List of common saturated and unsaturated fatty acids.
\r\n\tIn the book the theory and practice of microwave heating are discussed. The intended scope covers the results of recent research related to the generation, transmission and reception of microwave energy, its application in the field of organic and inorganic chemistry, physics of plasma processes, industrial microwave drying and sintering, as well as in medicine for therapeutic effects on internal organs and tissues of the human body and microbiology. Both theoretical and experimental studies are anticipated.
\r\n\r\n\tThe book aims to be of interest not only for specialists in the field of theory and practice of microwave heating but also for readers of non-specialists in the field of microwave technology and those who want to study in general terms the problem of interaction of the electromagnetic field with objects of living and nonliving nature.
",isbn:"978-1-83968-227-8",printIsbn:"978-1-83968-226-1",pdfIsbn:"978-1-83968-228-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8f6a41e4f5ce0e9c48628516d7c92050",bookSignature:"Prof. Gennadiy Churyumov",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10089.jpg",keywords:"Electromagnetic Wave, Microwave Energy Application, Electromagnetic Energy Generation, Intelligent Microwave Heating, Microwave Organic Chemistry, Microwave Reactor, Microwave Discharge, Microwave Plasma, Microwave Drying System, Tissue Microwave Heating, Measurement Automation, Industrial Microwave Process",numberOfDownloads:224,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Prof. Gennadiy I. Churyumov is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology and a senior IEEE member.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"216155",title:"Prof.",name:"Gennadiy",middleName:null,surname:"Churyumov",slug:"gennadiy-churyumov",fullName:"Gennadiy Churyumov",profilePictureURL:"https://mts.intechopen.com/storage/users/216155/images/system/216155.jfif",biography:"Gennadiy I. Churyumov (M’96–SM’00) received the Dipl.-Ing. degree in Electronics Engineering and his Ph.D. degree from the Kharkiv Institute of Radio Electronics, Kharkiv, Ukraine, in 1974 and 1981, respectively, as well as the D.Sc. degree from the Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv, Ukraine, in 1997. \n\nHe is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology. \n\nHe is currently the Head of a Microwave & Optoelectronics Lab at the Department of Electronics Engineering at the Kharkiv National University of Radio Electronics. \n\nHis general research interests lie in the area of 2-D and 3-D computer modeling of electron-wave processes in vacuum tubes (magnetrons and TWTs), simulation techniques of electromagnetic problems and nonlinear phenomena, as well as high-power microwaves, including electromagnetic compatibility and survivability. \n\nHis current activity concentrates on the practical aspects of the application of microwave technologies.",institutionString:"Kharkiv National University of Radio Electronics (NURE)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:[{id:"74623",title:"Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures",slug:"influence-of-the-microwaves-on-the-sol-gel-syntheses-and-on-the-properties-of-the-resulting-oxide-na",totalDownloads:94,totalCrossrefCites:0,authors:[null]},{id:"75284",title:"Microwave-Assisted Extraction of Bioactive Compounds (Review)",slug:"microwave-assisted-extraction-of-bioactive-compounds-review",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"75087",title:"Experimental Investigation on the Effect of Microwave Heating on Rock Cracking and Their Mechanical Properties",slug:"experimental-investigation-on-the-effect-of-microwave-heating-on-rock-cracking-and-their-mechanical-",totalDownloads:28,totalCrossrefCites:0,authors:[null]},{id:"74338",title:"Microwave Synthesized Functional Dyes",slug:"microwave-synthesized-functional-dyes",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"74744",title:"Doping of Semiconductors at Nanoscale with Microwave Heating (Overview)",slug:"doping-of-semiconductors-at-nanoscale-with-microwave-heating-overview",totalDownloads:45,totalCrossrefCites:0,authors:[null]},{id:"74664",title:"Microwave-Assisted Solid Extraction from Natural Matrices",slug:"microwave-assisted-solid-extraction-from-natural-matrices",totalDownloads:25,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68654",title:"Introductory Chapter: Recent Trends in “Cotton Research”",doi:"10.5772/intechopen.88776",slug:"introductory-chapter-recent-trends-in-cotton-research-",body:'\nCotton is one of the most important fiber crops in the world. It is cultivated in more than 100 countries contributing about 40% of the global market. About 350 million people are directly or indirectly linked with cotton production and industry. Cotton has major share in global agriculture economy; however, its production and yield are compromised due to various biotic, abiotic, and climatic factors. To meet the global need, innovative research has been carried out to enhance the cotton production. Starting from the conventional breeding strategies to the modern technologies, there is a long history of cotton research. In this chapter, the milestones of cotton research have been reviewed with recent and innovative results. The chapter briefly deals with cotton biotechnology, cotton cytogenetics, cotton genetics and genomics, genetic modification of cotton, genome editing, genome sequencing, etc. It contains the latest information in the field of cotton research.
\nCotton is major economic crop in the world. However, its production is restricted by various biotic and abiotic factors. Its growth and efficiency are rigorously influenced by the stresses such as high temperature, salinity, less water availability, diseases, insects, etc. The chapter discusses the recent trends in cotton research to combat these biotic and abiotic stresses in crop plants.
\nDrought is a major abiotic stress which limits plant growth and fiber quality. Yield is badly affected under less water conditions. It is widely spread in many countries and is expected to increase further [1] due to sudden climate changes. Plant growth is decreased due to drought stress as photosynthetic rate and nutrient availability in soil are reduced. Similarly, salinity causes physiological dryness. High temperature can also cause stress [2], which is cause of reduced yield. A lot of research efforts have been done with a statement that the better understanding of these mechanisms would result in crop production under stress conditions. Desiccation stress results in the changing expression pattern of genes in plants, usually arbitrated with abscisic acid (ABA) [3] and physiology of plant is badly affected by the drought stress [4].
