\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-partners-with-ehs-for-digital-advertising-representation-20210416",title:"IntechOpen Partners with EHS for Digital Advertising Representation"},{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"}]},book:{item:{type:"book",id:"8522",leadTitle:null,fullTitle:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",subtitle:null,reviewType:"peer-reviewed",abstract:"The book is a collection of papers about indigenous, aboriginal, ethnic and fugitive groups from different countries, regions and areas. The book's chapters are written by scholars from different disciplines who exemplify these groups' way of life, problems, etc. from educational aspects, governmental aspects, aspects of human rights, economic statues, legal statues etc. The chapters describe their difficulties, but also their will to preserve their culture and language, and make their life better.",isbn:"978-1-78985-432-9",printIsbn:"978-1-78985-431-2",pdfIsbn:"978-1-83881-908-8",doi:"10.5772/intechopen.78898",price:119,priceEur:129,priceUsd:155,slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",numberOfPages:190,isOpenForSubmission:!1,isInWos:null,hash:"500f04edfaf31487a6637ec914cff04d",bookSignature:"Liat Klain-Gabbay",publishedDate:"September 11th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8522.jpg",numberOfDownloads:3712,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:0,hasAltmetrics:1,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 24th 2019",dateEndSecondStepPublish:"February 14th 2019",dateEndThirdStepPublish:"April 15th 2019",dateEndFourthStepPublish:"July 4th 2019",dateEndFifthStepPublish:"September 2nd 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"257515",title:"Dr.",name:"Liat",middleName:null,surname:"Klain Gabbay",slug:"liat-klain-gabbay",fullName:"Liat Klain Gabbay",profilePictureURL:"https://mts.intechopen.com/storage/users/257515/images/system/257515.jpeg",biography:"Liat Klain-Gabbay completed her doctoral studies at Bar Ilan University, Israel, in the Department of Information Science, where her research focused on academic libraries- a mixed methods research. She holds an MA in East Asian studies from the Hebrew University, Jerusalem, where her research focused on the educational system of the North Korean minority in Japan. She completed a certificate program in Japanese language and culture at Soka University, Japan. She earned her certificate in library and information science at Beit Berl College, Israel, and has worked for twelve years as a librarian and information specialist in the Databases and Information Technology Department of the Library of the College of Management, Israel, where she also provides reference services to students and faculty members.",institutionString:"College of Management – Academic Studies",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1330",title:"Ethnic Studies",slug:"ethnic-studies"}],chapters:[{id:"67491",title:"The Role of International Law in Protecting Land Rights of Indigenous Peoples in Nigeria and Kenya: A Comparative Perspective",doi:"10.5772/intechopen.85823",slug:"the-role-of-international-law-in-protecting-land-rights-of-indigenous-peoples-in-nigeria-and-kenya-a",totalDownloads:466,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Sylvanus Barnabas",downloadPdfUrl:"/chapter/pdf-download/67491",previewPdfUrl:"/chapter/pdf-preview/67491",authors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],corrections:null},{id:"68557",title:"Stories of Milk, Honey and Bile: Representing Diasporic African Foreigner’s Identities in South African Fiction",doi:"10.5772/intechopen.87245",slug:"stories-of-milk-honey-and-bile-representing-diasporic-african-foreigner-s-identities-in-south-africa",totalDownloads:307,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Maurice Taonezvzi Vambe",downloadPdfUrl:"/chapter/pdf-download/68557",previewPdfUrl:"/chapter/pdf-preview/68557",authors:[{id:"264016",title:"Prof.",name:"Maurice Taonezvi",surname:"Vambe",slug:"maurice-taonezvi-vambe",fullName:"Maurice Taonezvi Vambe"}],corrections:null},{id:"68416",title:"Feeding the Roots of Cultural Identity: Indigenous Wellness in Canada",doi:"10.5772/intechopen.87583",slug:"feeding-the-roots-of-cultural-identity-indigenous-wellness-in-canada",totalDownloads:387,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Carina Fiedeldey-Van Dijk",downloadPdfUrl:"/chapter/pdf-download/68416",previewPdfUrl:"/chapter/pdf-preview/68416",authors:[{id:"265608",title:"Dr.",name:"Carina",surname:"Fiedeldey-Van Dijk",slug:"carina-fiedeldey-van-dijk",fullName:"Carina Fiedeldey-Van Dijk"}],corrections:null},{id:"68171",title:"Cultural Conception of Space and Development in the Colombian Amazon",doi:"10.5772/intechopen.87475",slug:"cultural-conception-of-space-and-development-in-the-colombian-amazon",totalDownloads:327,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ronald Fernando Quintana Arias",downloadPdfUrl:"/chapter/pdf-download/68171",previewPdfUrl:"/chapter/pdf-preview/68171",authors:[{id:"268589",title:"M.Sc.",name:"Ronald",surname:"Quintana Arias",slug:"ronald-quintana-arias",fullName:"Ronald Quintana Arias"}],corrections:null},{id:"66604",title:"Runaway Freedom: Fugitive Black Slaves’ Destinies in Late Colonial Chile (1760–1805)",doi:"10.5772/intechopen.85764",slug:"runaway-freedom-fugitive-black-slaves-destinies-in-late-colonial-chile-1760-1805-",totalDownloads:258,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Cristián Perucci González",downloadPdfUrl:"/chapter/pdf-download/66604",previewPdfUrl:"/chapter/pdf-preview/66604",authors:[{id:"277421",title:"Dr.",name:"Cristian",surname:"Perucci",slug:"cristian-perucci",fullName:"Cristian Perucci"}],corrections:null},{id:"68484",title:"Journey to America: South Asian Diaspora Migration to the United States (1965–2015)",doi:"10.5772/intechopen.88118",slug:"journey-to-america-south-asian-diaspora-migration-to-the-united-states-1965-2015-",totalDownloads:571,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"John P. Williams",downloadPdfUrl:"/chapter/pdf-download/68484",previewPdfUrl:"/chapter/pdf-preview/68484",authors:[{id:"264648",title:"Prof.",name:"John",surname:"Williams",slug:"john-williams",fullName:"John Williams"}],corrections:null},{id:"67479",title:"Exploring Aboriginal Identity in Australia and Building Resilience",doi:"10.5772/intechopen.86677",slug:"exploring-aboriginal-identity-in-australia-and-building-resilience",totalDownloads:706,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Clair Andersen",downloadPdfUrl:"/chapter/pdf-download/67479",previewPdfUrl:"/chapter/pdf-preview/67479",authors:[{id:"296447",title:"Associate Prof.",name:"Clair",surname:"Andersen",slug:"clair-andersen",fullName:"Clair Andersen"}],corrections:null},{id:"67518",title:"Privatised Autonomy for the Noongar People of Australia: A New Model for Indigenous Self-Government",doi:"10.5772/intechopen.86622",slug:"privatised-autonomy-for-the-noongar-people-of-australia-a-new-model-for-indigenous-self-government",totalDownloads:278,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Bertus de Villiers",downloadPdfUrl:"/chapter/pdf-download/67518",previewPdfUrl:"/chapter/pdf-preview/67518",authors:[{id:"298965",title:"Prof.",name:"Bertus",surname:"De Villiers",slug:"bertus-de-villiers",fullName:"Bertus De Villiers"}],corrections:null},{id:"66675",title:"Legal Statute and Perspectives for Indigenous Peoples in Ukraine",doi:"10.5772/intechopen.85560",slug:"legal-statute-and-perspectives-for-indigenous-peoples-in-ukraine",totalDownloads:417,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Borys Babin, Olena Grinenko and Anna Prykhodko",downloadPdfUrl:"/chapter/pdf-download/66675",previewPdfUrl:"/chapter/pdf-preview/66675",authors:[{id:"295584",title:"Dr.",name:"Borys",surname:"Babin",slug:"borys-babin",fullName:"Borys Babin"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5866",title:"Indigenous People",subtitle:null,isOpenForSubmission:!1,hash:"855fd54af0a1f830ea8d0ee1519387dc",slug:"indigenous-people",bookSignature:"Purushothaman Venkatesan",coverURL:"https://cdn.intechopen.com/books/images_new/5866.jpg",editedByType:"Edited by",editors:[{id:"198936",title:"Dr.",name:"Purushothaman",surname:"Venkatesan",slug:"purushothaman-venkatesan",fullName:"Purushothaman Venkatesan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68990",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6667",leadTitle:null,title:"Influenza",subtitle:"Therapeutics and Challenges",reviewType:"peer-reviewed",abstract:"This book gives a comprehensive overview of recent advances in influenza, as well as general concepts of molecular biology of influenza infections, epidemiology, immunopathology, prevention, and current clinical recommendations in management of influenza, including preparation of vaccines, assessment of the safety and quality of influenza vaccines and adjuvants highlighting the ongoing issues and recent advances, with future directions in prevention and therapeutic strategies. I hope that this work might increase the interest in this field of research and that the readers will find it useful for their investigations, management, and clinical usage.",isbn:"978-1-78923-715-3",printIsbn:"978-1-78923-714-6",pdfIsbn:"978-1-83881-631-5",doi:"10.5772/intechopen.71939",price:119,priceEur:129,priceUsd:155,slug:"influenza-therapeutics-and-challenges",numberOfPages:160,isOpenForSubmission:!1,hash:"105e347b2d5dbbe6b593aceffa051efa",bookSignature:"Shailendra K. Saxena",publishedDate:"September 19th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",keywords:null,numberOfDownloads:4037,numberOfWosCitations:6,numberOfCrossrefCitations:9,numberOfDimensionsCitations:10,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 4th 2017",dateEndSecondStepPublish:"January 4th 2018",dateEndThirdStepPublish:"February 23rd 2018",dateEndFourthStepPublish:"May 14th 2018",dateEndFifthStepPublish:"July 13th 2018",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://mts.intechopen.com/storage/users/158026/images/system/158026.jfif",biography:"Dr. Shailendra K. Saxena is Vice Dean and Professor at King George's Medical University, Lucknow, India. His research interests are to understand the molecular mechanisms of host defense during human viral infections and to develop new predictive, preventive, and therapeutic strategies for them using JEV, HIV and emerging viruses as a model, via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with high citation. