\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5706",leadTitle:null,fullTitle:"The Question of Caffeine",title:"The Question of Caffeine",subtitle:null,reviewType:"peer-reviewed",abstract:"Because of its ability to reduce tiredness, sleep deprivation and improve alertness, caffeine emerged in the twenty-first century as a miraculous specific, which allows humans to cross their normal physiological and psychological body limits. Its attractiveness comes from its natural origins and strong psycho-stimulating properties, with relatively weak side effects. Caffeine studies carry the hope to understand the associations between inherited genotype and drug action and to find highly personalized treatments for various diseases, more sophisticated drug delivery systems, safer ways of protecting plants and cheap, renewable fuels. This book consists of chapters covering caffeine history, methods of its determination and not only astonishing medicinal but also non-medicinal applications. It is our hope that every reader will find in this book something interesting, inspiring, informative and stimulating.",isbn:"978-953-51-3274-5",printIsbn:"978-953-51-3273-8",pdfIsbn:"978-953-51-4779-4",doi:"10.5772/65133",price:119,priceEur:129,priceUsd:155,slug:"the-question-of-caffeine",numberOfPages:172,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"42f89febd9092e77c8edd4f8ca9da8f8",bookSignature:"Jolanta Natalia Latosinska and Magdalena Latosinska",publishedDate:"June 21st 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5706.jpg",numberOfDownloads:17848,numberOfWosCitations:16,numberOfCrossrefCitations:13,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:36,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:65,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 30th 2016",dateEndSecondStepPublish:"November 7th 2016",dateEndThirdStepPublish:"January 30th 2017",dateEndFourthStepPublish:"March 27th 2017",dateEndFifthStepPublish:"May 29th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"77808",title:"Dr.",name:"Jolanta Natalia",middleName:null,surname:"Latosińska",slug:"jolanta-natalia-latosinska",fullName:"Jolanta Natalia Latosińska",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Jolanta Natalia Latosińska is a mathematics and physics graduate from the Faculty of Mathematics and Physics, Adam Mickiewicz University in Poznań, Poland. She received her PhD degree in physics and since 1998 has been working as adjunct at the Faculty of Physics, AMU. She was conferred habilitation degree in physics in 2004. Her fields of interests cover a broad spectrum of topics starting from the studies of the structure-dynamics-activity of drugs by magnetic resonance spectroscopy and quantum chemical calculations to modelling the ultraviolet radiation level using neural networks. All her studies are somehow related to ways of fighting cancer. She published more than 90 SCI journal papers, 5 chapters in monographs, 2 books and 92 conference communications. She was a reviewer of more than 60 journals and a member of the editorial board of 2 SCI-listed journals. She was an editor of two books.",institutionString:"Adam Mickiewicz University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Adam Mickiewicz University in Poznań",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"124193",title:"MSc.",name:"Magdalena",middleName:null,surname:"Latosińska",slug:"magdalena-latosinska",fullName:"Magdalena Latosińska",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Magdalena Latosińska, MSc, is a physics graduate from the Faculty of Mathematics and Physics, Adam Mickiewicz University in Poznań, Poland. She is working as a lecturer at the Faculty of Physics, AMU. Her fields of interests cover a broad spectrum of topics starting from the aspects of visualization in the studies of structure-dynamics-activity of drugs to modelling the ultraviolet radiation level using neural networks. She published more than 26 SCI journal papers, 3 chapters in monographs and 17 conference communications.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Adam Mickiewicz University in Poznań",institutionURL:null,country:{name:"Poland"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"328",title:"Food Technology",slug:"agricultural-and-biological-sciences-bromatology-food-technology"}],chapters:[{id:"55854",title:"Introductory Chapter: Caffeine, a Major Component of Nectar of the Gods and Favourite Beverage of Kings, Popes, Artists and Revolutionists, a Drug or a Poison?",doi:"10.5772/intechopen.69693",slug:"introductory-chapter-caffeine-a-major-component-of-nectar-of-the-gods-and-favourite-beverage-of-king",totalDownloads:1945,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Magdalena Latosińska and Jolanta Natalia Latosińska",downloadPdfUrl:"/chapter/pdf-download/55854",previewPdfUrl:"/chapter/pdf-preview/55854",authors:[{id:"77808",title:"Dr.",name:"Jolanta Natalia",surname:"Latosińska",slug:"jolanta-natalia-latosinska",fullName:"Jolanta Natalia Latosińska"}],corrections:null},{id:"54771",title:"Coffea arabica: A Plant with Rich Content in Caffeine",doi:"10.5772/intechopen.68149",slug:"coffea-arabica-a-plant-with-rich-content-in-caffeine",totalDownloads:2484,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Coffea arabica L. is the most well‐known and studied Coffea taxa, which is very popular in both scientific and social fields. This comprehensive work was created in order to describe its phytochemical composition and to present the metabolism of caffeine, which is the most important alkaloid from this plant. The analytical methods used for caffeine determination such as chromatographic, electrochemical, and spectroscopic techniques are also presented. In addition, this work emphasizes the medicinal importance of caffeine, which can present both important beneficial and secondary effects for human body.",signatures:"Eva Brigitta Patay, Luminiţa Fritea, Andreea Antonescu, Angela\nAntonescu and Luciana Dobjanschi",downloadPdfUrl:"/chapter/pdf-download/54771",previewPdfUrl:"/chapter/pdf-preview/54771",authors:[{id:"192598",title:"Dr.",name:"Fritea",surname:"Luminita",slug:"fritea-luminita",fullName:"Fritea Luminita"},{id:"196166",title:"Ph.D. Student",name:"Patay",surname:"Eva Brigitta",slug:"patay-eva-brigitta",fullName:"Patay Eva Brigitta"},{id:"196168",title:"Dr.",name:"Antonescu",surname:"Ina Andreea",slug:"antonescu-ina-andreea",fullName:"Antonescu Ina Andreea"},{id:"196170",title:"Dr.",name:"Antonescu",surname:"Angela",slug:"antonescu-angela",fullName:"Antonescu Angela"},{id:"196171",title:"Dr.",name:"Dobjanschi",surname:"Luciana",slug:"dobjanschi-luciana",fullName:"Dobjanschi Luciana"}],corrections:null},{id:"55623",title:"How Much Caffeine in Coffee Cup? Effects of Processing Operations, Extraction Methods and Variables",doi:"10.5772/intechopen.69002",slug:"how-much-caffeine-in-coffee-cup-effects-of-processing-operations-extraction-methods-and-variables",totalDownloads:5229,totalCrossrefCites:4,totalDimensionsCites:11,hasAltmetrics:1,abstract:"About 80–90% of the adults are regular consumers of coffee brews. Its consumption has positive effect on energy expenditure, power of muscle, while over consumption has negative effects widely debated. Across geographical areas, coffee brews may notably change when preparing Espresso, American, French, Turkish, etc. This chapter reviewed the phases able to affect the amount of caffeine in cup. Three most important areas will be addressed: (1) coffee varieties and environment; (2) coffee processing operations; (3) brewing methods extraction variables. What arises from the state of art is that, although there is a significant agreement on the effect of each critical variable on caffeine extraction, there is also a great difficulty to precisely know how much caffeine is in a coffee cup, although this is the most important information for the consumers. The number of affecting variables is very high, and some of them are inversely related with caffeine content (brewing time and brew volume), while others exhibit a direct relationship (grinding level, dose, and tamping). Finally, some variables under the control of barista rarely are accurately reproduced during brewing. For instance, it was found that the caffeine content in a Starbuck’s coffee cup during different days varied significantly.",signatures:"Carla Severini, Antonio Derossi, Ilde Ricci, Anna Giuseppina Fiore\nand Rossella Caporizzi",downloadPdfUrl:"/chapter/pdf-download/55623",previewPdfUrl:"/chapter/pdf-preview/55623",authors:[{id:"200710",title:"Prof.",name:"Carla",surname:"Severini",slug:"carla-severini",fullName:"Carla Severini"}],corrections:null},{id:"54894",title:"Caffeine Dose-Response Relationship and Behavioral Screening in Zebrafish",doi:"10.5772/intechopen.68341",slug:"caffeine-dose-response-relationship-and-behavioral-screening-in-zebrafish",totalDownloads:1802,totalCrossrefCites:5,totalDimensionsCites:12,hasAltmetrics:0,abstract:"It has been centuries since humans consume coffee and get the benefits of this bean. Many researches worldwide continue to show healthful properties of coffee, while others suggest a number of side effects. In fact, anything consumed in excess may cause disturbance of the body functioning, whereas caffeine is a central nervous system stimulant that increases focus and improves performance, its high concentration can cause insomnia, dizziness, and vomiting. Thus, the question is: which coffee dose promotes benefits and prevents risks? To answer it, we used the zebrafish, a popular animal model that is at the vanguard of psychopharmacological research due to its unique combination of complexity and simplicity, translational relevance and applicability to high throughput behavioral drug screens. In the current study, we examine time-course and dose-dependent changes in zebrafish following exposure to caffeine. Our data show an inverted U-shaped path for the locomotor parameters and crescent path for the anxiety-like parameters. High doses are harmful to the individual, because the stimulating effect disappears and anxiogenic effects take place. We conclude that temporal analysis of zebrafish behavior is a sensitive method for the study of acute caffeine exposure–induced functional changes in the vertebrate brain.",signatures:"Luana C. Santos, Julia Ruiz-Oliveira, Priscila F. Silva and Ana C.\nLuchiari",downloadPdfUrl:"/chapter/pdf-download/54894",previewPdfUrl:"/chapter/pdf-preview/54894",authors:[{id:"191359",title:"Dr.",name:"Ana Carolina",surname:"Luchiari",slug:"ana-carolina-luchiari",fullName:"Ana Carolina Luchiari"},{id:"204927",title:"MSc.",name:"Luana",surname:"Santos",slug:"luana-santos",fullName:"Luana Santos"},{id:"204928",title:"Ms.",name:"Julia",surname:"Ruiz-Oliveira",slug:"julia-ruiz-oliveira",fullName:"Julia Ruiz-Oliveira"},{id:"204929",title:"Dr.",name:"Priscila",surname:"Silva",slug:"priscila-silva",fullName:"Priscila Silva"}],corrections:null},{id:"55476",title:"Development of Tumor-Specific Caffeine-Potentiated Chemotherapy Using Span 80 Nano-Vesicles DDS",doi:"10.5772/intechopen.69155",slug:"development-of-tumor-specific-caffeine-potentiated-chemotherapy-using-span-80-nano-vesicles-dds",totalDownloads:1670,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Osteosarcoma cases with metastasis have poor prognosis in general. Recently, caffeinepotentiated chemotherapy, which is chemotherapy with caffeine dosage against malignancies, has manifested potently high efficacy as well as diverse effects. Recently, we demonstrated that nonionic vesicles prepared from Span 80 have promising physicochemical properties, which let them an attractive option besides the common liposomes. Here, we manifested the tumor-specific caffeine-potentiated chemotherapy against osteosarcoma in murine model employing a novel drug delivery system (DDS) with Span 80 nano-vesicles. C3H/HeJ mice underwent transplantation of LM8 osteosarcoma cell line and then were doped with therapeutic agents. Caffeine was employed as an enhancer in addition to ifosfamide (IFO) as the antitumor agent. in vitro, the united administration of IV + CV revealed significant induction of tumor apoptosis in the early phase. In vivo study manifested that IV + CV-administration markedly decreased the tumor volume as well as the viable tumor area than in the other groups. No marked organ damage was observed in the IV or IV + CV groups as well as fertility injury and/or malformations in their progeny. This novel DDS might have the importance for clinical application in primary tumors as well as the metastatic osteosarcoma.",signatures:"Tatsuhiko Miyazaki, Hiroshi Nakata and Keiichi Kato",downloadPdfUrl:"/chapter/pdf-download/55476",previewPdfUrl:"/chapter/pdf-preview/55476",authors:[{id:"200063",title:"Dr.",name:"Tatsuhiko",surname:"Miyazaki",slug:"tatsuhiko-miyazaki",fullName:"Tatsuhiko Miyazaki"},{id:"205762",title:"Prof.",name:"Keiichi",surname:"Kato",slug:"keiichi-kato",fullName:"Keiichi Kato"},{id:"205763",title:"Dr.",name:"Hiroshi",surname:"Nakata",slug:"hiroshi-nakata",fullName:"Hiroshi Nakata"}],corrections:null},{id:"54463",title:"Influence of Exogenously Supplemented Caffeine on Cell Division, Germination, and Growth of Economically Important Plants",doi:"10.5772/67799",slug:"influence-of-exogenously-supplemented-caffeine-on-cell-division-germination-and-growth-of-economical",totalDownloads:1889,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Caffeine is a plant secondary metabolite of antiherbivory, allelopathic, and antibacterial activity. In our previous study, caffeine was shown to be an effective agent toward plant pathogenic bacteria causing high economic losses in crop production worldwide. Current study indicated that growth media supplementation with soil or plant extract did not interfere with antibacterial action of caffeine against Clavibacter michiganensis, Dickeya solani, Pectobacterium atrosepticum, Pectobacterium carotovorum, Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas campestris. The impact of caffeine on plant cell division, seed germination and growth of economically important plants was evaluated to assess possible applicability of caffeine in plant protection field. Caffeine impaired plant cell division process and inhibited in vitro germination of tomato and lettuce. Regeneration of potato explants was also negatively affected by the addition of caffeine. However, caffeine spraying or watering of tomato, lettuce and cabbage grown in soil did not impair plant development. Although the tested plants accumulated caffeine, its inner quantity was reduced by peeling and/or cooking. According to the results, caffeine warrants additional attention as a useful, natural compound designated for the control of bacterial plant pathogens. Proposed treatment seems promising especially in the case of providing protection for overwinter-stored table potato tubers.",signatures:"Wojciech Sledz, Agata Motyka, Sabina Zoledowska, Agnieszka\nPaczek, Emilia Los and Jacek Rischka",downloadPdfUrl:"/chapter/pdf-download/54463",previewPdfUrl:"/chapter/pdf-preview/54463",authors:[{id:"201947",title:"D.Sc.",name:"Wojciech",surname:"Sledz",slug:"wojciech-sledz",fullName:"Wojciech Sledz"},{id:"205129",title:"MSc.",name:"Agata",surname:"Motyka",slug:"agata-motyka",fullName:"Agata Motyka"},{id:"205130",title:"MSc.",name:"Sabina",surname:"Zoledowska",slug:"sabina-zoledowska",fullName:"Sabina Zoledowska"},{id:"205133",title:"MSc.",name:"Agnieszka",surname:"Paczek",slug:"agnieszka-paczek",fullName:"Agnieszka Paczek"},{id:"205134",title:"MSc.",name:"Emilia",surname:"Los",slug:"emilia-los",fullName:"Emilia Los"},{id:"205137",title:"MSc.",name:"Jacek",surname:"Rischka",slug:"jacek-rischka",fullName:"Jacek Rischka"}],corrections:null},{id:"55183",title:"Chemistry and Biotransformation of Coffee By-Products to Biofuels",doi:"10.5772/intechopen.68598",slug:"chemistry-and-biotransformation-of-coffee-by-products-to-biofuels",totalDownloads:2829,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Coffee is one of the most consumed infusion drinks in the world and contains a large variety of chemical compounds responsible for their sensory qualities and their effects on the body. The beneficial effects of coffee have been attributed only to its most important and researched ingredient, caffeine, but now it is known that other components have also contributed to its properties. Due to a huge demand for this product, large amounts of waste are generated in the coffee industry, which are toxic and represent serious environmental problems. During the process of mechanical extraction of the coffee seed, residues generated are: pulp, mucilage and parchment, mainly. Coffee cherry consists of soluble carbohydrates, insoluble polysaccharides, lipids, nitrogenous components, caffeine and minerals. More than 50% is considered a waste; it no longer has any commercial application, knowing that its components could be exploited for the production of inputs and energy. This chapter presents the chemistry and biotransformation of by-products and coffee residues into second-generation biofuels, which can be bioethanol, biogas and biodiesel by fermentation, anaerobic digestion and trans-esterification, respectively. Biofuels offer greater energy security, lower emissions of greenhouse gases and particulate matter, rural development, reduced demand for oil, among others.",signatures:"Bianca Yadira Pérez-Sariñana and Sergio Saldaña-Trinidad",downloadPdfUrl:"/chapter/pdf-download/55183",previewPdfUrl:"/chapter/pdf-preview/55183",authors:[{id:"199814",title:"Dr.",name:"Bianca",surname:"Pérez-Sariñana",slug:"bianca-perez-sarinana",fullName:"Bianca Pérez-Sariñana"},{id:"201068",title:"Dr.",name:"Sergio",surname:"Saldaña-Trinidad",slug:"sergio-saldana-trinidad",fullName:"Sergio Saldaña-Trinidad"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5730",title:"Unique Aspects of Anti-cancer Drug Development",subtitle:null,isOpenForSubmission:!1,hash:"9cdd2d8e095ad4f83da2b26cb3e239c7",slug:"unique-aspects-of-anti-cancer-drug-development",bookSignature:"Jolanta Natalia Latosinska and Magdalena Latosinska",coverURL:"https://cdn.intechopen.com/books/images_new/5730.jpg",editedByType:"Edited by",editors:[{id:"77808",title:"Dr.",name:"Jolanta Natalia",surname:"Latosińska",slug:"jolanta-natalia-latosinska",fullName:"Jolanta Natalia Latosińska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editedByType:"Edited by",editors:[{id:"142145",title:"Dr.",name:"Annarita",surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5305",title:"Fermentation Processes",subtitle:null,isOpenForSubmission:!1,hash:"ade563b4042ed9674f6413b4ac8883f3",slug:"fermentation-processes",bookSignature:"Angela Faustino Jozala",coverURL:"https://cdn.intechopen.com/books/images_new/5305.jpg",editedByType:"Edited by",editors:[{id:"174371",title:"Dr.",name:"Angela",surname:"Jozala",slug:"angela-jozala",fullName:"Angela Jozala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6293",title:"Yeast",subtitle:"Industrial Applications",isOpenForSubmission:!1,hash:"46632cf5c744c601f5c36175e8dc8dc4",slug:"yeast-industrial-applications",bookSignature:"Antonio Morata and Iris Loira",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5217",title:"Advances in Silage Production and Utilization",subtitle:null,isOpenForSubmission:!1,hash:"74a9d90a738f4237f986bfc897dec332",slug:"advances-in-silage-production-and-utilization",bookSignature:"Thiago da Silva and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/5217.jpg",editedByType:"Edited by",editors:[{id:"144240",title:"Dr.",name:"Thiago",surname:"Da Silva",slug:"thiago-da-silva",fullName:"Thiago Da Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5083",title:"Significance, Prevention and Control of Food Related Diseases",subtitle:null,isOpenForSubmission:!1,hash:"fb85a37391ab251574d0f2ad6cd3e805",slug:"significance-prevention-and-control-of-food-related-diseases",bookSignature:"Hussaini Anthony Makun",coverURL:"https://cdn.intechopen.com/books/images_new/5083.jpg",editedByType:"Edited by",editors:[{id:"59728",title:"Dr.",name:"Hussaini",surname:"Makun",slug:"hussaini-makun",fullName:"Hussaini Makun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5781",title:"Phytohormones",subtitle:"Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses",isOpenForSubmission:!1,hash:"054eaa85c13ebe3d04fb8852005d2bad",slug:"phytohormones-signaling-mechanisms-and-crosstalk-in-plant-development-and-stress-responses",bookSignature:"Mohamed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/5781.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1521",title:"Weed Control",subtitle:null,isOpenForSubmission:!1,hash:"7f40548ae96805712a2367c7acab0fff",slug:"weed-control",bookSignature:"Andrew J. Price",coverURL:"https://cdn.intechopen.com/books/images_new/1521.jpg",editedByType:"Edited by",editors:[{id:"13747",title:"Dr.",name:"Andrew",surname:"Price",slug:"andrew-price",fullName:"Andrew Price"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6007",title:"Old Yeasts",subtitle:"New Questions",isOpenForSubmission:!1,hash:"4214dcadd46b262a55f53d855b3b60de",slug:"old-yeasts-new-questions",bookSignature:"Candida Lucas and Celia Pais",coverURL:"https://cdn.intechopen.com/books/images_new/6007.jpg",editedByType:"Edited by",editors:[{id:"95655",title:"Prof.",name:"Cândida",surname:"Lucas",slug:"candida-lucas",fullName:"Cândida Lucas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5100",title:"Fungal Pathogenicity",subtitle:null,isOpenForSubmission:!1,hash:"1a1402153a3f4f476ac29fd76d2cfbed",slug:"fungal-pathogenicity",bookSignature:"Sadia Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/5100.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implicat",title:"Corrigendum to: Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74443.pdf",downloadPdfUrl:"/chapter/pdf-download/74443",previewPdfUrl:"/chapter/pdf-preview/74443",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74443",risUrl:"/chapter/ris/74443",chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11504",leadTitle:null,title:"Kalman Filter - Engineering Applications\ufeff",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe book will aim to examine the Kalman Filter (KF), also known as the Kalman Bucy Filter (KBF), from the standpoint of its engineering implementation. The intended purpose of the book will be to extend the circle of users of the Kalman filter by considering it not as a means of theoretical analysis, but rather as a powerful tool for the design of a technical system. The editor accumulated experience of using suboptimal KF in various aerospace applications and would wish to share it with the pool of potential users and like-minded specialists. Instead of the formal programming of the recursive KF equations some simple and robust sub-optimal forms are proposed. For example, developed by the editor, suboptimal (KBF), with bounded grows of memory (FBGM) and its steady-state form- the time-invariant filter with constant coefficients is aimed to be considered. This allows the developer to use the KBF not only for system state estimation but for control as well. Proceeding in this way developer can be guaranteed the filter stability and robustness in many practically uncertain situations when the statistic characteristics of system disturbances and measured errors are not entirely known. A guaranteed approach with using an equivalent white noise is also aimed to be considered. Some representative examples from typical aerospace systems (the editor’s main professional field) are intended to be presented. Summarizing the above, it can be emphasized that when implementing the KF it is always useful to replace the art of programming with the experience of designing conventional robust systems having an idealistic estimate of maximum (best) of achievable performance. This would prevent the system's real-time computer from many possible situations with “empty “computations and even to the divergence of the computational process. It can also show that the filter is not a magic mill and cannot achieve the desired performance if it cannot be achieved in principle, better that it can be “promised” by the KF quadratic criterion minimum, or if some state vector components are not observable and controllable.