\nWhen a plant is under stress, the genes are turned on or off. Some proteins are regulatory in nature and regulate signal transduction and regulate expression of stress-responsive genes. Transcription factors also regulate gene expression and are grouped into large families, like WRKY, bZIP, AP2/ERF, Cys2His2, MYC, zinc finger, MYB, and NAC [5]. The DREB subfamily of proteins belongs to the CBF (C repeat binding factor) proteins. ERF subfamily also has crucial role in plant gene expression under abiotic stress response and therefore received considerable attention in the recent past [6]. Drought causes significant damage to plants [7, 8, 9]. Plants have their self-defense mechanisms which respond to abiotic stresses at molecular, biochemical, and physiological levels [10, 11, 12, 13, 14]. Some genes are known to have role in the drought stress response at transcription level [8, 13, 15]. Few drought-tolerant genes have also been studied, which code for regulatory proteins, involved in further regulation of stress-responsive gene expression [14, 15].
\nCotton expressing AtNHX1 was grown in the presence of salt, which produced more fiber and biomass. Cotton plants overexpressing the AtNHX1 gene resulted in the movement of salt (Na+) into the vacuole, which leads to high concentration of salt in the vacuole, which leads to high salt tolerance in cotton. AVP1 gene from Arabidopsis introduced into the cotton resulted in enhanced salt tolerance and more fiber production [16]. CMO gene is a major catalyst in the production of glycine betaine and transgenic cotton expressing AhCMO was more tolerant to high salt concentration then non-transgenic cotton. Thus, it is clear that the salt tolerance in the cotton can be enhanced by the genetic engineering [17]. Cotton plants expressing GhDof1 gene resulted in an increased tolerance to cold and salt stress. GhSOD, GhMYB, and GhP5CS are the stress-responsive genes [18].
\nGhWRKY3 is a gene which is expressed under biotic stress. Cotton seeds were analyzed with three fungi known as Fusarium oxysporum, Rhizoctonia solani, and Colletotrichum gossypii to understand the response of GhWRKY3. The level of GhWRKY3 protein was increased after infection with these three fungi clearly indicated that GhWRKY3 has an important role in fungal pathogenesis [19]. Increased pathogen tolerance can be achieved by the transgenic management of the expression of the GhLac1 gene in cotton (Gossypium hirsutum). Elevated tolerance to the fungal pathogen, Verticillium dahliae, and cotton aphid (Aphis gossypii) resulted in response to the up-regulation of GhLac1.
\nGhWRKY39 present in the nucleus and few cis-acting elements related to stress response were studied. GhWRKY39 gene was expressed by the fungal and bacterial attack and this gene resulted in the enhanced activity of the SOD, POD, and CAT antioxidants after pathogen attack. Thus, GhWRKY39 was found to be involved in the plant protection against pathogen attack. GhWRKY39 directs the reactive oxygen species (ROS) system, which positively results in regulation of plant protection against pathogens [20].
\nCotton is included in the list of commercial plants because it can be generated from undifferentiated tissues. Tissue can be taken from plant which can be cultured on an appropriate media. By using tissue culture technology, cotton plants have been screened for disease resistance and embryonic plants produced from the callus young plants produced by suspension cultures from callus. Shoot tips were also used to regenerate whole cotton plants [21]. Cotton has successfully been regenerated from the shoot apex. Problem related to regeneration of plant from callus has been sorted out by using shoot apex as explant [21, 22, 23]. Cotton was regenerated by the use of shoot apex which was less expensive and required less labor to regenerate cotton plant.
\nLots of efforts have been made to genetically modify cotton for insect tolerance. Bt cotton is the success story in this regard. It is being grown in more than 20 countries for the last more than two decades. Extensive studies on Bt cotton have been done in different countries like India [24], Mexico [25], China [26], and Argentina [27]. Bt cotton verities have good impact on environment and human health. Bt cotton has been produced by the transfer of genes from the bacterium known as Bacillus thuringiensis which produce the insecticidal proteins. Bt cotton also resulted in the production of high level of useful insects [28].
\nNaturally, 15% oleic acids are present in the cotton seeds. So, transgenic cotton was developed to contain high levels of oleic acids. By the subcloning of mutant allele of the Fad2 gene from the phaseolin (seed specific promoter), the level of Fad2 gene in cotton was decreased. Gas chromatography was used to analyze the fatty acids profile of seed lipids from the transgenic cotton varieties. About 21–31% oleic acids were seen in the transgenic lines. Progeny of some transformants showed high levels of oleic acid (47%). So, genetically modified cotton can be developed to produce high level of oleic acid [29].
\nGenome editing can be used for the functional studies and crop improvements. CRISPR/cas9 system has a sgRNA, which directs the break of double-stranded DNA but all sgRNAs are not equally good. So, in cotton it is necessary to decrease the use of less-efficient sgRNA which can be used in the production of genetically transformed plants without the preferred CRISPR/cas9-induced mutations. The transient expression system was used to improve the functions of sgRNA in cotton. This method was used to check the target sites for the genes known as GhEF1, GhPDS, and GhCLA1 and to analyze the nature of mutation induced by CRISPR/cas9 system. Most frequent mutations observed were deletions. So, it was confirmed that CRISPR/cas9 can generate the mutations in the cotton genes, which are very important for the allotetraploid plant. It was also shown that targeting of gene can be achieved by the expression of many sgRNAs. CRISPR/cas9 was used to generate the deletions in the GhPDS locus. Genetically modified cotton having gene editing mutations in GhCLA1 gene was produced by the CRISPR/cas9 system. Intense albino phenotype was produced by the mutation in the GhCLA1 gene [30].
