Nucleic acid aptamers are small oligonucleotides that specifically bind to other molecules through noncovalent interactions that rely on complex tridimensional structural arrangements. Aptamers are generated through the iterative in vitro selection method called SELEX, resulting in specific binding against a wide variety of molecular targets including viruses. Because aptamers are obtained in vitro and can be synthetically produced, they have been envisioned as future diagnostic and therapeutic tools for human diseases including virus-borne pathologies. Aptamers have been isolated against a number of viruses including pandemic influenza virus, human papillomavirus and hepatitis C virus. Although aptamers have proven themselves as extremely sensitive detection tools triggering the development of affordable and highly diagnostic methods, their use as therapeutic moieties has been hampered by biostability, delivery and pharmacodynamical issues. Nevertheless, a new generation of chemically modified aptamers shows promise for the coming of age of protein-targeted noncatalytic oligonucleotides for the therapy of viral disease. The present review focuses on the most successful antiviral aptamers reported and includes a description of some of the novel methods developed for their use as diagnostic and therapeutic tools
Part of the book: Nucleic Acids