The characteristics of the fast (off-line) pyrolysis reactors of biomass [51]. *: Demo scale is estimated to be 200-2000 kg/h, pilot scale is 20-200 kg/h and lab scale is <20 kg/h.
\r\n\t
",isbn:"978-1-83881-111-2",printIsbn:"978-1-83880-992-8",pdfIsbn:"978-1-83881-112-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"acb2875b3bfc189c9881a9b44b6a5184",bookSignature:"Dr. Abdo Abou Jaoudé",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11865.jpg",keywords:"Linear Operators, Normal Operators, Spectral Theorem, Applications, Differential Operators, Integral Operators, Functional Calculus, Complex Variables, Complex Analysis, Theory, Recent Advances, Latest Trends",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2022",dateEndSecondStepPublish:"June 21st 2022",dateEndThirdStepPublish:"August 20th 2022",dateEndFourthStepPublish:"November 8th 2022",dateEndFifthStepPublish:"January 7th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"6 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Abdo Abou Jaoudé is a pioneering Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé. He holds two PhDs in Mathematics and Prognostics from the Lebanese University and Aix-Marseille University. His research interests are in the field of mathematics.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé",profilePictureURL:"https://mts.intechopen.com/storage/users/248271/images/system/248271.jpg",biography:"Abdo Abou Jaoudé has been teaching for many years and has a passion for researching and teaching mathematics. He is currently an Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé (NDU), Lebanon. He holds a BSc and an MSc in Computer Science from NDU, and three PhDs in Applied Mathematics, Computer Science, and Applied Statistics and Probability, all from Bircham International University through a distance learning program. He also holds two PhDs in Mathematics and Prognostics from the Lebanese University, Lebanon, and Aix-Marseille University, France. Dr. Abou Jaoudé's broad research interests are in the field of applied mathematics. He has published twenty-three international journal articles and six contributions to conference proceedings, in addition to seven books on prognostics, pure and applied mathematics, and computer science.",institutionString:"Notre Dame University - Louaize",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Notre Dame University – Louaize",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45639",title:"The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass",doi:"10.5772/51883",slug:"the-overview-of-thermal-decomposition-of-cellulose-in-lignocellulosic-biomass",body:'Lignocellulosic biomass including wood, logging residue, crops and agricultural wastes) has been widely utilized to produce energy, fuels or chemicals, acting as the potential renewable source for taking place of fossil energies (such as coal, natural gas and petroleum) [1]. Pyrolysis is proved to be, one of the most promising methods to convert biomass into different products (syn-gas, bio-liquid, char and chemicals), which could essentially diversify the energy-supply in many situations [2].
The fundamental issues and targets concerning the pyrolysis of cellulose
Cellulose, the most principal chemical component in different lignocellulosic biomass (accounting for more than 50% by weight), has a linear homopolymer of glucopyranose residues linked by β-1, 4- glycosidic bond. The study on pyrolysis of cellulose would be particularly benificial for achieving the better understanding of the pyrolytic mechanism of biomass and facilitating its direct applications in terms of fuels, chemicals and bio-materials. This gives rise to substantial studies on pyrolysis of cellulose in lignocellulosic biomass during the past half-century (Fig. 1), which could be categorized into the three following fundamental issues (Fig. 1):
The physico-chemical structure analysis of biomass is concerning the morphological analysis of the biomass cell-wall structure, the distribution and configuration of cellulose, which would facilitate not only the direct utilization of biomass as bio-material, but also the improvement of conversion processes of biomass to fuels or chemicals;
The thermal behavior of cellulose involving on-line pyrolysis and off-line pyrolysis study. The on-line pyrolysis is concentrated on the solid mass loss versus temperature or time (along with the evolution of the volatiles) and kinetic models, mostly employing isothermal and dynamic thermo-gravimetry analysis coupled with or without Fourier Transformation Infrared Spectrometry (FTIR) or Mass spectrometry (MS); The off-line pyrolysis study is to examine the yield of the main products (gas, liquid and solid), variation of the compositions in gaseous or liquid product influenced by the intrinsic characteristics and experimental conditions, in order to optimize the pyrolysis process for energy and/or chemicals production;
The interactions among the three main components under the pyrolytic condition is to introduce the possible interacting mechanism of the components in biomass, in terms of the mass loss process, the evolution of the volatiles and the yield of the specific products. This would help to improve the understanding of pyrolysis of whole biomass system from the pyrolytic behavior of the individual components.
The studies of pyrolysis of cellulose concerning the above four fundamental issues would be vigorously discussed in this work (especially for the works reported during the past 25 years), where the way-forward of this field would also be specified. This would supply the conceptual guide for the improvement of cellulose utilization and optimization of the thermal-conversion process of biomass.
The morphological structure of lignocellulosic biomass has been studied regarding the distribution and inter-linkages of the chemical components, and their configuration [3, 4]. This facilitates not only the better understanding of the physico-chemical properties of biomass, but also the improvement of conversion processes (such as pyrolysis) of biomass to fuels or chemicals.
With the growing interest on lignocellulosic biomass as a potential substituent for fossil fuels, the pyrolysis of biomass should be dramatically examined. Consequently, the cell-wall model of lignocellulosic biomass, the distribution of the chemical components (especially cellulose), and the configuration of cellulose would be discussed in the following sections, which would help understand the remarkable characteristics of cellulose pyrolysis and its interactions with the other two main components (hemicellulose and lignin).
The model of the cell-wall of woody biomass, firstly proposed by Fengel and Wegener [3], is well-established and further developed by Dumitriu [5], involving cell-wall structure and the distribution of the chemical components in different cell wall layers.
The cell wall could be morphologically divided into three distinct zones: middle lamella, primary cell wall and secondary wall [5]. The middle lamella is shared by two contiguous cells and is composed almost entirely of pectic substances. The primary cell walls are composed of cellulose microfibrils and interpenetrating matrix of hemicelluloses, pectins, and proteins. Cellulose forms the framework of the cell walls, hemicelluloses cross-link noncellulosic and cellulosic polymers, and pectins provide the structural support to the cell wall. The secondary cell walls are derived from the primary walls by thickening and inclusion of lignin into the cell wall matrix and occur inside the primary wall. The transition from primary to secondary cell wall synthesis is marked by the cessation of pectin deposition and a noted increase in the synthesis and deposition of cellulose/hemicellulose and lignin. The cellulose and non-cellulosic polysaccharides of the secondary cell wall are qualitatively distinct from those found in the primary cell walls.
The relevant study [6] evidenced that if cellulose is deposited actively between S1 and S3 developmental stages (especially in the middle part of S2 stage), hemicellulose (xylan) deposition occurs in the S1 to early S2 and again in the S3 developmental layers. Successive deposition of hemicellulose (xylan) onto the cell wall increases the microfibril diameter. The large amounts of hemicellulose (xylan) that accumulated on microfibrils appear globular but are covered with lignin after they are deposited. The information about the distribution of the main components (hemicellulose, cellulose and lignin) in the cell wall layers of lignocellulosic biomass is quantitatively reported in the literature [7].
The schematic representation of the proposed cell wall along with the location of the main components in biomass
According to the above discussion, a simplified schematics for the structure of plant cell wall is presented in Fig. 2, where the morphological relationship among the main components in biomass (cellulose, hemicellulose and lignin) is clearly specified. It still needs to be notified that the details concerning the inter-linking/bond relationship (such as the H-bond among the polysaccharide molecules and lignin-carbohydrate coalescence) between the chemical components in the cell walls of wood are not well examined in the literature.
As far as the chemical components of biomass were concerned, a distinction should be made between the main macromolecular cell-wall components--cellulose, hemicellulose (polyoses) and lignin [3]. Cellulose is a uniform component in all lignocellulosic biomass, while the proportions and chemical composition of lignin and hemicellulose differ in different biomass. The configuration of cellulose in lignocellulosic biomass would be discussed, with regard to its content, isolation methods, the characterization of the macromolecules and the inter-linkages among the units.