\nCotton is a significant crop for the production of fiber, oil and bio-fuel. Usually, Agrobacterium tumefaciens-mediated transformation into cotton takes 8–10 months to generate the T0 plants. Scientists used the transient expression system to validate the CRISPR/cas9 cassettes in cotton. Efficient CRISPR/Cas9 cassettes can be selected to get the better mutagenesis rate by the use of GhU6 promoter instead of Arabidopsis ATU6–29 promoter and GhU6 promoter. When CRISPR/cas9 expressed the sgRNA under the GhU6 promoter, CRISPR/cas9 mutagenesis rate was increased four to six times and expression level of sgRNA was increased from six to seven times, which was a great achievement in the targeted mutagenesis of cotton by the CRISPR/cas9 system [31]. CRISPR/cas9 system has been used to generate multiple sites in Gossypium hirsutum. Two genes GhCLA1 and DsRed2 were selected as targets. Plants containing edited DsRed2 gene reverted its character to wild type in T0 generation. Gene editing efficiency was 66–100% [32].
\nGenomic, genetic, and breeding data are available on the Cottongen (
This work was supported by funds from Higher Education Commission of Pakistan.
\nPZ, RS, and HMA did the research work and wrote the first draft of manuscript. MR and MI designed and wrote the paper and BR and SAK assisted in writing the paper. All the authors read the manuscript and approved it for publication.
\nRecently, PUFA have received considerable attention in both human and animal nutrition, particularly those of the n-3 family; which are distinct due to the placement of the first double bond onto the third carbon atom from the methyl end of the fatty acid molecule. Long-chain fatty acids primarily those with more than 18 carbon atoms, derived mainly from fish oils are consumed quite less along with the other PUFAs. In order to increase their consumption through human diets, has led to studies for enriching the poultry meat infused with these fatty acids and thus enabling people to live healthier lifestyles. Dietary supplementation with n-3 PUFA, such as these found in fish oil and linseed oil, were found to have nutritional benefits in humans [1, 2, 3, 4, 5].
\nThis chapter will shed light on the overview, sources, and metabolism of PUFA, their incorporation into cell membrane structure, their involvement in health and clinical problems, enrichment of poultry products with PUFA, and their involvement in immune system.
\nAll fatty acids are carboxylic acids characterized by a chain-like structure with a carboxyl group (COOH) at one end, and a methyl group (CH3) at the other end. The rest of the chain consists of carbon atoms varying in length from 2 to 20 or more with hydrocarbon bonds (CH2). Fatty acids (FA) differ in the number of hydrogen atoms and the number and location of the double bonds between adjacent carbon atoms if hydrogen atoms are removed. If a fatty acid chain is fully loaded with hydrogen atoms, the FA is termed saturated. Consequently, saturated fatty acids form straight chains as there are no double bonds between carbon atoms. These usually contain between 12 and 24 carbon atoms. This kind of FA is abundantly present in adipose tissues of animals, including poultry and used as a source of energy if needed. An example of a saturated FA is stearic acid (C18:0). This is one way to name a fatty acid (C:D) where C is the number of carbon atoms in the fatty acid and D is the number of double bonds in the fatty acid. Sources of saturated FA include meat, dairy products, palm oil, coconut oil and vegetable shortening [6].
\nIf a pair of hydrogen atoms is removed under the influence of specific enzymes, a double bond is formed between adjacent carbon atoms and the saturated FA becomes monounsaturated. An example of a monounsaturated FA is oleic acid (18:1), an n-9 FA that constitutes 74% of total FA in olives. n-x is a nomenclature of fatty acids where a double bond is located on the xth carbon▬carbon bond, counting from the terminal methyl carbon (designated as n). Other sources of monosaturated FA are avocados, rapeseed, peanuts and soybeans [7]. If two or more double bonds are formed due to removal of more than a pair of hydrogen atoms, the FA is termed polyunsaturated. The more double bonds a fatty acid has, the more unsaturated it is [8, 9, 10]. The main sources of PUFA are seeds and seed oils, oily fish and fish oils [10].
\nMoreover, the orientation of the fatty acid chain at the site of a double bond determines and characterizes a fatty acid. For example, a FA called cis-configured when both segments of the molecule lie at the same side. On the other hand, in the trans configuration, the two parts of the molecule face opposite with respect to the bond directions (see Figure 1). Most PUFA in plants and sea foods are of cis configuration [11].
\ncis and trans configuration of FA molecules.
The two major types of PUFA which play a crucial role in the biological functioning of both, humans and animals are the n-3 and n-6 PUFA. The n-3 PUFA consists of linolenic acid (LNA, C18:3), eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) whereas the n-6 PUFAs comprise mainly linoleic acid (LA, C18:2) and arachidonic acid (AA, C20:4). LA and α-LNA are classified as essential fatty acids (EFA) due to their inability to be synthesized by the body. However, these EFAs should be consumed through the diet because of shortage of specific desaturation enzymes. AA can be synthesized in from LA when the diet is consumed. In a similar manner, EPA along with DHA can be synthesized from α-LNA although synthesis between them is inadequate in most conditions. Due to the absence of specific desaturase enzymes, the n-3 and n-6 fatty acids are not inter-convertible. On the other hand, saturated FA such as palmitic acid (C16:0) and stearic acid (C18:0) and most monounsaturated FA such as oleic acid (C18:1 n-9) can be synthesized in the human body from precursors such as glucose or amino acids [12, 13]. Table 1 shows a list of the common saturated and unsaturated fatty acids.
