This chapter is dedicated to wetting and fracturing processes involving molecular phospholipid films and high-energy solid surfaces. In these systems, wetting of planar surfaces occurs in an aqueous environment by means of self-spreading of phospholipid membranes from artificially generated lipid sources, which range from manually deposited single sources (multilamellar liposomes) to liposome suspensions of different particle sizes, which are directly pipetted onto the substrate. The most prominent of the molecular lipid films is the phospholipid bilayer, which constitutes the fundamental structure of the biological cell membrane. Lipid membranes have peculiar characteristics, are highly dynamic, feature two-dimensional fluidity, and can accommodate functional molecules. Understanding the interactions of lipid films with solid interfaces is of high importance in areas like cell biology, biomedical engineering, and drug delivery.
Part of the book: Surface Energy