",isbn:"978-1-80356-576-7",printIsbn:"978-1-80356-575-0",pdfIsbn:"978-1-80356-577-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"4c3e68adcaeaa44f9fbfe9bb19bdd55b",bookSignature:"Dr. Yuri Kim",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11504.jpg",keywords:"Separation Theorem, Extended Kalman Filter, Covariance Matrix, Riccati Equation, FBGM, Analytical Implementation Forms, Physical Implementation Forms, Steady State Filter, Inertial Navigation System, Global Positioning System, Controllability, Multisensory Navigation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 15th 2022",dateEndSecondStepPublish:"June 2nd 2022",dateEndThirdStepPublish:"August 1st 2022",dateEndFourthStepPublish:"October 20th 2022",dateEndFifthStepPublish:"December 19th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Prof. Y.V. Kim is a Doctor of Technical Science, having a broad and wealthy international scientific, engineering, and teaching experience, obtained in the former USSR, Israel, and Canada. He has many scientific publications and implemented inventions dedicated to Aerospace GN&C.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"316140",title:"Dr.",name:"Yuri",middleName:null,surname:"Kim",slug:"yuri-kim",fullName:"Yuri Kim",profilePictureURL:"https://mts.intechopen.com/storage/users/316140/images/system/316140.jpg",biography:"Yuri Kim\n24 Buttenut, Gatineau, QC, Canada\nTel : 1-(514)- 466-1033, e-mail: yurikim@hotmail.ca\n\nHIGHLIGHTS OF QUALIFICATIONS:\n\nExperienced scientist, engineer and manager with internationally recognized achievements in area of Aerospace Avionics, (GN&C); Analysis, design (HW&SW), integration, testing and operation for various aerospace platforms and missions. \n\nGained a broad experience in preparation of technical documents for Joint (Industry-Customer) State Commissions for the acceptance (commissioning) of Aerospace Avionics, Navigation and Special application experimental equipment for further serial production, and operational support. Last works have been dedicated to R&D projects developing new Satellite Navigation Control Technology and customer support of Canadian satellites Control system design.\n\n\nACADEMIC DEGREES:\n\n 1991 *Doctor of Technical Science Diploma in Aerospace Vehicles Guidance \n Navigation and Control \n Scientific Council of State Institute of Automatic Systems, Ministry of Aviation\n Industry of USSR, Moscow\n (Recognized by Canadian Professional Counsel of Engineers) \n1982 * Senior Scientific Fellow Diploma in Gyroscopes and Navigation systems \n Capital Certification Commission of Scientists, Ministry of High Education of\n USSR, Moscow.\n (Recognized by Canadian Professional Counsel of Engineers)\n1974 * Candidate of Technical Science Diploma in Aerospace Navigation\n and Control Systems (Accredited as Ph.D by York University, Toronto.)\n Scientific Council of Moscow Aviation Institute, Moscow.\n1970 * Engineer Electromechanic Diploma in Gyro and Navigation systems,\n Faculty of Flight Apparatuses Control Systems, Moscow Aviation Institute, \n Moscow (Accredited as between Masters Degree and Bachelor Degree by\n York University, Toronto).\n1965 * Radio and TV Systems Technician Certificate, Dnepropetrovsk Technical School \n of preparation of technical specialists for Soviet Army, Military Aviation and \n Navy.\n\nMILITARY EDUCATION:\n\n1970 * Engineer in ballistic rocket control system, Military Faculty of MAI, last rank senior engineer-lieutenant (in reserve)\n\n\n\nEMPLOYMENT HISTORY:\nA. GOVERNMENT\n\nAt present - Canadian Space Agency, Space Science and Technology Division, David Florida Laboratory\n\n Senior Aerospace System engineer \n\n° Performing, developing and supporting phases of design, testing, commissioning and \n operation for space vehicle orbit and attitude control systems, in particular: Tecsas, Scope, \n J2Sat, Small satellite, M3Msat, Cassiopea, Neossat, RCM, PCW\n\n° Reviewing and commenting on Attitude Control systems design documentations, related to \n all phases of system development commissioning and operation\n \n° Supporting Aerospace Industry R&D projects funding by CSA (STDP) as Scientific\n Authority, in particular: Microwheel (Dynacon), LOCOOS (NGC), PCW (Bristol)\n\n° Providing expertise on new initiatives for Space Exploration and Utilization regarding \n Attitude and Orbital Control and possible development of Canadian space launcher\n\n° Developing basic mathematical (Simulink/Matlab) simulator for developing the \n requirements and expected performance of AODCS for new space vehicles\n\n° Developing new basic technology (based on Kalman Filter) for satellite attitude\n determination and sensor calibration, developing of FF test-bed equipment and GPS \n navigation in environment of CSA laboratory, developing of methods of ACS sensors\n calibration, measuring and compensation of satellite residual magnetic moment, experimental determination of satellite inertia matrix during ACS integration tests\n\n° Interacting with Space Industry and Universities in the problems, related to development of \n new methods and systems for space vehicle attitude and orbit determination and control\n \n° Sharing with International Aerospace community CSA achievements and experience in\n development of new technologies and methods for space vehicle attitude and orbit \n determination and control through publications, presentations and participation in scientific\n conferences, meetings and symposiums as well as maintaining an awareness about new \n technological advancements\n \n° Providing professional training for students and post. Graduates in the area of Orbital and\n Attitude Dynamic and Control\n\nB. INDUSTRIAL\n\nSept. 1998 – Feb. 1999 – Olympia Engineering Ltd. (Toronto)\n\nResearch and Development Engineer\n\n•\tDevelopment of measuring instrument for measuring remote measuring of micro- deformations of machinery (milling machine) equipment\n•\tResearch and testing of differential GPS survey equipment and antennas in environment of industrial facility for developing a new remote method for the measuring of machinery micro-deformations\n\n\n\n\nFeb.1999 – Jun.2002 – Saskatoon Engineering Division of Calian Company, \n Radarsat-1 Operation Team (CSA, Montreal)\n\nAttitude Control System Analyst\n\n•\tWorking as RADARSAT-1 Attitude Control System Analyst performing day-to-day operation TLM data analysis; reporting, monitoring and solving ACS flight anomaly problems, maintaining ACS software and performance \n•\tAuthor of many reports (see attached list of publications), devoted to solving of Radarsat-1 non-benign Safe Hold Mode problem, Momentum Wheel failure problems and improvement of the performance of attitude determination method with Magnetometer and Sun Sensor (back up, ADM3 mode for the case of potential failure of Horizon Scanner).\n•\tPreparation and implementation of the solution for RADARSAT-1 operation without failed Momentum Wheels, that saved the satellite mission after the wheel failures\n(This work was prolonged after in CSA and awarded by the Canadian Government Award for the invention used by the Government)\n•\tDesign and implementation of new dynamic simulators (based on Simulink\ntoolbox) for Radarsat-1 ACS for operation support\n•\tPreparation for operation of new Canadian satellites Scisat and RADARSAT-2 \n\n\n\nJan. 1994 – Sep. 1997 – Israel Aviation Industry (IAI factories: TASHAN, LAHAV)\n\nAvionics system engineer\n\n•\tResearch and preliminary design of the Special Data Fusion System for a fighter-interceptor\n•\tIntegration of Inertial Navigation System with Global Position System into Upgraded Avionics Suit and installation in aircraft cockpit for A/C – trainer T-38\n\nNov. 1977 – Apr. 1993 – Moscow Research and Design Institute of Electromechanic and Automatic (formerly P/B: M5537, presently “Aviapribor” Corporation)\n\n \nHead of Division (R&D in Pilot-Navigation Systems)\n\n•\tLeadership of the Division, performing planning, financial and methodological duties, related to this position, reporting to the R&D deputy director of the Institute\n•\tResponsibility for Pilot-Navigation System integration, interaction, tests and transferring for serial production and operational support\n•\tInitiation and methodical leadership of innovative research and development projects\n•\tReviewing, commenting and implementation of Technical standards and Navigation norms\nas well as sharing progressive methods and results within Aerospace organizations within former USSR\n \n Head of Department (INS and Flight Management System SW Development)\n\n•\tLeadership and performing of duties of Head of Department \n•\tResponsibility for the prospective research and preliminary design of the Inertial Navigation Systems (INS) and Flight Management Systems (FMS)\n•\tDesign of the INS and FMS algorithms and simulation of expected performance\n•\tDevelopment of INS/FMS flight code\n•\tDevelopment of test procedures and simulators for FMS, and pilot nav.complexis for aircrafts \n•\tResponsibility for system performance analysis in the ground and flight tests\n\n Head of Sector (System Flight Test data analysis) \n\n•\tLeadership of the Sector\n•\tDevelopment of ground and flight test simulation procedures and requirements for test equipment and simulators, for flight test aircraft measuring equipment, installation and recorded data processing\n•\tDesign of Estimation and Identification algorithms for ground and flight data processing\n•\tTest data analysis, preparation of test results analysis reports and conclusions\n\n Senior Scientific Fellow\n\n•\tResearch, development and principal design of the special Suboptimal Kalman Filter for the fusion of data of various navigation sensors for aviation and space platforms\n•\tDevelopment of new Guidance and Navigation methods for aviation and space platforms\n•\tAnalysis of INS and FMS performance in ground and flight tests\n\nC. ACADEMIC \n\n1977–1993 – Moscow Aviation Institute, Moscow Institute of Instrument -\n Making, Aviation Industry Ministry Upgrade Qualification Institute\n(Part Time) Professor, Associate professor, Chairmen of State Diploma Commission,\n Member of Scientific Council\n•\tLecturer of the disciplines: Applied Oscillation, Theory (MIIM), Design of Instruments (MIIM), Integrated Navigation Systems (MUQI)\n•\tChairman of the State Diploma Commission -Gyro Instruments and Systems (MAI)\n•\tLeadership of postgraduates, participation in sessions of Scientific Council (MAI)\n•\tMethodical management of cathedra of Orientation and Navigation in MAI \n\n2009 McGill University, Montreal\n\nPart time lecturer for course (in English): Aircraft Performance, Stability and Control\n\n1970–1977 – Moscow Aviation Institute \n(Full Time) Associate Professor, Senior Researcher, Assistant Lecturer \n•\tLecturer of the courses: Spacecraft orbital mechanics and attitude determination and control, Inertial Navigation Systems, Gyro Instruments and Systems\n•\tResearch and development of suboptimal robust estimation methods for navigation data processing\n•\tResponsibility for the navigation systems laboratory\n•\tDeputy head of cathedra of Orientation and Navigation\n\nFIELDS OF THEORETICAL AND METHODOLOGIC EXPERTISE:\n \n•\tSpace vehicle Orbit and Attitude determination and control\n•\tGyro instruments and systems\n•\tRadio navigation systems\n•\tInertial Navigation systems\n•\tAirplane Navigation and Control\n•\tAnalytical mechanics \n•\tApplied oscillation theory\n•\tAutomatic control theory\n•\tStochastic estimation theory\n\nENGINEERING EXPERIENCE:\n\n•\tFlight and laboratory tests of Aerospace Avionics Equipment\n•\tDistribution of mission requirements between Aerospace vehicle subsystems, definition of functions and ICD \n•\tSpacecraft operation and performance maintenance\n•\tAvionics system (hardware and software) development and testing (autonomously and integration)\n•\tInertial navigation systems\n•\t Development of Avionics for Soviet Military aircrafts: Tu-142, Tu-95MC, An-124, An-70, A-40, Soviet Space shuttle “Buran” (responsibility for preliminary design of radio-navigation automatic landing system), \n•\tIsrael (IAI) upgrade of Avionics system for T-38 (USA Air force trainer) \n•\tOperation and modification in space Canadian Satellite RADARSAT-1 Attitude Control system\n•\tParticipation in commissioning of ACS of Canadian Satellite Scisat\n•\tDevelopment of a generic mathematical simulator for satellite AODCS analysis and simulation of expected performance for a family of Canadian new generation small satellites\n\nSCIENTIFIC EXPERIENCE:\n\n•\tTheoretical and experimental investigation in the fields of S/C Orbital and Attitude Control\n•\tKalman Filter suboptimization and robust guarantee estimation theory development: authorship of new Suboptimal Kalman Filter modification, methods of INS correction and calibration, Geomagnetic Inertial Navigation System\n•\tResearch in areas of ACS and INS sensors development, their performance improvement\n•\tVarious Avionics Systems Mathematical models development and mathematical and semi-natural simulation\n•\tCoordination of research and development projects related to Aerospace equipment performed by Universities and Industries\n•\tScientific reports and articles reviewing and editorship \n•\tMembership in Scientific Counsels and Commissions\n•\tTutorship of under-graduate, graduated and post -graduate students \n\n•\tScientific reports and inventions in the field of GN&C for aircraft and spacecraft methods development \n•\tSeveral articles dedicated to the development of new methods in estimation theory: new suboptimal Kalman Filter with limited growth of the memory, observability and factor of state vector components estimation, guaranteed ellipsoidal estimation and stochastic estimation comparison \n\nLANGUAGES:\n \n•\tEnglish, Russian, Ukrainian, Hebrew, French (beginning level)\n•\tProgramming languages: Matlab/Simulinc/С",institutionString:"Canadian Space Agency",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Canadian Space Agency",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46129",title:"Pharmacology of Adenosine Receptors and Their Signaling Role in Immunity and Inflammation",doi:"10.5772/57206",slug:"pharmacology-of-adenosine-receptors-and-their-signaling-role-in-immunity-and-inflammation",body:'Since the late 1920s, the importance of the physiological role of adenosine triphosphate (ATP) and its metabolites, mainly adenosine, has been clear. In 1970, strong evidence now suggests ATP as a neurotransmitter in nonadrenergic, noncholinergic (NANC) nerves supplying the gut. Initially, the hypothesis of purinergic transmission encountered some resistance, however, this concept is now widely accepted and purines are considered powerful extracellular messengers in peripheral and central nervous system and to non-neuronal cells, including immune, and inflammatory cells. Implicit in the purinergic hypothesis was the presence of purinoceptors. The first evidence for the existence of adenosine receptors, responsible for the physiological effects of adenosine, was only published in the beginning of the 1970s. Throughout the 1990s and 2000s adenosine receptors were cloned, and the mechanisms of signal transduction mediated by these receptors were described. Currently, it is well known that adenosine activates four G protein-coupled receptors named A1, A2A, A2B and A3. The A1 and A3 receptors preferentially interact with members of the Gi/o family of G proteins, lowering the intracellular levels of cyclic adenosine monophosphate (cAMP), whereas the A2A and A2B receptors interact with members of the Gs family of G proteins, elevating of intracellular cAMP.
Throughout the 1980s and 1990s, several studies demonstrated that ATP metabolites, especially adenosine, are important signaling molecules, and adenosine receptors are important molecular targets in inflammation and immunity. During inflammation, the generation of the appropriate immune response can itself cause considerable damage and thus requires effective regulation. It has been suggested that this regulation of the immune system requires the sensing of specific signals called “danger signals”. Thus, in the context of purinergic signaling, it has been proposed that the regulation of the immune system requires at least two ‘danger’ signals, the first (ATP) indicating the presence of danger from pathogens or other injurious events and leading to the activation of immune cells and defensive effector function and the second (adenosine) indicating the danger from overactive immune cells and triggering the downregulation of the proinflammatory activities of the immune system. These discoveries increased the interest in the purinergic signaling pathways, and there was an increase in publications studying the effects of adenosine and inosine in inflammation and immunity (Figure 1 A and B).