Cellulose is the prominent chemical component in lignocellulosic biomass, accounting for approximately 50% by weight. The methods for isolating and/or determining cellulose from biomass could be summarized as [3]:
Separation of the main portions of hemicellulose and residual lignin from cellulose;
Direct isolation of cellulose from lignocellulosic biomass, including purification procedures (such as pulping process);
Determination of the approximate cellulose content by total hydrolysis of biomass, cellulose with subsequent determination of the resulting sugars.
In any isolation method cellulose cannot be obtained in a pure state, thus the purification always plays an important role in the cellulose isolation process. Through the relevant methylation experimental studies [3, 5], the primary structure of cellulose is evidenced as a linearhomopolymer of glucose having the D configuration and connected by β-(1-4) glycosidic linkages (Fig. 3). It could be found that the units of the cellulose molecular chain are bound by β-(1-4) glycosidic linkages, presenting that the adjacent glucose units are linked by dehydration between their hydroxylic groups at carbon 1 and carbon 4. The β-position of the OH-group at C1 needs a turning of the following glucose unit around the C1-C4 axis of the pyranose ring.
The central part (cellubiose unit) of cellulose molecular chain with the reducing and non-reducing end groups.
The stabilization of the long cellulose molecular chains in order systems originates in the presence of functional groups which are able to interact with each other. The functional groups of the cellulose chains are the hydroxyl groups, three of which are linked to each glucopyranose unit. These OH-groups are not only responsible for the supramolecular structure by also for the chemical and physical behavior of the cellulose through the hydrogen bond (H-bond). The OH-groups of cellulose molecules are able to form two types of hydrogen bonds depending on their site at the glucose unit [3]. The hydrogen bonds between OH-groups of adjacent glucose units in the same cellulose chain are called intramolecular linkages, which give certain stiffness to the single chain. The hydrogen bonds between OH-groups of the adjacent cellulose chains are called intermolecular linkages, which are responsible for the formation of supramolecular structures. The primary structures, consisting of a number of cellulose chains through the hydrogen bonds in a superhelicoidal fashion, are the cellulose microfibrils, which build up the framework of the whole cell walls [5].
Two chain ends of the cellulose chain are chemically different (Fig. 3). One end has a D-glucopyranose unit in which anomeric carbon atom is involved in a glycosidic linkage, whereas the other end has a D-glucopyranose unit in which the anomeric carbon atom is free. This cyclic hemiacetal function is in an equilibrium in which a small proportion is an aldehyde, which gives rise to reducing properties at this end of the chain, so that the cellulose chain has a chemical polarity, while the OH-group at the C4 end of the cellulose chain is an alcoholic hydroxyl and therefore non-reducing. The molecular weight of cellulose varies widely depending on the origin of the sample. As cellulose is a linear polymer with uniform units and bonds the size of the chain molecule is usually defined as degree of polymerization (DP). The degrees of polymerization of the plant-cellulose as well as the technical cellulose products are estimated from 15300 for capsules to 305 for rayon fibers [5].
The thermogravimetric (TG) analysis method, either dynamic heating process or isothermal heating process, is well-established for on-line pyrolysis of biomass and its components (cellulose, hemicellulose and lignin). The mass loss of the solid sample could be exactly recorded versus temperature/time. The chemical kinetic models for the biomass and its components are proposed from the analysis of the different mass loss stages and validated through the correlation between the predicted data and the experimental mass loss curve. Since the specific chemical phenomena and the prediction of the volatile yields are rarely referred in those models, TGA coupled with FTIR, GC, MS or other advanced analytical equipments is recently employed to investigate the evolution of the volatile along during the pyrolysis process. This facilitates the understanding of the possible chemical reactions for depolymerization of the macromolecules and the secondary cracking of the primary fragments. The development of the kinetics of cellulose pyrolysis would be systematically overviewed, involving most of recent studies implemented by other groups led by Piskorz, Di Blasi, Banyaz, Agrawal, Wooten, Hosoya and so on. Several controversial points addressed in previous studies would be intensively discussed, concerning the existence of the intermediate anhydrosugars, secondary cracking of the volatiles and the formation of char residue.
Historically, it was perhaps that Broido’ s group firstly called attention to the intriguing phenomena of cellulose pyrolysis and proposed the established kinetic scheme in 1960s [25, 26]. As described in
The kinetic model for cellulose pyrolysis proposed by Broido and Weinstein (1971) [
This Broido’ s kinetic scheme is re-examined by Argawal [13], revealing that the rates of anhydrocellulose formation are comparable to those of the depolymerization process only in one case for temperatures of ~ 270 oC in the isothermal, fixed-bed conditions. Then, the mechanism is approved through the isothermal, fluid-bed experiments in the temperature range 250-300 oC, providing a complete set of kinetic data for the Broido model [13]. It is worthily noting that the formation of the anhydrocellulose as an intermediate product is undetectable in the experiments, and no kinetic data for the char forming reaction are reported in the above publications. These ambiguities stimulated the global researchers’ interests in the kinetic studies of cellulose pyrolysis, resulting in a vigorous debate in the following years.
The kinetic model for cellulose pyrolysis proposed by Broido and Nelson (1975) [
In 1975, Broido and Nelson examined the effect of thermal pretreatments at 230-275 oC on the cellulose char yields varying from 13% (no thermal pretreatment) to over 27% [10]. They employed the large samples of cellulose (100 mg of shredded cellulose, and 7 cm × 3 cm sheets, individually wrapped several layers deep around a glass rod), which might incur the char formation from solid-vapor interactions during the prolonged thermal pretreatment. The previous kinetic model (Scheme 1) is correspondingly improved as described in
The kinetic model for cellulose pyrolysis proposed by Bradbury et al. (1979) [
The argument between Antal-Varhegyi and Broido-Shafezadeh is remarkable, concerning the existence of “active cellulose” during the pyrolysis of cellulose. Antal and Varhegyi presented that no evidence was found to support the inclusion of the initiation step displayed in the
In 2002, Lede et al. directly observed a transient “intermediate liquid compound” in small pellets of cellulose that had been heated by radiant flash pyrolysis in an imaging furnace, which is characterized by HPLC/MS and found to be composed predominantly of anhydro-oligosaccharides (such as levoglucosan, cellobiosan and cellotriosan) [41]. In the slow heating experiments of cellulose, Wooten [32] revealed that intermediate cellulose (IC) is an ephemeral component that appears and ten disappears over the course of 60 min of heating at 300 oC, while the rapid disappearance of IC in samples that have been heated at only a slightly higher temperature (i.e., 325 oC) further demonstrates the transient nature of IC. This behavior clearly identifies the compound(s) as a reaction intermediate, and the authors correspondingly associated this intermediate compound with the “active cellulose” in the Broido and Shafezadeh kinetic models (
Previously, Bradbury et al. [29] and Antal [23] suggested that char formation might result from the repolymerization of volatile materials such as levoglucosan. This phenomenon is approved by Hosoya [36], presenting that the secondary char from cellulose is formed from the repolymerization of anhydrosugars (levoglucosan). The experimental data from the Wooten et al.’s study [32] shows that a precursor-product relationship does exist between intermediate cellulose (“active cellulose”) and the aliphatic and aromatic components of the char.