\nCommon name | \nFA name | \n
---|---|
Butyric | \nC4:0 | \n
Caproic | \nC6:0 | \n
Caprylic | \nC8:0 | \n
Capric | \nC10:0 | \n
Undecanoic | \nC11:0 | \n
Lauric | \nC12:0 | \n
Tridecanoic | \nC13:0 | \n
Myristic | \nC14:0 | \n
Myristoleic | \nC14:1 | \n
Pentadecanoic acid | \nC15:0 | \n
c10 Pentadecanoic acid | \nC15:1 | \n
Palmitic | \nC16:0 | \n
Palmitoleic | \nC16:1 | \n
cis-10-heptadecanoic | \nC17:1 | \n
Stearic | \nC18:0 | \n
Elaidic | \nC18:1n9t | \n
Oleic | \nC18:1n9c | \n
Linolelaidic | \nC18:2n6t | \n
Linoleic | \nC18:2n6c | \n
Arachidic | \nC20:0 | \n
γ-Linolenic | \nC18:3n6 | \n
α-Linolenic | \nC18:3n3 | \n
Heneicosanoic | \nC21:0 | \n
c11, 14 Eicosadienoic | \nC20:2 | \n
Behenic | \nC22:0 | \n
c8,11,14 Eicosatrienoic | \nC20:3n6 | \n
Erucic acid | \nC22:1 n9 | \n
c11,14,17 Eicosatrienoic | \nC20:3n3 | \n
Arachidonic | \nC20:4n6 | \n
Tricosanoic | \nC23:0 | \n
c13,16 Docosadienoic | \nC22:2 | \n
Eicosapentaenoic acid (EPA) | \nC20:5n3 | \n
Lignoceric | \nC24:0 | \n
Nervonic | \nC24:1 | \n
Docosapentaenoic acid (DPA) | \nC22:5n3 | \n
Docosahexaenoic acid (DHA) | \nC22:6n3 | \n
List of common saturated and unsaturated fatty acids.
General speaking, there are small amounts of AA in fish. However Brown et al. [14] have reported that there is 4.8–14.3% AA in some Australian fish species. However, fish oil contains high amounts of EPA and DHA. These fatty acids are synthesized by phytoplankton that are consumed by fish. Some fish species may contain more than 30% n-3 PUFA about 50% of the FA in fish is PUFA, of which about 30% are n-3 FA [15, 16].
\nConversely, the presence of α–LNA in seafood is almost nil; although plant sources like chia, linseed, rapeseed, perilla and blackcurrant possess high amounts of this FA, this is because these plant sources have Δ12-desaturase that converts oleic acid into LA, this is further converted into α-LNA under the influence of Δ 15-desaturase [10]. Linseed is one of the richest know sources of α-LNA, as it contains almost 60% of this fatty acid in its oil [17].
\nSome algal oil and algal biomass obtained from marine regions are known to be good sources of DHA and EPA and thus can be used as a means to enrich meats and eggs using these long chain fatty acids. This has proved to be successful and is well documented in literature, even though DHA is mostly obtained from these algal biomasses [18, 19, 20, 21, 22, 23, 24, 25, 26].
\nIn addition, echium oil from the plant Echium plantagineum has been recognized as an ideal source of stearidonic acid (C18:4n-3) that is naturally converted to the important long-chain n-3 fatty acid, EPA, when metabolized in the body [27, 28]. In addition, there are considerable amounts of α-linolenic acid and γ-linolenic acid in the echium oil as well. Rymer et al. [29] showed that γ-linolenic acid is accumulated as stearidonic acid increases in the chicken’s diet.
\nN-3 PUFA, particularly EPA and DHA, are reported to compete with AA for incorporation in the phospholipid bilayer of cell membranes of all body cells, especially erythrocytes, platelets, neutrophils, monocytes and liver cells [30, 31]. Both AA and EPA are parent precursors of different kinds of eicosanoids that play a crucial role in the inflammatory responses in both humans and animals, including poultry.
\nInitially, the dietary essential fatty acid α-LNA is converted to EPA and DHA while LA is converted to AA by elongation and desaturation reactions [32, 33, 34]. These conversion reactions are mediated in humans by three desaturases, Δ9, Δ6, and Δ5. The desaturases work by introducing a double bond at a specific position of the carbon backbone. Nakamura and Nara [35] have reported that desaturases in mammals are regulated at the transcriptional level and their transcription is genetically controlled. However, regulation of Δ9 desaturase differs from Δ6 and Δ5 desaturases because the Δ 9-desaturase converts the nonessential stearic acid (18:0) to oleic acid (18:1 n-9). Oleic acid can go through the same steps of desaturation and elongation as LA and α-LNA, resulting in the synthesis of the fatty acids 20:3 n-9 and 22:4 n-9. Consequently, the Δ 9-desaturation provides an alternative to Δ6 and Δ5 desaturation when the cell is subject to essential fatty acid deficiency. However in the case of availability of sufficient amounts of essential fatty acids, AA and EPA act as precursors for eicosanoid synthesis, although EPA metabolism predominates [32, 33, 36, 37]. When sources rich in stearidonic acid (SDA) such as echium oil are consumed, the body deposits EPA directly in tissues such as plasma, blood leukocytes, liver, breast and legs of human, rodents and chicken because SDA does not require Δ6 desaturase activity to form EPA [28, 38, 39, 40, 41, 42, 43].
\nUnder the influence of Δ6 desaturase, free α-LNA is converted to SDA (18:4 n-3) then to eicosatetraenoic acid (20:4 n-3) by an elongase. Next, Δ5 desaturase acts on eicosatetraenoic acid and converts it into EPA (20:5 n-3). Elongase converts EPA into the FA (24:5 n-3) that is converted into the FA (24:6 n-3) by the action of Δ6 desaturase. Then, oxidation of (24:6 n-3) by β-oxidase produces DHA. During this metabolic pathway, eicosanoids such as leukotriene 5-series, prostaglandins E3 and thromboxane A3 are derived from EPA [37, 41, 44, 45, 46, 47, 48, 49, 50]. Figure 2 shows the metabolic pathway of the long chain n-3 and n-6 PUFA [35].