Substantial evidence demonstrates that adenosine receptors are expressed in most inflammatory cells and may therefore modulate different steps involved in inflammatory and immune responses. Moreover, several recent studies have indicated that inosine, a metabolite of adenosine, once believed to be an inert metabolite, can exert many immunomodulatory actions through adenosine receptors, mainly the A2 and A3 receptors. In this regard, adenosine receptors have become potential therapeutic targets for the treatment of several pathologies in which inflammatory modulation is a key component. In this regard, adenosine and inosine can be considered molecules with valuable therapeutic potential, performing the desired effect with minimal side effects, such as those present in therapy with adenosine (Adenocard®) for the treatment of paroxysmal supraventricular tachycardia (facial flushing, chest pressure, hyperventilation, dizziness, numbness and tingling). Moreover, no studies clearly demonstrate the side effects of inosine. However, it is important to warn that the purines can play deleterious effects not observed clinically, depending on the target tissue and the receptor that is activated according to figure 3.
Thus, this chapter was designed to highlight the importance of ATP metabolites, especially adenosine and inosine, and their modulatory effect on inflammation through the activation of adenosine receptors. In addition, we aimed to provide updated information about the pharmacology of adenosine receptors, especially about its proinflammatory versus anti-inflammatory effects. Furthermore, we are able to clarify the overall effect of adenosine and inosine in different inflammatory diseases. Finally, we intend to present a short overview concerning the advances in drug development targeting adenosine receptors.
Carbohydrates, lipids and proteins, also called "metabolic fuels" are constantly being oxidized to provide energy. Glucose is generally the primary energy source for cellular metabolism. It is catabolized by the following three main processes: glycolysis, the tricarboxylic acid (TCA or Krebs) cycle and oxidative phosphorylation, which lead to the production of ATP, the final energy-rich product that is used in many different active processes in an organism. Macromolecule synthesis, muscle contraction, active transport of ions and thermogenesis are some of the key processes that require energy. Since the mid-1920s, when ATP was discovered as a substrate used in muscle contraction, knowledge about this high-energy molecule has constantly been expanded. The literature has shown that many aspects of cellular metabolism are directly linked to the production and consumption of ATP and has also emphasized its importance in purinergic signaling mechanisms. In this context, taking into account the importance of ATP in the maintenance of homeostasis and the evidence indicating the role of its metabolites in the control of immunity and inflammation, understanding ATP metabolism in the body has become more imperative [1].
In situations of high energy demand such as inflammation and hypoxia, ATP may be converted into adenosine monophosphate (AMP) in the intracellular environment through a reaction dependent on ATPase and adenylate kinase. AMP can be converted into adenosine by the intracellular enzyme 5-nucleotidase and thereafter can be transported to the extracellular environment via bidirectional nucleoside transporters. ATP in the extracellular environment can activate P2 –type receptors in the surroundings or generate adenosine via ecto-5-nucleotidase (NT5\'E), the primary enzyme responsible for ATP metabolism under physiological conditions [2]. In the extracellular space, ATP and ADP are converted to AMP through the ectonucleoside triphosphate diphosphohydrolase-1 (CD39). The second step for extracellular adenosine formation is the ecto-5\'-nucleotidase (CD73) conversion of extracellular AMP into adenosine. During inflammation and hypoxia, an increase in the activity and expression of adenosine deaminase and in its binding partner, CD26, has also been demonstrated [3]. This increase promotes adenosine conversion into inosine within seconds, terminates adenosine signaling and can thus initiate inosine signaling. Inosine can be converted into hypoxanthines and uric acid (UA) by purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO), respectively [4, 5]. Current studies using mice lacking the CD39 and CD73 genes have revealed the importance of these enzymes in contributing to extracellular adenosine generation in different organs and situations [5]. In agreement with those studies, certain CD39 polymorphisms increase ATP and ADP, lowering extracellular adenosine levels, which can lead to increased susceptibility to inflammatory pathological conditions such as inflammatory bowel disease (IBD) and multiple sclerosis (MS) [6, 7]. Furthermore, the loss-of-function mutation of CD73 in humans is suggested to be the basis for the development of peripheral arterial calcifications, indicating that adenosine generation can be vasoprotective [8, 9]. Currently, it is known that after adenosine is released from cells or generated in extracellular space, it diffuses into the surroundings, where it binds to adenosine receptors (A1, A2A, A2B and A3) on adjacent cells. Finally, after adenosine generation and receptor activation, adenosine diffuses away from the receptor and is rapidly transported into the intracellular space mainly through equilibrate nucleoside transporters (ENT-1 and ENT-2) [5, 10, 11].
During inflammation, infection or hypoxia, the generation of the appropriate immune response can itself cause considerable damage and thus requires effective regulation [12]. It has been suggested that this regulation of the immune system requires the sensing of specific signals called “danger signals” [13-15]. Although the immune response can be activated by recognizing the signatures of foreign pathogens, collectively called pathogen-associated molecular patterns (PAMPs), it is also able to respond to endogenous host molecules to trigger inflammatory responses. Most of these are produced as a result of cell death or injury or by tumor cells; they include degradation products of the extracellular matrix (ECM), heat-shock proteins and high-mobility group box 1 (HMGB1) proteins, UA crystals, amyloid-β and oxidized LDL (Ox-LDL), which act as stimulators for pattern recognition receptors (PRRs) and have been referred to as danger-associated molecular patterns (DAMPs) [15, 16].
Extracellular ATP and UA are well-characterized dangers signals, likely released from cells as a consequence of cell damage or nonapoptotic cell death. The exposure of local cells to elevated extracellular ATP and monosodium urate crystals has been described as proinflammatory because it activates P2X7 receptors, NALP3 (a member of NOD-like receptors, also called cryopyrin) and caspase-1 [17-19]. This activation leads to the processing and release of interleukin 1β (IL-1β) and results in inflammation [14, 20]. Furthermore, the elevation of extracellular ATP has been demonstrated to guide circulating neutrophils to the inflammatory microenvironment and can function as a “find-me signal” to attract inflammatory cells (particularly phagocytes) and direct the inflammatory response [12, 21].
Recent studies have shown that in situations of inflammation, trauma or hypoxia when extracellular ATP concentrations are elevated, there is an increased expression of ectonucleotidases that rapidly convert ATP/ ADP into adenosine, terminating the proinflammatory effects of ATP [12]. Thus, in the context of purinergic signaling, it has been proposed that the regulation of the immune system requires at least two ‘danger’ signals, the first (ATP) indicating the presence of danger from pathogens or other injurious events and leading to the activation of immune cells and defensive effector function and the second (adenosine) indicating the danger from overactive immune cells and triggering the downregulation of the proinflammatory activities of the immune system [13, 22].
The effects of adenosine in different tissues may depend upon the repertoire of adenosine receptors present on the cell surfaces [22]. In this context, the A2A and A2B receptors have been described as the receptors most involved in the control of immunity and inflammation [13, 22, 23]. By binding to A2A and A2B receptors, adenosine triggers cAMP elevation in T cells, which results in the activation of CREB/ATF (cAMP-responsive element (CRE)-binding protein/activating transcription factor), an immunosuppressive mechanism [12, 23, 24]. This activation has been shown to trigger Treg cell activation, the production of anti-inflammatory cytokines such as TGF-β and IL-10 and inhibit the functional response of TCR- activated T effector cells, reducing the secretion of IL-2 and IFN-γ [24]. Moreover, similar to adenosine, the metabolite inosine is also known to exert wide raging anti-inflammatory effects, which include inhibition of proinflammatory cytokines, chemokine production and protection from septic shock, colitis and acute lung injury [25-27]. Some studies have shown that inosine can stimulate adenosine A2A receptors and is protective in models of concanavalin A-induced liver damage, endotoxin-induced sepsis [28, 29] and TNBS-induced colitis [30]. In this context, although there is no description of inosine as a danger signal in the current literature, some studies have described inosine as tissue protective. Taking into account that it can activate the same sensors (receptors) as adenosine, we speculate that inosine might be an additional danger signal that could work with adenosine to dampen inflammation.
In summary, the immunosuppressive effects of adenosine have been broadly described in the literature as a “retaliatory metabolite” [31] or an “engineer” of inflammation [22], indicating that adenosine can manipulate the intensity and the time course of inflammatory process in vivo and suggesting biochemical control of immunity. These events appear to be biologically coordinated and may constitute a homeostatic mechanism of tissue integrity. Therefore, the failure of this protective mechanism may contribute to beginning and perpetuating chronic inflammation response.
The number of publications regarding the investigation of adenosine and inosine effects in inflammation and immunity since the 1960s.
The adenosine A1 receptor is coupled to the Gi/0 family of G proteins, lowering the intracellular levels of cAMP [32, 33]. Activation of A1 receptors leads to increased intracellular Ca+2 levels due to the stimulation of phospholipase C, which in turn promotes the cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (Figure 2). Moreover, the enhancement of intracellular calcium can activate certain enzymes, such as protein kinase C (PKC), phospholipase D (PLD), phospholipase A2 (PLA2) and others [10, 33].
The recently reported crystal structure confirms that adenosine receptors display the typical topology of GPCRs, a common central core domain consisting of seven transmembrane (TM) helices numbered from 1 to 7 that are composed of 20-27 amino acids and that are largely α-helical. The TM domains are also slightly bent and linked by three intracellular (IL-1, IL-2 and IL-3) and three extracellular (EL1, EL2, and EL3) loops [34]. The A1 receptor amino acid sequence varies from 324 to 328 residues [35]. In 1992, Ijzerman and colleagues highlighted the role of two histidine residues in ligand binding, one located in TM6 and one in TM7 [36]. This result was in agreement with the first mutagenesis data on adenosine receptors, published in the same year, performed on bovine A1 receptors, which demonstrated that residues His251 (6.52) and His278 (7.43) were important for ligand binding. The same study also revealed that the mutation of histidine residues to leucine led to a decrease in ligand affinity, especially His278 [37]. In 1994, two mutagenesis studies suggested a role of residue 270 (7.35, isoleucine or methionine in the bovine/canine receptor) in the binding of
There is no consensus regarding the effects of A1 receptors in the inflammatory response; some studies suggest proinflammatory effects, while others suggest anti-inflammatory effects. The A1 receptors are expressed in leukocytes. At submicromolar adenosine concentrations, the activation of these receptors in human neutrophils produces a proinflammatory response by promoting chemotaxis and adherence to the endothelium [42, 43]. In lymphocytes, A1 receptor antagonism contributes to adenosine’s anti-inflammatory effects by reducing the expression of intracellular adhesion molecule-1 (ICAM-1), production of IL-12 and IFN-γ and lymphocyte proliferation [44]. In addition to these data, various studies with selective agonists and antagonists demonstrated the proinflammatory effects of A1 receptors in different inflammatory models, some of which are summarized here. During acute pancreatitis induced with cerulein or taurocholate in rats, the selective A1 receptors agonist CCPA (2-chloro-
In opposition to such data, studies using pharmacological (selective A1 receptor agonist or antagonists) and genetic tools (knockout animals) have shown that activation of the A1 receptor can promote anti-inflammatory effects. CCPA, an A1 receptor agonist, presented a protective effect in a mouse model of renal ischemia reperfusion, an effect reverted by DPCPX, a selective A1 receptor [48]. Studies performed with knockout mice confirmed the renal protective effects of the A1 receptor [49] and also revealed the protective effects of this receptor in other tissues and inflammatory conditions because the absence of the A1 receptor promotes proinflammatory effects in the lungs, enhancing leukocyte migration and levels of cytokines, including IL-4 and IL-13 [50]. In the central nervous system (CNS), A1 receptor knockout animals exhibited severe demyelination and axonal injury, involving the activation of macrophages and microglial cells [51]. In sepsis induced in mice, the A1 receptor knockout animals had a higher degree of renal dysfunction induced by higher release of pro-inflammatory cytokines [52]. A previous study described the mechanism by which activation of A1 receptor leads to anti-inflammatory effects, which involves phosphorylation of ERK, MAPK and Akt (Figure 2), all of which are involved in the upregulation of cytoprotective genes and also increase the phosphorylation of heat shock protein (HSP) 27, a molecular chaperone that prevents the denaturation and aggregation of cellular proteins, a cytoprotective effect [53]. In summary, the lack of consensus regarding the existence of the proinflammatory and anti-inflammatory effects of the adenosine A1 receptor could be explained assuming that the A1 receptor can activate intracellular signaling pathways that result in tissue injury or protection, through proinflammatory or anti-inflammatory effects, respectively, because the activated pathways depend on the following:
the species/tissue/organ and the stage/progression of injury;
Predominant inflammatory cell type as a function of species;
Intracellular signaling and desensitization mechanisms as a function of species or cell/tissue/organ.
Most A2A receptors are coupled to the Gs protein family. A subset, preferentially located in the striatum, is coupled to the Golf protein family. It is well established that the biological effects triggered by A2A receptors are due to enhancement of cAMP production followed by adenylate cyclase activation. The increase of the cAMP level stimulates cAMP-dependent kinase (PKA) (Figure 2), which, in turn, activates several pathways through calcium channels, potassium channels, cAMP responsive element-binding (CREB), mitógeno-activated protein kinase (MAPK) and phospholipase C (PLC) activation [23, 54].
The A2A receptor structure is very similar to other adenosine receptors. However, it differs in the four disulfide links observed at the extracellular level, which are critical for the packing and stabilization of the restricted conformation of the seven transmembrane helices. Another difference concerns the A2A receptor length of the C-terminal region, which consists of approximately 120 residues [55]. In 1995, Kim et al. published the results of site directed mutagenesis experiments on A2A receptors [56], revealing the essential role of some residues for ligand interaction, particularly Phe182 (5.43), Asn253 (6.55), Ile274 (7.39), and Ser281 (7.46). The key role of His250 (6.52), Ser277 (7.42) and His278 (7.43) was also confirmed. After 1995, several mutagenesis studies revealed some of the amino acids residues involved in direct or indirect interaction with ligands or in allosteric regulation. It was observed that the conserved Glu 1.39 is critical for agonist but not antagonist binding [57, 58]. Glu13 (1.39) and His278 (7.43) were found to be critical for the allosteric regulation of A2A receptors [59], and Gln89 (3.37) was suggested to play an indirect role in ligand binding, while Ser281 (7.46) mutation to asparagine improved agonist affinity [60]. Additional studies were carried out to analyze the role of loop residues of A2A receptors, revealing the importance of Glu151 and Glu169 (EL2) for ligand binding [61]. Unlike A1 receptors, there is a considerable consensus regarding the effects of A2A receptors on the inflammatory response. A broad range of investigations using
Many of the anti-inflammatory effects of A2A receptors are mediated by adenosine itself. It is known that inflammatory tissue damage is accompanied by the accumulation of extracellular adenosine in inflamed sites due to its release from non-immune and immune cells. Because endogenous adenosine levels are elevated during an inflammatory process and endogenous adenosine can activate A2A receptors to attenuate inflammation and tissue damage, strategies that aim to foment adenosine production and increase its availability to activate A2A receptors present extraordinary anti-inflammatory potential. In this regard, an interesting study demonstrated that the immunosuppressive effects of activated Treg lymphocytes could be in part related to adenosine production in the extracellular environment through both CD39 (an ectonucleoside triphosphate diphosphohydrolase that converts ATP and ADP to AMP) and CD73 (an ectonucleoside that converts AMP to adenosine) expressed on the surface of these cells. Moreover, the Treg immunosuppressive effects have been shown to be modulated by A2A receptors [72]. In a model of ischemia reperfusion liver injury, treatment with ATL146e (4-(3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9
In another study, the same A2A receptor agonist, ATL146e, was associated with decreased leukocyte infiltration, inflammatory mediator production and necrosis in a model of inflammatory bowel disease [77]. In a model of LPS-induced lung injury, treatment with the A2A receptor agonist ATL202 was associated with decreased recruitment of neutrophils to the lung together with reduced cytokine levels and pulmonary edema, whereas A2A receptor knockout mice treated with LPS showed an increase in neutrophil recruitment [75]. In a mouse model of allergic lung inflammation, treatment with an A2A receptor (CGS-21680) agonist resulted in diminished pulmonary inflammation [78]. On the other hand, A2A receptor knockout mice have been shown to have higher lung inflammation compared to wild-type mice [79].
A brief summary of the role of the purinergic system in inflammation. A1, adenosine A1 receptor; A2A, adenosine A2A receptor; A2B, adenosine A2B receptor; A3, adenosine A3 receptor; AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinases 1 and 2; IP3, inositol triphosphate; MAPK, mitogen-activated protein kinase; PKB, protein kinase B; PLC, phospholipase C; PI3K, Phosphatidylinositide 3-kinase; ATP, adenosine triphosphate; AMP, adenosine monophosphate; HXT, hypoxanthine; AK, adenosine kinase; ADA, adenosine deaminase; PNP, purine nucleoside phosphorylase; ENTs, equilibrate nucleoside transporters; CD 39, ectonucleoside triphosphate diphosphohydrolase; Inhibition → ; Activation - - →
The A2B receptor couples to Gi-type G proteins, leading to the inhibition of adenylate cyclase upon receptor activation [80]. In some cell systems, such as HEK-293 and HMC-1 mast cells, A2B receptors are also coupled to phospholipase C via the action of Gq proteins in increasing intracellular Ca2+ levels [81-83]. The A2B receptor has also been described to be involved in the ERK1/2 [80, 83, 84] and p38 MAPK pathways in mast cells (Figure 2) [85]. Furthermore, a link between A2B receptor signaling and the arachidonic acid signal transduction pathway leading to vasoconstriction has been described [83, 86]. Among the four adenosine receptors, A2B is the least well characterized receptor, mainly due to the lack of suitably specific ligands [87].
The A2B receptor has low affinity for most agonists, so only some agonists are useful, including the non-selective and related adenosine derivative NECA [88] and the highly selective A2B agonist BAY60-6583 [89]. Conversely, highly selective A2B antagonists have been developed, such CVT-6883 and an A2B-specific antagonist radioligand, [3H]PSB-603, which has high potency and specificity across species, including rodents and humans [90]. The A2B receptors have a closely related structure to A2A receptors, and sequence analysis of the human A2A and A2B receptors show an overall identity of 58% and a similarity of 73%. The most conserved residues are found within the seven transmembrane domains. [83]. In contrast to the A2A receptor, the A2B receptor possesses the longest extracellular loop 2 (ECL2) of all four adenosine receptor subtypes, with four cysteine residues – the highest number found in any GPCR – of which three (C154, C167, C171) are homologous to the three (C146, C159, C166) found in the A2A receptor [83]. These cysteine residues are involved in disulfide bonds formed between the ECL and transmembrane domains (TM) of GPCRs and have been reported to play an important role in ligand binding affinity and receptor stability and function.
