleName:null,surname:"Akretche",slug:"djamal-eddine-akretche",fullName:"Djamal Eddine Akretche"},{id:"167389",title:"Dr.",name:"Susana",middleName:null,surname:"Gouveia",slug:"susana-gouveia",fullName:"Susana Gouveia"},{id:"167390",title:"MSc.",name:"Boualem",middleName:null,surname:"Belhadj",slug:"boualem-belhadj",fullName:"Boualem Belhadj"}]},{id:"42058",doi:"10.5772/53188",title:"Application of Different Advanced Oxidation Processes for the Degradation of Organic Pollutants",slug:"application-of-different-advanced-oxidation-processes-for-the-degradation-of-organic-pollutants",totalDownloads:4173,totalCrossrefCites:16,totalDimensionsCites:35,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Amilcar Machulek Jr., Silvio C. Oliveira, Marly E. Osugi, Valdir S. Ferreira, Frank H. Quina, Renato F. Dantas, Samuel L. Oliveira, Gleison A. Casagrande, Fauze J. Anaissi, Volnir O. Silva, Rodrigo P. Cavalcante, Fabio Gozzi, Dayana D. Ramos, Ana P.P. da Rosa, Ana P.F. Santos, Douclasse C. de Castro and Jéssica A. Nogueira",authors:[{id:"85138",title:"Dr.",name:"Amilcar",middleName:null,surname:"Machulek Jr.",slug:"amilcar-machulek-jr.",fullName:"Amilcar Machulek Jr."},{id:"95179",title:"Prof.",name:"Frank",middleName:null,surname:"Herbert Quina",slug:"frank-herbert-quina",fullName:"Frank Herbert Quina"},{id:"95183",title:"MSc.",name:"Fabio",middleName:null,surname:"Gozzi",slug:"fabio-gozzi",fullName:"Fabio Gozzi"},{id:"161834",title:"Prof.",name:"Silvio",middleName:null,surname:"C. Oliveira",slug:"silvio-c.-oliveira",fullName:"Silvio C. Oliveira"},{id:"161836",title:"Dr.",name:"Marly",middleName:null,surname:"E. Osugi",slug:"marly-e.-osugi",fullName:"Marly E. Osugi"},{id:"161837",title:"Prof.",name:"Valdir",middleName:null,surname:"S. Ferreira",slug:"valdir-s.-ferreira",fullName:"Valdir S. Ferreira"},{id:"161843",title:"Prof.",name:"Renato",middleName:null,surname:"F. Dantas",slug:"renato-f.-dantas",fullName:"Renato F. Dantas"},{id:"161845",title:"MSc.",name:"Rodrigo",middleName:null,surname:"P. Cavalcante",slug:"rodrigo-p.-cavalcante",fullName:"Rodrigo P. Cavalcante"},{id:"161846",title:"BSc.",name:"Dayana",middleName:null,surname:"D. Ramos",slug:"dayana-d.-ramos",fullName:"Dayana D. Ramos"},{id:"161847",title:"BSc.",name:"Ana",middleName:null,surname:"P.F. Santos",slug:"ana-p.f.-santos",fullName:"Ana P.F. Santos"},{id:"161848",title:"Mrs.",name:"Ana Paula",middleName:"Pereira Da",surname:"Rosa",slug:"ana-paula-rosa",fullName:"Ana Paula Rosa"},{id:"166431",title:"Prof.",name:"Gleison",middleName:null,surname:"A. Casagrande",slug:"gleison-a.-casagrande",fullName:"Gleison A. Casagrande"},{id:"166432",title:"Prof.",name:"Samuel",middleName:null,surname:"Leite De Oliveira",slug:"samuel-leite-de-oliveira",fullName:"Samuel Leite De Oliveira"},{id:"166433",title:"BSc.",name:"Jéssica",middleName:null,surname:"Alves Nogueira",slug:"jessica-alves-nogueira",fullName:"Jéssica Alves Nogueira"},{id:"166434",title:"BSc.",name:"Douclasse",middleName:null,surname:"Campos De Castro",slug:"douclasse-campos-de-castro",fullName:"Douclasse Campos De Castro"},{id:"166610",title:"Dr.",name:"Fauze",middleName:"J.",surname:"Anaissi",slug:"fauze-anaissi",fullName:"Fauze Anaissi"},{id:"166611",title:"Dr.",name:"Volnir",middleName:null,surname:"O. Silva",slug:"volnir-o.-silva",fullName:"Volnir O. Silva"}]},{id:"48996",doi:"10.5772/60943",title:"Advantages and Limitations of Using FTIR Spectroscopy for Assessing the Maturity of Sewage Sludge and Olive Oil Waste Co-composts",slug:"advantages-and-limitations-of-using-ftir-spectroscopy-for-assessing-the-maturity-of-sewage-sludge-an",totalDownloads:2895,totalCrossrefCites:5,totalDimensionsCites:14,abstract:"Composts prepared using different solid and liquid organic wastes from various sources can be used as growing media when these materials present adequate proprieties for plant development. The stability and maturity are among the main characteristics of composts. The purpose of this study is to recommend specific bands of the IR spectrum recorded on different composts to enable qualitative and rapid monitoring of the stages of biodegradation during composting. At the beginning of humification, the significant decrease in the intensity of the band located at 1735 cm–1 shows that lignin is affected at the first stage of the composting process. At the end of the humification, the band located toward 3450–3420 cm–1 at the beginning of the process undergoes a systematic shift (Δν of the order of 10 cm–1) toward lower wave numbers. The band located at 1660–1650 cm–1 on the Fourier transform infrared spectroscopy (FTIR) spectra before composting shifts systematically toward 1640 cm–1 at the end of humification. This phenomenon can be used as index of compost maturity. Measuring the band at 1035 cm–1 as an internal standard, it is possible to quantify the degradation rate of organic