The kinetic model for cellulose pyrolysis proposed by Diebold (1994) [
Nowadays, it might be not difficult to evidence the existence of “active cellulose” or other important (intermediate) products with the help of the advanced analytical equipments, but the chemical reaction mechanism for cellulose pyrolysis is still ambiguous and controversial. One of the possible routes to improve the understanding of the structure changes of cellulose molecules and formation of the specific products is to employ the study of thermal decomposition of the relevant derivatives, together with the molecular dynamic simulation (MDS) which is well-established for estimating the specific chemical pathways from the microscopic point of view. Moreover, the identification of intermolecular hydrogen bonding and that between the different molecular chains would be another uncertainty for understanding the pyrolytic behavior of cellulose, especially for the initial stage of the cellulose pyrolysis.
Compared to the on-line pyrolysis study of cellulose, the off-line pyrolysis of cellulose is mostly carried out under the relatively high temperature (above 400 oC) or high heating rate (more than or around 1000 oC/s) [12, 32, 36, 40, 44-48] and sometimes under low temperature heating (below 400 oC) [49, 50], concerning the following issues: 1) the distributions of the gas, liquid and solid products; 2) the formation of the specific compounds and the pyrolytic chemical pathways. How these two issues may be influenced by the pyrolytic reactors and the variables like temperature, residence time, heating rate, pressure, particle size, catalytic salts and crystallinity is extensively examined in the literature, in order to promote the product specificity, maximize the yield and improve the understanding of the pyrolytic mechanism.
In this work, the emphasis is on the effects of the predominant factors such as the reactor type, temperature or heating rate, residence time on the distributions of the products (gas, liquid and solid) from cellulose pyrolysis. Considering the complexity of chemical constituents in gas and liquid products, the attention would be confined to those few compounds which have been established to be producible in good yield (such as levoglucosan, hydroxyacetaldehyde, furfural, CO, CO2 and so on), in order to meet the interests in potential industrial applications.
Fluidized bed | 75 | Small | High | Medium | Easy | Demo |
CFB | 75 | Medium | High | High | Easy | Pilot |
Entrained gas flow | 65 | Small | High | High | Easy | Lab |
Vaccum | 60 | Large | Low | High | Hard | Demo |
Rotating cone | 65 | Very small | Low | High | Hard | Pilot |
Ablative | 75 | Large | Low | High | Hard | Lab |
Auger | 65 | Small | Low | Low | Easy |
The characteristics of the fast (off-line) pyrolysis reactors of biomass [51]. *: Demo scale is estimated to be 200-2000 kg/h, pilot scale is 20-200 kg/h and lab scale is <20 kg/h.
Regarding the commercialization of the pyrolytic technology for bio-energy conversion, the designed pyrolytic reactor involving the variation of the operating parameters (temperature, residence time, pressure and so on) has remarkable effects on the threshold of the specific product yield and the operating cost of the process [52-55]. Most of the reactors for the fast (off-line) pyrolysis of biomass to produce bio-oil or fuel gases is summarized by Bridgewater [51], estimated in terms of product yield, feed size, input gas, complexity and so on (Table 1). It is approved that the fluidized bed reactor is determined to be one of the promising technologies for biomass thermal conversion due to the high-efficient heat transfer and ease of scale-up, which has potential for commercial practice [56-60]. Microwave pyrolysis, termed as a novel thermo-chemical technology for converting biomass to solid, liquid and gas fuels, is of growing interests with thanks to its low requirement on energy input during the process, flexibility of the feedstock size and high quality of products (low oxygen content in char and bio-oil). The yield of the products from cellulose through different pyrolysis reactors would be intensively discussed, with regard to the effect of operating conditions such as temperature, residence time and condensing patterns.
3.2.1.1. Pyrolysis in fluidized-bed reactor
The outstanding contribution on study of cellulose pyrolysis in the fluidized bed reactor was made by the research group led by Scott and Piskorz in the University of Waterloo in Canada [12, 17, 42, 46, 61-63]. A bench scale atmospheric pressure fluidized bed unit using sand as the fluidized solid with the feeding rate of 30 g/h of biomass was designed to investigate the yield of liquid product at different temperatures in an inert nitrogen atmosphere with an apparent vapor residence time of approximately 0.5 s [62]. Piskorz [12] reported the pyrolytic behavior of the two types of cellulose (S&S powdered cellulose with ash content of 0.22% and Baker TLC microcrystalline cellulose with ash content of 0.04%) in the fluidized bed reactor, giving the distribution of the gas, liquid and solid products at the temperature from 450 to 550 oC summarized in Table 2. The yield of organic products in the liquid phase (except water) from the S&S powdered cellulose ranges from 58.58% to 67.81% of the moisture and ash free feed at the temperature from 450 to 550 oC, reaching the maximum at 500 oC. Comparatively, the yield of organic products from the Baker TLC microcrystalline cellulose at 500 oC is determined to be 90.1%. Moreover, the yield of char for S&S powdered cellulose at 500 oC is 3.4%, compared to 1.0% for Baker TLC microcrystalline cellulose.
These results confirms that the larger amount of the inorganic salts in the ash content promotes the formation of the condensed structure through the catalytic effects, inhibiting the cracking of the macromolecules and enhancing the yield of solid product [21, 30, 31, 34, 46, 64]. Several years later, the pyrolysis of the two further types of cellulose (commercial SS-144 crystalline cellulose and Avicel pH-102 crystalline cellulose) were also studied in the fluidized bed by Piskorz’s co-worker (Radlein, et al.) [46], presenting the yield of the products in Table 2. The temperature 500 oC, regarded as the optimal condition for producing bio-oil from cellulose in the fluidized bed reactor, gives the yield of organic products of 72.5% for commercial SS-144 crystalline cellulose and 83.5% for Avicel pH-102 crystalline cellulose. The difference should also be attributed to the catalytic effect of inorganic salts in the ash, since the yield of char for commercial SS-144 crystalline cellulose is 5.4% compared to 1.3% for Avicel pH-102 crystalline cellulose.
Recently, Aho [47] conducted the pyrolysis of softwood carbohydrates under the nitrogen atmosphere in a batch-operating fluidized bed reactor, where the quartz sand was used as bed material and the load of the raw material is approximately 10 g. All sand was kept in the reactor by a net at the upper part of the reactor. The evolved vapors were cooled in the four consecutive coolers with the set point of -20 oC, while between the third and fourth cooler the vapors were passed through a water quench with the pH value of 3 for avoiding the absorption of CO2. The furnace temperature was kept at 490 oC until the release of non-condensable gases stopped, while the temperature in the reactor is about 460 oC. The vapor residence time was estimated to be less than 1.5 s based on the height of the reactor and the actual fluidizing gas velocity. The distribution of the products from cellulose (microcrystalline cellulose powder) is shown in Table 2, giving the low yield of organic products of 23.1% and high yield of char as 20.1%. The condensation of the vapors was estimated to be insufficient, while the values for gases and char can be considered reliable. It should be mentioned that the mass balance of the experiment could not be satisfactorily completed, due to its current reactor set-up (especially the vapor-cooling and liquid-precipitating system). A similar batch-operating fluidized bed reactor was designed by Shen and Gu, in order to study the fast pyrolysis of biomass and its components with the variation of temperature and vapor residence time under inert atmosphere [21, 65, 66]. No bed material was applied and the load of the raw material is about 5 g. The solid product was captured by the carbon filter, while the evolved hot vapors were cooled through the two U-tubes immersed in ice-water mixture (0 oC) and dry ice-acetone (-30 oC), respectively. The distribution of the products from the pyrolysis of microcrystalline cellulose at temperatures between 420 and 730 oC with a residence time from 0.44 to 1.32 s is given in Table 2. It is estimated that the yield of liquid product reaches its maximum of 72.2% at the temperature of 580 oC with the residence time of 0.44 s. The higher temperature and long residence time promotes the decomposition of the macromolecules and cracking of the volatile, enhancing the yield of gases and reducing the solid product [21].