Studies of mutagenesis, X-ray receptor analysis and radioligand binding have shown that C78 in transmembrane domain 3 (TMD3) and C171 in ECL2 form an important disulfide bond related to ligand-binding affinity and receptor expression levels [83, 91, 92]. In agreement with these data, in a mutagenesis model in which the complete ECL2 of human A2B was exchanged for the ECL2 of the A2A receptor, the mutant A2B (ECL2-A2A) receptor mice had increased affinity and selectivity for A2B agonists and antagonists as well as receptor-mediated cAMP accumulation, indicating that ECL2 is a ligand binding site [93]. ECL2 also seems to contribute to the low affinity of ligands to A2B receptors because it has been shown to have between 4 and 10 more amino acids than A2A receptors. The longer ECL2 may, in some cases, partially block the entrance of ligands into the binding pocket and explain why A2B receptors typically show lower affinity for adenosine and adenosine derivatives (agonists) than A2A receptors, which have a shorter ECL2, which may facilitate the entrance of ligands to the binding pocket [83]. In addition, residues Thr42, Val54 (2.51) and Phe84 (3.31) are also involved in the binding site; mutation to alanine, leucine or serine, respectively, decreased agonist binding [94]. As mentioned above, in many tissues, A2B receptors are considered low-affinity receptors with mostly low expression levels, so adenosine needs to reach higher concentrations to activate them [83, 95].
During hypoxia, a critical role of HIF-1 in the transcriptional induction of the adenosine A2B receptor has been suggested. In such conditions, as in A2B-/- receptor mice, the presence of A2B receptors attenuates hypoxia-induced increases in vascular leakage, mainly in the lungs, a protective effect [95]. Accordingly, Yang and colleagues reported that A2B-null mice present augmentation of proinflammatory cytokine levels, such as TNF-α, upregulation of vascular adhesion proteins and leukocyte migration in response to LPS-induced acute inflammation. Conversely, in adenosine-deficient mice and bleomycin-induced lung inflammation, the antagonist CVT-6883 attenuated pulmonary inflammation [96]. Moreover, A2B activation resulted in an increase in IL-8 [85], IL-1beta, IL-3, IL-4, IL-13 and IgE leading to mast cell and Th2 and B lymphocyte activation [97]. Mice treated with CVT-6883 and MRS-1754 or A2B-null mice developed less severe experimental autoimmune encephalomyelitis (EAE) with reduced IL-6 release and Th17 cell differentiation [98].
In spite of the structural similarity, adenosine has been recognized as the natural ligand of A2B receptors, but inosine was not [99, 100]. However, a recent study conducted by our group has shown evidence that inosine can reduce both acute pleural inflammation and allergic lung inflammation through a mechanism that involves both A2A and A2B receptors, suggesting a regulatory role of inosine and A2 in these process [11, 101]. Taking into account the lack of information about the A2B receptor and its involvement in several inflammatory diseases, it may be a candidate target for future therapeutic intervention
Studies have demonstrated that both adenosine and inosine can activate A3 receptors in vitro and therefore can directly modulate its activation and biological effects [99, 100]. Similar to other adenosine receptors, the A3 receptors is a GPCR with seven transmembrane domains (TM). It is coupled to classical second-messenger pathways such as inhibition of adenylyl cyclase, stimulation of PLC and calcium mobilization [33, 102-104].
In the heart, A3 mediates cardioprotective effects through the activation of KATP channels that are coupled to RhoA–phospholipase D signaling, mediating the protection of cardiac myocytes from ischemia [104]. With regard to cardiac protection, signaling through cAMP response element-binding protein (CREB)-Bcl2 pathways after A3 receptor activation has also been described [104]. In addition, like other adenosine receptors, A3 receptors are coupled to MAPK and lead to stimulation of extracellular signal-regulated kinases (ERK1/2), which relates A3 receptor activation to cell growth, survival, death and differentiation [33, 80].
A3 receptor activation in melanoma cells stimulates PI3K-dependent phosphorylation of protein kinase B (PKB/Akt), leading to the reduction of basal levels of ERK1/2 phosphorylation, which in turn inhibits cell proliferation (Figure 2) [105]. Consistent with these data, treatment with IB-MECA induced inhibition of tumor growth [33, 104], although in the hypoxic conditions that occur in solid tumors, A3 activation mediates angiogenesis and cell survival through increased HIF-1 α and VEGF production [106]. Moreover, the A3 receptor is involved in adenosine and inosine induced-mast cell degranulation [99, 107]; inhibition of endotoxin-induced neutrophil granulation and TNF-α production [108, 109]; reduction of T cell tumoricidal activity and enhancement of natural killer cell cytotoxicity [104]; reduction of neuropathic pain [110]; and augmentation of bone marrow cells proliferation favoring myeloprotection [111]. One of the characteristics of the A3 receptor is the rapid (within a few minutes) desensitization through phosphorylation by G-protein-coupled receptor kinase 2 (GRK2) at the intracellular threonine residues within the C-terminal domain after exposure to an agonist, which can limit the agonist’s effect [112-114].
A3 receptors exhibit the lowest degree of identity among species compared with other adenosine receptor subtypes [115]. In a study that used a combination of mutagenesis, radioligand binding, functional activity and molecular modeling approaches, a mutation of TMD3 His95 (3.37), which is conserved in A3 receptors in various species including humans, sheep and rats, resulted in a decreased affinity of agonists and antagonists and is therefore considered critical to ligand binding. The same was observed when His272 (7.43) and Asn250 (6.55) were mutated. Moreover, residues Tyr243 (6.48) and Lys152 (ECL2) were needed only for antagonist binding [115], and Trp243 (TM6) is involved in the functional activation of the A3 receptor based on the impairment of the coupling of the receptor to the G protein in the Trp243 mutant [115, 116]. Furthermore, molecular modeling suggested that Trp243 is in the binding pocket and might occupy a strategic position as a switch in the TM6-mediated structural transition from the resting to the active state [115]. Given the involvement of A3 receptors in important pathological process, as described above, several studies evaluating the structure-activity relationships of agonists and antagonists with A3 receptors have been conducted to identify new potential drugs for the treatment of deleterious diseases.
The action of adenosine and inosine on the immune system is determined by their bioavailability and adenosine receptor expression in immune cells. The rapid release of adenosine in response to tissue-disturbing stimuli such as hypoxia, ischemia, inflammation or trauma and the rapid conversion of adenosine into inosine have been reported to modulate the function of leukocytes, a basic constituent of immune system [117]. In this section, we discuss adenosine and inosine modulation of immune cells and the corresponding involvement of adenosine receptors.
Neutrophils are the first immune cells recruited to inflamed sites by a combination of chemoattractant cytokines and adhesive interactions between leukocytes and the vascular endothelium [118, 119]. Adenosine mainly acts on A2A receptors, signaling through cAMP-PKA-dependent pathways. It decreases neutrophil activation, neutrophil-mediated injury to endothelial cells, production of reactive oxygen species, PAF, and leukotriene B4, secretion of cytokines such as TNF-α and chemokines such as MIP-1alpha/CCL3, MIP-1beta/CCL4, MIP-2alpha/CXCL2 and MIP-3alpha/CCL20 and expression of adhesion molecules such as selectins and integrins [31, 120-128]. Similar to adenosine, inosine also interferes with neutrophil activation by blocking formyl-Met-Leu-Phe-induced superoxide generation [31, 100], neutrophil migration and release of the proinflammatory cytokines TNF-α and IL-1β during acute inflammation, acting through A2A and A2B receptors [11]. A3 and A2A receptors are involved in the reduction of superoxide anion generation [127, 129]. A3 receptors can also direct neutrophil migration [130]. Interestingly, the adenosine interaction with A1 and A3 receptors induces G-CSF production, which leads to a stimulatory effect on bone marrow cells, suggesting that adenosine is a chemoprotective agent that could restore the number of leukocytes and neutrophils to normal levels after chemotherapy [131].
Macrophages and dendritic cells are phagocytes that are widely dispersed throughout the body at portals of microorganism entry [31]. They initiate an effective innate immune response against microbes by recognizing pathogen-associated molecular patterns (PAMPs) through pattern-recognition receptors (PRRs) [119, 132]. This response involves pathogen processing and is regulated by the secretion of several cytokines and activation of lymphocytes and other immune cells.
In this context, studies have demonstrated that adenosine inhibited TNF-α, IL-6 and IL-8 release from macrophages stimulated with thioglycollate or LPS via A2A receptors, although the A2B receptors seems to play an underlying inhibitory role that may contribute to anti-inflammatory action [133, 134]. Some studies have demonstrated that adenosine can increase IL-10 production and release through a mechanism involving adenosine A2A receptor-CEBPβ axis activation [135]. The augmentation of the production of IL-10 and the decrease in systemic endotoxin-induced levels of TNF-α, IL-12, MIP-1α and IFN-γ have also been ascribed to inosine [136]. Current data have shown that activation of both A2A and A3 receptors inhibited IFN-γ and IL-12 release after TLR-4 stimulation by LPS [137-139]. Adenosine and inosine were described to decrease M1 activation and the release of mediators, reducing Th1 response, by interfering with TLR-4 activation. Moreover, there is growing evidence that A2A receptor activation also reduces the TLR-2, 3, 7, and 9 responses in M1 macrophages, upregulating VEGF and IL-10 expression and therefore polarizing macrophages into an M2-like phenotype, called M2d, which favors an angiogenic switch and plays a protective role in ischemia [70, 140].
Adenosine also interferes with mature dendritic cell stimulation by producing a dose-dependent inhibition of TNF-α and IL-12 release, whereas it enhanced the secretion of IL-10, preventing tissue injury mediated by innate immune mediators during overwhelming immune response [141]. Furthermore, dendritic cells matured in the presence of adenosine had a reduced capacity to induce T helper 1 (Th1) polarization of naive CD4+ T lymphocytes, evidence that adenosine diminishes the capacity of dendritic cells (DCs) to initiate and amplify Th1 immune responses [141].
Mast cells are resident in all normal tissues, where they are believed to play an important role in tissue homeostasis, wound healing and host defense, particularly in terms of bacterial infection. When activated, they secrete the autacoid mediators histamine, prostaglandin (PG)D2 and leukotriene (LT)C4, which contribute to the pathophysiology of many diverse diseases including rhinitis and asthma [142-144].
Rodent and human mast cells express the A2A, A2B and A3 receptors [145-149]. It has been reported that adenosine and inosine binding to A3 receptors expressed in mast cell membranes induces degranulation and release of vasoactive mediators [99, 107]. Accordingly, the release of reactive mediators following A3 activation in mast cells is directly related to the bronchoconstrictor effects observed after topical administration of adenosine in the airways of patients with asthma and chronic obstructive pulmonary disease [109, 150]. In contrast, inosine has no effect on airway caliber, indicating that bronchoconstriction is a specific response to adenosine [151]. Engagement of the A3 receptors on rodent mast cells mediates degranulation and cell migration through a mechanism that involves phosphoinositide 3-kinase (PI3K) or protein C kinase (PKC) activation and an increase in intracellular Ca2+ [146, 147]. Moreover, A1 and A2B receptor activation has been related to the release of histamine, IL-8, IL-4 and IL-13 by mouse and human mast cells [97, 152-154]. In contrast to the A1 and A2B receptors, A2A activation results in the suppression of histamine and tryptase release from human mast cells [155]. A2A and A2B receptors provide a balanced control mechanism for mast cell activation. It is possible that at low concentrations of adenosine, only the ‘off’ signal provided by the engagement of the higher affinity A2A receptors prevails, thus downregulating mast-cell mediator release. Conversely, in situations in which high concentrations of adenosine are reached, such as in asthma and COPD [156], the low-affinity A2B receptor becomes activated, resulting in significant mast cell degranulation [108, 109, 157]. Although the effects of adenosine regarding mast cell activation are well described, there is a lack of information regarding the effects of inosine on the activation of the A3 receptor. Recently, a study from our group suggested that inosine can activate A2A, A2B and A3 receptors and decrease mast cell migration during allergic pulmonary inflammation, suggesting that inosine can modulate allergic inflammation [101].
Lymphocytes cells play a vital role in the induction of adaptive immune responses and in steering them toward particular effector phenotypes [119]. Several pieces of evidence suggest that adenosine and inosine generated in the site of inflammation can modulate lymphocyte function [23, 24, 28]. Experimental data demonstrated that in ConA-induced liver injury (an in vivo model mediated by T cells), inosine inhibited hepatocyte apoptosis and reduced the accumulation of proinflammatory cytokines (e.g., TNF-α) and alanine transaminase in A3+/+ but not A3-/- or A2-/- mice, suggesting the endogenous inosine can influence inflammatory responses and indicating the importance of A3 receptors in controlling liver injury [28].
The extracellular adenosine generated in inflammatory or hypoxic environments affects regulatory T cell lymphocytes (Treg) through the activation of A2A receptors. Treg cells are a specialized population of CD4+ T cells implicated in the regulation of immune responses, maintenance of immunological self-tolerance and protection from excessive inflammatory damage [24, 158]. A2A receptor stimulation expanded the Treg population [159] coordinated by coexpressed CD39 ecto-ATPase/ADPase and CD73 ecto-5’-nucleotidase and generating adenosine pericellularly [72, 160]. The CD39- and CD73-mediated generation of extracellular adenosine might provide Treg cells with the capacity to directly inhibit DC and T effector cells by activating their respective cAMP-elevating A2A receptors [160]. Consistent with these data, the A2A receptor has been described to suppress the development of T-cell receptor (TCR) - stimulated naive T cells into both Th1 and Th2 cells [135], interfering with early development as well as the late effector stages of Th1- and Th2-cell responses [135]. The activation of A2B receptors seems to indirectly inhibit Th17 activation. A recent study using EAE in mice indicated that blocking A2B receptors with specific antagonists, such as CVT-6883 and MRS-1754, alleviated the clinical symptoms of EAE and protected the CNS from immune system-mediated damage. Confirming this hypothesis, the deletion or blockade of A2B receptors inhibited Th17 cell differentiation by blocking IL-6 production from APCs such as dendritic cells. The activation of phospholipase Cβ-protein kinase C and p38 MAPK pathways was found to be involved in A2B-mediated IL-6 production, suggesting A2B as a target for the development of anti-multiple sclerosis drugs and indicating that adenosine might participate in regulation of this pathology [98].
A great deal of evidence suggests that adenosine plays a detrimental role in asthma and COPD and perhaps other chronic airway disorders [161]. The potential role of adenosine triphosphate and adenosine in the pathogenesis of asthma and COPD has been supported by the bronchoconstrictor effects observed after their topical administration in the airways of patients with these diseases and the lack of reaction in healthy subjects [150, 162-164]. However, there is some controversy about the role of adenosine during allergic reactions in the airways, such as asthma. When administrated topically, as mentioned above, it seems to trigger airway hyperactivity, but the administration of non-selective and selective agonists of different adenosine receptors can suppress (such as adenosine A2A receptors) [165-167] or contribute with airway allergic inflammation, as described below.
Treatment with CGS21860, a selective A2A receptor agonist, reduced the number of leukocytes in bronchoalveolar lavage fluid, protein content and eosinophil peroxidase activity in Brown Norway rats immunized and challenged with OVA, a compound similar to the glucocorticosteroid budesonide [165]. Moreover, treatment with NECA, a non-selective adenosine A2 receptor agonist, reduced the total leukocyte infiltration and eosinophilia in a model of allergic airway inflammation [166]. Interestingly, inosine but not adenosine was described to reduce leukocyte infiltration into the lungs, Th2 pro-inflammatory cytokine levels and improve pulmonary mechanics in OVA-induced airway inflammation through a mechanism involving the A2A and A3 receptors [101]. Consistent with these data, inosine and its stable analogue INO-2002 were described to reduce LPS-induced airway inflammation [26, 168]. Several studies have hypothesized that the bronchial response to adenosine observed in asthma and COPD in humans can be attributed to an indirect mechanism involving mast cell activation, likely via A2B or A3 receptors and the release of mediators such as histamine and leukotriene (LT)C4 [109, 150, 169]. These are low-affinity receptors that can modulate the deleterious effect of high concentrations of adenosine in chronic airways diseases [108, 109, 157]. Likely, adenosine signaling through the A2B receptor also plays a role in asthma development, promoting the upregulation of pro-inflammatory cytokines, leukocyte migration and airway remodeling (Figure 3) [170, 171]. Other studies have described a pro-fibrotic role for A2B receptor signaling, which results in the differentiation of human pulmonary fibroblasts into collagen-producing myofibroblasts, increasing the production of the pro-fibrotic molecule fibronectin in alveolar epithelial cells [147, 161, 172]. These data demonstrate the potential involvement of A2B receptors in the remodeling and fibrosis observed in asthma and COPD. Although the A3 receptors appear to reduce inflammation and eosinophil activation in humans, in mice, A3 activation induces mast cell degranulation and increases inflammation, activating eosinophils and mucus production [161, 173].
The literature data describes differences in mast cell expression between rodents and humans and maybe it can explain the different effects of adenosine in modulating these cells during asthma and allergy. The adenosine A3 receptor that was expressed in mast cells in rodents [174], have recently been described to be expressed in human lung mast cells [175]. While the expression of adenosine A2A and A2B receptors in rats was not described; in mice, both were expressed in bone marrow derived mast cells. The A2A receptors were also described in cardiac mast cells, in mice [174]. In humans, both receptors have been described in lung mast cells and in human mast cells line HMC-1 [174, 176]. The adenosine A1 receptor were not described to be expressed in mice and humans but recent data have shown that agonists of adenosine A1 receptor can potenciate human cultured mast cell activation, suggesting a modulatory effect [152, 177, 178].
The A1 receptor is also described to have pro or anti-inflammatory effects on airway inflammation. Treatment with an A1 receptor antagonist [179] or with antisense oligodeoxynucleotides targeting this receptor reduced the bronchoconstrictor responses in an allergic rabbit model [180]. Conversely, in knockout A1-/- mice, an increase in transmigration of polymorphonuclear cells and microvascular permeability in comparison to wild type mice was observed in a model of LPS-induced lung injury, suggesting a possible protective effect of the A1 receptor in airways [181]. The engagement of adenosine receptors on inflammatory and pulmonary cells appears to play an important role in regulating chronic lung disorders such as asthma and COPD, so the complete and full characterization of adenosine receptor subtype distribution in the airways and their specific role in the response to adenosine and inosine in health and disease is important for the development of new therapies to treat asthma and COPD [161].
The skin is a highly specific immune defense organ. Physical, chemical or immune-specific insults rapidly evoke cellular responses, characterized by the increased expression of a wide range of pro-inflammatory mediators [182]. Controlling the extent of an immune response is thus a major challenge for maintaining skin integrity, which is of paramount importance for host survival [183]. In this context, several lines of evidence have shown that adenosine and adenosine receptors contribute to the regulation of skin inflammation.
A recent study showed that activated Treg cells can produce adenosine in a CD39-dependent manner and abrogated the ear-swelling reaction induced by 2,4,6-trinitro-1-chlorobenzene (TNCB), indicating a role of adenosine in the Treg cell–induced suppression of contact hypersensitivity responses. Moreover, the same study demonstrated that adenosine’s effects involve the impairment of effector T cell adhesion to inflamed endothelium and downregulation of E- and P- selectin in the vascular endothelium [184]. A complementary study of IL-10-deficient (IL-10-/-) Tregs showed impaired adenosine production, which contributes with their inability to suppress contact hypersensitivity responses, indicating that the reduced suppressive effects observed may not be exclusively attributable to the lack of IL-10 production [185]. Several lines of evidence indicated that adenosine’s effects on skin are mediated by the activation of adenosine receptors.