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award (UK), Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India, and Fellow of various internationally prestigious societies/academies including Royal College of Pathologists (UK), Royal Societies of Biology and Chemistry, London, United Kingdom, Academy of Translational Medicine Professionals, Austria, and is named as the Global Leader in Science by The Scientist magazine (USA) and International Opinion Leader/Expert involved in the vaccination for JE by IPIC (UK).",institutionString:"King George's Medical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"912",title:"Virology",slug:"pure-microbiology-virology"}],chapters:[{id:"61641",title:"Introductory Chapter: Human Influenza A Virus Infection - Global Prevalence, Prevention, Therapeutics, and Challenges",slug:"introductory-chapter-human-influenza-a-virus-infection-global-prevalence-prevention-therapeutics-and",totalDownloads:631,totalCrossrefCites:1,authors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}]},{id:"61313",title:"Pathology of Influenza",slug:"pathology-of-influenza",totalDownloads:497,totalCrossrefCites:1,authors:[{id:"232191",title:"Prof.",name:"Vsevolod",surname:"Zinserling",slug:"vsevolod-zinserling",fullName:"Vsevolod Zinserling"}]},{id:"61710",title:"Preventing Zoonotic Influenza",slug:"preventing-zoonotic-influenza",totalDownloads:822,totalCrossrefCites:1,authors:[{id:"93517",title:"Dr.",name:"Clement",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko"},{id:"241561",title:"Ph.D.",name:"Binod",surname:"Kumar",slug:"binod-kumar",fullName:"Binod Kumar"},{id:"241562",title:"Dr.",name:"Melvin",surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas"}]},{id:"61392",title:"Preparing Live Influenza Vaccines against Potential Pandemic Influenza Using Nonpathogenic Avian Influenza Viruses and Cold-Adapted Master Donor Strain",slug:"preparing-live-influenza-vaccines-against-potential-pandemic-influenza-using-nonpathogenic-avian-inf",totalDownloads:577,totalCrossrefCites:1,authors:[{id:"233433",title:"Dr.",name:"Yulia",surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva"}]},{id:"61919",title:"The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive Immunity Effectors",slug:"the-impact-of-adjuvanted-and-non-adjuvanted-influenza-vaccines-on-the-innate-and-adaptive-immunity-e",totalDownloads:498,totalCrossrefCites:4,authors:[{id:"199984",title:"Prof.",name:"Mikhail",surname:"Kostinov",slug:"mikhail-kostinov",fullName:"Mikhail Kostinov"},{id:"252548",title:"Dr.",name:"Ekaterina",surname:"Khromova",slug:"ekaterina-khromova",fullName:"Ekaterina Khromova"}]},{id:"60815",title:"Genomic Approaches Enable Evaluation of the Safety and Quality of Influenza Vaccines and Adjuvants",slug:"genomic-approaches-enable-evaluation-of-the-safety-and-quality-of-influenza-vaccines-and-adjuvants",totalDownloads:503,totalCrossrefCites:0,authors:[{id:"94928",title:"Dr.",name:"Takuo",surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami"},{id:"232749",title:"Dr.",name:"Eita",surname:"Sasaki",slug:"eita-sasaki",fullName:"Eita Sasaki"},{id:"232750",title:"Dr.",name:"Isao",surname:"Hamaguchi",slug:"isao-hamaguchi",fullName:"Isao Hamaguchi"}]},{id:"60765",title:"Therapeutic Approach for Seasonal Influenza and Pandemic",slug:"therapeutic-approach-for-seasonal-influenza-and-pandemic",totalDownloads:511,totalCrossrefCites:1,authors:[{id:"240653",title:"M.D.",name:"Yuji",surname:"Takemoto",slug:"yuji-takemoto",fullName:"Yuji Takemoto"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220806",firstName:"Julian",lastName:"Virag",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/220806/images/6089_n.jpg",email:"julian@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3311",title:"Current Perspectives in HIV Infection",subtitle:null,isOpenForSubmission:!1,hash:"1bcacf84d50370cac414fea1616244c6",slug:"current-perspectives-in-hiv-infection",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/3311.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5148",title:"Proof and Concepts in Rapid Diagnostic Tests and Technologies",subtitle:null,isOpenForSubmission:!1,hash:"5be88795cc424e500a8fddcadf383fc9",slug:"proof-and-concepts-in-rapid-diagnostic-tests-and-technologies",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/5148.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3841",title:"Trends in Infectious Diseases",subtitle:null,isOpenForSubmission:!1,hash:"a4d4dbcefd4b2122e63458bbfb544f82",slug:"trends-in-infectious-diseases",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/3841.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5078",title:"Advances in Molecular Retrovirology",subtitle:null,isOpenForSubmission:!1,hash:"1c523c89d0884b6e909a6d49d8c3a9dd",slug:"advances-in-molecular-retrovirology",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/5078.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,isOpenForSubmission:!1,hash:"d92a4085627bab25ddc7942fbf44cf05",slug:"current-perspectives-in-human-papillomavirus",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"555",title:"Bacteriophages",subtitle:null,isOpenForSubmission:!1,hash:"ad7786b6130d112e90aecfb0309019bd",slug:"bacteriophages",bookSignature:"Ipek Kurtboke",coverURL:"https://cdn.intechopen.com/books/images_new/555.jpg",editedByType:"Edited by",editors:[{id:"97789",title:"Dr.",name:"İpek",surname:"Kurtböke",slug:"ipek-kurtboke",fullName:"İpek Kurtböke"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2645",title:"Viral Replication",subtitle:null,isOpenForSubmission:!1,hash:"d4ef82dc3307152716e7de944938caff",slug:"viral-replication",bookSignature:"German Rosas-Acosta",coverURL:"https://cdn.intechopen.com/books/images_new/2645.jpg",editedByType:"Edited by",editors:[{id:"145087",title:"Dr.",name:"German",surname:"Rosas-Acosta",slug:"german-rosas-acosta",fullName:"German Rosas-Acosta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69057",title:"Magnetic and Quantum Dot Nanoparticles for Drug Delivery and Diagnostic Systems",doi:"10.5772/intechopen.88611",slug:"magnetic-and-quantum-dot-nanoparticles-for-drug-delivery-and-diagnostic-systems",body:'\nAmong many synthetic compounds the general public comes across with, in day-to-day life, nanoparticles are considered highly advantageous in various applications. Nanoparticles in diagnostics and as drug delivery vehicles are coming under the aforementioned beneficial applications in the field of biomedical science. Various types of nanoparticles, for instance, gold nanoparticles [1] and iron oxide nanoparticles [2], are being used in biomedical operations. Due to its magnetic properties and nanometer size, magnetic nanoparticles such as magnetite (Fe3O4) [3] and maghemite (γ-Fe2O3) [4, 5] are considered highly beneficial for diagnostics and in drug delivery systems. On the other hand, inorganic nanoscale particles with semiconductor properties are becoming very popular in such applications. These semiconductor nanoparticles, called quantum dot nanoparticles, are equipped with extremely favorable characteristics such as high fluorescence and photoluminescence. These nanoparticles have been tested to be used in diagnostics [6], and trials were carried out at laboratory scale as therapeutics, that is, for drug delivery [7]. At the same time, quantum dots are found to be more beneficial over regular chemotherapy, radiation, and ionizing radiation imaging [8] which are used in cancer diagnosis and treatment.
\nMagnetic nanoparticles are used widely in a variety of industrial applications in environmental remediation [9], data storage [10], electronic device development [11], and pharmaceutical industry [12, 13]. Its magnetic properties give a greater potential in delivering the drugs at desired sites. The nanoscale size of the particles gives the ability to permeate through membranes without the interference of biological barriers. Therefore, the so-called properties make magnetic nanoparticles an ineluctable component in the development of drug delivery systems.
\nSeveral types of magnetic nanoparticles such as iron, nickel, and cobalt based are available for industrial applications [14]. Due to the greater potential in surface modification and higher magnetic properties, iron oxide nanoparticles are considered as the best magnetic candidate in the development of drug delivery systems. These single-domain iron oxide magnetic nanoparticles are present in three different phases, as magnetite, maghemite, and hematite (α-Fe2O3) [15]. These nanoparticles generally demonstrate super-paramagnetic properties at ambient conditions even though their physical and chemical properties largely depend on the synthesis procedure and particle size [16]. According to the motions and interactions of the electrons available in the material, magnetism is divided in to five main classes as diamagnetism, paramagnetism, ferrimagnetism, ferromagnetism, and antiferromagnetism [17, 18]. Iron oxide nanoparticles fall under ferromagnetic and ferromagnetic classes due to their strong collective magnetic interaction [18].
\nTo be used in a biological environment, there are several concerns that the magnetic nanoparticles should conquer. Colloidal and chemical stability of these particles is the main consideration. The stability of magnetic nanoparticles is extremely affected by intrinsic structural properties such as size, morphology, and pH of the particles [19].