\nMetabolic pathways of the long chain n-3 and n-6 PUFA.
Cell membranes consist of a variety of molecules that enable cells to survive via various biological interactions. Proteins and lipids are the main elements of cell membranes. Different cell types have different cell membrane lipids and proteins that reflect different biological functions and specializations of cells.
\nLipids in the cell membranes are arranged in a bilayer structure with the hydrophobic moieties in the center of the membrane and the hydrophilic heads at the two surfaces, facing the inner cytoplasm and the outside surrounding. There are three main types of lipids in the cell membranes, namely: phospholipids, glycolipids, and steroids. Both saturated and unsaturated FA are attached to the glycerol moiety in the cell membrane, with the saturated FA attached to the first carbon atom in the glycerol backbone (sn-1), while PUFA occupy the sn-2 position [17]. Membrane fluidity is highly affected by the length and the degree of unsaturation of FA chains. Lipid moieties within the cell membrane determine different biological cellular functions such as intracellular pathways and receptors formation. In humans, EPA, DHA, AA and oleic acid are the main PUFA incorporated into the cell membranes. Interestingly, changes in these lipid moieties leads to changes in biological functions of different cell types due to the production of different cellular intermediates such as leukotrienes, prostacyclins and prostaglandins. These intermediates are involved in the immunomodulatory effect of PUFA [42, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].
\nVitality of living cells depends profoundly on dietary lipids that are incorporated into phospholipid layers of cellular membranes as a result there is a constant competition between the omega-3 fatty acids; eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with arachidonic acid (AA) for this incorporation. As AA controls the upregulation of eicosanoids such as leukotrienes, this competitive inhibition downregulates inflammation responses related to man, which are associated to numerous diseases and disorders such as cardiovascular disease, increased triglycerides, blood pressure, thrombosis, atherosclerosis, stress, mental problems, asthma and rheumatoid arthritis [21, 50, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. These benefits of an optimal ratio of n-3/n-6 PUFAs on health are just a few examples of a wide range of clinical problems that are improved by consumption of the very long chain n-3 fatty acids.
\nTraditionally, fish and fish oil are the main sources of essential, long chain n-3 PUFA that induce modifications in the lipid composition of poultry products because marine sources in general contain high levels of EPA and DHA PUFA. Of less nutritional importance are plant sources such as linseed that is rich in α-linolenic acid (α-LNA). α-LNA is an 18 carbon n-3 fatty acid that is the precursor to the long chain n-3 PUFA, but because the efficiency of conversion is so low in humans, the accumulation of α-LNA is of little real nutritional benefit.
\nIn chickens, there are number of studies that investigated effects of PUFA on fatty acid profile of different tissues, if sources rich in these fatty acids are added to the poultry feed. Bou et al. [80] reported that supplementing the diet of broilers with 2.5% fish oil produced double the amount of EPA and DHA in their carcass than diets supplied with 1.25% fish oil. In another study, Ratnayake et al. [81] fed broiler chickens increasing levels of redfish meal (40–120 g/kg) for a period of 42 days. The effect of this dietary manipulation on fatty acid composition of breast and thigh muscles was investigated. Authors of this study observed a linear relationship between the level of the dietary fish meal and the proportions of DHA, DPA and EPA in the meat muscles. Givens and Rymer [82] also conducted an experiment to investigate the effect of poultry species and genotype on the efficiency of incorporation of n-3 PUFA in poultry meat. The two genotypes of turkeys (Wrolstad and BUT T8) and broilers (Ross 308 and Cobb 500) were fed one or four diets that contained 50 g/kg added oil; either vegetable oil (control), partially replaced with linseed (20 or 40 g/kg), FO (20 or 40 g/kg), or mixture of linseed and FO (20 g linseed and 20 g FO/kg diet). It was observed that on replacement of the control diet with either low or high levels of FO caused a significant increase in the concentration of EPA and DHA in all the meats whereas feeding linseed-enriched diet significantly increased the concentration of α-linolenic acid. No significant difference was noted with the incorporation of n-3 PUFA between the two broiler genotypes. Turkey genotypes were only different in the case of α-linolenic acid incorporation. It was also seen that there was a greater incorporation of DHA in white than in dark meat. In order to confirm the effect of dietary fatty acid modulation in broiler chickens, another study was conducted by Lopez-Ferrer et al. [83]. Here, a diet enriched with 8.2% FO was fed to broilers for duration of 5 weeks, after this it was replaced by diets containing 8.2% linseed or rapeseed in three different periods: the last week before slaughtering, the last 2 weeks and throughout the experiment. The end results for the fatty acid analysis of thigh and breast showed that the total amounts of n-3 PUFA were significantly decreased after removal of FO diet. Upon replacement of FO with the linseed diet caused a substantial increase in α-linolenic acid, furthermore there was an increase in the total amounts of n-6 PUFA and a decrease in the DHA proportions due to its limited conversion to longer n-3 PUFA. When FO was replaced by rapeseed there was an increase in the total amounts of monounsaturated fatty acids, especially oleic acid.