3.2.1.2. Pyrolysis in entrained-bed reactor
Graham [69] designed a complicated entrained bed reactor to investigate the fast pyrolysis of cellulose, which had a similar or even higher heating rate than that of fluidized bed. The rapid heat transfer and thorough mixing between the particulate solids and feed are accomplished in two vertical gas-solids contactors: Thermovortactor and Cryovortactor. The biomass or other carbonaceous fuel is rapidly mixed with the hot particulate solids in Thermovortactor. The suspension passed through a downdraft entrained-bed (fluidized) reactor allowing the individual setting of temperatures, and then was quenched by the cold solids in the Cryvortactor and cooled through the cooling coil submerged in a water tank. The solids were then separated in the mass balance filter and the gas was collected in sampling bags. The feeding rate is less than 1 kg/h and the total elapsed time from the Termovortactor inlet to the cryovortactor exit is typically less than 600 ms. The yield of the gas and liquid (heavy fraction including tar and char) products at the temperature from 750 to 900 oC is shown in Table 2. The low yield of liquid product (less than 20%) is mainly due to the high reactor temperature and the inefficient cooling method. Moreover, the mass balance is not convincing, since the heavy fraction of the vapors may condense on the vessels of Cryovortactor and solid separator [69]. It should be noted that the high yield of gases is attributed to the enhanced heat transfer through the pre-mixing between the biomass and solid heat carrier before being fed to the pyolsyis reactor, compared to that of fluidized bed reactor.
Author(s) | Sample | Pyrolysis reactor | Conditions | Yield of products (wt%) | |||
Temperature (oC) | Residence time (s) | Gas | Liquid 1 (water) | Char | |||
M.R. Hajaligol, et al. (1982) [67] | No. 507 filter paper | Screen-heating Pyrex reactor (fixed bed) | 400 ~ 1000 | 0 ~ 30 | 5.25 ~ 46.97 | 16.37 ~ 83.35 | 3.32 ~ 78.37 |
W.S.L. Mok and M.J. Antal (1983) [68] | Whatman filter paper | Two-zone tubular micro reactor (fixed bed) 3 | 800 | 1 ~ 18 | 62 ~ 71 | -- | 15 ~ 23 |
R.G. Graham, et al. (1984) [69] | Avicel pH-102 crystalline cellulose | Downflow entrained bed (fluidized) reactor | 750 ~ 900 | < 0.6 | 74.7 ~ 98.1 | 0.7 ~ 15.8 4 | -- |
J. Piskorz, et al. (1986) [12, 42] | S&S powdered cellulose | Fluidized bed reactor | 450 ~ 550 | 0.53 ~ 0.56 | 8.49 ~ 17.89 | 68.75 ~ 75.59 (7.35 ~ 10.17) | 4.2 ~ 8.53 |
Baker TLC crystalline cellulose | 500 | 0.48 | 5.1 | 94.7 (4.6) | 1.0 | ||
D. Radlein, et al. (1991) [46] | Commercial SS-144 crystalline cellulose | Fluidized bed reactor | 500 | < 0.5 | 7.8 | 83.3 (10.8) | 5.4 |
Avicel pH-102 crystalline cellulose | 500 | < 0.5 | 3.9 | 89.6 (6.1) | 1.3 | ||
Y.F. Liao (2003) [31] | Filter paper with ash content of 0.01% | Gravitational feeding reactor (Fixed bed) | 300 ~ 1090 | 0.1 ~ 1.4 | 1.5 ~ 60.2 | 6.0 ~ 86.3 | 1.8 ~ 92.5 |
Aho, et al. (2008) [47] | Microcrystalline cellulose powder | Batch-operating fluidized bed reactor | 460 | <1.5 | 32.3 | 47.6 (24.5) | 20.1 |
T. Hosoya, et al. (2007) [36] | Cellulose powder from Toyoroshi Co. | Cylindrical furnace and tube reactor (fixed bed) | 800 | 30 | 12.9 | 77.1 (5.1) | 10 |
D.K. Shen and S. Gu (2009) [21] | Microcrystalline cellulose powder | Batch-operating fluidized bed reactor | 420 ~ 730 | 0.44 ~ 1.32 | 20.1 ~ 42.5 | 30.6 ~ 72.2 | 1.03 ~ 47.4 |
The summary of the studies on fast (off-line) pyrolysis of cellulose. 1: the yield of liquid product including water;2: the pressure is 5 psig of helium pressure;3: the operating pressure in the furnace is 5 atm;4: including solid product (char)
The residence time (both solid and vapor) in the fluidized or entrained bed reactors could be narrowly changed (normally less than 1 s), because of the confinement of the minimum gas velocity for the solid fluidization. Therefore, the fixed bed reactors are designed for investigating the effect of not only temperature but also residence time on the yield of products and their specificity [31, 36, 44, 68]. Liao [31] designed a fixed bed reactor (quartz tube with a sample-holder in the middle), the temperature of which could be changed from 0 to 1100 oC. The filter paper shaped as 18*50 mm (about 2 g) is fed gravitationally to the reactor from the top, and the carrier gas (nitrogen) brings the evolved volatiles and some char fragments through the carbon filter. The purified volatiles are then cooled through the three traps consecutively: 1) the mixture of water and ice (0 oC); 2) the mixture of acetone and dry ice (-30 oC); and 3) assisting cooling agent (-45 oC). The yield of the products (gas, liquid and char) at the temperature from 300 to 1090 oC with the (vapor) residence time between 0.1 to 1.4 s determined by the carrier gas velocity is extensively discussed by Liao [31] (shown in Table 2-3), while the mass balance for all the experiments is convincingly located between 96% and 101.5%. With the same vapor residence time (carrier gas velocity), the yield of liquid product complies with a Gaussian distribution with temperature, giving the maximum of 86.29% (including 15.72% water) at around 600 oC with the residence time of 0.1 s. It is estimated that the long residence time promotes the yield of gases, due to the sufficient secondary reactions of the volatiles. The yield of gases is increased from 1.5% to 60.2% monotonously with temperature (from 300 to 1090 oC). It needs to be noted that the duration of each experiment, corresponding to the sample heating-up and holding time, is not specified in the work.
3.2.1.3. Pyrolysis in fixed-bed reactor
The pyrolysis of cellulose in a tube (fixed bed) reactor made of Pyrex glass is investigated by Hosoya et al. [36]. Compared to the study of Liao [31], the cellulose sample is horizontally fed to the furnace and the carrier gas is not employed which means that the vapor residence time could not be set individually. It is estimated that thirty seconds are enough for completing the pyrolysis since no volatile product formation is observed after longer pyrolysis time. The evolved volatiles are retained in the reactor with the solid residue during the whole pyrolysis process. After 30 s pyrolysis, the reactor is pulled out from the furnace and cooled with air flow for 1 min at the room temperature. The tar (liquid product) condensed on the reactor vessel is extracted by
Another Pyrex cylindrical tube (fixed bed) reactor was made by Hajaligol et al. [44], where the cellulose sample is held and heated by the porous stainless screen connected to the brass electrodes of the reactor. The system allows independent variation of the following reaction conditions: heating rates (100-100 000 oC/s), final temperatures (200-1100 oC), sample residence (holding) time at final temperature (0-∝ s). Similar to the experimental set-up of Hosoya [36], the vapor residence time could not be individually changed while the carrier gas is not employed. Part of the evolved vapors is rapidly diluted and quenched in the reactor vessel during the operation, because most of the gas within the reactor remains close to the room temperature. The other part of the evolved vapors is purged out of reactor vessel with the helium and cooled down through two downstream traps: 1) U-tube packed with glass wool immersed in dry ice/alcohol (-77 oC) and 2) the same trap in liquid nitrogen (-196 oC). The char retained on the screen is determined gravimetrically. The mass balance for each case is around 100%, giving the convincing results of the yield of the products at the temperature 400- 1000 oC with the sample holding time 0-30 s in Table 2. It is concluded [44] that tar yield (liquid product) increases with temperature to a maximum of about 65% at around 700 oC and then decreases with further temperature increases, since the sample residence time is zero. With the long residence time (for example 30 s), the yield of liquid product at 400 oC is remarkably increased to 83.35%, due to the sufficient heating-up time for the complete pyrolysis of cellulose. Comparatively, the yield of liquid product at 500 oC with zero holding time is only 16.37% and the yield of char is 83.63% (where the mass balance is 105%), because of the incomplete decomposition of cellulose.