\nSynthesis of iron oxide nanoparticles can be conducted in different procedures using physical, chemical, or biological methods [18]. Chemical methods such as coprecipitation, hydrothermal reactions, thermal decomposition, microemulsion, sol-gel reactions, aerosol/vapor phase method, and electrochemical method are the principal preparation procedures. These procedures have the ability to control particle size, surface chemistry, and composition. Most simple, efficient, and cost-effective methods among these procedures are coprecipitation and thermal decomposition, which are also used widely due to the same reasons. In coprecipitation, metal oxide particles are synthesized using a solution of the metal salt. In the synthesis of iron oxide nanoparticles, aqueous Fe3+ and Fe2+ are coprecipitated by addition of a base, preferably, sodium hydroxide or ammonium [18].
\nAs a result of its nanometer size, as small as 3 nm [20], magnetic nanoparticles can reach the biological entities according to the interest. Cells with 10–100 μm size, proteins as large as 5–50 nm or even genes which can be 2 nm wide and 10–100 nm long, or viruses with size ranging from 20 to 450 nm can be targeted using these magnetic nanoparticles [21]. The property of magnetism, where these nanoparticles can be manipulated by an external magnetic field, enhances its utility by providing the ability to get these nanoparticles to where they are required. Magnetic nanoparticles are used in various applications in the aspects of biomedicine and biology. Magnetic separation has been of greater advantage in biological research, where magnetic nanoparticles are labeled to desired biological substances. These have proven superior sensitivity in cell sorting especially in immuno-magnetic selection of rare tumor cells in blood [22]. Moreover, these magnetic nanoparticles are used in a vast number of biological operations such as targeted drug delivery [23], hyperthermia [24], magnetic resonance imaging (MRI) [25], rapid diagnostics [26], tissue engineering [27], magnetic particle imaging (MPI) [28], etc.
\nQuantum dot nanocrystals are semiconductor nanomaterials with intrinsic chemical and physical properties. These have unique semiconductor energy levels that can be adopted by simply changing size, shape, and charge potential [29]. In quantum dot nanoparticles, excitons are confined in all three dimensions. Quantum confinement is a property of semiconductors where the diameter of the nanoparticle approaches that of the Bohr exciton radius. These nanoparticles have particular optical and electronic properties such as size-tunable absorption bands and emission colors due to the quantum confinement effect [30]. Quantum dot particles are artificially synthesized from II to IV and III to V elements such as Cd, Te, Se, Zn, etc. [31]. These are nanoscale structures typically with a diameter of 2–10 nm, which make them a more reliable and influential candidate in most of the industrial applications. Due to its small diameter, the surface atom to core atom ratio is high [32]. When the surface atom to core atom ratio increases, the properties of surface atoms dominate the properties of the whole particle. The semiconductor lattice of quantum dots is terminating on the surface, and therefore, the surface atoms show a different chemical behavior than the core atoms [33]. This ultimately makes the quantum dots more beneficial in industrial and biomedical operations.
\nThese nanocrystals display fluorescence and produce distinctive colors which can be determined by the nanocrystal particle size. Fluorescence is a form of luminescence, where a substance absorbs light or other electromagnetic radiation and emits light of a longer wavelength than the absorbed light [34]. In general, luminescence is defined as the emission of photons from the excited electronic state. In contrast, when the atoms of the material absorb energy, these atoms are in the excited state. These excited atoms release absorbed energy as photons, which ultimately discharge light [35]. These quantum dot nanoparticles exhibit extraordinary photoluminescence with increased brightness and stability [36, 37].
\nAs presented in Figure 1, there are several types of quantum dots as core type [38], core-shell type [39], and alloyed type (bimetallic) [40], which are classified based on their composition and structure. Core-type quantum dots contain single component inorganic core and can be chalcogenides of metals such as PbS, CdTe, CdSe, etc. [38]. These can be further modified with another layer around the core using many substances, according to the application’s requirement. Typically, in biomedical applications, these core structures are stabilized with an organic layer around the core in order to obtain a hydrophobic or hydrophilic surface. The electroluminescent and photoluminescent properties of these core-type quantum dots can be refined by basically altering the crystal size [12].
\nTypes of quantum dots used in drug delivery [
Core-shell-type quantum dots, such as CdTe/CdSe [41], CdSe/ZnS [42], CdSe/CdS, etc., are comprised of an inorganic core and an inorganic shell, generally a higher bandgap semiconductor around the core. Core-shell structures of quantum dots are more effective and have an intense brightness, as a result of the diminished chemical damage that can be happened to the fluorescence core. It is believed that inorganic core-shell quantum dots are more robust than organically passivated core-type quantum dots [43].
\nAlloyed quantum dots are synthesized by alloying two semiconductors with different bandgap energies. This type emits colors by just altering the composition rather than changing the crystallite size as a result of both homogenous and gradient internal structures [44].
\nAmong several methods utilized to synthesis quantum dots, hydrothermal synthesis [45, 46], and organometallic synthesis [47, 48] are the mainly used two techniques. Other methods, for instance, polyol-hydrolysis [49], electron beam irradiation [50], microwave-assisted aqueous synthesis [51], photochemical synthesis [52], UV irradiation [53], and chemical precipitation [54], are also less commonly used for quantum dot synthesis. CdTe quantum dots are highly used in biomedical applications compared to other types of quantum dots. Generally, CdTe quantum dots demonstrate inferior biocompatibility and stability in biological systems. Therefore, methods have developed to modify the surface of CdTe quantum dots during synthesis by capping the quantum dots using different stabilizers such as trioctylphosphine (TOP)/trioctylphosphine oxide (TOPO) [55], etc. Particularly, quantum dots which are capped with stabilizers containing thiol groups [56] make the quantum dots highly biocompatible and more stable inside biological environment [57, 58]. The CdTe quantum dots, which are synthesized in aqueous medium using thioglycolic acid [59], cysteine [60], and glutathione [61], provide high luminescence, stability, and surface functionalization to conjugate biomolecules.
\nRecently, quantum dots are used in many biotechnological appliances [6, 62]. These fluorescent nanocrystals are utilized in many immunofluorescence assays [63], tissue engineering [64], DNA array technology [65], and other cell biology techniques [66] where fluorescence measurements are occupied. Single-molecule level studies of living cells [67] and targeted drug delivery for cancer treatment [68] are some other applications in medicine. There are many advantages of using quantum dots in biotechnology. As the fluorescence of quantum dots is intense than other conventional dyes classically used in immuno-labeling and staining of proteins, quantum dots are currently being used in immunoassays as fluorophores [69] and in immuno-staining of cells [70], DNA [71], etc.
\nBare nanoparticles often show undesirable properties in biological systems. These nanoparticles are often hydrophobic or hydrophilic, susceptible to oxidation and agglomeration. The main concern with magnetic nanoparticles is that they may fail to exhibit their super-paramagnetic properties inside or when conjugated to biological systems. This reduction of magnetism occurs as a consequence of their high chemical reactivity and extraordinary surface energy [16]. With the intention of maintaining nanoparticles in the colloidal condition during storage and to increase their constancy and biocompatibility, bare nanoparticles are further modified. Generally, surface modification is performed using polymers or surfactants which are hefty or charged molecules compared to the nanoparticles. These modifications provide several advantages such as increased physical and chemical stability. Therefore, the agglomeration and oxidation which are the most problematic concerns in biomedical applications can be minimized or limited. Ultimately, these modifications make the nanoparticles biocompatible with enhanced surface activity. Following modifications, with the use of functional groups available on the surface of nanoparticles, targeted biomolecules can be anchored on nanoparticles [72]. Magnetic nanoparticles acquire higher surface energy due to its tremendous specific surface area of exposed atoms on its surface [73].
\nSimply, modification of magnetic nanoparticles can be achieved by surface coating of the nanoparticle with either organic or inorganic materials. Inorganic materials include silica [74] and carbon [74]. Silica is a widely used compound for surface modification of iron oxide nanoparticles. As a result of its low cytotoxicity, silica modified nanoparticles are considered as an excellent combination to be used in biological applications. Silica coatings provide reduced agglomeration along with enhanced stability which ultimately ensures biocompatible-modified magnetic nanoparticles [75]. Organic material coating involves the addition of the material on to the nanoparticle, and the surface structure of the nanoparticle is totally undisturbed. There are many organic materials used for this strategy. Some of them are dextran [76], chitosan [77], alginate [78], and polymers such as polyethylene glycol (PEG) [79], polyvinyl alcohol (PVA) [80], and polyvinylpyrrolidone (PVP) [81].
\nIn drug delivery systems and diagnostics, nanotechnology has become a leader in the current decade. Since the 1980s there has been a considerable number of research on using nanotechnology in drug delivery systems [82, 83]. Due to its unique properties, such as smaller nanoscale size, magnetism, and fluorescence, nanotechnology-based drug delivery systems have defeated the problems and barriers of drug therapy in the pharmaceutical industry. Studies demonstrate many nanoparticulate drug careers, namely, liposomes [84], microemulsions [85], nano-suspensions [86], and nanoparticles [87]. These can be administrated through parenteral, tablets, capsules (as hard gelatin or soft gelatin), and as oral liquid [88]. These nanoparticles are extraordinary carriers for drug delivery for cancer treatment since they are not uptaken by phagocytosis by the immune system due to its nanoscale size [89].
\nNanotechnology-based drug delivery has now come into a point where it has developed a smart drug delivery system. The theory behind smart drug delivery technique is, when the nanoparticle system is provoked by biological, chemical, or physical stimuli (biomolecules, pH, light, temperature, etc.), physicochemical properties of nanoparticle system change rapidly [90]. These smart drug delivery systems can be programmed to release drugs according to the stimuli, and the flow rate of drug release can be regulated according to the environmental condition. It can also predict the drugs required and switch on and off the release of drugs [91]. These advances have made the system more effective and have reduced the toxicity and side effects of the nanoparticulate drug admonition.