\nRecently, Zelenka et al. [84] studied the effect of increasing levels of linseed oil in the diets of chickens and its influence on the fatty acid content in breast and thigh meat of chickens. Linseed oil at levels of 1, 3, 5 or 7% were fed to broiler chickens from 25 to 40 days of age. Oils were derived from the linseed cultivar Atalante with a high content of α-linolenic acid or the cultivar Lola with a high content of linoleic acid. Results showed that feeding a diet with a high content of α-linolenic acid significantly increased all n-3 PUFA, decreased n-6 PUFA and decreased the ratio of n-6/n-3 PUFA. On the contrary, when the birds were fed a diet with a high content of linoleic acid, this caused a significant increase in the levels of all n-6 PUFA in thigh and breast of chickens. Similarly, a study by Kartikasari et al. [85] showed that feeding broilers on diets with a high content of α-linolenic acid, while keeping a constant linoleic acid level, significantly increased the incorporation of all n-3 PUFA into breast and thigh meat by 5 and 4-fold compared to chickens fed low α-linolenic acid content. In another experiment [86], the authors fed broiler chickens on diets with constant level of α-linolenic acid (2.1%) and different levels of linoleic acid, which included 2.9–4.4%, and consisted of pure or blended vegetable oils such as macadamia, flaxseed and sunflower oils. The overall lipid content was kept at a constant of 5%. Post analysis it was observed that chickens when fed diets the lowest linoleic acid content (2.9%) contributed towards higher incorporation of total n-3 PUFA in the breast by 16% compared with feeding the highest linoleic acid content (4.4%). When the chickens were fed with a diet with a high content of linoleic acid, this resulted in a significant reduction in EPA levels in both thigh and breast tissues. The levels for DPA and DHA were not affected by dietary linoleic acid. Authors suggested that this could be due to fact that linoleic acid competes with α-linolenic acid for Δ6 desaturase. In other words, high dietary level of linoleic acid might reduce the conversion of α-linolenic to n-3 PUFAs. In a further study [87], the authors fed broiler chickens on diets containing 0, 2, or 4% linseed oil plus tallow to make 8% added fat throughout 38 growth period. The total amounts of saturated and monounsaturated fatty acids were significantly decreased after feeding increased levels of linseed. Conversely, the total amounts of PUFA were significantly increased. A recent study [88] showed that upon supplementing n-3 PUFA, in the form of linseed oil (3/100 g mixed feed), in the diet of laying hens resulted in a significant increase in α-linolenic of the plasma. The same study also revealed that, FO administration (same dose as linseed) caused a significant increase in the proportion of plasma EPA and DHA.
\nThe immunomodulatory effect of PUFA in broiler chickens occurs by affecting intercellular communications and signals that change the reactivity of leukocytes upon antigenic stimulation. This effect is highly associated with down-regulation or up-regulation of different cytokines that are believed to affect the avian immune function such as IL-1β, IFNγ, MGF, IL-1, IL-4, IL-2 [89, 90, 91, 92].
\nThere is some concern that diets enriched with n-3 PUFA have detrimental effects on chicken immunity and impair resistance to infection. However, it is not clear whether this concern is justified, since some studies show no effect [93], some show a detrimental effect [94] while some show an improvement [89, 90, 93, 95, 96, 97] in chicken immune response following feeding of n-3 PUFA.
\nConsumption of omega-3 fatty acids should be increased in human diets to get the beneficial effects of these fatty acids. One way to achieve this goal is by enriching poultry meat and eggs with omega-3 fatty acids, which is proved to be very successful. This role of poultry production in enhancing health aspects of human needs more research and interest from nutritionists and poultry producers.
\nThe authors would like to extend their gratitude and appreciation to the management of Kuwait Institute for Scientific Research for their continuous technical and financial support of scientific research.
\nThere is no conflict of interest related to the current work.
License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:6},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:1},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:3},{group:"topic",caption:"Engineering",value:11,count:4},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:2},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"991",title:"Herbalism",slug:"herbalism",parent:{title:"Complementary Medicine",slug:"complementary-medicine"},numberOfBooks:9,numberOfAuthorsAndEditors:316,numberOfWosCitations:228,numberOfCrossrefCitations:119,numberOfDimensionsCitations:356,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"herbalism",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6994",title:"Tea",subtitle:"Chemistry and Pharmacology",isOpenForSubmission:!1,hash:"e6241cd52834161ac64d4a7b2a812796",slug:"tea-chemistry-and-pharmacology",bookSignature:"Gonçalo Justino",coverURL:"https://cdn.intechopen.com/books/images_new/6994.jpg",editedByType:"Edited by",editors:[{id:"76687",title:"Dr.",name:"Gonçalo",middleName:null,surname:"Justino",slug:"goncalo-justino",fullName:"Gonçalo Justino"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9108",title:"Medicinal Plants",subtitle:"Use in Prevention and Treatment of Diseases",isOpenForSubmission:!1,hash:"7d0c52af195da3322be63610d6567019",slug:"medicinal-plants-use-in-prevention-and-treatment-of-diseases",bookSignature:"Bassam Abdul