A two-zone tubular micro reactor (fixed bed) was designed by Mok and Antal [68], to investigate the effect of vapor residence time on the yield of products from cellulose pyrolysis. Zone A is operated for 15 min for complete solid phase pyrolysis, while Zone B is maintained at 700 oC for vapor phase cracking. The char is determined gravimetrically, and the gases are collected by the replacement of water. Unfortunately, the tar collection is not possible with that apparatus. The results of the product distribution at the temperature of 800 oC with the vapor residence time 1-18 s are shown in Table 2. The long vapor residence time and high pressure (5 atm) promote the secondary cracking of volatiles, enhancing the yield of the gas product.
3.2.1.4. Pyrolysis in microwave reactor
The microwaves might be firstly used to activate biomass (cellulose as the feedstock) to solid, liquid and gas products by Allan et al. in 1970s [70]. After 2000, two research groups (one is led by J.H. Clark from University of York in UK and the other by Y. Fernandez and J.J. Pis from National Institute of Carbon in Spain) have published a large number of the remarkable results on microwave pyrolysis
The studies of the research group led by Fernandez and Pis are mainly concentrated on the
Research group led by J.H. Clark has made a remarkable contribution on the microwave pyrolysis of biomass under
With regard to the above discussion, the microwave pyrolysis under both high and low temperature is estimated to be one of the promising technologies to achieve high-quality solid (low oxygen content), liquid (low oxygen content and water content) and gas (low energy input and high syngas concentration) fuels with the low cost, helping to achieve sustainable development through the utilization of renewable alternatives (biomass) instead of fossil fuels.
The chemical structures of the typical compounds in bio-oil from cellulose pyrolysis: LG: levoglucosan, HAA: hydroxyacetaldehyde, HA: Hydroxyactone, PA: pyruvic aldehyde, GA: glyceraldehyde, 5-HMF: 5-hydroxymethyl-furfural and FF: furfural
The volatiles (both condensable and non-condensable) evolved from cellulose pyrolysis under moderate or high temperatures are very complicated, most of which have been identified by employing the advanced analytical equipments such as FTIR, GC-MS, HPLC, NMR and so on. A variety of pyran and furan derivatives (C5-6 ring-containing compounds), aliphatic oxygenated C2-4 organic compounds and light species/gases (such as light hydrocarbons, CO and CO2) can be obtained, and the extensive lists together with their spectrometric/chromatograghic patterns and the yields are available in the literature, where the results are remarkably affected by the pyrolytic reactor, operating condition, condensing method and sample sources. Due to the great potential as the feedstock for fuel and chemicals production, some products established in good yields (such as levoglucosan, furfural, hydroxyacetaldehyde, acetol, CO, CO2 and so on) (Fig. 8) would be vigorously investigated regarding the chemical mechanism for their formation and fractionation.
3.2.2.1. Pyran- and furan- derivatives (C5-6 ring-contained compounds)
The C5-6 ring-containing compounds from cellulose pyrolysis are condensable and mainly composed of a variety of anhydrosugar and furan derivatives, among which levoglucosan (1, 6-anhydro-β-D-glucopyranose) are the outstanding one [12, 18, 21, 23, 31, 36, 41, 78-82]. Shafizadeh et al. [33] confirmed that levoglucosan can be obtained in yields from 20% to 60% by weight in their vacuum pyrolysis study of various cellulose samples, while other anhydrosugars (such as 2,3-anhydro-d-mannose, 1,4:3,6-dianhydro-α-D-glucopyranose, 1,6-anhydro-β-D-glucofuranose and 3,4-altrosan) are slightly produced (less than 1% by weight). Similar results were reported by Piskorz et al. by comparing levoglucosan yields from S & S powdered cellulose (2.1%) and Baker TLC microcrystalline cellulose (25.2%) pyrolysis at the temperature of 500 oC under atmospheric pressure in a fluidized bed reactor [12].
Inasmuch as the cellulose samples have somewhat different ash contents, the different levoglucan yield may be due to the well-known effect of inorganic cations in reducing tar yields by promoting other fragments or char formation [46]. Richards and co-workers established the extraordinary influence of salts and metal ions on the productivity of volatiles (especially levoglucosan and hydroxyacetaldehyde), presenting that the addition of alkali and Ca2+ cations to ash-free cellulose reduced the yield of levoglucosan while other metal ions (particularly Fe3+ and Cu2+) enhanced the yield of levoglucosan [83, 84]. In accord with the findings of Richards’s laboratory, Piskorz et al. observed very dramatic increases in the yields of levoglucosan (more than 30% by weight) from various celluloses after a mild sulfuric acid-wash pretreatment [42]. The profound effects of inorganic substances on the product from carbohydrates were also evidenced by Van der Kaaden through the matrix study on amylase pyrolysis using Curie-point pyrolysis, concluding that carbonyl compounds, acids and lactones are released by alkaline and neutral matrices while furans and anhydrohexoses are favored under neutral and acidic conditions [85].
The experimental conditions as well as the purity of cellulose and inorganic additions appear to have an important effect on the yield of levoglucosan. The yield of levoglucosan produced from the S &S powdered cellulose pyrolysis in a fluidized bed is increased with the temperature, reaches its maximum at the temperature of 500 oC and then decreased with the elevated temperature [46]. This is consistent with the results from Shen’s work using fluidized bed reactor, giving the maximum yield of levoglucosan at the temperature of 530 oC [21]. A great deal of specific work studying pyrolysis oils produced from Whatman filter paper at the temperature from 400 oC to 930 oC in the fixed bed reactor confirmed that the formation of levoglucosan is mainly located at the temperature between 450 oC and 650 oC, obtaining the maximum yield at 580 oC (about 58.37% by weight of pyrolysis oil) [31]. Moreover, the yield of levoglucosan is decreased with the long vapor residence time at the temperature of 600 oC, while most of the small fragments (low molecular weight volatiles) are increased notably. These phenomena add the interests in looking inside into the chemical mechanism of the levoglucosan formation and its secondary cracking during the cellulose pyrolysis.
An established standpoint presents that the formation of levoglucosan is initiated by disruption of the cellulose chain, primarily at the 1,4 glucosidic linkage in the macromolecule, followed by intramolecular rearrangement of the cellulosic monomer units [18, 21, 31, 33, 46]. The actual mechanism of levoglucosan formation remains controversial. Golova favors a free-radical mechanism through the successful validation of the data on the effects of free-radical [86]. Shafizadeh arguing by analogy with the reactions of model phenyl glucosides prefers a heterolytic mechanism [33]. Essig and Richards [83] proposed that the hydroxyl group (-OH) of free chain ends further depolymerizes the short chain through transglycosylation accompanying with the release of levoglucosan.