\nThere are several drug delivery methods such as oral method [92], injection-based method [93], transdermal delivery [94], pulmonary drug delivery [95], and carrier-based method [96].
\nIn oral drug delivery, formulations used in oral drug administration range from simple tablets to modified control release tablets. This involves the use of various polymers and hydrogel-based formulations [92]. Injection-based drug delivery provides fast systemic effects bypassing first pass metabolism. Using this method, the drugs can be administered in unconscious or comatose patients, and drugs having short half-life can also be infused continuously [93]. Pulmonary drug delivery involves the administration of drugs by inhalation through the mouth or nose. The alveolar epithelial gets contacted with the drugs, and this provides a good surface especially for lipid-soluble drugs [95]. In transdermal drug administration, adhesive patches containing the drugs are applied on the skin. The drugs pass the skin surface by diffusion and enter the systemic circulation by percutaneous absorption [94]. Carrier-based drug delivery is a novel method which has been experimenting over decades in order to escalate the efficiency and diminish the detrimental side effects of carrier systems. This method serves improved selectivity, effectiveness, and safety of drug administration [96].
\nCarrier-based drug delivery system utilizes several carriers such as liposomes, microemulsions, micellar systems, aquasomes, and nanoparticles.
\nLiposomes are drug carriers with a spherical structure, constructed from one or several amphiphilic phospholipids and cholesterols. Using liposomes as vehicles in drug delivery provides various conveniences compared to other systems. These carriers are created as small structures (80–100 nm), with bilayers of phospholipids and cholesterols with an aqueous interior. As a result, lipophilic drugs can be encapsulated in the lipid bilayer and hydrophilic drugs in the aqueous interior [85]. Using liposomes are considered as a low-toxic method with minimal side effects, and the drug can be applied without deteriorating its performance [84].
\nMicroemulsions are a thermodynamically stable mixture of two immiscible liquids consisting of two phases called dispersed and continuous phase. These mixtures are typically stabilized with a surfactant and may have droplets with a size of 5–100 nm length [85]. Similar to emulsions, microemulsions can also be constructed as water in oil or oil in water. In drug administration, dispersed or continuous phases are determined by the hydrophilicity of the drug. Microemulsions provide increased solubility and stability of drugs enhancing high absorption rate through biological membranes.
\nComposed of copolymers and amphiphilic macromolecules with distinct hydrophobic and hydrophilic properties, polymer micelles form nanoscopic supramolecular core-shell structures. These structures show different types of morphologies, such as spheres, rods, vesicles, tubules, and lamellae. Core-shell structure of these particles grants a number of positive factors to be used in drug delivery applications [85]. As a result of the copolymers used in the formation of the micelles, the half-life of the system is expanded. Another consideration is that water-insoluble drugs can be solubilized by encapsulating the drug within the core structure. Due to its nanoscopic size, the permeability is intensified making it convenient for injections [97].
\nAquasomes are spherical particles with 60–300 nm in size. These are used as vehicles for drug delivery as well as to deliver antigens to evoke antigen-specific immune responses [85]. These nanoparticles are comprised of a nanocrystalline core, which is responsible for the structural stability, and an oligomer coating, which protects the system from dehydration. As shown in Figure 2, the drugs or biomolecules of interest are adsorbed on the oligomeric coating of the aquasomes, making them conducive for drug delivery [98].
\nPreparation of aquasomes [
Nanoparticles are solid colloidal particles with 1–1000 nm size [18]. Currently, a number of different types of nanoparticles along with various macromolecules are used for drug delivery. Nanoparticles in different structures are produced depending on their configuration and utility such as nanotubes [99], nanowires [100], nanoshells [101], quantum dots [102], nanopores, nanobots [103], nano-erythrocytes [104], etc. Drugs or biomolecules are attached to the nanoparticles by adsorption, covalent attachment, or entrapment [18]. To be included in the drug development process, utilization of potentially toxic compounds or organic solvents in the nanoparticle synthesis procedure is inadvisable [44]. The components used in synthesis should ideally be biodegradable and safe for in vivo use. Further, these complexes should not induce immunological responses, and also, these should be stable under storage conditions [105]. In drug delivery, magnetic nanoparticles are being used in several approaches. The first approach is localized drug delivery, where the magnetic nanoparticles attached to the appropriate drug and administered systemically. When the magnetic field is applied on the required site of the body, these drug-containing magnetic nanoparticles will accumulate on the diseased site, and the drugs will be released for treatment [106]. The second approach is the usage of an alternate magnetic field to generate heat by magnetic nanoparticles which are conjugated to drugs via thermos-liable linker molecules [107]. These magnetic nanoparticles have the ability to generate heat when an alternate magnetic field is focused on a diseased site. Thus, under the alternate magnetic field, these thermos-liable linkers get cleaved, releasing the drugs [108].
\nRecent advances of nanotechnology which is used in biomedical science have given a great opportunity for the consumers to utilize the technology in a very efficient manner. Special focus on smart drug delivery technique which provides utmost advantages can prove this statement without hesitation. Nanoparticles, being considered as highly useful components in drug delivery, therapeutics, and diagnostics, can also affect its users negatively as a result of its inherent toxicity and inferior levels of biocompatibility. Even though different types of nanoparticles show diverse levels of toxicities, current appliances have made precautions to minimize its toxic effect and increase biocompatibility, by encapsulation. Magnetic nanoparticles and quantum dot nanoparticles, as discussed in this chapter, are used widely in the aforementioned applications with modified surface fabrications. The future prospects of nanotechnology in biomedical applications could lead to a highly sophisticated user-friendly technology where smarter appliances will reach consumers with the least challenges which they encounter in the present systems.
\nFinancial assistance given by the National Research Council, Sri Lanka (NRC-TO 14-04).
\nThe significance of terahertz electronics is self-evident for readers of this book. The general consensus among silicon THz circuit designers (!) is that silicon will be the dominant technology for the lower end of the THz spectrum (300 GHz to around 1 THz) in light of recent breakthroughs of silicon circuits in terms of effective isotropic radiated power (EIRP), phase noise, and receiver sensitivity. For many applications, silicon circuits are on par or even superior to III/V compound technologies and optical-based techniques in this frequency range now. This chapter aims to introduce the reader to the fascinating world of silicon THz circuit design through a step-by-step approach: We examine conditions for extracting the most power gain out of a given active device. Popular topologies for silicon sources, detectors, and transceivers are discussed next, and this chapter concludes with a brief survey of THz interface options for efficient energy transfer between circuits and the outside world.
\nDue to the excessive loss and scarcity of power gain for silicon devices in the THz region, one should strive to extract the most power out of a given device during the whole design phase. This involves making sure that the device is working under the optimum condition (i.e., the device is embedded in the right impedance environment for maximum power gain), the topology of the circuit is optimum for the intended application, and the power is transferred from the circuit through the most efficient interface. This section gives an overview of these areas.
\nThe active devices in THz circuits are connected to the rest of the circuits through passive elements, such as capacitors, inductors, and transmission lines. The overall circuit performance is decided both by the active device and these passive elements. Thus, to maximize the circuit performance, a “divide-and-conquer” approach is the logical choice. That is, we first find the “best” active device in a given technology under certain constraints such as power consumption or noise performance. We then decide the best passive network into which the device should be embedded. The problem is there is no such thing as “pure” active device; passive elements are always present in a given active device. Mason [1] has thus defined a figure of merit for active devices:
\nA device is active if its
For a given two-port shown in Figure 1(b), the power gain is defined as
\nThe two-port representation of an embedded active device. (a) An active device embedded in a linear, lossless, and reciprocal passive network resulting in a two-port and (b) the two-port interfacing to signal source and load.
For an unconditionally stable two-port (it does not oscillate for any passive load and source admittance) at a given frequency, the power gain could be maximized by biconjugate matching at the input and output. Conjugate matching is achieved when the load admittance is equal to the conjugate of the source admittance at a given node; biconjugate matching means that this condition is satisfied both at the input and the output port. For a given two-port, its maximum power gain is
\nwhere
Biconjugate matching is possible when
Keep in mind that unlike
Another important THz circuit is oscillators. Here, we need to make a distinction between amplifiers and oscillators. The former is one kind of driven circuit, the output of which is controlled by its input. Oscillators belong to the group of autonomous circuit, which generates time-varying signals without time-varying stimulus. By definition, amplifiers operate below
Unlike analog circuit designers who deal exclusively with voltage and current gains, microwave circuit designers are more comfortable with power gain. Momeni [7] has thus shown a refreshing view about the optimum voltage gain and phase shift for a given two-port to oscillate at
It can be shown that biconjugate matching automatically satisfies Eqs. (8) and (9) at
Under biconjugate matching,
By substituting Eqs. (11) and (12) into (10), we have
\nWe are now in the position to derive
At
Substituting Eq. (13) into (15), we have
\nSince the Mason’s invariant equals unity at
Equation (16) thus equals
\nWe have
\nSince the above derivation is restricted to
Comparison of the phase shift of a SiGe HBT transistor under biconjugate matching and the optimum phase shift calculated with
Comparison of the voltage gain of a SiGe HBT transistor under biconjugate matching and the optimum voltage gain calculated with
It is clear that Eqs. (8) and (9) are only strictly valid at
Among the many potential benefits offered by THz application, the large bandwidth available is the most obvious one. However, a lot of design issues need to be addressed in order to truly harness this bandwidth potential. We discuss this problem in terms of
Assuming constant drive power,
Before leaving this chapter in despair, we can try to manipulate Eq. (20) a little bit further:
\nThe first term is by all means beyond our control, and we do not want to change the second term for now. So, what can we do about the last term? It happens that if we were to keep the two-antenna size constants while increasing the frequency,
where
The six orders of magnitude difference of
When talking about silicon THz sources, a plethora of options is available that varies in functionality, complexity, and performance. For incoherent imaging applications, the most important metrics are output power and efficiency, whereas for spectroscopy, the bandwidth is the most important specification. Perhaps the most demanding application is for THz communications, for which output power, power efficiency, tuning range, phase noise, harmonics, and spurious suppression are all important parameters. This subsection aims to give a brief and incomplete introduction to what has been done in this area.