The activation of A1 receptors has been demonstrated to decrease the numbers of circulating neutrophil granulocytes and ear swelling in a model of stress-induced contact hypersensitivity response [186]. In addition to receptor A1 activation, activation of receptor A2A was described to reduce leukocyte activation and to prevent ischemia reperfusion wound formation in a rat model of a pressure ulcer [187]. Evidence from experiments performed on A2A receptor knockout mice and with CGS21680 demonstrated that the A2A receptor is the main adenosine receptor subtype involved in wound healing [149, 188]. In addition, histological analysis of mice treated with the same agonist showed faster re-epithelialization and increased matrix deposition, fibroblast density and vascularity in the granulation tissue of the agonist treated wounds as soon as 3 days after injury [188]. A study from the same group revealed that treatment of human microvascular endothelial cells (HMVEC) with the selective A2A receptor agonists CGS21680 and MRE0094 (Sonedenoson) favors vascular tube formation by cultured HMVEC and downregulated the antiangiogenic matrix protein thrombospondin 1 (TSP1) secretion by these cells, indicating that A2A activation induces angiogenesis [189]. Furthermore, treatment with MRE0094 increased the rate of wound closure in comparison to recombinant human platelet-derived growth factor (Becaplermin gel), an agent currently used to promote the healing of diabetic ulcers, indicating the importance of A2A receptors in wound healing [190]. Moreover, the A2A and A2B receptors were described to contribute to tissue formation because their activation leads to enhanced fibroblast and endothelial cell migration [191].
Adenosine seems to have a fibrogenic role in the skin. A study using ADA-deficient mice reported a direct fibrogenic effect of adenosine on the skin, and pharmacological treatment with the A2A receptor antagonist ZM-241385 prevented the development of dermal fibrosis by reducing dermal collagen content and the expression of profibrotic cytokines and growth factors (Figure 3) [192]. The data mentioned above are interesting and strongly suggest that adenosine and A2A receptors have important modulatory effects in skin homeostasis. Although several studies have shown a role for adenosine in the skin, nothing has been found regarding a role for inosine. Additional studies addressing the real role of the purinergic system in the skin would be extremely useful to improving wound management and care, as well as controlling chronic inflammatory diseases in skin.
Arthritis is the term used to designate a particular pathological condition that encompasses a constellation of more than 100 diseases, among which osteoarthritis (OA) and rheumatoid arthritis (RA) stand out. OA is the most common adult joint disease and is increasing in frequency and severity, with an estimated US prevalence of more than 25 million affected adults [193]. It is characterized by gradual loss of articular cartilage and is therefore being considered a slowly progressing degenerative disease. The etiology of arthritis involves biochemical and genetic factors as well as repetitive mechanical injury, which has been proposed as the critical mechanisms contributing to alterations in the normal functional activities of chondrocytes, the main cellular component of hyaline cartilage, disrupting chondrocyte–matrix associations and culminating in the initiation and progression of OA [194].
In early OA, a transient proliferative chondrocytes response (clonal growth) occurs along with increased synthesis of the cartilage matrix as an early repair attempt and increased synthesis of catabolic cytokines (such as IL-1, TNF-α and IL-18) and matrix-degrading enzymes (such as metalloproteinases, especially collagenases, and aggrecanases). Fibroblast- and macrophage-like cells in the synovia also generated catabolic cytokines in response to breakdown products from the damaged cartilage. All these events contribute greatly to the local loss of proteoglycans and cleavage of type II collagen, which initially occurs at the cartilage surface, contributing to water content increases and loss of tensile strength in the cartilage matrix as the lesion progresses [195, 196]. It is characterized by several inflammatory cascades, which all lead towards a final common pathway in which persistent synovial inflammation and associated damage to articular cartilage and underlying bone are present [197].
One inflammatory cascade that deserves attention in the pathogenesis of RA is the overproduction and overexpression of TNF-α. Interactions between T and B lymphocytes, synovial-like fibroblasts and macrophages are likely to be involved in TNF-α and IL-6 overproduction, contributing to both synovial inflammation and joint destruction [198]. In addition to inflammatory cytokines, rheumatoid factors are key pathogenic markers of classic RA. In this case, the immunoglobulins IgM and IgA are directed against the Fc fragment of immunoglobulin IgG, resulting in the formation of immune complexes, which are able to activate the complement system, initiating an immune response [199]. Adenosine has a known therapeutic potential against inflammatory joint diseases; studies have demonstrated its ability to limit synoviocyte [200] and chondrocyte [201] inflammatory responses and to minimize articular damage in adjuvant-induced models of arthritis in rats [202].
In an interesting study, Tesch and colleagues demonstrated that endogenously produced adenosine regulates articular cartilage matrix homeostasis in vitro. In this study, authors showed that the depletion of endogenous adenosine through exposure to adenosine deaminase (ADA) in cartilage explants resulted in cartilage matrix degradation, involving matrix metalloproteinases-3 and -13 (MMP-3, MMP-13), prostaglandin E2 (PGE2), and nitric oxide (NO) release. In addition to these data, this study suggested that endogenously released adenosine can regulate chondrocyte production of matrix-degrading enzymes and matrix loss, an effect believed to be in part mediated via A2A receptors, because N6-[2-(3,5-dimethoxyphenyl)-ethyl]adenosine (DPMA, an A2A receptor selective agonist) was able to prevent the release of PGE2, NO and glycosaminoglycan (GAG) (Figure 3) [203]. Another in vitro study demonstrated that adenosine, N6-methyladenosine (a substituted adenosine derivative that is resistant to breakdown by adenosine deaminase), DPMA and 5′-N-ethylcarboxamidoadenosine (NECA, a non-selective adenosine receptor agonist) suppressed NO production by LPS-stimulated equine chondrocytes [201]. The addition of exogenous adenosine and erythro-9-(2-Hydroxy-3-nonyl) adenine hydrochloride (EHNA, an adenosine deaminase inhibitor) further suppressed NO production by LPS-stimulated chondrocytes [201]. These two studies clearly demonstrate the protective effect of adenosine against degradation of articular cartilage in vitro, suggesting its potential to prevent joint damage and hence its effectiveness in the prevention of joint diseases such as osteoarthritis.
In the second half of the 1980s, remarkable attention was focused on investigating the role played by ADA in RA pathophysiology, which provided the first evidence of the role of adenosine in RA. These studies showed increased levels of ADA activity in the synovial fluid from patients with seropositive rheumatoid arthritis, suggesting a local release of this catabolic enzyme by cells within joints [204]. Subsequent investigations were aimed at characterizing the activities of different ADA isoforms in tissues, cell homogenates and serum samples obtained from patients with rheumatic disorders. The highest level of enzyme activity was found in lymphocytes and monocytes from patients with rheumatoid arthritis, and ADA-2 was the isoform specifically expressed in monocytes [205]. Iwaki-Egawa and colleagues observed a significant positive correlation between high activity of ADA isoforms in the synovial fluid of rheumatic patients and metalloproteinase-9 (MMP-9), an enzyme critical to the regulation of the cell matrix composition [206]. These results suggest that the high activity of ADA in the synovial fluid of patients with RA and consequently the reduction in local levels of adenosine are directly related to the development and maintenance of RA. In support of this hypothesis, Forrest and colleagues demonstrated that adenosine is able to suppress the elevated levels of proinflammatory cytokines such as TNF-α and IL-1β in RA patients and that this effect appears to be mediated by adenosine receptors [207].
Recent studies have shown adenosine A3 receptor upregulation in RA patients, suggesting the potential of this receptor as a therapeutic target. In agreement with these results, after oral treatment with CF101, a selective A3 receptor agonist, a marked decrease in RA clinical manifestations including inflammation, pannus formation, cartilage destruction and bone reabsorption and lysis was observed [208].
Ischemia is defined as a lack of blood supply to an organ or tissue, resulting in cellular oxygen deprivation. Although ischemia itself is a serious condition, the phenomenon that seems to be the definitive treatment for ischemia, reperfusion of the ischemic tissue, can promote further tissue injury, especially after prolonged ischemia [209]. Thus, the tissue can be injured by both ischemic and reperfusion processes and can be defined as ischemia reperfusion (IR) injury. IR injury involves a complex cascade of events including oxidative stress, inflammation and interactions among many cell types [209]. Furthermore, it has widespread clinical relevance and is encountered in a variety of surgical settings (e.g., transplantation, cardiopulmonary bypass and aneurysm repair) as well as non-surgical settings (e.g., myocardial infarction, stroke, hemorrhage, trauma and shock).
One of the potentially most striking features of IR injury involves the generation of reactive oxygen species (ROS) (e.g., superoxide, peroxynitrite, hydrogen peroxide, and hydroxyl radical) [210, 211], especially during reperfusion of ischemic tissue, which, in turn, initiates an inflammatory cascade resulting in direct oxidative injury to cells and stimulation of pro-inflammatory mediators such as cytokines, chemokines and cell-adhesion molecules. Briefly, circulating and resident leukocytes, such as neutrophils, lymphocytes and macrophages as well as tissue resident cells, such as dendritic cells, contribute to the immune response to IR injury, particularly infiltrating neutrophils, which can impose significant tissue injury through ROS generation and further release of cytokines and proteases [212].
Strong evidence has indicated that cellular responses to hypoxia include robust increases in extracellular adenosine and signaling events through adenosine receptors. The hypoxic adenosine response in acute injury settings is able to promote tissue adaptation during hypoxia, including restoration of normal oxygen levels, enhancing metabolic ischemia tolerance and dampening inflammation [213]. Preclinical studies have shown that adenosine signaling is beneficial in ischemic acute injury in the lung [214, 215], kidney [216], heart [217], gastrointestinal track [218] and liver [73]. Some studies have demonstrated that chronic elevations of adenosine can contribute to tissue fibrosis in different organs including the lungs [170, 219], liver [220], skin [221], kidney [222] and following transplants [223]. Studies using CD39 and CD73 knockout mice, which lack both the enzyme that converts ATP to ADP/AMP and the enzyme that converts AMP to adenosine, and inhibitors of these enzymes demonstrated enhanced inflammation and tissue injury in models of hypoxia and ischemic injury [6, 224] concurrent with reduced production of adenosine. These results suggest that elevated extracellular levels of adenosine may display a protective effect in models of hypoxia and ischemia injury. An interesting strategy used to enhance extracellular levels of adenosine is the prevention of adenosine uptake by equilibrate nucleoside transporters (ENTs) [225].
Recently, Grenz and colleagues demonstrated that treatment with dipyridamole, an inhibitor of ENTs, led to increased adenosine levels in association with tissue protection in a mouse model of ischemic acute kidney injury [226]. Furthermore, genetic deletion of ENTs resulted in selective protection in ENT1-/- mice. A more detailed analysis using adenosine receptor-knockout mice exposed to acute kidney injury showed that renal protection promoted by ENT inhibitors involves the A2B adenosine receptor. In addition, Eltzschig and colleagues demonstrated that the A2B receptor serves anti-inflammatory and tissue-protective roles in various acute injury tissue models associated with hypoxic or ischemic injury including the heart [217], lung [227], intestine [218] and kidney [226] using genetic (A2B receptor knockout mice) and pharmacological (A2B receptor agonists) approaches. In summary, adenosine receptor signaling in hypoxic or ischemia-reperfusion injury varies depending on the receptor activation and cell/tissue type. In general, A1 and A2A receptor activation has been shown to be protective in the lung, kidney, heart and liver, whereas the role of the A2B and A3 receptors remains obscure. A considerable number of studies both in vitro and in vivo have demonstrated the potential of inosine in preventing injury in different models of hypoxia or ischemia.
In the early 1980s, it was demonstrated that infusion of 4 mM of inosine presented a protective effect in fetal mouse heart organ cultures deprived of oxygen, a model of ischemic-like injury [228]. At the CNS level, purine catabolite concentrations were monitored for up to 15 h in the auditory and somatosensory cortices of cats using microdialysis/HPLC and hydrogen clearance following middle cerebral artery occlusion (MCAo). MCAo led to the release of inosine and its metabolite hypoxanthine from the ischemic cortex in stroke animals, which reached maximum levels 1-2 h after the onset of ischemia [229]. Cerebral infarct (stroke) often causes devastating and irreversible losses of function, in part because of the brain’s limited capacity for anatomical reorganization. In an animal cerebral ischemia model, which results from infarction in the right dorsolateral cerebral cortex and underlying striatum, continuous infusion of inosine 50 mM into the cisterna magna using osmotic minipumps (0.25 μl/h) stimulated neurons on the undamaged side of the brain to extend new projections to denervated areas of the midbrain and spinal cord and consequently improved performance on several behavioral measures in adult rats [230].
Taken together, these data suggest that inosine promotes neuroregeneration after stroke. An interesting study recently published Shen and colleagues demonstrated that intracerebroventricular administration of inosine (25 nmol/L in 25 µL) before middle cerebral artery occlusion in rats resulted in a higher level of locomotor activity (lasting up to 2 weeks after stroke) and less cerebral infarction [231]. In addition, they indicated that coadministration of a selective A3 receptor antagonist, MRS1191, significantly attenuated inosine-mediated protection. Moreover, in the electrophysiological study, inosine antagonized glutamate-induced excitation in cerebral cortical neurons. In summary, the authors proposed that inosine may inhibit glutamate postsynaptic responses and reduce cerebral infarction via the activation of the A3 receptor, presenting a neuroprotective action (Figure 3) [231].
Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease that includes Crohn’s disease (CD) and ulcerative colitis (UC) [232]. Worldwide UC incidence varies greatly, ranging from 0.5-24.5 /100,000 habitants, and CD ranges from 0.1-16/100.000 habitants, with the highest incidence in developed countries [233]. Genetic, environmental, and immunological factors interplay in a complex manner to contribute to the genesis of IBD. Generally, the presence of one or more genetic factors triggers an over-reaction of the host mucosal immune system to normal constituents of the mucosal microflora. This over-reaction involves either a Th1-type T cell-mediated inflammation in the case of Crohn’s disease or a Th2-type T cell-mediated inflammation in ulcerative colitis. This inflammatory process leads to the release of multiple cytokines, including interferon (INF)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1,, IL-6, IL-8, IL-12, IL-13,IL-17, and monocyte chemotactic protein (MCP)-1 [234]. These cytokines are responsible for the attraction and activation of neutrophils, eosinophils, mast cells and macrophages, which, in turn, produce large amounts of unstable chemical species such as reactive oxygen species (ROS) or oxyradicals (i.e., superoxide anions, hydrogen peroxide, hydroxyl radicals, and peroxynitrite), mediators that contribute greatly to the tissue injury seen in IBDs [235, 236].
In early stages of immune or inflammatory response, significantly elevated extracellular concentrations of adenosine are anti-inflammatory and tissue protective. Thus, one of the most widely used strategies to study the effects of adenosine on different inflammatory processes involves inhibition of adenosine catabolism, mainly through inhibition of adenosine deaminase (increasing adenosine levels) or direct activation of adenosine receptors. Antonioli and colleagues have demonstrated, using a model of 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis, that treatment with 4-amino-2-(2-hydroxy-1-decyl) pyrazole[3,4-d]pyrimidine (APP; novel adenosine deaminase inhibitor) or erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA; standard adenosine deaminase inhibitor) for up to 7 days was able to increase food intake and weight gain and ameliorate macroscopic and microscopic inflammatory colonic alterations with a concomitant reduction of mucosal and plasmatic pro-inflammatory mediators such as TNF-α and interleukin-6 [237]. In the same vein, Siegmund and colleagues showed that treatment with {4-amino-1-(5-amino-5-deoxy-1-β-d-ribofuranosyl)-3-bromo-pyrazol[3,4-
Odashima and colleagues studied the anti-inflammatory effects of ATL-146e in acute and chronic rabbit formalin-immune complex models of colitis and the SAMP1/YitFc mouse model of spontaneous ileitis. ATL-146e (20 and 40 µg/kg, i.p.) significantly reduced the acute and chronic inflammatory index and tissue necrosis and prevented mortality. Furthermore, TNF-α, IFN-γ and IL-4 concentrations were significantly suppressed with ATL-146e treatment in supernatants from cultures of mesenteric lymph node cells of SAMP1/YitFc mice. Thus, these results support important anti-inflammatory actions of ATL-146e in the intestine, including the suppression of lymphocyte-derived cytokine-mediated pro-inflammatory responses, suggesting that the activation of A2A receptor-mediated signaling through selective agonists may be a novel therapeutic approach for patients with IBD [77]. To this end, Cavalcante and colleagues evaluated the effects of a new selective A2A receptor agonist (ATL 313) on
MS is an autoimmune disease mediated by T cells that is characterized by CNS demyelination and neurodegeneration [98]. There are many other diseases that are associated with inflammation of the CNS, including meningitis, encephalitis, among others. However, one of the most common is MS. It affects more than 2.5 million people around the world and is characterized by the loss of neurological function, which occurs due to axonal demyelination and represents the main symptom of the disease. Recurrences, commonly associated with increased lymphocyte infiltration of the CNS, make the patient increasingly weak over time [240-242].
Studies in mice using an EAE model demonstrated that adenosine signaling modulates the development of EAE. A2B receptor blockade with CVT-6883 and MRS-1754 (both specific antagonists of A2B) promoted a reduction in the symptoms of EAE, thus protecting against CNS immune response damage. Moreover, both deletion and A2B receptor blockade promoted inhibition of the differentiation of Th17 cells due to the reduction of IL-6 production by APCs (dendritic cells), suggesting that the A2B receptor is a potential new target for "anti-multiple sclerosis" drug action [98]. Post-mortem analysis of brain tissue from patients diagnosed with MS showed the presence of cells with high expression of inducible nitric oxide synthase (iNOS) and nitrotyrosine in characteristic lesions of the disease [243, 244].
Adenosine deleterious and protective effects in inflammation and immunity. A1, adenosine A1 receptor; A2A, adenosine A2A receptor; A2B, adenosine A2B receptor; A3, adenosine A3 receptor; ATP, adenosine triphosphate; AMP, adenosine monophosphate; ADO, adenosine; CD 39, ectonucleoside triphosphate diphosphohydrolase.
Peroxynitrite, the end product of iNOS activity, which leads to the formation of NO and then to superoxide reaction, is highly reactive, causing a variety of toxic chemical changes in nerve tissue, including the nitration of tyrosine residues [245]. It has been previously described that UA, which is the final product of purine metabolism in humans, is a peroxynitrite scavenger [246], and for this reason UA therapy has become a potential method to alleviate the neuronal damage induced by peroxynitrite in MS treatment. Furthermore, inosine, an endogenous precursor of UA, seems to be an attractive candidate for the treatment of MS, given that patients who received inosine showed some evidence of clinical improvement and no sign of disease progression [247]. In addition, recent studies using adenosine receptor antagonists as well as mice that were not capable of hydrolyzing adenosine from extracellular AMP (CD73-/), have suggested that blockade of adenosine receptors or CD73 deletion protected mice from EAE, decreasing lymphocyte infiltration in the CNS [248]. One very interesting note about the involvement of the adenosinergic system during EAE is that both CD73 and A2A receptor presented increased expression in the choroid plexus [248, 249] in comparison to other regions of the CNS. This result shows that choroid plexus is higher permeable to lymphocytes than other regions, therefore, it is speculated that ATP, released as result of damage, and its conversion to adenosine represent a signal that regulates the entry of lymphocytes into the CNS [250, 251].