Rasool Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/9108.jpg",editedByType:"Edited by",editors:[{id:"155124",title:"Dr.",name:"Bassam",middleName:"Abdul Rasool",surname:"Hassan",slug:"bassam-hassan",fullName:"Bassam Hassan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6302",title:"Herbal Medicine",subtitle:null,isOpenForSubmission:!1,hash:"b70a98c6748d0449a6288de73da7b8d9",slug:"herbal-medicine",bookSignature:"Philip F. Builders",coverURL:"https://cdn.intechopen.com/books/images_new/6302.jpg",editedByType:"Edited by",editors:[{id:"182744",title:"Dr.",name:"Philip",middleName:null,surname:"Builders",slug:"philip-builders",fullName:"Philip Builders"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",isOpenForSubmission:!1,hash:"ccf7987200bfc541e2e56bb138de86f3",slug:"aromatic-and-medicinal-plants-back-to-nature",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5494",title:"Chinese Medical Therapies for Diabetes, Infertility, Silicosis and the Theoretical Basis",subtitle:null,isOpenForSubmission:!1,hash:"7b3b6a2700d7fd0511770bf77290a422",slug:"chinese-medical-therapies-for-diabetes-infertility-silicosis-and-the-theoretical-basis",bookSignature:"Xing-Tai Li",coverURL:"https://cdn.intechopen.com/books/images_new/5494.jpg",editedByType:"Edited by",editors:[{id:"73821",title:"Dr.",name:"Xing-Tai",middleName:null,surname:"Li",slug:"xing-tai-li",fullName:"Xing-Tai Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2975",title:"Complementary Therapies for the Contemporary Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"604c4ba43197c3ba1506c55c763d4ca7",slug:"complementary-therapies-for-the-contemporary-healthcare",bookSignature:"Marcelo Saad and Roberta de Medeiros",coverURL:"https://cdn.intechopen.com/books/images_new/2975.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",middleName:null,surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"542",title:"A Compendium of Essays on Alternative Therapy",subtitle:null,isOpenForSubmission:!1,hash:"a805c1d2d8449dcecd52eb7a48d2e6b1",slug:"a-compendium-of-essays-on-alternative-therapy",bookSignature:"Arup Bhattacharya",coverURL:"https://cdn.intechopen.com/books/images_new/542.jpg",editedByType:"Edited by",editors:[{id:"66982",title:"Dr.",name:"Arup",middleName:null,surname:"Bhattacharya",slug:"arup-bhattacharya",fullName:"Arup Bhattacharya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"643",title:"Recent Advances in Theories and Practice of Chinese Medicine",subtitle:null,isOpenForSubmission:!1,hash:"499a7fabf489d2502de4616a4c7f3da0",slug:"recent-advances-in-theories-and-practice-of-chinese-medicine",bookSignature:"Haixue Kuang",coverURL:"https://cdn.intechopen.com/books/images_new/643.jpg",editedByType:"Edited by",editors:[{id:"44740",title:"Prof.",name:"Haixue",middleName:null,surname:"Kuang",slug:"haixue-kuang",fullName:"Haixue Kuang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"631",title:"Quality Control of Herbal Medicines and Related Areas",subtitle:null,isOpenForSubmission:!1,hash:"5ced81d454b4a5ded2a0aa02e0d7621d",slug:"quality-control-of-herbal-medicines-and-related-areas",bookSignature:"Yukihiro Shoyama",coverURL:"https://cdn.intechopen.com/books/images_new/631.jpg",editedByType:"Edited by",editors:[{id:"35812",title:"Prof.",name:"Yukihiro",middleName:null,surname:"Shoyama",slug:"yukihiro-shoyama",fullName:"Yukihiro Shoyama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,mostCitedChapters:[{id:"61866",doi:"10.5772/intechopen.76139",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5517,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"54028",doi:"10.5772/67291",title:"Chemical Composition and Biological Activities of Mentha Species",slug:"chemical-composition-and-biological-activities-of-mentha-species",totalDownloads:6007,totalCrossrefCites:5,totalDimensionsCites:25,book:{slug:"aromatic-and-medicinal-plants-back-to-nature",title:"Aromatic and Medicinal Plants",fullTitle:"Aromatic and Medicinal Plants - Back to Nature"},signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",slug:"fatiha-brahmi",fullName:"Fatiha Brahmi"},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",slug:"khodir-madani",fullName:"Khodir Madani"},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",slug:"pierre-duez",fullName:"Pierre Duez"},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",slug:"mohamed-chibane",fullName:"Mohamed Chibane"}]},{id:"26496",doi:"10.5772/28488",title:"Potential Genotoxic and Cytotoxic Effects of Plant Extracts",slug:"potential-genotoxic-and-cytotoxic-effects-of-plant-extracts",totalDownloads:8345,totalCrossrefCites:0,totalDimensionsCites:16,book:{slug:"a-compendium-of-essays-on-alternative-therapy",title:"A Compendium of Essays on Alternative Therapy",fullTitle:"A Compendium of Essays on Alternative Therapy"},signatures:"Tülay Askin Celik",authors:[{id:"74041",title:"Dr.",name:"Tulay",middleName:null,surname:"Askin Celik",slug:"tulay-askin-celik",fullName:"Tulay Askin Celik"}]}],mostDownloadedChaptersLast30Days:[{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:9941,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5550,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"54028",title:"Chemical Composition and Biological Activities of Mentha Species",slug:"chemical-composition-and-biological-activities-of-mentha-species",totalDownloads:6015,totalCrossrefCites:5,totalDimensionsCites:25,book:{slug:"aromatic-and-medicinal-plants-back-to-nature",title:"Aromatic and Medicinal Plants",fullTitle:"Aromatic and Medicinal Plants - Back to Nature"},signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",slug:"fatiha-brahmi",fullName:"Fatiha Brahmi"},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",slug:"khodir-madani",fullName:"Khodir