\nTHz signal can be generated either by frequency multipliers or by on-chip oscillators.
\nIn multipliers, the MOS or bipolar transistor is driven heavily to generate highly nonlinear current. The intended frequency component is then extracted with other components filtered. If efficiency is important, the active device should be conjugate matched for the fundamental and the intended harmonic. The impedance presented to the device at other harmonics is usually short or open circuit to maximize energy transfer between the fundamental and the intended harmonic. But we should not be overzealous about this goal; usually taking care of the first two or three harmonics is enough since the higher harmonics are insignificant. The transistor also has to be biased correctly for maximum harmonic generation. For MOS transistor, the conduction angle is specified. Like power amplifiers, efficient MOS multiplier works in the class AB, B, or C region depending on the frequency, multiplication factor, and input power. For bipolar transistor, this efficiency is a function of
Relationship of phase noise between the harmonic and the fundamental for multipliers is [11]:
\nwhere \n
Multipliers are usually compact and broadband, but they are not as efficient as (well designed) oscillators. A 90–300 GHz transmitter based on distributed quadrupler is designed for spectroscopy and imaging [12]. It resembles the distributed amplifier (DA) in that the input and output capacitance of active device are absorbed in the input and output transmission line. Differential quadrature signal is used to drive two groups of quadrupler diff-pairs, the current of which is then combined to cancel the second harmonic. As another example, quadrupler is used in an 8-element 400 GHz transmitter phased array to replace power amplifier [13]. This also simplifies phase shifter design since the fundamental signal only needs to be shifted within 90 degrees as the phase shift is multiplied by four.
\nIn oscillators, the transistor is made unstable by intentionally introducing positive feedback around it. Steady-state oscillation occurs at the frequency where the open-loop transfer function equals −1 (Barkhausen’s criteria). Since the
A high efficiency and scalable 4 × 4320 GHz oscillator array is built in SiGe BiCMOS technology [9]. The oscillator shown in Figure 4(a) oscillates at 160 GHz and is optimized for optimum transistor voltage gain and phase shift as discussed in Section 2.1.
Topology of (a) self-sustained oscillator and (b) conventional cross-coupled oscillator and its equivalent circuit at second harmonic.
Frequency tuning of oscillators is usually done by varying the capacitance of varactor in the oscillation tank. Higher oscillation frequency translates to smaller capacitance, which is problematic for small varactors as its parasitic capacitance would swamp the variable capacitance. This would severely constrain the oscillator’s tuning range.
\nShown in Figure 5(a) and (b) are the cross section of a NMOS varactor and its small signal model with its source AC grounded. To increase its
Cross section of NMOS varactor (a) and equivalent circuit with grounded source (b).
A straightforward way to increase the tuning ratio of the varactor is to place an inductor to partially absorb the parasitic capacitance. A 300 GHz differential Clapp push-push VCO with 8.5% tuning range and phase noise of −85 dBc at 1 MHz offset is reported in [14]. Its simplified schematic and equivalent small signal circuit for calculation of the input impedance seen at the base is shown in Figure 6. Note that the base resistance, the depletion capacitance between base and collector, and the output resistance of the transistor are ignored.
\nPush-push VCO with common-mode resonance: (a) schematic, (b) base input impedance for differential mode, and (c) input impedance for common mode.
The input impedance seen from the base is
\nwhere
The equivalent series resistance and capacitance for
Another interesting property of the circuit is that the oscillation frequency for common mode is intentionally set to the second harmonic.
As is evident from Eq. (27), the negative resistance seen at the base of the capacitively degenerated transistor could be used to mitigate the loss of the varactor [15]. This property is used in [16] to build a 300 GHz triple-push VCO. The tuning range is 8%, and the phase noise is −101.9 dBc/Hz at 1 MHz offset for the 100 GHz main loop. That translates to a phase noise of −80.28 dBc/Hz at 1 MHz offset for 300 GHz assuming noiseless multiplication.
\nAn interesting observation is that inductors actually have better quality factor than varactors at higher frequency. A carefully designed inductor has a Q of 15–20 at 100 GHz, whereas the quality factor for varactor is around 2–5 at that frequency. It would be nice if we can replace the varactor with a high-quality metal-insulator-metal (MIM) or metal-oxide-metal (MOM) capacitor; we then need to figure out how to tune the inductance of these nice inductors. Figure 7 shows one such circuit [17] which is also based on Clapp oscillators.
\nSchematics for (a) tunable active inductor and (b) complete VCO.
We know that inductance at the base generates a negative resistance and a positive inductance seen from the emitter, as LNA designers can attest to [18]. Careful derivation of
Thus, we can tune the inductance by varying the
The impedance at the emitter is mapped to the resonant tank through the transformer formed by
This raises interesting question as smaller output power usually means inferior phase noise performance. One possible explanation is that the noise current at the second harmonic in Q1 and Q2 of Figure 6 generates large noise voltage at the emitter since these nodes are open circuit due to resonance, thus amplifying the noise current at second harmonic. It should be noted that the phase noise could be improved substantially by breaking the noise current path at second harmonic [19].
\nA salient feature of Clapp oscillator is the inherent isolation of the load from the tank. This helps to preserve the quality factor of the tank, leading to a better phase noise and less load pulling (variation of oscillation amplitude and frequency caused by load variation). The problem of low output impedance at second harmonic is also mitigated in this topology as the base is isolated from the drain.
\nOne starts to wonder if there is a way to further improve the phase noise performance. We know there is a trade-off between noise performance and power consumption, but we are kind of stuck here: We need larger transistor to burn larger power, but the larger capacitance of the device means smaller inductors in the tank, which complicates the design and ultimately degrades the
One way to do that is to build an array of
Each individual oscillator shown in Figure 8 is a cross-coupled push-push oscillator. It is designed for optimum fourth harmonic generation by making sure that the gate is isolated from the drain at the fourth harmonic. The second harmonic is rejected by the narrow band on-chip antenna. Each oscillator is coupled to other oscillators as shown in Figure 8(a) through active phase shifters. Figure 8(a) forms a unit cell through which a 2-D oscillator lattice could be formed as shown in Figure 8(b). One nice feature of this design is the use of phase shifter as coupling elements, as this provides us with a new way of tuning the frequency of these injection-locked oscillators [21]:
\nBlock diagram for (a) a unit cell and (b) 2-D oscillator lattice.
Equation (30) is derived from the Adler’s equation under locked conditions.
Since the total phase shift through the loop in Figure 8(a) is
A brief comparison between multipliers and harmonic injection-locked VCOs is also in place: The former is generally compact and wideband. They add negligible phase noise if designed properly as dictated by Eq. (22). The biggest issue is the harmonics, which leads to annoying LO spurs that leads to spurious emission and corrupts received signals. The latter comes with higher efficiency and much higher harmonic rejection ratio, but the bandwidth is limited. The close-in phase noise is dominated by the source just like the multiplier, but the far-out phase noise is dominated by the VCO. For mm-wave frequency synthesizers, the two options generally achieve comparable phase noise performances [11]. Since we have to use multipliers to get from mm-wave to THz anyway, this same conclusion holds for THz. For communication applications, it is advisable to use PLL-locked or injection-locked VCOs to generate relatively high LO frequency and use multipliers to boost it to THz frequency (N-push VCOs does this in one place).
\nTHz detectors utilize the nonlinearity of active devices to directly rectify THz signal to DC. A lot of devices could be used, like diode-connected NMOS transistor [22], CE (common emitter) [23] or CB (common base) connected [24, 25] SiGe HBT, CMOS-compatible Schottky diode [26], or P+/n-well diode [27]. THz reception with detectors is incoherent, that is, only the amplitude information is recovered at the receiving side, which limits THz detectors almost exclusively to incoherent THz imaging applications. The strength of THz detectors lies within their simplicity: They do not need LO (local oscillator) signal to do the THz down-conversion. The received THz signal self-mix themselves to DC through even-order nonlinearity of the device. This makes scaling extremely easy, as only low-frequency routing is needed, whereas LO-driven mixer needs cumbersome and power-hungry LO tree which quickly becomes unmanageable when the array gets large. A 1024 pixel NMOS detector array [22] in 65-nm CMOS process showcases the impressive scalability of THz detectors.
\nHowever, this flexibility comes with a price: The gain and noise performance of detectors is quite limited, and the specification “responsivity” and “noise equivalent power (NEP)” are used in place of conversion gain and noise figure. The responsivity is defined as the voltage output divided by received power, and NEP is defined as the output noise voltage density divided by responsivity.