There is increasing interest in the therapeutic potential of adenosinergic compounds (including receptor agonists and antagonists, enzyme inhibitors and others), and many adenosine compounds have been evaluated for therapeutic use. For a long time, adenosine itself was the only adenosine agonist used in humans. It is widely used in the treatment of paroxysmal supraventricular tachycardia (Adenocard®) due to the activation of A1 receptor and is also used as a diagnostic tool for myocardial perfusion imaging (Adenoscan®) as a consequence of its A2A receptor-activating effects, resulting in vasodilation [87].
Spinal administration of adenosine and adenosine analogs in humans also exhibited an analgesic effect. A phase I clinical safety study in healthy volunteers demonstrated that 1000 μg of adenosine given intrathecally led to a significant decrease in mustard oil-induced inflammatory pain and tourniquet-induced ischemic pain and decreased areas of secondary allodynia after skin inflammation with low side effects [252]. Recently, some studies have demonstrated new approaches regarding the development of allosteric modulators that enhance the potency of endogenous agonists and aim to minimize the side effects [253]. Allosteric enhancers of the adenosine A1 receptor have been linked to anti-arrhythmic and anti-lipolytic activity and also have therapeutic potential as analgesics. Oral administration of the A1 receptor-selective allosteric enhancer T-62 was shown to reduce hypersensitivity in carrageenan-inflamed rats and was approved for phase I clinical trials for neuropathic pain treatment [254]. As was previously discussed, various studies of selective agonists and antagonists demonstrated pro-inflammatory effects of A1 receptors in different inflammatory models [47]. One interesting study showed a decrease in leukocyte infiltration and reduced lung edema in rats treated with the A1 receptor antagonist L-97-1 [255]. Furthermore, the selective A2A receptor agonists, apadenoson, binodenoson and sonedenoson have been considered candidates for clinical use in cardiovascular disorders [189, 256, 257]. These agonists are of interest as vasodilator agents in cardiac imaging [258] and as inflammation suppressors. Moreover, as reported by Press and Fozard (2010), two clinical trial applications from Santen Pharmaceuticals claim that use of agonist of adenosine receptors such as regadenoson and sonedenoson [259] is useful in the treatment of glaucoma.
The A2A receptor agonist BVT.115959 from Biovitrum completed clinical trials for diabetic neuropathic pain, and it was well tolerated but did not significantly improve pain symptoms [260].The primary indication claimed for A2A receptor antagonists is in Parkinson’s disease [261] because animal studies indicated that adenosine A2A receptors are localized with dopamine D2 receptors in the striatum and provide an antagonistic interaction between adenosine and dopamine [262]. Vernalis plc and Biogen Idec are currently profiling BIIB014 (V2006) in Phase II clinical trials for Parkinson’s disease [263]. Patents for A2B receptor antagonists generally claim asthma and allergic diseases as the primary indications, in line with current views on the receptor’s role in vivo [163]. CVT-6883, an A2B-adenosine receptor antagonist, is in clinical development for the treatment of asthma, and this antagonist significantly inhibits in vivo growth of B-16 tumors compared to taxol, as described in a recent review [259].
A3 receptor selective agonists are also currently in clinical trials and exhibit nanomolar affinity to the receptor. In this context, CF101 (Can-Fite Biopharma) and Cl-IB-MECA (CF102) are in trials for autoimmune inflammatory disorders and liver cancer, respectively. Two other A3 receptor selective agonists, CP-608,039 and its N6-(2,5-dichlorobenzyl) analog, CP-532,903, were previously under development for cardioprotection [264, 265]. Allosteric modulators of the A3 receptor have also been developed, such as imidazoquinolines (LUF6000), which have been shown to inhibit adjuvant-induced paw joint swelling in an arthritis rat model [265].
This chapter presented a general and updated review of the therapeutic potential of adenosinergic system (including receptor agonists and antagonists, enzyme inhibitors and others) in the control of inflammatory and immune responses. Recently, is becoming clear that both adenosine and inosine play primordial roles in regulating the inflammatory process, working together for example as danger signals, in order to constitute a homeostatic mechanism of tissue integrity. Furthermore, adenosine as well inosine effects are mediated by adenosine receptors and depending on the tissue or cells where they are expressed, pro-inflammatory or anti-inflammatory effects are observed. In this regard, several preclinical studies are conducted to clarify the role of these purines during the inflammatory response and to better understand the adenosine receptors activation which has becoming interesting target to control inflammation. Currently, adenosine is used in the clinical setting, especially in emergency units, to convert sinus rhythm of paroxysmal supraventricular tachycardia (PSVT) to normal sinus rhythm, with excellent cost/effectiveness. Besides the differences in receptor expression between rodents and humans, the use of experimental animal models that can mimic the main features of inflammatory and immune diseases, the improvement of biochemical, genetic and molecular techniques have help us to better establish a translation between preclinical and clinical effects of adenosine and inosine, and to develop and test selective agonists and antagonist of adenosine receptors that can be used in the future treatment of chronic diseases with inflammatory and immune features.
The petroleum industry provides most of the world’s energy needs and has been the world’s most important energy source since the mid-1950s because of its high energy density, easy transportability and relative abundance [1]. Due to rapid population growth, the consumption of fuels, energy, and petrochemical products has increased sharply [2]. At present, light crude oil reserves are the main source of energy that meets global energy demand due to high quality and low production costs. Nevertheless, light crude oil reserves are declining. Such a rapid decline in light crude oil reserves poses great challenges to meeting the world’s energy needs. Over the past few decades, renewable, nuclear and bioenergy have been developing rapidly; however, these resources are costly and insufficient in meeting energy demands, especially for transportation [3]. Therefore, refineries have to depend increasingly on unconventional feedstocks such as heavy oils, oil residues, and bitumen to supply the increasing demand for fuels [1]. The fundamental characteristics of heavy crude oil are low American Petroleum Institute gravity (API), low economic value, high viscosity, and high asphaltenes content which makes it more difficult to transport and process than conventional crude oil [4]. This fact leads to an emphasis on the upgrading of heavy and residual oil. The purpose of upgrading heavy oil and residues is to convert feedstock with high boiling point and low H/C ratio to low boiling point distillate fractions and higher H/C ratio and to eliminate hetero atoms such as sulphur, nitrogen, and metals to Environmentally acceptable levels. To achieve this goal, hydrocarbon molecules are exposed to thermal and catalytic cracking reactions during the upgrading processes [5]. According to the approaches to achieve higher H/C ratios, upgrading technologies can be divided into carbon rejection and hydrogen addition processes. Carbon rejection rejects the carbon into carbonaceous product (coke) to obtain lighter products (with a high H/C ratio) in these processes. On the other hand, hydrogen addition processes such as hydrocracking involve the reaction of raw materials with an external source of hydrogen in the presence of a catalyst, which leads to an overall increase in the H/C ratio [6]. Hydrogen addition processes have higher quality and yield of desired products. However, these processes require the participation of hydrogen and catalysts, which leads to higher investment and operating costs compared to carbon rejection processes. In contrast, carbon rejection processes are superior to hydrogen addition processes in terms of simplicity and operating costs, and therefore have many units in the world [7, 8]. Petroleum residues processing capacity indicates that the major portion (approximately 63 wt.%) of petroleum residues are upgraded by thermal processes such as visbreaking and delayed coking [2].
Carbon rejection technologies have been used by refineries since 1913 to upgrade various hydrocarbon feeds. These technologies include visbreaking, gasification, and coking processes. visbreaking and coking technologies can be generally applied to all residual feeds because they are not limited to constraints such as metal content and coke-forming tendencies as in the case of catalytic processes for upgrading. In a carbon rejection process, the feeds (larger molecules) are heated under inert atmospheric pressure to fracture them into smaller molecules [2, 9, 10].
Visbreaking remains the oldest and least costly of the upgrading option and is only used in areas where heavy fuel oil is used to generate electricity and fuel ships. Visbreaking is a process in which residues are slowly cracked to reduce viscosity, and its main product is fuel oil, which has a dwindling market and provides low margins. This is a very low conversion process, and 15–20 wt. % residues are converted into lighter fractions. The yield of gas and gasoline together is generally limited to a maximum of about 7 wt. % as the cracking reactions are arrested to prevent asphaltene flocculation. Current interest in visbreaking is in those areas where motor fuel demand is relatively low. Vacuum residue and atmospheric residue can be used as feedstock for the visbreaking process [2, 6, 8, 10].
The Texaco Gasification Process (TGP) was developed in the late 1940s. This process involves the complete cracking of residues into gaseous products, which has received less attention than other processes. Residual gasification is done at high temperatures (>1000°C) and synthetic gas (hydrogen and carbon monoxide), carbon black, and ash are the major products. It was modified in the 1950s for heavy oil feeds, in the 1970s for solid feeds such as coal and in the 1980s for petroleum coke. Almost from the beginning, this process has been attractive for hydrogen production. gasification can be used by refineries to produce hydrogen, increase the yield of high-value products, eliminate the production of high sulphur fuel oil, minimize the environmental effects of refineries (reduce the emission of NOx and SOx pollutants) and process a wider range of crude oil [2, 9, 11].
Coking is a process in which raw materials are thermally decomposed into products with lower boiling points. Different types of coking processes include delayed coking, fluid coking, and flexicoking. Delayed coking is the most common technology used in petroleum refineries to produce petroleum coke. More than 90% of petroleum coke is produced by this process. The main reasons are the relatively low investment cost and the claims of a better quality of liquid products compared with the fluid or flexicoking process [12].
In the delayed coking process, the general goal of such a technology is to maximise liquid product yield while minimising coke production. The inherent flexibility of the delayed coking process for handling various feedstocks gives the refinery a promising solution to the problem of decreasing residual fuel demand and takes advantage of the attractive economics of upgrading it to more valuable lighter products. A refinery with a delayed coker is called a ‘zero resid refinery’ that can convert various feedstocks to valuable engine fuels while eliminating unsold refinery flows that are environmentally unfriendly. Disadvantages of this technology can be the abundant production of coke, low yield of liquid products, and highly aromatic products which require post-treatment. Another disadvantage of delayed coking is that it is a more expensive process than solvent deasphalting. Environmental pollution from coke particles is also a concern. In this process, 20–30 wt.% coke is also produced as a by-product. Although coke is accepted as a by-product of coking processes, excessive coke formation is economically disadvantageous because the value of coke is much lower than that of distillates. Even considering these disadvantages, delayed coking is the most frequently preferred process for refiners to residue processing because of the low investment cost [2, 6, 8, 9, 10].
Delayed coking is a severe form of thermal cracking process that operates at low pressures, without the use of hydrogen and catalysts, and falls in the temperature range of 450–500°C. Delayed coking is highly efficient in rejecting mineral solids and metals as well as some organic nitrogen and sulphur in the coke. The name ‘delayed’ derives from the fact that cracking reactions are given enough time (long) to form coke in coke drums. The first commercial delayed coker was started in 1930 at Standard Oil’s Whiting refinery [12, 13].
The global trend of processing heavy raw materials in delayed cokers, in order to obtain maximum yield of liquid products, has led to the production of coke with fuel grade that contains large amounts of sulphur and metals. Fuel grade coke, once considered a by-product of waste, is now an important fuel for the cement industry and electricity generation [6].
A schematic flow diagram of the delayed coking is shown in Figure 1. The process includes a fractionator, furnace, two coke drums, and stripper. the feedstock is charged directly to the fractionator, where it is heated, and the lighter fractions are removed as middle distillates. The bottom of the fractionator is pumped to the coking furnace and then heated to the temperature range of 485–500°C. The heated feedstock (liquid−vapour mixture) enters one of the pairs of coking drums, where the cracking reactions continue. The energy obtained in the furnace passages is sufficient to perform the cracking reaction when the coking drum is filled. In the furnace, steam is injected to prevent the formation of premature coking. In addition, to prevent the formation of coke in the furnace, short residence time and high mass velocity in the furnace are required. Overhead stream in the coking drum; gases, naphtha, middle distillates and coker heavy gas oil are sent to the fractionator for separation, then separated and sent to downstream units for post-treatment and coke deposits on the inner surface. For continuous operation, two coke drums are used; while one is onstream, the other is decoking. The typical volume of a modern coke drum is about 1000 m3, with a size range of 5–9 meters in diameter and a height range of 20–45 meters. The temperature in the coke drum ranges from 415 to 465°C and the pressure varies between 2 and 6 bar. Coker heavy gas oil is recycled as a coker feed and combined with fresh preheated feed and fed to the furnace, or used in other refining processes such as hydrocracker or gas oil hydrotreater or as a catalytic fluid cracking feed. The Coke drum is usually onstream about 24 hours before filling with porous coke. Figure 2 shows a section of a coke drum and shows how coke forms during a delayed coking operation. The material at the bottom of the coke drum is fully carbonised, creating a porous structure through which gases and liquids can pass. The top layer is not fully carbonised until it is exposed to heat for a long time. Some foam forms on the top of the drum, so foam forming can be prevented by injecting anti-foam materials (silicone oil) into the coke drums during the last 5 or 6 hours of the coking cycle. It is important to prevent the carryover of foam into vapour lines. Level indicators are useful for detecting the position of liquid or foam in the drum. After steaming and cooling the coke drum, the coke is removed by drilling and cutting with high-pressure (up to 340 bar) water jets [6, 12, 13, 14, 15, 16, 17].
Flow sheet of delayed coking [modified from
Coke formation in coke drum of a delayed coking unit [
Decoking operation of the drum (Figure 3) involves the following steps:
The coke deposit is cooled with water.
One of the heads of the coking drum is removed to make it possible to drilling of a hole through the deposit centre.
A hydraulic cutting machine, which uses multiple high-pressure water jets, is inserted into the hole and wet coke is removed from the drum [6].
Steps of decoking operation [
Most cokers were originally designed for a 20- to 24-hour coking cycle. In the late 1980s and early 1990s, the coking cycle time was reduced to 16–20 hours. In the late 1990s, it dropped to 14 hours. A typical time cycle in delayed coking is shown in Table 1.
Delayed coking process variables include process operating variables, feedstock properties and engineering variables. Furnace outlet temperature, coke drum pressure and recycle ratios are the main operating variables that affect not only the coke yield but also its properties. Increasing the drum pressure leads to a higher coke yield and a slight increase in gas yield, because more molecules, even in the gas oil range, contribute to coke formation by remaining in the liquid phase. It also reduces the sulphur content of coke. However, refinery economics requires operating at minimal coke formation. As the temperature of the furnace and drum increases, due to the removal of more volatile matter, the yield of coke reduces and the higher quality and harder coke is produced. However, it can cause cutting problems during decoking. Lower temperatures produce more coke, but lower quality. Therefore, the temperature at the furnace outlet must be optimized to form a minimum amount of coke in the furnace coils. To reduce the formation of coke in furnace coils, steam is injected into the furnace before the critical decomposition zone. However, the coke produced by steam injection in this process is more isotropic, that is, of lower quality. The recycle ratio has the same pressure effect as in delayed coking units, which varies from 1.03 to 1.30. The highest values are used in commercial units that produce premium coke, while the lowest values are used in delayed coking units where the goal is to maximise distillate yields. In addition, reducing the recycle ratio causes low-quality coke because the concentration of asphaltenes in the reaction mixture is higher [6, 12, 13, 14, 15, 16, 17].
Delayed coking units for processing vacuum residues are designed to operate under operating conditions that maximise liquid distillates yield and minimise coke production. These operating conditions include lower pressures, higher temperatures, and a lower recycle ratio. Feedstock variables are characterization factors and conradson carbon that affect product yields. Engineering variables also affect process performance, including mode of operation, capacity, and equipment used in coking and handling equipment. Operating variables have practical constraints that prevent further changes. Also, the constraints for each will be different with the type of feed consumed [14]. The effect of operating variables on coke yield and quality is shown in Table 2.
Variable | Effect on | |
---|---|---|
Coke yield | Coke quality | |
Increase drum pressure | Increase | Variable |
Increase drum temperature | Decrease | Improve |
Increase coker recycle ratio | Increase | Improve to maximum |
Thermal crack recycle | Increase | Improve |
Effect of operating variables on the yield and quality of coke [6].
The delayed coking process can be applied to all residues in general, as they are not limited to constraints such as metal, sulphur, and asphaltene content. Heavy residues such as atmospheric and vacuum residue usually enter the delayed cokers, however, there are many raw materials that have been used as delayed coker feedstock for years. These feedstocks include:
1 - Gilsonite.
2 - Lignite pitch.
3 - Crack components (visbroken tar, cycle oil, decant oil or thermal crack tar).
4 - Refinery hazardous wastes.
5 - Deasphalted residues (pitch).
6 - Coal oils.
7 - Used plastic materials (recycling).
8 - Topped bitumen.
In general, the products of the delayed coking process (based on vacuum residue feed) include gas (approximately 13 wt. %), naphtha (approximately 11 wt. %), middle distillate (approximately 45 wt. %), and green petroleum coke (approximately 31 wt. %).
The yield of products from delayed coking depends on the feed composition, in particular the amount of micro carbon residue (MCR) or Conradson carbon residue (CCR) content. Product yields can be estimated using the correlation based on the weight percentage of Conredson carbon residue (wt. % CCR) in the vacuum residue [14].
The gaseous compounds from the delayed coking process typically include methane, ethane, propane, butane, carbon monoxide, carbon dioxide, hydrogen, nitrogen, hydrogen sulphide and ammonia, the composition of which depends on the type of feed and the operating conditions.
Depending on the properties of feedstock and the operating conditions of the delayed coking process, different types of the coke can be produced. Coke can be distinguished by its morphology. Typically, coke can be divided into spherical shot coke (isotropic, amorphous, with almost no pores), sponge coke (semi-isotropic), and needle coke (anisotropic, regular crystalline structure, containing numerous fine pores and crystal sizes in the order of 4–7 nm). Either, according to its use, can be divided to fuel grade coke (cement industry and power generation), anode grade coke (aluminium production) or electrode grade coke (steel production). The differences between these types of coke are not always very clear. Due to the heterogeneity within the coke drum, one coke type may contain certain values of another coke type. Therefore, sponge coke may contain some shot coke and needle coke may contain some sponge coke [6, 15, 19]. Types of coke resulting from the delayed coking process with their optical structure are shown in Figure 4.
Delayed coke types and optical textures. a: Needle coke, b: sponge coke, c: shot coke [
Petroleum coke can be in two forms, green petroleum coke and calcined petroleum coke. Petroleum coke obtained without calcination is called green coke. Coke calcination is done in a furnace to remove remaining hydrocarbons by heating green coke to about 1300–1500°C. During calcination, the coke decomposes further, and the carbon to hydrogen ratio increases from about 20 in green coke to 1000 for calcined coke [18].
