This chapter presents two probabilistic planning tools developed for the long-term analysis of distribution networks. The first one focuses on the low-voltage (LV) level and the second one addresses the issues occurring in the medium-voltage (MV) grid. Both tools use Monte Carlo algorithms in order to simulate the distribution network, taking into account the stochastic nature of the loading parameters at its nodes. Section 1 introduces the probabilistic framework that focuses on the analysis of LV feeders with distributed photovoltaic (PV) generation using quarter-hourly smart metering data of load and generation at each node of a feeder. This probabilistic framework is evaluated by simulating a real LV feeder in Belgium considering its actual loading parameters and components. In order to demonstrate the interest of the presented framework for the distribution system operators (DSOs), the same feeder is then simulated considering future scenarios of higher PV integration as well as the application of mitigation solutions (reactive power control, P/V droop control thanks to a local management of PV inverters, etc.) to actual LV network operational issues arising from the integration of distributed PV generation. Section 2 introduces the second planning tool designed to help the DSO, making the best investment for alleviating the MV-network stressed conditions. Practically, this tool aims at finding the optimal positioning and sizing of the devices designed to improve the operation of the distribution grid. Then a centralized control of these facilities is implemented in order to assess the effectiveness of the proposed approach. The simulation is carried out under various load and generation profiles, while the evaluation criteria of the methodology are the probabilities of voltage violation, the presence of congestions and the total line losses.
Part of the book: Renewable Energy
Maximizing the share of renewable resources in the electric energy supply is a major challenge in the design of the future energy system. Regarding the low voltage (LV) level, the main focus is on the integration of distributed photovoltaic (PV) generation. Nowadays, the lack of monitoring and visibility, combined with the uncoordinated integration of distributed generation, often leads system operators to an impasse. As a matter of fact, the numerous dispersed PV units cause distinct power quality and cost-efficiency problems that restrain the further integration of PV units. The PV hosting capacity is a tool for addressing such power system performance and profitability issues so that the different stakeholders can discuss on a common ground. Photovoltaic hosting capacity of a feeder is the maximum amount of PV generation that can be connected to it without resulting in unacceptable power quality. This chapter demonstrates the usefulness of smart metering (SM) data in determining the maximum PV hosting capacity of an LV distribution feeder. Basically, the chapter introduces a probabilistic tool that estimates PV hosting capacity by using customer-specific energy flow data, recorded by SM devices. The probabilistic evaluation and the use of historical SM data yield a reliable estimation that considers the volatile character of distributed generation and loads as well as technical constraints of the network (voltage magnitude, phase unbalance, congestion risk). As a case study, an existing LV feeder in Belgium is analysed. The feeder is located in an area with high PV penetration and large deployment of SM devices.
Part of the book: Smart Metering Technology and Services