\nThe bandwidth of imaging application is usually below 1 MHz; thus, technologies with lower 1/f noise corner frequencies like SiGe HBT or P+/n-Well diode are preferred. The 1/f noise corner frequencies for SiGe HBT and P+/n-well diode are below 1 kHz and 10 kHz, respectively, whereas for NMOS transistor or Schottky diodes, the numbers are well above 1 MHz. For SiGe HBTs, it is shown that CB-connected topology has higher responsivity than CE-connected topology when operating above
The principle of THz imaging with detectors largely follow their optical counterpart: They use THz lenses to do the focusing. The problem is that THz wavelength is 2–3 orders of magnitude larger than visible lights, thus large and bulky THz optics are required for reasonable imaging resolutions. They require a lot of effort to set up the imaging setup with the invisible THz radiations [25]. This is the innate deficiency with incoherent imaging. Coherent imaging with THz transceivers could get rid of those optics.
\nFor transceivers working at lower frequencies, the transmitter and receiver are usually integrated on one chip, and they share the common RF port through switches or duplexers (bandpass filters tuned for simultaneous transmit and receive on different bands). Up to now, neither option is satisfactory for fully integrated silicon THz circuits.
\nOne solution for integrated THz transceiver is to share the antenna and figure out ways to isolate the Tx (transmitter) and Rx (receiver). Park et al. have shown a fully integrated 260 GHz transceiver based on shared leaky-wave antenna [28]. The leaky-wave antenna resembles a lossy transmission line (TL); thus, the Tx and Rx ports could be placed on either end of the antenna. When the transmitter is working, the receiver is turned off and terminates the TL on its side. The same holds true for the receiving mode. The problem with the leaky-wave antenna is that they are relatively long (1.2 mm or 2.5 λ in this design). Statnikov et al. [29] have shown a fully integrated 240 GHz frequency-modulated continuous wave (FMCW) radar transceiver based on shared dual-polarization antenna. A quadrature hybrid coupler is used as a polarizer for the dual-polarization antenna and duplexer for the Tx and Rx. Isolation of the Tx and Rx depends on the orthogonality of left hand circular polarized (LHCP) and right hand circular polarized (RHCP) waves. The Tx and Rx interface with two orthogonal port of the branch-line coupler and are isolated from each other. In Tx mode, the branch-line coupler excites the LHCP mode of the antenna. When the transmitted wave hits a target and bounces back, it changes to RHCP and is subsequently routed to the receiver through the coupler. This scheme is not directly applicable for point-to-point communications, just like frequency-division duplexing (FDD)-based transceivers could not communicate directly with each other.
\nAnother solution is to use two antennas. For FMCW radars, the leakage from the TX to the Rx results in strong interferences around DC [30]. This raises the noise floor in the range spectrum. With area permitting, the Tx and Rx antenna should be separated further apart for better isolation. The measured crosstalk between the two antennas with a separation of about 1.8 mm in a 160 GHz FMCW radar transceiver is below 31 dB [31]. This isolation might be adequate for FMCW radar applications, but it is still wanting for communications.
\nTransceiver-based THz imaging makes coherent imaging possible, as both the magnitude and phase information of the signal from targets are retained. With both information available, it is possible to get rid of bulky THz optics by sampling the THz field directly and do the focusing digitally. The THz field is usually sampled on a 2-D plane with different THz frequencies; this is fulfilled by raster scanning a FMCW transceiver (or the sample). For a given point in space, the round-trip phase delay from the transceiver to that point is a function of its position and sampling frequency. By raster scanning the transceiver or the sample under different frequencies, its phase delay variation is orthogonal to every other point in the sampling space. This forms the basis for the 3-D imaging through the back-projection algorithm. 3-D imaging based on SiGe FMCW transceivers is reported by several groups [32, 33], showcasing the great potential for low-cost THz imaging applications.
\nFor communication applications, the modulation scheme plays a major role in deciding the transceiver architecture. Low-complexity modulation schemes like on-off keying (OOK) and binary phase shift keying (BPSK) lead to robust and power-efficient design, but the spectrum efficiencies are relatively low. Modulation schemes like 32 QAM and 128 QAM lead to much higher spectrum efficiency, but they are quite demanding on linearity and phase noise performance, and they require image-rejection architectures as the spectra of QAM are asymmetric around the carrier. The upper sideband (USB) and lower sideband (LSB) of the spectra become each other’s own image when converted to baseband, and image-rejection is needed to avoid signal corruption. Image-rejection modulation/demodulation is difficult in THz range as I/Q mixers are required. It is very difficult to guarantee phase and amplitude matching for the I/Q LO signal for adequate image-rejection at THz frequency.
\nA 210 GHz fundamental transceiver chipset with OOK modulation is demonstrated in a 32-nm SOI CMOS process [34]. Ideally speaking, power amplifier (PA)-based fundamental operation is more power-efficient than frequency multipliers. This helps to boost efficiency of the whole system as PAs are usually the most power-hungry circuits in transceivers. Perhaps the most difficult part of this design is controlling the oscillator pulling effect. Since the PA works at the same frequency as the on-chip VCO, significant coupling could occur between PA and VCO. The injection-locking effect would impact the phase noise performance heavily. The on-chip antenna used in this design only makes things more difficult. To improve the VCO performance, a stacked cross-coupled VCO topology is used to boost oscillation amplitude, improving its robustness in response to interferences.
\nA 240-GHz direction-conversion transceiver in SiGe BiCMOS technology is demonstrated with BPSK capability. BPSK is a constant-envelope modulation, which means the PA could be driven to saturation for better power efficiency. The spectra of BPSK modulation are symmetric around its carrier (symmetrically modulated), making direct conversion easier to implement as no image-rejection is needed. A 30 GHz LO signal is supplied to this transceiver, and on-chip ×8 multipliers are used for the 240 GHz LO generation. This helps to alleviate the detrimental effect of LO spurs caused by multipliers since they are separated by twice the baseband bandwidth (15 GHz). An on-chip antenna with 1-dB bandwidth of 33 GHz is achieved partly due to the local back etching (LBE) technology used. The silicon substrate below the antenna is removed, resulting in a low-loss air cavity below the antenna. The transceiver link is tested with 15 cm separation, and an impressive 6-dB bandwidth of 35 GHz is obtained. A 25 Gbps wireless link is demonstrated by this transceiver with no equalization. One problem with direct conversion using no I/Q demodulation is that the demodulated signal’s SNR is dependent on the phase difference between the Tx LO and Rx LO. A phase shifter is used in this test in case manual tuning is required to boost the SNR.
\nA 300 GHz QPSK transmitter for dielectric waveguide communication is demonstrated in a 65-nm CMOS process [35]. Again, off-chip LO signal is used to drive on-chip frequency multipliers. The targeted data rate is 30 Gbps, which translates to around 20 GHz baseband bandwidth for QPSK assuming a roll-off factor of 0.3. Thus, the off-chip LO signal frequency is set to 45 GHz. An on-chip quadrature modulator is used to modulate the baseband data to an IF frequency of 135 GHz. It is further shifted by a double-balanced mixer to 315 GHz. Such a high IF alleviates the need for image-rejection mixers since the image frequency falls completely out of band. A 30 Gbps QPSK is demonstrated with on-chip probing.
\nA 230 GHz direct-conversion 16-QAM 100-Gbps wireless link is demonstrated with a communication distance of 1 meter [36]. The I/Q mixer directly interfaces with on-chip antenna to avoid bandwidth limitation introduced by LNA. On-chip LO multiplier chain is used to convert the external 13.75–16 GHz LO to 220–256 GHz. The baseband bandwidth is around 14 GHz; this poses challenge as the spacing of LO spurs is comparable to this bandwidth. This leads to spurious modulation that overlaps with desired signal. Nevertheless, 100 Gbps with an EVM of 17% is demonstrated.
\nA 300 GHz 32-QAM and 128-QAM transmitter with 105-Gbps data rate is demonstrated in a 40 nm CMOS process [37]. As there is no PA available, an array of eight square mixers (i.e., mixing through the second-order nonlinearity) is power combined at the output stage. A heterodyne topology is used, and the LO frequencies for the two up-conversion stage are both set at 135 GHz. The IF frequency for the first stage is around 10 GHz, and high-pass filtering is used to suppress the LSB by approximately 10 dB. Single-balanced mixer is used in the first stage to intentionally leak LO signal to the second stage. The second-order nonlinearity of NMOS transistor is used to mix the (IF+LO) signal with LO leakage to obtain the desired intermodulation signal (IF+2LO). Unwanted second harmonics of LO and IF signal is canceled at the output rat-race balun. On-chip probing validates the operation; the 32-QAM modulation with an EVM of 8.9% is achieved with 105 Gbps. No on-chip antenna is used as this chip is intended to drive high-power THz devices like traveling-wave tubes.
\nThe THz interface serves as a gateway between the circuit and the outside world. The efficiency of this interface greatly impacts the performance of the overall system. A simple derivation of the transceiver’s link budget would highlight the importance of this interface (Figure 9):
\nLink budget analysis of a THz transceiver system.
where
To maximize
For THz silicon chips, grounded coplanar waveguide (GCPW) is the most prevalent medium for on-chip THz routing. It is a combination of coplanar waveguide with microstrip line. This configuration have several merits: First, the ground plane of the microstrip line shields the signal from the electrically thick silicon substrate, which reduces loss and prevents the signal from leaking into substrate modes; the coplanar waveguide makes interface with outside world easier, be it through flip-chip bonding or on-chip probing since the ground conductor lies in proximity with the signal trace.
\nA 90–300 GHz transmitter and a 115–325 GHz receiver are flip-chip bonded to a liquid-crystal polymer (LCP) substrate [12]. This connects the chip to the 100–280 GHz Vivaldi antenna on the LCP substrate. Such wideband antenna is extremely difficult to realize on-chip. As another example, a CMOS 300 GHz transmitter chip is flip-chip bonded to a GCPW-to-WG transition module [38] implemented on a low-cost glass epoxy PCB. Once transitioned to waveguide interfaces, the chip could be interfaced to a plethora of THz components like horn antennas and high-power amplifier modules. The packaging loss is 8 dB, which includes the transition loss (flip-chip bonding and the GCPW-to-WG), impedance mismatch, and loss in the epoxy material. It should be noted that gold stud bumping is used in both cases, which is compatible with conventional wire bonders and is quite convenient for R&D labs.