Typical properties for different types of coke are shown in Table 3:
Shot coke comprises dense low porosity spherical clusters with 2–10 mm diameters, frequently present as agglomerates up to the size of basketballs. These large agglomerates are fragile and can be broken easily; however, the small spheres are very hard. Shot coke is obtained from petroleum precursors with high resin and asphaltene and low API gravity, and it is less valuable than sponge coke. High velocities in the reactor are required to produce shot coke with spherical particles. Given that a very turbulent condition is required for the formation of shot coke, shot-coke production in the laboratory is difficult, because surface velocities are very low [14, 19].
The variables which impact coke structure are the quality of the feedstock and the operating variables including pressure, temperature, vapor velocity, and recycle ratio.
Feedstock quality:
Different authors agree that the feedstock properties associated with the production of shot coke are asphaltene content and Conradson carbon residue content. Researchers claim that the tendency to produce shot coke increases when the ratio between the asphaltene content and the Conradson carbon residue content approaches 0.5. Moreover, the characterisation of vacuum residues from different heavy oil sources shows that this ratio (asphaltene content/Conradson carbon content) is equal to or higher than 0.5; therefore, if the operating conditions are favourable, the formation of shot coke is likely when these feedstocks are processed.
Another fact that shows that the feedstock quality has an important impact on the coke structure is the use of decanted oil mixed with vacuum residue. Decanted oil is the residual product from the fluid catalytic cracking (FCC) process. This hydrocarbon stream is highly aromatic (more than 70% aromatics) and its incorporation into the coker with the feedstock (between 15% and 20% of the total feedstock) suppresses shot-coke formation. This suppressing action can be related to the solubility effect of the aromatics on the asphaltenes, although, this has not been shown experimentally [6, 14, 19].
Operating variables
Operating variables refer to the pressure, temperature, vapour velocity, and recycle ratio within the coker.
Pressure: Reduction of the coker pressure favours the formation of shot coke.
Temperature: Higher temperatures favour shot-coke formation, and temperature change of 5°C or less can either suppress or promote shot-coke formation. In a commercial delayed coking unit, the heater outlet temperature varies between 490 and 500°C. However, scaling down of these units is reached by operating the small-scale units at lower temperatures, which may vary between 417 and 450°C.
Vapour Velocity: The feedstock flow is not an important variable that affects product yields in delayed coking technology, but this variable is an important parameter for shot-coke formation because it impacts the vapour superficial velocity, which is thought to give a spherical shape to shot-coke particles. The vapour superficial velocities in commercial delayed coking units are between 0.12 and 0.21 m/s. These vapour velocities are so high that they are not achieved in laboratory-scale units.
Recycle Ratio: It is calculated with the following expression:
HF is the flow of the heater. After mixing the recycling flow with fresh feed at the bottom of the main fractionator, it is measured at the heater inlet. FF is the fresh feed stream that is measured before pumping the processed feedstock into the main fractionator. Both flows are measured in barrels per day.
The recycle ratio in delayed coking units varies from 1.03 to 1.30. The highest values are used in commercial units that produce needle coke, while the lowest values are used in delayed coke units where coke yields should be minimised [6, 14, 15, 18, 19].
Sponge coke is the most common form of green coke. Sponge coke is a friable solid material with pores on the surface and internal cavities connecting the pores, which is due to the evolution of gas from the liquid in the coke drum. The structure of this coke causes good drainage of water from the coke drums and easy cutting of the coke bed with water jets. This coke is typically derived from crude oil, which contains numerous cross-linkages. The diffusion of gas bubbles into the coke drum may also cause some spongy coke. In fact, sponge coke is a combination of sponge and shot structures. Most sponge coke is used to fuel boilers. Some low-sulphur, low-metal sponge coke can be used to make anodes used in aluminium production [6, 14].
Using the proper feedstocks, optimal design techniques, and operating parameters, delayed coking can be used to produce needle coke, a specialized and rare product in the refining and coke production industry.
Producing good quality needle coke is not easy, because the control of several parameters is necessary to control the production process. In other words, it is a control process of several parameters. Needle coke is a premium coke made from special petroleum feedstocks. The needle coke has a silvery-grey appearance that has a broken crystalline needle-like structure, highly ordered, microcrystalline, under a light microscope. The observed optical texture is called flow domain. Needle coke has anisotropic components such as fine fibrous and leaflet structure. This coke has long, thin cavities that result from the gas bubbles released by the solid coke itself. This high-quality coke can only be produced from feedstocks of high purity (low metals and sulphur) and with high aromatic compounds, such as cycle oil from the fluid catalytic cracking unit. In addition, a long filling time is required for the solid coke in the coke drum to react and release the gases. This type of coke cannot be produced from vacuum residue [6, 14, 15, 21].
Natural graphite is a limited source. It is estimated that 800 million tons can be mined worldwide. Only 10 to 15% of natural graphite is actually graphite carbon. Most of it is amorphous and contains minerals or silicate metals. In contrast, needle coke is continuously produced with high graphitizable content and low impurity concentration [12].
It was generally accepted that needle coke can be divided into two types according to the different feedstocks and named coal-based needle coke and petroleum-based needle coke. Excellent physical and chemical properties of needle coke such as high mechanical strength, high electrical conductivity (strong oxidation resistance), high thermal conductivity, high density as well as low thermal expansion coefficient (good abrasion resistance/heat shock resistance), low ash and sulphur content, low volatility, low energy consumption and easy graphitizable make needle coke an excellent raw material to obtain high-quality artificial graphite [12, 22].
There are two methods, basic oxygen furnace (BOF) and electric arc furnace (EAF), for steel production. Coal, iron, and limestone are used to produce steel in the BOF method. However, in the EAF method, an electric current passes through the graphite electrodes to convert the steel scrap into molten steel. Approximately 70% of world steel is produced by the BOF method and 30% by the EAF method. EAF has historically been the fastest growing sector of the global steel industry, with EAF steel production amounting to about 20 million tonnes per year in 1950, and EAF steel production expanded rapidly after 1950, and it exceeded 100 million tons in the 1970s. Needle coke, produced in the delayed coking process of petroleum oil refineries, was later developed in 1960 and commercialised in 1970. Finally, EAF steel production in 2020 reached about 550 million tons [12].
Inputs/initial costs of steel production through the EAF method include scrap steel, electricity, and graphite electrodes. There is no known alternative to graphite electrodes used in the EAF method of steel production. Needle coke is a major component in the production of graphite electrodes. The main application of needle coke is in the graphite electrode industry, and it can be purchased for 1500–3000 $/ton. In addition, needle coke is also used in the production of graphite cathodes in the aluminium industry. Electrodes made of needle coke need to withstand temperatures above 3000°C. Global steel production on the EAF is expected to grow. This has led to a similar increase in consumption of graphite electrodes. It is expected to eventually increase the consumption of needle coke [6, 12].
Needle coke is now widely used as a carbon filler for the production of graphite electrodes in the steel industry for smelting scrap metal for recycling in an electric arc furnace (EAF), cathodes required for smelting aluminium, anodes for commercial lithium-ion batteries, electric machines and some inherent parts of mobile phones, electrode materials for high energy density supercapacitors, anode materials for high-performance sodium-ion batteries, adsorbents, isotropic graphite, nuclear graphite, perovskite solar cell, carbon substitute super-activated carbon, graphene precursors, aerospace and other functional materials are used. Graphite electrodes have a low coefficient of thermal expansion (CTE), which is defined as an increase in length per unit temperature increase. Low CTE values indicate anisotropic needle coke, while high values indicate an isotropic shot coke [6, 12, 22, 23].
In terms of grade, needle coke is divided into an intermediate, premium, and super premium needle coke. As shown in Table 4, their difference is in the amount of thermal expansion coefficient and sulphur content.
Properties | Fuel-grade green coke | Anode-grade calcined coke | Calcined needle coke |
---|---|---|---|
Sulphur (wt. %) | 3–7.5 | 1.7–3.5 | <0.5 |
Ash (wt. %) | 0.1–0.3 | 0.1–0.4 | <0.5 |
Nickel (ppm) | — | 165–200 | 7 |
Vanadium (ppm) | 200–400 | 120–350 | — |
Volatile matter (wt. %) | 14 maximum | 0.5 | 0.5 |
Bulk density (g/cm3) | — | 0.87 | — |
Real density (g/cm3) | — | 2.05 | 2.1–2.14 |
Typical properties for different types of coke [12].
Property | Quality grade | ||
---|---|---|---|
Super premium | Premium | Intermediate | |
Coefficient of thermal expansion (CTE), *10−7/°C | <2.0 | 2.0–3.0 | 3.1–4.0 |
Sulphur content, wt.% | <0.5 | <0.6 | <0.8 |
Real density, gm/cc | >2.12 | >2.12 | >2.12 |
Ash content, wt.% | <0.1 | <0.2 | <0.2 |
H content, wt.% | <0.03 | 0.03–0.05 | 0.03–0.05 |
Precursors for needle coke production have historically been limited to available residues whose aromatic molecular composition naturally predisposes them to form highly anisotropic carbon during carbonisation. However, further requirements of the feedstock include:
Low ash content
Low quinoline insoluble (QI) content
Low asphaltene content
Reduced content of stable nitrogen or sulphur heterocyclics
Low oxygenate content
Low air and carboxy reactivity of the coke during calcination
Coal-based needle coke is made from Coal Tar Pitch, refined coal tar pitch, refined coal liquefied pitch, and coal extraction. Petroleum-based needle coke is usually obtained by delayed coking of residual oil, petroleum bitumen, oxidized petroleum bitumen, and Fluidised Catalytic Cracker Decant Oil [18].
The chemical and physical properties considered in choosing a proper feedstock for the production of needle coke are summarised as follows:
Feedstock should have high aromaticity with 60–85% aromatic carbon aromaticity;
Feedstock should be of high initial boiling point, over 250°C with not more than 25–30% of material boiling below 360°C;
Feedstock should have low API gravity;
Feedstock should have low sulphur content preferably below 1 wt. % due to the concern for product quality;
Feedstock should have low metal, asphaltenes, and CCR content [6].
Although the delayed coking process has been selected for large-scale operations, they are more attractive for processing the small volumes of residues due to the safety issues involved in decoking the drums at the end of each cycle. In addition, by reducing the retention time of cracked vapours, the yields of coking distillation products can be improved. To simplify the handling of the coke and to enhance product yields, Exxon developed a continuous process in the mid-1950s called fluidized bed coking (or fluid coking), in which the residence time was shorter, with more liquid and less coke. However, in this process, the products have lower quality. Fluid coking is a fluidized bed process developed by fluid catalytic cracking (FCC) technology, except that no catalysts are used and heavy feedstocks such as atmospheric and vacuum residues, residues of catalytic cracking units and oil sand bitumen turn into light products. In fluid coking, about 6% of the coke is burned to provide heat to the process, while the net coke yield is 70 to 75% of delayed coking. The yields of products resulting from fluid coking are determined by feed properties, fluidized bed temperature, and residence time in the bed [12, 14, 15, 16, 17].
An example of the material balance for fluid coking of Arab light vacuum residue is given in Table 5.
Feed | Products | Yield wt.% |
---|---|---|
Arab light Vaccum residue (22 wt.% CCR) | Reactor Gas, | 11 wt.% |
Coker Naphtha (C5–221°C) | 15–20 wt.% | |
LCGO1 (221–343°C) | 12–14 wt.% | |
HCGO2 (343–524°C) | 35–36 wt.% | |
Fuel gas | 0.02 FOEB3 bbl Feed | |
Net coke | 21 wt.% |
Yield of fluid coker process [14].
Light Coker Gas Oil.
Heavy Coker Gas Oil.
Fuel Oil Equivalent Barrels.
Fluid coking is a thermal cracking process consisting of a fluidized bed reactor and a fluidized bed burner. A flow diagram is shown in Figure 5. Vacuum residue is preheated and fed to a scrubber that operates at 370°C above the reactor for coke fine particle recovery. The heavy hydrocarbons in the feed are recycled with the fine particles to the reactor as slurry recycle. The heavy vacuum residue feed is injected through nozzles to a fluidized bed of coke particles. Cracking reactions take place in the reactor at a temperature of 500–550°C, and the feed is converted to vapour and lighter gases, which enter the scrubber after passing through the cyclones at the top of the reactor and go to the fractionator column. Steam enters from the bottom of the reactor to remove heavy hydrocarbons from the coke surface. The evolution of vapour from the cracking of the feed, and the addition of steam, gives intense mixing of the coke particles within the reactor. The coke formed in the reactor flows continuously to the burner, where it is heated to 593–677°C and burns with partial combustion of 15–30% of the coke by injecting air into the burner. Coke combustion produces flue gases with low heating value (20 BTU/SCF), which are rich in CO and H₂. Parts of the heated coke particles are returned to the reactor to provide energy for the endothermic cracking reactions and to maintain the reactor temperature. After cooling, the remaining coke is removed from the process as a stream of fine particles of ‘petroleum coke’ and is burned in power plants or cement industries. This coke is very isotropic, rich in ash and sulphur and therefore not used in the carbon and graphite industry [12, 16, 17].
Flow sheet of fluid coking [modified from
The lower limit on operating temperature for fluid coking is set by the behaviour of the fluidized coke particles. If the conversion to coke and light ends is too slow, then the coke particles become sticky and agglomerate within the reactor. This phenomenon occurs in localised zones of the reactor, likely near the nozzles that inject the (colder) liquid bitumen feed, giving rise to chunks of coke that fall to the bottom of the bed. For this reason, optimising the method for introducing feed into the reactor is crucial. In addition, excellent heat transfer in the fluidized bed helps to reduce hotspots, which allows the reactor to operate at a higher temperature to cause more cracking of volatile matters. These factors generally reduce coke yields and increase the yields of gas oil and olefins compared to the delayed coking process. One disadvantage of the fluid coking process is the high rate of coke accumulation inside the unit. The reactor operates in a fouling mode, so coke deposits continuously on the interior surfaces during operation. The reactor must be shut down for a month or more every 2 or 3 years to remove the accumulated coke, which can grow to be as thick as 1 meter on the interior walls of the coker. The second disadvantage is the emission of significant amounts of hydrogen sulphide and sulphur dioxide from the reactor burner [16, 17].
At first, it was thought that the fluid coking process would replace the delayed coking process in the market, but so far this has not happened.
The decline in coke markets derived from delayed coking and fluid coking due to constraints in sulphur emissions encouraged the development of flexicoking. Burning coke to generate process heat (Figure 6) liberates the sulphur in the coke as hydrogen sulphide and sulphur dioxide gases. The off-gas stream from the coke burner also contains CO, CO2 and N2. An alternate approach is to use a coke gasifier which can convert the carbonaceous solids to a mixture of CO, CO2 and H₂ without producing SO2. Flexicoking was designed by ExxonMobil as a fluid coking modifier that was introduced in 1976 in Japan. This process combines fluid coking with coke gasification, which, similar to fluid coking, is a fluidized bed process developed from catalytic fluid cracking technology. A fluidized bed is added to the process, which acts as a gasifier in which coke from the heater is reacted with steam and air in a fluid-bed gasifier to produce a gas of low heating value (20–40 BTU/sCF) and significantly reduces coke production. Yields of liquid products are the same for flexicoking and fluid coking because the coking reactor is unaltered, but up to 97% of the coke can be converted to gas by steam and air in a gasifier. Air is injected into the gasifier to maintain temperatures of 830–1000°C, but injected air is not enough to burn the entire coke. Under these conditions, the sulphur in the coke is converted to hydrogen sulphide, which can be scrubbed from the gas prior to combustion elsewhere. After removal of the hydrogen sulfide, a typical gas product contains 18% CO, 10% CO2, 15% H₂, 51% N2, 5% H2O and 1% CH4. Petroleum coke is removed, and economical fuel gas is available for use at the refinery. Due to the high initial investment and mechanical cost, only seven units were built worldwide. The main drawback of gasification is the requirement for a large additional reactor, especially if the high conversion of the coke is required [12, 14, 15, 16, 17].
Flow sheet of flexicoking [modified from 12].
In the process, the viscous feedstock enters the scrubber for direct-contact heat exchange with the overhead product vapours from the reactor. Lower-boiling overhead constituents in the scrubber go to a conventional fractionator and also to light ends recovery. The feedstock is thermally cracked in the reactor fluidized bed to a range of gas and liquid products and coke. The typical bed temperature is 510–540°C. Vapour products resulting from the conversion reactions in the bed pass through the cyclone separators, which remove most of the entrained coke and return it to the reactor bed. The cyclone outlets discharge the vapor product directly into a scrubber, where the heavy liquid is used to scrub out the remaining coke dust and condense unconverted high-boiling fractions. The dust-laden liquid is recycled as ‘a slurry cycle’ to the reactor with the feed. The scrubbed vapour is sent to the coker fractionator, where the stream is split into gas, naphtha, distillate and heavy gas oil streams. The heater is located between the reactor and the gasifier, and it serves to transfer heat between the two vessels. The heater temperature is controlled by the rate of coke circulation between the heater and the gasifier. Adjusting the air rate to the gasifier controls the unit inventory of coke, and the gasifier temperature is controlled by steam injection into the gasifier. Excess coke is converted to a low-heating value gas in a fluid-bed gasifier with steam and air. The air is supplied to the gasifier to maintain temperatures of 830–1000°C, but is insufficient to burn all the coke. The heater transfers heat from the gasifier overhead gas to coke, which in turn supplies the heat of reaction in the reactor. The heater bed temperature is approximately 610°C. Coke is continuously circulated between the three vessels to transfer heat and maintain vessel inventories. A typical gas product, after the removal of hydrogen sulfide, contains carbon monoxide (CO, 18%), carbon dioxide (CO2, 10%), hydrogen (H2, 15%), nitrogen (N2, 51%), water (H2O, 5%) and methane (CH4, 1%) [12, 14, 15, 16, 17].
In the oxidation zone of the gasifier, the following reactions take place very rapidly [14]:
In the reduction zone, the following reactions take place slowly:
Delayed coking is the most commonly used process among all commercial coking processes. More than 92% of petroleum coke is produced in the delayed coking process; About one-third of feed streams are produced in the form of petroleum coke. Due to the reaction conditions, net coke production from fluid cokers and flexicokers is only about 5–10 wt.% of the feed material. About 20–25% of 700 refineries worldwide are equipped with delayed cokers. Of the 140 US refineries in operation, 55 have delayed coker units. Most of the petroleum coke is produced in the United States, followed by China, South America, Canada, India, the Middle East and Western [6, 12].
Coke produced by delayed coker is a marketable product, while coke produced by fluid coker and flexicoker is burned to meet the reactor heat needs and feed preheat.