Madani"},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",slug:"pierre-duez",fullName:"Pierre Duez"},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",slug:"mohamed-chibane",fullName:"Mohamed Chibane"}]},{id:"70638",title:"Medicinal Plants Having Antifungal Properties",slug:"medicinal-plants-having-antifungal-properties",totalDownloads:652,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"medicinal-plants-use-in-prevention-and-treatment-of-diseases",title:"Medicinal Plants",fullTitle:"Medicinal Plants - Use in Prevention and Treatment of Diseases"},signatures:"Koushlesh Kumar Mishra, Chanchal Deep Kaur, Anil Kumar Sahu, Rajnikant Panik, Pankaj Kashyap, Saraswati Prasad Mishra and Shweta Dutta",authors:[{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Sahu",slug:"anil-sahu",fullName:"Anil Sahu"},{id:"211230",title:"Mr.",name:"Pankaj",middleName:null,surname:"Kashyap",slug:"pankaj-kashyap",fullName:"Pankaj Kashyap"},{id:"221419",title:"Mr.",name:"Koushlesh",middleName:null,surname:"Mishra",slug:"koushlesh-mishra",fullName:"Koushlesh Mishra"},{id:"221420",title:"Mr.",name:"Sarawati Prasad",middleName:null,surname:"Mishra",slug:"sarawati-prasad-mishra",fullName:"Sarawati Prasad Mishra"},{id:"270359",title:"Dr.",name:"Chanchal Deep",middleName:null,surname:"Kaur",slug:"chanchal-deep-kaur",fullName:"Chanchal Deep Kaur"},{id:"314683",title:"Dr.",name:"Rajnikant",middleName:null,surname:"Panik",slug:"rajnikant-panik",fullName:"Rajnikant Panik"},{id:"314684",title:"Ms.",name:"Shweta",middleName:null,surname:"Dutta",slug:"shweta-dutta",fullName:"Shweta Dutta"}]},{id:"53301",title:"From Medicinal Plant Raw Material to Herbal Remedies",slug:"from-medicinal-plant-raw-material-to-herbal-remedies",totalDownloads:3619,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"aromatic-and-medicinal-plants-back-to-nature",title:"Aromatic and Medicinal Plants",fullTitle:"Aromatic and Medicinal Plants - Back to Nature"},signatures:"Sofija M. Djordjevic",authors:[{id:"84281",title:"Dr.",name:"Sofija",middleName:null,surname:"Djordjevic",slug:"sofija-djordjevic",fullName:"Sofija Djordjevic"}]},{id:"53014",title:"Cardiac Glycosides in Medicinal Plants",slug:"cardiac-glycosides-in-medicinal-plants",totalDownloads:4689,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"aromatic-and-medicinal-plants-back-to-nature",title:"Aromatic and Medicinal Plants",fullTitle:"Aromatic and Medicinal Plants - Back to Nature"},signatures:"Nagy Morsy",authors:[{id:"193379",title:"Dr.",name:"Nagy",middleName:null,surname:"Morsy",slug:"nagy-morsy",fullName:"Nagy Morsy"}]},{id:"62180",title:"Introductory Chapter: Introduction to Herbal Medicine",slug:"introductory-chapter-introduction-to-herbal-medicine",totalDownloads:1377,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Philip F. Builders",authors:[{id:"182744",title:"Dr.",name:"Philip",middleName:null,surname:"Builders",slug:"philip-builders",fullName:"Philip Builders"}]},{id:"58270",title:"Toxicity and Safety Implications of Herbal Medicines Used in Africa",slug:"toxicity-and-safety-implications-of-herbal-medicines-used-in-africa",totalDownloads:2189,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Merlin L.K. Mensah, Gustav Komlaga, Arnold D. Forkuo, Caleb\nFirempong, Alexander K. Anning and Rita A. Dickson",authors:[{id:"190435",title:"Dr.",name:"Caleb",middleName:null,surname:"Firempong",slug:"caleb-firempong",fullName:"Caleb Firempong"},{id:"212111",title:"Dr.",name:"Gustav",middleName:null,surname:"Komlaga",slug:"gustav-komlaga",fullName:"Gustav Komlaga"},{id:"217045",title:"Dr.",name:"Arnold Forkuo",middleName:null,surname:"Donkor",slug:"arnold-forkuo-donkor",fullName:"Arnold Forkuo Donkor"},{id:"217049",title:"Prof.",name:"Merlin Lincoln Kwao",middleName:null,surname:"Mensah",slug:"merlin-lincoln-kwao-mensah",fullName:"Merlin Lincoln Kwao Mensah"},{id:"217488",title:"Dr.",name:"Alexander K.",middleName:null,surname:"Anning",slug:"alexander-k.-anning",fullName:"Alexander K. Anning"},{id:"223959",title:"Prof.",name:"Akosua Rita",middleName:null,surname:"Dickson",slug:"akosua-rita-dickson",fullName:"Akosua Rita Dickson"}]},{id:"59484",title:"Herbal Medicine",slug:"herbal-medicine",totalDownloads:1373,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Nontokozo Z. Msomi and Mthokozisi B.C. Simelane",authors:[{id:"193091",title:"Dr.",name:"Mthokozisi",middleName:null,surname:"Simelane",slug:"mthokozisi-simelane",fullName:"Mthokozisi Simelane"},{id:"195504",title:"Ms.",name:"Nontokozo",middleName:null,surname:"Msomi",slug:"nontokozo-msomi",fullName:"Nontokozo Msomi"}]},{id:"58513",title:"Plant-Derived Medicines with Potential Use in Wound Treatment",slug:"plant-derived-medicines-with-potential-use-in-wound-treatment",totalDownloads:1733,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Tina Maver, Manja Kurečič, Dragica Maja Smrke, Karin Stana\nKleinschek and Uroš Maver",authors:[{id:"142060",title:"Prof.",name:"Uroš",middleName:null,surname:"Maver",slug:"uros-maver",fullName:"Uroš Maver"},{id:"175361",title:"Dr.",name:"Karin",middleName:null,surname:"Stana Kleinschek",slug:"karin-stana-kleinschek",fullName:"Karin Stana Kleinschek"},{id:"227392",title:"Dr.",name:"Tina",middleName:null,surname:"Maver",slug:"tina-maver",fullName:"Tina Maver"},{id:"227393",title:"Prof.",name:"Manja",middleName:null,surname:"Kurečič",slug:"manja-kurecic",fullName:"Manja Kurečič"},{id:"227394",title:"Prof.",name:"Dragica Maja",middleName:null,surname:"Smrke",slug:"dragica-maja-smrke",fullName:"Dragica Maja Smrke"}]}],onlineFirstChaptersFilter:{topicSlug:"herbalism",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/173527/stefan-cuculici",hash:"",query:{},params:{id:"173527",slug:"stefan-cuculici"},fullPath:"/profiles/173527/stefan-cuculici",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()