\nAn effective way to lower transition loss is to radiate the THz signal directly from chip. Since the high permittivity silicon substrate readily traps the THz radiation, there are basically two lines of thoughts regarding on-chip antenna design. One is to accept this coupling and take this into account while designing antennas; the other is to eliminate the substrate mode altogether.
\nThe first approach tries to make use of the electrically thick antenna to improve the antenna bandwidth. Metal reflector are placed underneath the substrate to reflect energy back, which is often the top layer of the PCB under the chip. To make sure the reflected power adds constructively with the surface radiation, the chip should be (2
Although promising, allowing reflections within the substrate increases couplings between antenna elements and on-chip passive components. This makes circuit performance sensitive to antenna location and substrate dimensions (both lateral dimension and chip thickness), which is undesirable for designing arrays.
\nThere are two widely adopted approach to eliminate the substrate mode. The first approach involves attaching a high-k dielectric lens on the back side of the chip, and the antenna radiates through the lens [22, 42, 43, 44]. This approach offers high directivity and improves efficiency. The most obvious drawback is the need for nonstandard packaging, which could be quite costly. An intuitive way of understanding why this structure can eliminate the substrate mode can be found in [8].
\nThe second approach is more straightforward: The substrate is shielded from the radiating element using one or a few low-level metal layers. This eliminates the possibility of coupling with substrate modes, but it limits the bandwidth and radiation efficiency severely since the radiating element is only a few microns away from the ground due to the restriction of silicon backend process. The radiating element thus forms a high Q tank with the ground, and the bandwidth of the antenna is on the order of a few percent [13, 20, 25]. The obvious way to increase bandwidth and radiation efficiency is to lower the Q, which could be accomplished by increasing the volume of the resonant tank. One solution is to add a dielectric superstrate above the radiating element [45, 46], which diverts some of the electric fields from the dielectric layer below the radiating element, increasing the resonance volume considerably. The radiation efficiency increases with the superstrate till the onset of the
For phased array applications, the patch antenna with ground shield is the most straightforward approach.
\nSilicon THz circuit design is an active research area open to innovations on multiple levels. We need better passive components, better circuits, and the most important thing is we need to come up with better ways of building THz arrays. Scaling is the key for significantly boosting the performance of silicon THz systems as we venture into this last untapped spectrum [50].
\nGeneral requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6"},books:[{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:null,isOpenForSubmission:!0,hash:"339199f254d2987ef3167eef74fb8a38",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10741",title:"Synthetic Genomics - From Natural to Synthetic Genomes",subtitle:null,isOpenForSubmission:!0,hash:"eb1cebd0b9c4e7e87427003ff7196f57",slug:null,bookSignature:"Dr. Miguel Fernández-Niño and Dr. Luis H. Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/10741.jpg",editedByType:null,editors:[{id:"158295",title:"Dr.",name:"Miguel",surname:"Fernández-Niño",slug:"miguel-fernandez-nino",fullName:"Miguel Fernández-Niño"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"a71558dd7dfd16ad140168409f887f7e",slug:null,bookSignature:"Prof. Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,isOpenForSubmission:!0,hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",slug:null,bookSignature:"Dr. Jie Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",editedByType:null,editors:[{id:"181267",title:"Dr.",name:"Jie",surname:"Tang",slug:"jie-tang",fullName:"Jie Tang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!0,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:null,bookSignature:"Prof. Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editedByType:null,editors:[{id:"40482",title:"Prof.",name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!0,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:null,bookSignature:"Prof. Yusuf Tutar and Dr. Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:null,editors:[{id:"158492",title:"Prof.",name:"Yusuf",surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:13},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"654",title:"Seismology",slug:"seismology",parent:{title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:13,numberOfAuthorsAndEditors:311,numberOfWosCitations:364,numberOfCrossrefCitations:199,numberOfDimensionsCitations:451,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"seismology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8257",title:"Seismic Waves",subtitle:"Probing Earth System",isOpenForSubmission:!1,hash:"6a7acf0b6350ff87cc629283bfe248f8",slug:"seismic-waves-probing-earth-system",bookSignature:"Masaki Kanao and Genti Toyokuni",coverURL:"https://cdn.intechopen.com/books/images_new/8257.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8361",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",subtitle:null,isOpenForSubmission:!1,hash:"788c034eec48a4e2f1f6a2f1788d3346",slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8361.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",middleName:null,surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8282",title:"Polar Seismology",subtitle:"Advances and Impact",isOpenForSubmission:!1,hash:"69e0f0e64b988f29d30532c2618705b2",slug:"polar-seismology-advances-and-impact",bookSignature:"Masaki Kanao",coverURL:"https://cdn.intechopen.com/books/images_new/8282.jpg",editedByType:"Authored by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"6213",title:"Risk Assessment",subtitle:null,isOpenForSubmission:!1,hash:"ee3d73b48171426d2edb88e55e20f615",slug:"risk-assessment",bookSignature:"Valentina Svalova",coverURL:"https://cdn.intechopen.com/books/images_new/6213.jpg",editedByType:"Edited by",editors:[{id:"62677",title:"Dr.",name:"Valentina",middleName:null,surname:"Svalova",slug:"valentina-svalova",fullName:"Valentina Svalova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5958",title:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy",subtitle:"New Insights and Contributions",isOpenForSubmission:!1,hash:"c7007d85d2a3d26fe08d934f72b0278d",slug:"seismic-and-sequence-stratigraphy-and-integrated-stratigraphy-new-insights-and-contributions",bookSignature:"Gemma Aiello",coverURL:"https://cdn.intechopen.com/books/images_new/5958.jpg",editedByType:"Edited by",editors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3059",title:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering",subtitle:null,isOpenForSubmission:!1,hash:"2edf2eec98179a50d827dd4fd9dbe011",slug:"engineering-seismology-geotechnical-and-structural-earthquake-engineering",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/3059.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3551",title:"Earthquake Research and Analysis",subtitle:"New Advances in Seismology",isOpenForSubmission:!1,hash:"b1e244d7ea470738d42bc37e38470f22",slug:"earthquake-research-and-analysis-new-advances-in-seismology",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/3551.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2227",title:"Tectonics",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3b4c2f80af61284334fb3655852de9f7",slug:"tectonics-recent-advances",bookSignature:"Evgenii Sharkov",coverURL:"https://cdn.intechopen.com/books/images_new/2227.jpg",editedByType:"Edited by",editors:[{id:"32743",title:"Prof.",name:"Evgenii",middleName:null,surname:"Sharkov",slug:"evgenii-sharkov",fullName:"Evgenii Sharkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1602",title:"New Achievements in Geoscience",subtitle:null,isOpenForSubmission:!1,hash:"f2742feb8ad590c91677e0dd148fc36d",slug:"new-achievements-in-geoscience",bookSignature:"Hwee-San Lim",coverURL:"https://cdn.intechopen.com/books/images_new/1602.jpg",editedByType:"Edited by",editors:[{id:"3910",title:"Dr.",name:"Hwee-San",middleName:null,surname:"Lim",slug:"hwee-san-lim",fullName:"Hwee-San Lim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2051",title:"Earthquake Research and Analysis",subtitle:"Statistical Studies, Observations and Planning",isOpenForSubmission:!1,hash:"492268d0be01c6d76f0e2e4ac5c35730",slug:"earthquake-research-and-analysis-statistical-studies-observations-and-planning",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/2051.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"605",title:"Earthquake Research and Analysis",subtitle:"Seismology, Seismotectonic and Earthquake Geology",isOpenForSubmission:!1,hash:"7f97c97f3cf8d09622afa27f3fd2d1e4",slug:"earthquake-research-and-analysis-seismology-seismotectonic-and-earthquake-geology",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/605.