At present, light crude oil reserves are the main source of energy that meets global energy demand due to high quality and low production costs. Decline in light crude oil reserves poses great challenges to meeting the world’s energy needs. Heavy oil and oil residues have become a suitable alternative source to meet global energy demand. According to the approaches to achieving higher H/C ratios, upgrading technologies can be divided into carbon rejection and hydrogen addition processes. However, the cost of hydrogen addition processes is much higher than carbon rejection processes, because the production of hydrogen and the catalysts used in hydrogen addition processes are very expensive. Carbon rejection technologies have been used by refineries since 1913 to upgrade various hydrocarbon feeds. In a carbon rejection process, raw materials are heated to high temperatures to crack large hydrocarbons into smaller ones. Coking (delayed, fluid and flexi) is one of the types of carbon rejection processes. Delayed coking has been chosen by many refineries as an upgrading process due to its low investment cost and the inherent flexibility of the process to process any residuals. In this process, 20–30 wt.% coke is produced as a by-product. Depending on the properties of the raw materials and the operating conditions of the delayed coking process, different types of the coke can be produced. Typically, coke can be divided into spherical shot coke, sponge coke, and needle coke. Using the proper feedstocks, optimal design techniques, and operating parameters, delayed coking can be used to produce needle coke, a specialized and rare product in the refining and coke production industry. Needle coke is a premium coke made from special petroleum feedstocks. There are two methods, BOF and EAF, for steel production. Coal, iron, and limestone are used to produce steel in the BOF method. However, in the EAF method, an electric current passes through the graphite electrodes to convert the steel scrap into molten steel. There is no known alternative to graphite electrodes used in the EAF method of steel production. Needle coke is a major component in the production of graphite electrodes. The main application of needle coke is in the graphite electrode industry. Global steel production on the EAF is expected to grow. This has led to a similar increase in consumption of graphite electrodes. It is expected to eventually increase the consumption of needle coke.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11521",title:"Internal Combustion Engines - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"99cc881bcb3efe05085f2728ccbeab6b",slug:null,bookSignature:"Prof. Akaehomen Akii Ibhadode",coverURL:"https://cdn.intechopen.com/books/images_new/11521.jpg",editedByType:null,editors:[{id:"253342",title:"Prof.",name:"Akaehomen",surname:"Ibhadode",slug:"akaehomen-ibhadode",fullName:"Akaehomen Ibhadode"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11757",title:"Nanorods - Synthesis, Properties, Toxicity and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fb27f444442e8f039b560beae93e6873",slug:null,bookSignature:"Prof. Tejendra Kumar Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/11757.jpg",editedByType:null,editors:[{id:"345089",title:"Prof.",name:"Tejendra Kumar",surname:"Gupta",slug:"tejendra-kumar-gupta",fullName:"Tejendra Kumar Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:263},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"100",title:"Climatology",slug:"earth-and-planetary-sciences-climatology",parent:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:21,numberOfSeries:0,numberOfAuthorsAndEditors:692,numberOfWosCitations:1130,numberOfCrossrefCitations:653,numberOfDimensionsCitations:1537,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"100",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7299",title:"Climate Change and Global Warming",subtitle:null,isOpenForSubmission:!1,hash:"4ae62fab8fc16c47936a1ac234a405d3",slug:"climate-change-and-global-warming",bookSignature:"Ata Amini",coverURL:"https://cdn.intechopen.com/books/images_new/7299.jpg",editedByType:"Edited by",editors:[{id:"179844",title:"Associate Prof.",name:"Ata",middleName:null,surname:"Amini",slug:"ata-amini",fullName:"Ata Amini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5876",title:"Glacier Evolution in a Changing World",subtitle:null,isOpenForSubmission:!1,hash:"807ab415fef80eae5053189b154da8aa",slug:"glacier-evolution-in-a-changing-world",bookSignature:"Danilo Godone",coverURL:"https://cdn.intechopen.com/books/images_new/5876.jpg",editedByType:"Edited by",editors:[{id:"313983",title:"Dr.",name:"Danilo",middleName:null,surname:"Godone",slug:"danilo-godone",fullName:"Danilo Godone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5221",title:"Topics in Climate Modeling",subtitle:null,isOpenForSubmission:!1,hash:"f3205fd51558e7d62187cbdf47e979c6",slug:"topics-in-climate-modeling",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/5221.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4495",title:"Global Warming",subtitle:"Causes, Impacts and Remedies",isOpenForSubmission:!1,hash:"2d99bd0d03471f9871f0fcadd967ba53",slug:"global-warming-causes-impacts-and-remedies",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/4495.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3380",title:"Climate Variability",subtitle:"Regional and Thematic Patterns",isOpenForSubmission:!1,hash:"28cb775691751f6829c82e78d725e4e8",slug:"climate-variability-regional-and-thematic-patterns",bookSignature:"Aondover Tarhule",coverURL:"https://cdn.intechopen.com/books/images_new/3380.jpg",editedByType:"Edited by",editors:[{id:"78083",title:"Dr.",name:"Aondover",middleName:null,surname:"Tarhule",slug:"aondover-tarhule",fullName:"Aondover Tarhule"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3492",title:"Climate Change and Regional/Local Responses",subtitle:null,isOpenForSubmission:!1,hash:"60ca2b9d2e89a90cee7df35b5ae1289a",slug:"climate-change-and-regional-local-responses",bookSignature:"Yuanzhi Zhang and Pallav Ray",coverURL:"https://cdn.intechopen.com/books/images_new/3492.jpg",editedByType:"Edited by",editors:[{id:"87977",title:"Dr.",name:"Pallav",middleName:"Kumar",surname:"Ray",slug:"pallav-ray",fullName:"Pallav Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3162",title:"Climate Change",subtitle:"Realities, Impacts Over Ice Cap, Sea Level and Risks",isOpenForSubmission:!1,hash:"6ed24c01a5b46c314f59ea98100f0965",slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/3162.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3102",title:"Advances in Hurricane Research",subtitle:"Modelling, Meteorology, Preparedness and Impacts",isOpenForSubmission:!1,hash:"92a1a44953085414828e5969e9ac3434",slug:"advances-in-hurricane-research-modelling-meteorology-preparedness-and-impacts",bookSignature:"Kieran Hickey",coverURL:"https://cdn.intechopen.com/books/images_new/3102.jpg",editedByType:"Edited by",editors:[{id:"17924",title:"Dr.",name:"Kieran",middleName:"Richard",surname:"Hickey",slug:"kieran-hickey",fullName:"Kieran Hickey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2312",title:"Atmospheric Aerosols",subtitle:"Regional Characteristics - Chemistry and Physics",isOpenForSubmission:!1,hash:"5f0c63a1d9340befc07046080cd39569",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",bookSignature:"Hayder Abdul-Razzak",coverURL:"https://cdn.intechopen.com/books/images_new/2312.jpg",editedByType:"Edited by",editors:[{id:"135965",title:"Dr.",name:"Hayder",middleName:null,surname:"Abdul-Razzak",slug:"hayder-abdul-razzak",fullName:"Hayder Abdul-Razzak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1571",title:"Doppler Radar Observations",subtitle:"Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications",isOpenForSubmission:!1,hash:"f6614a3df0bad532ed06d41891fe9c96",slug:"doppler-radar-observations-weather-radar-wind-profiler-ionospheric-radar-and-other-advanced-applications",bookSignature:"Joan Bech and Jorge Luis Chau",coverURL:"https://cdn.intechopen.com/books/images_new/1571.jpg",editedByType:"Edited by",editors:[{id:"113007",title:"Dr.",name:"Joan",middleName:null,surname:"Bech",slug:"joan-bech",fullName:"Joan Bech"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1546",title:"Atmospheric Model Applications",subtitle:null,isOpenForSubmission:!1,hash:"30315ea16bedb67eebd4fb0e9f38f968",slug:"atmospheric-model-applications",bookSignature:"Ismail Yucel",coverURL:"https://cdn.intechopen.com/books/images_new/1546.jpg",editedByType:"Edited by",editors:[{id:"100229",title:"Dr.",name:"Ismail",middleName:null,surname:"Yucel",slug:"ismail-yucel",fullName:"Ismail Yucel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:21,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"34744",doi:"10.5772/35368",title:"The JMA Nonhydrostatic Model and Its Applications to Operation and Research",slug:"the-jma-nonhydrostatic-model-and-its-applications-to-operation-and-research",totalDownloads:3157,totalCrossrefCites:41,totalDimensionsCites:55,abstract:null,book:{id:"1546",slug:"atmospheric-model-applications",title:"Atmospheric Model Applications",fullTitle:"Atmospheric Model Applications"},signatures:"Kazuo Saito",authors:[{id:"104090",title:"Dr.",name:"Kazuo",middleName:null,surname:"Saito",slug:"kazuo-saito",fullName:"Kazuo Saito"}]},{id:"44055",doi:"10.5772/55140",title:"West African Monsoon in State-of-the-Science Regional Climate Models",slug:"west-african-monsoon-in-state-of-the-science-regional-climate-models",totalDownloads:4568,totalCrossrefCites:27,totalDimensionsCites:53,abstract:null,book:{id:"3380",slug:"climate-variability-regional-and-thematic-patterns",title:"Climate Variability",fullTitle:"Climate Variability - Regional and Thematic Patterns"},signatures:"M. B. Sylla, I. Diallo and J. S. Pal",authors:[{id:"158387",title:"Dr.",name:"Mouhamadou",middleName:"Bamba",surname:"Sylla",slug:"mouhamadou-sylla",fullName:"Mouhamadou Sylla"},{id:"166845",title:"MSc.",name:"Ismaila",middleName:null,surname:"Diallo",slug:"ismaila-diallo",fullName:"Ismaila Diallo"},{id:"166846",title:"Dr.",name:"Jeremy",middleName:null,surname:"Pal",slug:"jeremy-pal",fullName:"Jeremy Pal"}]},{id:"21327",doi:"10.5772/24467",title:"Crop Production and Global Warming",slug:"crop-production-and-global-warming",totalDownloads:4227,totalCrossrefCites:13,totalDimensionsCites:40,abstract:null,book:{id:"1479",slug:"global-warming-impacts-case-studies-on-the-economy-human-health-and-on-urban-and-natural-environments",title:"Global Warming Impacts",fullTitle:"Global Warming Impacts - Case Studies on the Economy, Human Health, and on Urban and Natural Environments"},signatures:"Masahumi Johkan, Masayuki Oda, Toru Maruo and Yutaka Shinohara",authors:[{id:"57569",title:"Prof.",name:"Johkan",middleName:null,surname:"Masahumi",slug:"johkan-masahumi",fullName:"Johkan Masahumi"},{id:"62171",title:"Prof.",name:"Oda",middleName:null,surname:"Masayuki",slug:"oda-masayuki",fullName:"Oda Masayuki"},{id:"62172",title:"Prof.",name:"Toru",middleName:null,surname:"Maruo",slug:"toru-maruo",fullName:"Toru Maruo"},{id:"62173",title:"Prof.",name:"Shinohara",middleName:null,surname:"Yutaka",slug:"shinohara-yutaka",fullName:"Shinohara Yutaka"}]},{id:"28853",doi:"10.5772/38565",title:"The South American Monsoon System: Climatology and Variability",slug:"the-south-american-monsoon-system-climatology-and-variability",totalDownloads:3199,totalCrossrefCites:16,totalDimensionsCites:35,abstract:null,book:{id:"1548",slug:"modern-climatology",title:"Modern Climatology",fullTitle:"Modern Climatology"},signatures:"Viviane B. S. Silva and Vernon E. Kousky",authors:[{id:"118065",title:"Ms.",name:"Viviane",middleName:"B. S.",surname:"Silva",slug:"viviane-silva",fullName:"Viviane Silva"},{id:"134347",title:"Dr.",name:"Vernon",middleName:null,surname:"Kousky",slug:"vernon-kousky",fullName:"Vernon Kousky"}]},{id:"19840",doi:"10.5772/23920",title:"Holocene Vegetation Responses to East Asian Monsoonal Changes in South Korea",slug:"holocene-vegetation-responses-to-east-asian-monsoonal-changes-in-south-korea",totalDownloads:6827,totalCrossrefCites:8,totalDimensionsCites:31,abstract:null,book:{id:"396",slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Sangheon Yi",authors:[{id:"54436",title:"Dr.",name:"Sangheon",middleName:null,surname:"Yi",slug:"sangheon-yi",fullName:"Sangheon Yi"}]}],mostDownloadedChaptersLast30Days:[{id:"27601",title:"Mud Volcano and Its Evolution",slug:"mud-volcano-and-its-evolution",totalDownloads:7299,totalCrossrefCites:1,totalDimensionsCites:23,abstract:null,book:{id:"621",slug:"earth-sciences",title:"Earth Sciences",fullTitle:"Earth Sciences"},signatures:"Bambang P. Istadi, Handoko T. Wibowo, Edy Sunardi, Soffian Hadi and Nurrochmat Sawolo",authors:[{id:"60519",title:"Mr",name:"Bambang",middleName:null,surname:"Istadi",slug:"bambang-istadi",fullName:"Bambang Istadi"},{id:"60529",title:"Mr.",name:"Nurrochmat",middleName:null,surname:"Sawolo",slug:"nurrochmat-sawolo",fullName:"Nurrochmat Sawolo"},{id:"127917",title:"MSc.",name:"Handoko",middleName:"Teguh",surname:"Wibowo",slug:"handoko-wibowo",fullName:"Handoko Wibowo"},{id:"127918",title:"Dr.",name:"Edy",middleName:null,surname:"Sunardi",slug:"edy-sunardi",fullName:"Edy Sunardi"},{id:"127919",title:"Mr.",name:"Soffian",middleName:null,surname:"Hadi",slug:"soffian-hadi",fullName:"Soffian Hadi"}]},{id:"68928",title:"Mathematical Model for CO2 Emissions Reduction to Slow and Reverse Global Warming",slug:"mathematical-model-for-co-sub-2-sub-emissions-reduction-to-slow-and-reverse-global-warming",totalDownloads:1309,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter aims to provide climate policy makers with smooth patterns of global carbon dioxide (CO2) emissions consistent with the UN climate targets. An accessible mathematical approach is used to design such models. First, the global warming is quantified with time to determine when the climate targets will be hit in case of no climate mitigation. Then, the remaining budget for CO2 emissions is derived based on recent data. Considering this for future emissions, first proposed is an exponential model for their rapid reduction and long-term stabilization slightly above zero. Then, suitable interpolations are performed to ensure a smooth and flexible transition to the exponential decline. Compared to UN climate simulation models, the designed smooth pathways would, in the short term, overcome a global lack of no-carbon energy and, in the long term, tolerate low emissions that will almost disappear as soon as desired from the 2040s with no need for direct removal of CO2.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Nizar Jaoua",authors:[{id:"308371",title:"Dr.",name:"Nizar",middleName:null,surname:"Jaoua",slug:"nizar-jaoua",fullName:"Nizar Jaoua"}]},{id:"38770",title:"Review of Aerosol Observations by Lidar and Chemical Analysis in the State of São Paulo, Brazil",slug:"review-of-aerosol-observations-by-lidar-and-chemical-analysis-in-the-state-of-s-o-paulo-brazil",totalDownloads:2257,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"2312",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",title:"Atmospheric Aerosols",fullTitle:"Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics"},signatures:"Gerhard Held, Andrew G. Allen, Fabio J.S. Lopes, Ana Maria Gomes, Arnaldo A. Cardoso, Eduardo Landulfo",authors:[{id:"39885",title:"Dr.",name:"Arnaldo",middleName:"Alves",surname:"Cardoso",slug:"arnaldo-cardoso",fullName:"Arnaldo Cardoso"},{id:"47252",title:"Dr.",name:"Andrew",middleName:null,surname:"Allen",slug:"andrew-allen",fullName:"Andrew Allen"},{id:"143677",title:"Dr.",name:"Fábio",middleName:null,surname:"Lopes",slug:"fabio-lopes",fullName:"Fábio Lopes"},{id:"144558",title:"Dr.",name:"Gerhard",middleName:null,surname:"Held",slug:"gerhard-held",fullName:"Gerhard Held"},{id:"144711",title:"Dr.",name:"Eduardo",middleName:null,surname:"Landulfo",slug:"eduardo-landulfo",fullName:"Eduardo Landulfo"},{id:"144714",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Gomes",slug:"ana-maria-gomes",fullName:"Ana Maria Gomes"}]},{id:"52209",title:"The Eta Model: Design, Use, and Added Value",slug:"the-eta-model-design-use-and-added-value",totalDownloads:2006,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"The design of the Eta model goes back to early 1970s, when its original dynamical core was designed following the philosophy of Akio Arakawa of emulating important properties of the atmospheric governing equations. The core’s later major features were invented and implemented in the mid-1980s. Once a comprehensive physics package was added, the model became operational as a regional NWP model in the United States in 1993. Its use for regional climate projections followed later, for the South American region and then for a regional reanalysis over the North American region. Summary of the model’s dynamical core is given, followed by that of its physics package. Results of experiments revealing the model’s ability to generate added value even at large scales when run as a regional climate model (RCM) are summarized. The Eta model is applied on various climate scales seamlessly, from subseasonal, seasonal to multidecadal, from coarse 40 km up to high 5 km resolution. Examples of applications to various socioeconomic sectors, such as for hydropower management, crop yield forecasts, environmental and forest conservation, urban areas management, assessment of natural disaster risks, etc., are given. The Eta RCM capability to reproduce extreme climatic values is pointed out.",book:{id:"5221",slug:"topics-in-climate-modeling",title:"Topics in Climate Modeling",fullTitle:"Topics in Climate Modeling"},signatures:"Fedor Mesinger, Katarina Veljovic, Sin Chan Chou, Jorge Gomes and\nAndré Lyra",authors:[{id:"181065",title:"Prof.",name:"Fedor",middleName:null,surname:"Mesinger",slug:"fedor-mesinger",fullName:"Fedor Mesinger"},{id:"186378",title:"Dr.",name:"Katarina",middleName:null,surname:"Veljovic",slug:"katarina-veljovic",fullName:"Katarina Veljovic"},{id:"186379",title:"Dr.",name:"Sin Chan",middleName:null,surname:"Chou",slug:"sin-chan-chou",fullName:"Sin Chan Chou"},{id:"186381",title:"Dr.",name:"Jorge",middleName:"Luis",surname:"Gomes",slug:"jorge-gomes",fullName:"Jorge Gomes"},{id:"186382",title:"Dr.",name:"Andre",middleName:null,surname:"Lyra",slug:"andre-lyra",fullName:"Andre Lyra"}]},{id:"38762",title:"Natural vs Anthropogenic Background Aerosol Contribution to the Radiation Budget over Indian Thar Desert",slug:"natural-vs-anthropogenic-background-aerosol-contribution-to-the-radiation-budget-over-indian-thar-de",totalDownloads:2397,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2312",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",title:"Atmospheric Aerosols",fullTitle:"Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics"},signatures:"Sanat Kumar Das",authors:[{id:"148389",title:"Dr.",name:"Sanat",middleName:"Kumar",surname:"Das",slug:"sanat-das",fullName:"Sanat Das"}]}],onlineFirstChaptersFilter:{topicId:"100",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:3,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/177645",hash:"",query:{},params:{id:"177645"},fullPath:"/profiles/177645",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()