The speculative chemical pathways for the primary decomposition of cellulose monomer [
Another unsettled issue is whether depolymerization of macromolecule (disruption of cellulose chain) takes place by a concerted “unzipping” process or by random breaking of the cellulose chain. Briodo et al. [87] found that crystalline cellulose and undergoes a large change in DP before weight loss occurs. Similarly, Basch and Lewin [88] proposed that if cellulose depolymerized by an unzipping process then the number of free chain ends, as reflected by DP, will influence the initiation rate. Radlein [46] presented that one cellulose sample which has been heated to 180 oC for several hours and has a very low DP appears to give an abnormally high yield of levoglucosan. While the unzipping process may well operate at low temperature, there is evidence that it is inapplicable under fast pyrolysis conditions due to the significant amounts of cellobiosan and higher anhydro-oligomers in cellulose pyrolysates [46]. The correlation between the yield of levoglucosan and DP of cellulose sample under fast pyrolysis conditions needs to be specified, attracting the interests for further study.
The possible chemical pathways for primary decomposition of cellulose monomer (Fig. 9) and secondary cracking of levoglucosan and other primary fragments were comprehensively overviewed and developed by Shen and Gu, revealing the possible chemical information of the typical compound formation from cellulose pyrolysis [21] (Fig. 17). The usual view on the mechanism of levoglucosan cracking is that the lower molecular weight products are formed by fragmentation of principal intermediates like levoglucosan and cellobiosan as discussed by Pouwels et al. [81]. Such a scheme is also indicated by the data of Shafizadeh and Lu who showed that similar low molecular weight products (such as furfural, 5-HMF, glycolaldehyde, hydroxyacetone, acetic acid, formic acid and light species) as from cellulose pyrolysis can be formed by direct pyrolysis of levoglucosan [79], which is consistent with the observation by Hosoya et al. through the NMR identification of levoglucosan pyrolysis volatiles [37]. Evans et al. [89] even concluded that both cellulose and levoglucosan were pyrolyzed at various residence times and give similar cracking patterns and products by using a flash pyrolysis-mass spectrometric technique.
However, Richards [45] has argued that it is more likely that hydroxyacetaldehyde, known as one of the prominent products from cellulose pyrolysis (chemical pathway (3) in Fig. 16), forms directly from cellulose by a plausible mechanism involving the dehydration followed by a retro-Diels-Alder reaction but not from the secondary cracking of levoglucosan. Li et al. [18] presented that no detactable hydroxyacetaldehyde is observed by FTIR during levoglucosan pyrolysis in the two-zone pyrolysis reactor, indicating that levoglucosan might not be the major precursor of hydroxyacetaldehyde in cellulose pyrolysis. The two major pathways are then recognized to be active during cellulose pyrolysis: one leading to the formation of levoglucosan as a relatively stable product and the second to yield low molecular products particularly hydroxyacetaldehyde. The experimental studies of cellulose pyrolysis with the addition of inorganic substances show that conditions which result in the selective formation of levoglucosan realize very low yield of hydroxyacetaldehyder and vice versa, confirming the competitive nature of the above two pathways [4, 12, 23, 83, 84, 90].
Regarding to the notable argument on the relationship between levoglucosan and hydroxyacetaldehyde, Liao [31] conducted the pyrolysis of both cellulose and levoglucosan under different temperature and vapor residence time in a fixed bed. For cellulose pyrolysis, the yield of levoglucosan is increased and then decreased with the elevated temperature reaching the maximum at the temperature of 580 oC, while the yield of hydroxyacetaldehyde is monotoneously increased with the temperature. Under the fixed temperature (610 oC), the long vapor residence time favors the yield of small fragments (especially hydroxyacetaldehyde) remarkably at the expense of levoglucosan, showing the plausibly “consecutive mechanism” between them. For levoglucosan pyrolysis, no hydroxyacetaldehyde (even some other prevalent volatiles from cellulose pyrolysis) is detected at the temperature of 610 oC with the short residence time 0.1 s, confirming the “competitive mechanism” between levoglucosan and hydroxyacetaldehyde. But under the same temperature with the long residence time 1 s, almost all kinds of volatiles from cellulose are released from levoglucosan pyrolysis, enhancing the “consecutive mechanism” between levoglucosan and hydroxyacetaldehyde. The quantitatively similar results are reported by Shen and Gu [91] for cellulose pyrolysis in a fluidized bed reactor at different temperatures and vapor residence times. The published data by Piskorz et al. [42] presenting the variation of levoglucosan and hydroxyacetaldehyde yields with temperature are compatible with either mechanism.
The experimental results summarized above plainly reveal the hybrid relationship between levoglucosan and the low molecular weight fragments (particularly hydroxyacetaldehyde) during cellulose pyrolysis: both competitive and consecutive (Fig. 9 and Fig. 10). However, the predominance of the nominal mechanism during cellulose pyrolysis is still ambiguous for specifying the hydroxyacetaldehyde (or other low molecular weight volatiles) formation and the extent of levoglucosan secondary decomposition, due to the widely varied experimental conditions and inorganic additions.
Furfural and 5-hydroxymethyl-furfural categorized as furan derivatives, are another two important C5-6 ring-contained compounds in the products list of cellulose pyrolysis [12]. Although the yield of these two compounds is less than 1% by weight of fed cellulose, they are notably identified from the pyrolysis oil (GC-MS) spectrum of cellulose [12, 21, 31, 36, 47, 78, 81]. The effect of experimental conditions (temperature and vapor residence time) on yield of furfural and 5-hydroxymethyl-furfural is fully discussed by Liao [31], presenting that the formation of furfural is notably enhanced by the increased temperature and residence time while the yield of 5-hydroxymethyl-furfural is only increased with the elevated temperature. It is observed that these two compounds could be produced from levoglucosan pyrolysis under the suitable vapor residence time, showing the “consecutive mechanism” between them (Fig. 10). Moreover, furfural is found to be one of the important secondary cracking products from 5-hydroxymethyl-furfural pyrolysis. The commonly accepted standpoint concerning the chemical pathway for furfural and 5-hydroxymethyl-furfural is that levoglucosan or cellulose monomer undergoes ring-opening reaction to the C6 aliphatic intermediate, followed by hemiacetal reaction between C-2 and C-5 to form furan-ring structure after the formation of acetone-structure on position C-2 through dehydration reactions (chemical pathway (5) in Fig. 9 and chemical pathway (16) in Fig. 10 ) [31, 79]. The 5-hydroxymethyl-furfural could be decomposed to furfural together with release of formaldehyde through the de-hydroxylmethyl reaction, furan methanol through de-carbonylation reaction, or 5-methyl-furfural through de-hydroxyl reaction (chemical pathway (24) and (25) in Fig. 10) [21, 31, 92]. It could be concluded that furfural and 5-hydroxymethyl-furfural are both competitively and consecutively produced with levoglucosan, while 5-hydroxymethyl-furfural is another source for the formation of furfural.
3.2.2.2. Aliphatic oxygenated C2-4 organic compounds
Perhaps the most unusual result noticeably in the compounds from cellulose pyrolysis is the abundance of hydroxyacetaldehyde (glycolaldehyde) and acetol (1-hydroxy-2-propanone) [12, 21, 31, 36, 42, 46, 79]. A survey of literature reveals that these compounds were only occasionally reported as pyrolysis products, and have received very little attention in the sense of being a major product [67-69]. In 1966, Byrne et al. reported hydroxyacetaldehyde as one major components of a group of highly oxygenated products from pyrolysis of cellulose treated with flame retardants, along with glyoxal, pyruvaldehyde and 5-hydroxymethylfurfural [78]. It is perhaps that Pikorz et al. who first called attention to hydroxyacetaldehyde as a major product from rapid pyrolysis of slightly impure cellulose in a fluidized bed reactor, obtaining approximately 18% yield by weight of S & S powdered cellulose (0.22% ash content) and 8% of Baker TLC microcrystalline (0.04% ash content) [12]. The difference of hydroxyacetaldehyde among diverse celluloses is possibly attributed to the catalytic effects of inorganic salts in ash. A great deal of careful work on pyrolysis of cellulose treated with salts, neutral or acidic inorganics by Piskorz et al. and Richards’ laboratory proves that the formation of hydroxyacetaldehyde is notably favored by the addition of alkali salts (such as NaCl), but inhibited by the addition of acid (such as H2SO4) [42, 46, 83, 84].