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2048",title:"Earthquake Research and Analysis",subtitle:"New Frontiers in Seismology",isOpenForSubmission:!1,hash:"28d7da86de8c245c5391e4a78f6c2d53",slug:"earthquake-research-and-analysis-new-frontiers-in-seismology",bookSignature:"Sebastiano D'Amico",coverURL:"https://cdn.intechopen.com/books/images_new/2048.jpg",editedByType:"Edited by",editors:[{id:"52181",title:"Dr.",name:"Sebastiano",middleName:null,surname:"D'Amico",slug:"sebastiano-d'amico",fullName:"Sebastiano D'Amico"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,mostCitedChapters:[{id:"37859",doi:"10.5772/50009",title:"Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic",slug:"plate-tectonic-evolution-of-the-southern-margin-of-laurussia-in-the-paleozoic",totalDownloads:4863,totalCrossrefCites:12,totalDimensionsCites:41,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Jan Golonka and Aleksandra Gawęda",authors:[{id:"16567",title:"Dr.",name:"Jan",middleName:null,surname:"Golonka",slug:"jan-golonka",fullName:"Jan Golonka"}]},{id:"37864",doi:"10.5772/50145",title:"Role of the NE-SW Hercynian Master Fault Systems and Associated Lineaments on the Structuring and Evolution of the Mesozoic and Cenozoic Basins of the Alpine Margin, Northern Tunisia",slug:"role-of-the-ne-sw-hercynian-master-fault-systems-and-associated-lineaments-on-the-structuring-and-ev",totalDownloads:6637,totalCrossrefCites:14,totalDimensionsCites:23,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Fetheddine Melki, Taher Zouaghi, Mohamed Ben Chelbi, Mourad Bédir and Fouad Zargouni",authors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"},{id:"147368",title:"Dr.",name:"Fetheddine",middleName:null,surname:"Melki",slug:"fetheddine-melki",fullName:"Fetheddine Melki"}]},{id:"26255",doi:"10.5772/30219",title:"Modelling Seismic Wave Propagation for Geophysical Imaging",slug:"modelling-seismic-wave-propagation-for-geophysical-imaging-",totalDownloads:6059,totalCrossrefCites:11,totalDimensionsCites:22,book:{slug:"seismic-waves-research-and-analysis",title:"Seismic Waves",fullTitle:"Seismic Waves - Research and Analysis"},signatures:"Jean Virieux, Vincent Etienne, Victor Cruz-Atienza, Romain Brossier, Emmanuel Chaljub, Olivier Coutant, Stéphane Garambois, Diego Mercerat, Vincent Prieux, Stéphane Operto, Alessandra Ribodetti and Josué Tago",authors:[{id:"12036",title:"Dr.",name:"Stephane",middleName:null,surname:"Operto",slug:"stephane-operto",fullName:"Stephane Operto"},{id:"12331",title:"Dr.",name:"Romain",middleName:null,surname:"Brossier",slug:"romain-brossier",fullName:"Romain Brossier"},{id:"12332",title:"Pr.",name:"Jean",middleName:null,surname:"Virieux",slug:"jean-virieux",fullName:"Jean Virieux"},{id:"121171",title:"Dr.",name:"Stéphane",middleName:null,surname:"Garambois",slug:"stephane-garambois",fullName:"Stéphane Garambois"},{id:"122541",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Chaljub",slug:"emmanuel-chaljub",fullName:"Emmanuel Chaljub"},{id:"122542",title:"Dr.",name:"Olivier",middleName:null,surname:"Coutant",slug:"olivier-coutant",fullName:"Olivier Coutant"},{id:"122544",title:"Dr.",name:"Vincent",middleName:null,surname:"Etienne",slug:"vincent-etienne",fullName:"Vincent Etienne"},{id:"122545",title:"Dr.",name:"Diego",middleName:null,surname:"Mercerat",slug:"diego-mercerat",fullName:"Diego Mercerat"},{id:"122546",title:"Mr.",name:"Vincent",middleName:null,surname:"Prieux",slug:"vincent-prieux",fullName:"Vincent Prieux"},{id:"122548",title:"Dr.",name:"Alessandra",middleName:null,surname:"Ribodetti",slug:"alessandra-ribodetti",fullName:"Alessandra Ribodetti"},{id:"122550",title:"Dr.",name:"Victor",middleName:"M.",surname:"Cruz-Atienza",slug:"victor-cruz-atienza",fullName:"Victor Cruz-Atienza"},{id:"122551",title:"Mr.",name:"Josué",middleName:null,surname:"Tago",slug:"josue-tago",fullName:"Josué Tago"}]}],mostDownloadedChaptersLast30Days:[{id:"37864",title:"Role of the NE-SW Hercynian Master Fault Systems and Associated Lineaments on the Structuring and Evolution of the Mesozoic and Cenozoic Basins of the Alpine Margin, Northern Tunisia",slug:"role-of-the-ne-sw-hercynian-master-fault-systems-and-associated-lineaments-on-the-structuring-and-ev",totalDownloads:6636,totalCrossrefCites:14,totalDimensionsCites:23,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Fetheddine Melki, Taher Zouaghi, Mohamed Ben Chelbi, Mourad Bédir and Fouad Zargouni",authors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"},{id:"147368",title:"Dr.",name:"Fetheddine",middleName:null,surname:"Melki",slug:"fetheddine-melki",fullName:"Fetheddine Melki"}]},{id:"64562",title:"Electrical Resistivity Tomography: A Subsurface-Imaging Technique",slug:"electrical-resistivity-tomography-a-subsurface-imaging-technique",totalDownloads:1926,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",fullTitle:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics"},signatures:"Bing Zhou",authors:null},{id:"67965",title:"Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data",slug:"seismic-velocity-structure-in-and-around-the-japanese-island-arc-derived-from-seismic-tomography-inc",totalDownloads:953,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"seismic-waves-probing-earth-system",title:"Seismic Waves",fullTitle:"Seismic Waves - Probing Earth System"},signatures:"Makoto Matsubara, Hiroshi Sato, Kenji Uehira, Masashi Mochizuki, Toshihiko Kanazawa, Narumi Takahashi, Kensuke Suzuki and Shin’ichiro Kamiya",authors:null},{id:"37860",title:"Structural Geological Analysis of the High Atlas (Morocco): Evidences of a Transpressional Fold-Thrust Belt",slug:"structural-geological-analysis-of-the-high-atlas-morocco-evidences-of-a-transpressional-fold-thrust-",totalDownloads:14020,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Alessandro Ellero, Giuseppe Ottria, Marco G. Malusà and Hassan Ouanaimi",authors:[{id:"144013",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Ottria",slug:"giuseppe-ottria",fullName:"Giuseppe Ottria"},{id:"144580",title:"Dr.",name:"Alessandro",middleName:null,surname:"Ellero",slug:"alessandro-ellero",fullName:"Alessandro Ellero"},{id:"158054",title:"Dr.",name:"Marco G.",middleName:null,surname:"Malusà",slug:"marco-g.-malusa",fullName:"Marco G. Malusà"},{id:"158056",title:"Prof.",name:"Hassan",middleName:null,surname:"Ouanaimi",slug:"hassan-ouanaimi",fullName:"Hassan Ouanaimi"}]},{id:"57107",title:"Pharmaceuticals and Personal Care Products: Risks, Challenges, and Solutions",slug:"pharmaceuticals-and-personal-care-products-risks-challenges-and-solutions",totalDownloads:1084,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"risk-assessment",title:"Risk Assessment",fullTitle:"Risk Assessment"},signatures:"Zakiya Hoyett",authors:[{id:"209465",title:"Dr.",name:"Zakiya",middleName:null,surname:"Hoyett",slug:"zakiya-hoyett",fullName:"Zakiya Hoyett"}]},{id:"43814",title:"Damage Estimation Improvement of Electric Power Distribution Equipment Using Multiple Disaster Information",slug:"damage-estimation-improvement-of-electric-power-distribution-equipment-using-multiple-disaster-infor",totalDownloads:1244,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"earthquake-research-and-analysis-new-advances-in-seismology",title:"Earthquake Research and Analysis",fullTitle:"Earthquake Research and Analysis - New Advances in Seismology"},signatures:"Yoshiharu Shumuta",authors:[{id:"73485",title:"Dr.",name:"Yoshiharu",middleName:null,surname:"Shumuta",slug:"yoshiharu-shumuta",fullName:"Yoshiharu Shumuta"}]},{id:"57751",title:"Sequence Stratigraphy of Fluvial Facies: A New Type Representative from Wenliu Area, Bohai Bay Basin, China",slug:"sequence-stratigraphy-of-fluvial-facies-a-new-type-representative-from-wenliu-area-bohai-bay-basin-c",totalDownloads:1297,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"seismic-and-sequence-stratigraphy-and-integrated-stratigraphy-new-insights-and-contributions",title:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy",fullTitle:"Seismic and Sequence Stratigraphy and Integrated Stratigraphy - New Insights and Contributions"},signatures:"Jingzhe Li and Jinliang Zhang",authors:[{id:"202289",title:"Prof.",name:"Jinliang",middleName:null,surname:"Zhang",slug:"jinliang-zhang",fullName:"Jinliang Zhang"},{id:"204039",title:"Dr.",name:"Jingzhe",middleName:null,surname:"Li",slug:"jingzhe-li",fullName:"Jingzhe Li"}]},{id:"61767",title:"A New Trend in Cryoseismology: A Proxy for Detecting the Polar Surface Environment",slug:"a-new-trend-in-cryoseismology-a-proxy-for-detecting-the-polar-surface-environment",totalDownloads:655,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"polar-seismology-advances-and-impact",title:"Polar Seismology",fullTitle:"Polar Seismology - Advances and Impact"},signatures:"Masaki Kanao",authors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}]},{id:"42784",title:"Advanced Applications in the Field of Structural Control and Health Monitoring After the 2009 L’Aquila Earthquake",slug:"advanced-applications-in-the-field-of-structural-control-and-health-monitoring-after-the-2009-l-aqui",totalDownloads:2086,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"engineering-seismology-geotechnical-and-structural-earthquake-engineering",title:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering",fullTitle:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering"},signatures:"Vincenzo Gattulli",authors:[{id:"159477",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Gattulli",slug:"vincenzo-gattulli",fullName:"Vincenzo Gattulli"}]},{id:"43262",title:"Pushover Analysis of Long Span Bridge Bents",slug:"pushover-analysis-of-long-span-bridge-bents",totalDownloads:3383,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"engineering-seismology-geotechnical-and-structural-earthquake-engineering",title:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering",fullTitle:"Engineering Seismology, Geotechnical and Structural Earthquake Engineering"},signatures:"Vitaly Yurtaev and Reza Shafiei",authors:[{id:"161878",title:"Ph.D.",name:"Vitaly",middleName:null,surname:"Yurtaev",slug:"vitaly-yurtaev",fullName:"Vitaly Yurtaev"}]}],onlineFirstChaptersFilter:{topicSlug:"seismology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/176906/stephanos-konstantinidis",hash:"",query:{},params:{id:"176906",slug:"stephanos-konstantinidis"},fullPath:"/profiles/176906/stephanos-konstantinidis",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()