matter.",book:{id:"4645",slug:"biodegradation-and-bioremediation-of-polluted-systems-new-advances-and-technologies",title:"Biodegradation and Bioremediation of Polluted Systems",fullTitle:"Biodegradation and Bioremediation of Polluted Systems - New Advances and Technologies"},signatures:"Loubna El Fels, Mohamed Zamama and Mohamed Hafidi",authors:[{id:"164092",title:"Prof.",name:"Mohamed",middleName:null,surname:"Hafidi",slug:"mohamed-hafidi",fullName:"Mohamed Hafidi"},{id:"175610",title:"Dr.",name:"Loubna",middleName:null,surname:"El Fels",slug:"loubna-el-fels",fullName:"Loubna El Fels"},{id:"175611",title:"Prof.",name:"Mohamed",middleName:null,surname:"Zamama",slug:"mohamed-zamama",fullName:"Mohamed Zamama"}]}],mostDownloadedChaptersLast30Days:[{id:"42059",title:"Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater",slug:"adsorption-technique-for-the-removal-of-organic-pollutants-from-water-and-wastewater",totalDownloads:29962,totalCrossrefCites:51,totalDimensionsCites:210,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Mohamed Nageeb Rashed",authors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}]},{id:"42294",title:"The Investigation and Assessment on Groundwater Organic Pollution",slug:"the-investigation-and-assessment-on-groundwater-organic-pollution",totalDownloads:4384,totalCrossrefCites:4,totalDimensionsCites:5,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Hongqi Wang, Shuyuan Liu and Shasha Du",authors:[{id:"161340",title:"Prof.",name:"Hongqi",middleName:null,surname:"Wang",slug:"hongqi-wang",fullName:"Hongqi Wang"}]},{id:"77370",title:"Conventional and Contemporary Techniques for Removal of Heavy Metals from Soil",slug:"conventional-and-contemporary-techniques-for-removal-of-heavy-metals-from-soil",totalDownloads:213,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"One of the most important components of the natural environment is soil. Soil is a non-renewable natural resources on which the whole human society is dependent for various goods and services. The intensive, and unsustainable anthropogenic practices along with the rapid growth of the human population have led to continuous expansion and concern for the degradation of soil. The agricultural soil is exposed to a plethora of contaminants, the most significant contaminant among them is heavy metals. The major sources of heavy metal contamination are associated with agriculture, industries, and mining. The increase of heavy metal contents in the soil system affects all organisms via biomagnification. In this chapter, we will review various conventional and contemporary physical or chemical and biological techniques for remediation of contaminated soil. The advanced solution for degraded soil is integrating innovative technologies that will provide profitable and sustainable land-use strategies.",book:{id:"10681",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",title:"Biodegradation Technology of Organic and Inorganic Pollutants",fullTitle:"Biodegradation Technology of Organic and Inorganic Pollutants"},signatures:"Vaishali Arora and Babita Khosla",authors:[{id:"350638",title:"Ph.D. Student",name:"Vaishali",middleName:null,surname:"Arora",slug:"vaishali-arora",fullName:"Vaishali Arora"},{id:"351372",title:"Dr.",name:"Babita",middleName:null,surname:"Khosla",slug:"babita-khosla",fullName:"Babita Khosla"}]},{id:"42060",title:"Photocatalytic Degradation of Organic Pollutants in Water",slug:"photocatalytic-degradation-of-organic-pollutants-in-water",totalDownloads:11595,totalCrossrefCites:42,totalDimensionsCites:115,abstract:null,book:{id:"3426",slug:"organic-pollutants-monitoring-risk-and-treatment",title:"Organic Pollutants",fullTitle:"Organic Pollutants - Monitoring, Risk and Treatment"},signatures:"Muhammad Umar and Hamidi Abdul Aziz",authors:[{id:"160119",title:"Dr.",name:"Hamidi Abdul",middleName:null,surname:"Aziz",slug:"hamidi-abdul-aziz",fullName:"Hamidi Abdul Aziz"}]},{id:"48964",title:"Biodegradation of Aromatic Compounds",slug:"biodegradation-of-aromatic-compounds",totalDownloads:3243,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent environmental contaminants generated by natural combustion processes and human activities. PAHs are considered hazardous because of cytotoxic, mutagenic, and carcinogenic effects. Sixteen individual PAH compounds have been identified as priority pollutants by the United States Environmental Protection Agency (U.S. EPA). All substances originated in to the environment by either biogenic or anthropogenic sources. Anthropogenic compounds describe synthetic compounds, and compound classes as well as elements and naturally occurring chemical entities which are mobilized by man’s activities. In the marine environment, the fate of pollutants is largely determined by biogeochemical process. Some of these chemical changes enhance the toxicity of the pollutants. Other chemical changes cause the degradation or immobilization of pollutants and, as a result, act to purify the waters. Possible fates for PAHs, released into the environment, include volatilization, photo-oxidation, chemical oxidation, bioaccumulation and adsorption on soil particles, leaching, and microbial degradation. Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) have been found in mangrove sediments due to anthropogenic compounds.",book:{id:"4645",slug:"biodegradation-and-bioremediation-of-polluted-systems-new-advances-and-technologies",title:"Biodegradation and Bioremediation of Polluted Systems",fullTitle:"Biodegradation and Bioremediation of Polluted Systems - New Advances and Technologies"},signatures:"Mehdi Hassanshahian, Moslem Abarian and Simone Cappello",authors:[{id:"163666",title:"Dr.",name:"Mehdi",middleName:null,surname:"Hassanshahian",slug:"mehdi-hassanshahian",fullName:"Mehdi Hassanshahian"}]}],onlineFirstChaptersFilter:{topicId:"131",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"June 20th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 24th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:228,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334239",title:"Prof.",name:"Leung",middleName:null,surname:"Wai Keung",slug:"leung-wai-keung",fullName:"Leung Wai Keung",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Hong Kong",country:{name:"China"}}}]}},subseries:{item:{id:"22",type:"subseries",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,submissionDeadline:"May 4th 2022",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhRjQAK/Profile_Picture_1636637493542",biography:"Toonika Rinken is an associate professor in environmental chemistry and is leading a biosensor development lab at the Institute of Chemistry in the University of Tartu, Estonia. She received her PhD degree in chemistry in 2000 in the same university for the modeling and calibration studies of biosensors and has passed professional self-improvement in Uppsala (Sweden) and Gröningen (the Netherlands). Dr. Rinken's research activities are focused on the studies and development of biosensing systems for automatic monitoring along with testing and application of biosensor based analytical systems.",institutionString:"University of Tartu",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"University of Tartu",institutionURL:null,country:{name:"Estonia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,submissionDeadline:"May 25th 2022",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.jpg",biography:"Dr. Farzana Khan Perveen (FLS; Gold Medalist) obtained her BSc (Hons) and MSc in Entomology from the University of Karachi, Pakistan, and MAS (Monbusho Scholarship) in Agronomy from Nagoya University, Japan, and a Ph.D. in Toxicology from the University of Karachi. She is the founder of the Department of Zoology and former controller of examinations at Shaheed Benazir Bhutto University, Hazara University, and Kohat University of Science and Technology. She is the author of 150 high-impact research papers, 135 abstracts, 40 authored books, 9 chapters, and 9 edited books. She is also a student supervisor. Her fields of interest are entomology, toxicology, forensic entomology.",institutionString:"Classes et Events in Sciences (C.E.S.)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,submissionDeadline:"July 19th 2022",editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",middleName:null,surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman",profilePictureURL:"https://mts.intechopen.com/storage/users/144417/images/system/144417.jpg",biography:"Mohd Nazip Suratman is a Professor of Forestry at the Faculty of Applied Sciences, and a Principal Fellow at the Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), Malaysia, He earned a B. Sc in Forestry from Universiti Putra Malaysia (UPM) and an M. S from the University of Nebraska-Lincoln (UNL), USA. He was then honored with a prestigious fellowship from the Canadian Commonwealth to pursue a Ph.D. degree at the University of British Columbia (UBC), Canada, where he worked on the application of remote sensing for forest resources management. He has been involved in numerous collaborative international research projects that led to publications in reputable journals. Altogether, he has published a total of 14 books and more than 200 research publications. His research interests cover several aspects of forestry, mainly forest modeling, forest ecology, and biodiversity. He received the UiTM’s Best Researcher and Top Talent Awards in 2015 and 2021, respectively. He served as the Deputy Vice-Chancellor (Research and Innovation) from 2018 to 2021.",institutionString:"Universiti Teknologi MARA",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Universiti Teknologi MARA",institutionURL:null,country:{name:"Malaysia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/188150",hash:"",query:{},params:{id:"188150"},fullPath:"/profiles/188150",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()