The speculative chemical pathways for secondary decomposition of the anhydrosugars (especially levoglucosan) [
Moreover, the study of cellulose (Whatman filter paper) pyrolysis in a fixed bed reactor by Liao [31] indicates that hydroxyacetaldehyde is an important compounds in the condensed liquid product, the yield of which is notably increased from 3% to 19% by weight of liquid product with the elevated temperature (450 to 930 oC). The quantitatively similar result is reported by Shen and Gu [21] studying the cellulose pyrolysis in a fluidized bed reactor under various temperatures and residence times. But the experimental data published by Piskorz et al. [42] shows that yield of hydroxyacetaldehyde by weight of fed cellulose is increased with the temperature and starts to decrease at the temperature of 610 oC. Since the yield of liquid product against temperature is changed compatibly with the yield of hydroxyacetaldehyde [12, 21, 31, 42], the apparent yield of hydroxyacetaldehyde by weight of fed cellulose performs a Gaussian distribution with temperature even though its relevant yield by weight of liquid product is monotonously increased with temperature.
Since no other C2 or C3 product appears in the same yield as hydroxyacetaldehyde, it is an intermediate or primary products formed early in the decomposition process through monomer ring cleavage (Fig. 9). The most acceptable standpoint for hydroxyacetaldehyde formation is proposed by Shafizadeh and Lai (chemical pathway (3) in Fig. 9), presenting that hydroxyacetaldehyde, assumed as the precursor for glyoxal, was produced mainly from C-1 and C-2 position of the glucopyranose [79]. This scheme is similar to that proposed by Byrne et al. [78].
Through the examination of bond energies in the monomer unit by Frankiewicz [93]and interatomic distance for β-D-glucose by Sutton [94], it was shown that the length for the C-2 to C-3 bond and for C-1 and O-ring linkage is slightly greater than other similar bonds. This finding is confirmed by Madorsky et al. [95] who pointed out that the C-O hemiacetal bond on the ring is thermally less stable than C-C bonds. These information offer support to the hypothesis that initial ring cleavage of cellulose monomer tends to occur frequently at these two locations, yielding a two-carbon fragment and a four-carbon fragment, while the two-carbon fragment is rearranged to a relatively stable product, hydroxyacetaldehyde, and the four-carbon fragment can undergo a number of rearrangement of dehydration, scission and decarbonylation to yield a variety of lower molecular weight products [12]. This chemical pathway for the formation of hydroxyacetaldehyde is well presented in the study of Liao [31] and Shen et al. [21] (Fig. 9). They also suggested that almost all of the positions on the pyran-ring could be contributed to hydroxyacetaldehyde formation, involving the examples on C-2 to C-3 or C-5 to C-6 positions plausibly through the cracking of five carbon fragment from initial cleavage of monomer on the bonds of C-1 to C-2 and hemiacetal C-O (chemical pathway (9) in Fig. 10). However, this suggestion should be evidenced through the bond energy examination and atomic label technology on the model compound.
Acetol (1-hydroxy-2-propanganone), regarded as another major product, is perhaps firstly reported by Lipska and Wodley [96] in their study of isothermal cellulose pyrolysis at 315 oC. Moreover, some of cellulose fast pyrolysis studies have also evidenced the acetol as a major component in the products. For instance, Hosoya et al. [36] obtained the acetol (in the
In 1972, Shafizadeh and Lai [79] proposed the possible chemical pathway for acetol formation from levoglucosan decomposition as the rearrangement of the four-carbon fragment from the primary pyran-ring cleavage, while the other two-carbon fragment might be the precursor for hydroxyacetaldehyde. The similar reaction scheme is reported by Byrne et al. in 1966 [78] and proposed again by Piskorz et al. [12] in 1986. Meanwhile, the pyruvaldehyde was also proposed to be formed through the rearrangement of the four-carbon fragment, competing with the formation of acetol (Fig. 10). It could be found that enol-structure from the dehydration between the conjunct carbon is the intermediate for the acetone-structure, while the dehydration is between C-5 and C-6 for acetol formation and between C-4 and C-5 for pyruvaldehyde formation. According to Benson’s rules on energy grounds [97], acetol should be favored over the alternative possibility of pyruvaldehyde. This speculation is evidenced by Piskorz [12], Liao [31] and Shen and Gu [21] studying cellulose fast pyrolysis in fixed bed reactor or fluidized bed reactor, obtaining higher yield of acetol over pyruvaldehyde (Fig. 9 and Fig. 10). Moreover, other chemical pathways for acetol and pyruvaldehyde formation from the five-carbon fragment or ring-opened six-carbon intermediate are proposed by Liao [31], which are then summarized in levoglucosan secondary cracking pathways by Shen and Gu [21]. However, the prevalent one for their formation, which might be affected by experimental conditions, is not specified, while their secondary cracking to CO and aldehyde-compounds could be readily determined.
Among a number of the detectable pyrolysis products from cellulose, some products, such as acetic acid, aldehyde, methanol, formaldehyde and so on, are less frequently discussed in the literature due to their low yields [12, 31, 44, 46, 64, 68, 69, 98]. In an investigation of the formation of acidic product, Kang et al. [99] proposed a mechanism of hydration of ketene which is formed from the dehydration of alcohol-aldehyde structure (chemical pathway (24) in Fig. 10). This reaction scheme for carboxyl group formation was well-established by the following researchers [12, 21, 31, 36, 46, 61, 65], most of whom did not specify its position on the pyran-ring. The possible chemical pathways for cellulose primary reactions and volatile secondary cracking are systematically summarized by Shen and Gu [21], giving a number of pathways for the formation of these low molecular weight oxygenated compounds.
3.2.2.3. Light species/gases
CO and CO2 are regarded as the most dominant gas species in the gaseous product from cellulose pyrolysis, accounting for approximately 90% by weight of total gas products [12, 21, 31, 44, 47, 67-69, 98]. Hajaligol et al. presented that above 750 oC CO (more than 15% by weight of the fed) was the most abundant gaseous product from rapid pyrolysis of cellulose in the screen-heating reactor, while CO2 (around 3% by weight of fed) was the second abundant species in gaseous product [44]. The result is agreed by Graham [69] that CO is observed as the single most prevalent gas species with the yield of 63% mole percent of the product gas at the reaction temperature of 700 oC in the entrained down-flow reactor. Comparatively, Aho et al. [47] obtained the higher yield of CO2 than that of CO from the cellulose fast pyrolysis in a fluidized bed reactor at the temperature of 460 oC. The above phenomena are all evidenced by Piskorz et al. studying cellulose fast pyrolysis under the temperature of 450 oC, 500 oC and 550 oC in a fluidized bed reactor [12], finding that CO2 is predominant over CO in the gaseous product as the reaction temperature is lower than 500 oC, but above 500 oC CO turns to be dominant over CO2. The different result is reported by Shen and Gu [21] studying cellulose pyrolysis in a fluidized bed reactor, observing that the yield of CO is dominant over that of CO2 in spite of the reaction temperature. Although the predominance of CO and CO2 in gaseous product from cellulose pyrolysis against the variation of temperature is still controversial, the yield of CO is confirmed to be enhanced by the elevated reaction temperature while that of CO2 is slightly changed [12, 18, 21, 31, 44, 46]. The established explanation is that CO2 is the primary product mainly formed at the low temperature stage, while CO is produced of large proportion from secondary tar decomposition steadily enhanced by the increased temperature.
Mok and Antal [68] investigated the effect of residence time on the yield of main gas products from cellulose pyrolysis at the pressure of 5 psig, concluding that CO2 formation was notably enhanced by the longer residence time while CO was inhibited. The different result is reported by Liao [31] that CO is remarkably favored by the longer residence time while CO2 is changed slightly, which is further confirmed by Shen and Gu [21]. Evans et al. [89] proposed that carboxyl group formed through hydration of ketene structure is the precursor for producing CO2, while CO is mainly produced through the decarbonylation reaction of aldehyde-type species. Since the ketene structure, which is related to the formation of acidic compounds (containing carboxyl group), is mainly formed during the low temperature stage, CO2 is approved to be the primary product of cellulose pyrolysis, and thus it is not remarkably influenced by reaction temperature. Comparatively, high reaction temperature favors the vigorous secondary tar cracking reactions, especially the carbonyl-group containing fragments, in order to enhance the formation of CO steadily and rapidly. This reaction mechanism is summarized from the results of the researchers [12, 18, 21, 31, 37, 46, 89], however the preference of the carbon on the pyran-ring for CO and CO2 formation is not specified. From the study of thermal decomposition of levoglucosan, Shafizadeh and Lai [79] suggested that CO2 was produced primarily from C-1 and C-2 position as well as hydroxyacetaldehyde, while the production of CO was less specific, but the information for cellulose pyrolysis is not ruled out.
It needs to be noted that the mole fraction of hydrogen (H2) is also important as well as CO and CO2 and constitutes approximately 21% of the product gas at the reaction temperature of 900 oC in the study of Garham et al. [69]. Quantitatively similar result is reported by Hajaligol et al. [44], also finding that the yield of H2 is noticeably increased at the high temperature (more than 800 oC), while no hydrogen is observed at the low reaction temperatures. This implies that high reaction energy is required for the formation of hydrogen through the secondary tar cracking reaction. Li et al. [18] proposed that formaldehyde is precursor for hydrogen formation, together with the evolution of CO through the secondary cracking at around 550 oC. The same chemical scheme is proposed again by Liao [31], Hosoya [37] and Shen and Gu [21], also giving the possible chemical pathway for hydrocarbons formation through the decarbonylation of aldehyde-type compounds together with the production of CO. It is also observed that both hydrogen and hydrocarbons formation are favored by the elevated temperature, confirming the enhancement of temperature on the secondary tar cracking reactions proposed above together with the evolution of CO. Since hydrogen is the important synthesis gas for methanol and other synthesis, the new methods coupled with thermal technology but with low heating energy input, such as catalytic hydrothermal conversion technology [100-102], are attracting global interests to specify the hydrogen formation from cellulose.
The typical compounds from cellulose pyrolysis are extensively discussed in the above studies, regarding the variation of the yield with experimental conditions (residence time and temperature), and the possible chemical pathways for their formation and cracking. It is commonly accepted that levoglucosan is the most prevalent product in the primary volatiles from cellulose pyrolysis, which could be further decomposed into various low molecular weight compounds (C2-4 compounds or light gases). However, the preference of the various primary reactions and secondary tar (especially levoglucosan) cracking reactions under widely varied experimental conditions with or without the catalysts needs to be further determined, in order to identify and promote the specific compound formation. The commonly-accepted chemical pathways need to be essentially estimated through advanced theory and/or technology analysis, such as molecular dynamic simulation (MDS).
The constituent polymers from lignocellulosic biomass, i.e. polysaccharides (cellulose and hemicellulose) and lignin, are pyrolyzed in different ways [30]. The polysaccharides form anhydraosugars, furans, aldehydes, ketones and carboxylic acids as their primary volatile products, while the volatiles from lignin mainly consist of the low molecular weight aromatic compounds with guaiacyl-units or phenolic-units. To date, many researchers have extensively studied the pyrolysis of the real biomass and proposed reaction models by assuming that pyrolysis of the main chemical components (cellulose, hemicellulose and lignin) takes place independently without interactions among the three components [103-107]. They stated that pyrolysis of biomass can be explained based on a linear superposition of that of the three components. Yang et al. [108] presented that the pyrolysis of the synthesized biomass samples containing two or three of the biomass components indicated negligible interaction among the components. A computational approach was made firstly to predict the weight loss of a synthesized biomass from its composition in cellulose, hemicellulose and lignin, and secondly to predict the proportions of the three components of a biomass. The results calculated for the weight loss of the synthesized biomass are quite consistent with the experimental results.
Hosoya et al. [109] investigated cellulose-hemicellulose and cellulose-lignin interactions during pyrolysis at gasification temperature of 800 oC for 30 s in a tube reactor, while cellulose sample mixed with hemicellulose (2:1, wt/wt) was prepared by grinding cellulose-hemicellulose mixture in mortar and cellulose sample mixed with MWL (milled wood lignin) (2:1, wt/wt) was prepared by adding cellulose to the 1,4-dioxane solution (0.5 ml) of MWL followed by evaporation of the solvent. In the cellulose-hemicellulose pyrolysis, the experimental and estimated yields were not different so much although the tar (total) yield tended to decrease slightly with small increase in the char yields by mixing. The results indicate that cellulose-hemicellulose interaction is not significant in gas, tar and char yields. In the cellulose-MWL pyrolysis, more significant deviations were observed between the experimental and estimated yields of char and tar fractions; char yield decreased with the increasing yield of the tar total fraction by mixing. Tar composition was also substantially affected by mixing cellulose with MWL, presenting that the yield of the i-PrOH-soluble fraction substantially increased from 52.1% to 68% while the yield of water-soluble fractions substantially decreased from 14.5% to 2.8%. These results suggest that nature of the tar fraction is significantly altered from the water-soluble to i-PrOH-soluble products by the mixing of cellulose with MWL.
Moreover, the interactions among the components for the characteristic secondary char-forming were also investigated, involving the photographs of the reactors after pyrolysis and tar extraction [109]. The wood polysaccharide samples form the secondary char at the upper side of the reactor while vapor phase carbonization of the products from lignin leads to the formation of secondary char from the bottom to upper side continuously. In cellulose-hemicellulose pyrolysis, these char-forming behaviors were explainable as combined behaviors of the individual cellulose and hemicellulose pyrolysis. On the other hand, the cellulose –MWL pyrolysis substantially reduced the vapor phase secondary char formation from MWL.
Time profile of evolution rates of gas and tar in steam gasification of model biomass samples at the temperature of 673 K were examined by Fushimi et al. [114] using a continuous craoss-flow moving bed type differential reactor to elucidate the interaction among the major biomass components (cellulose, xylan and lignin) during gas and tar evolution. Two types of model biomass samples (sample A: mixture of cellulose (65%) and lignin (35%) with a ball-mill for 5 h; sample B: mixture of cellulose (50%), xylan (23%) and lignin (27%) with a ball-mill for 5 h) were used for the experiment. In steam gasification of sample A, the evolution of water-soluble tar and gaseous products (CO, H2, CH4 and C2H4) are significantly suppressed by the interaction between cellulose and lignin. The primary (initial) decomposition of lignin is hindered by the interaction with pyrolysate of cellulose, which is different from the result from Hosoya et al. [115]. The CO2 evolution appreciably enhanced and the evolution of water-soluble tar delays. These results may imply that the volatilization of water soluble tar derived from cellulose is suppressed by lignin and then the decomposition of char derived from polymerized saccharides and lignin takes place, emitting mainly CO2.
In order to establish a link of the pyrolysis gas yield from the biomass and its main compositions, experimental flash pyrolysis of several biomasses and the model compounds (xylan, cellulose and lignin) at a temperature of 950 oC with a gas residence time of about 2 s was carried out by Couhert et al. [113] using an entrained flow reactor (EFR). The synthesized biomass by mixing the three components is described as simple mix where the products are mixed in equal mass proportion with a spatula in a container, and intimate mix where the components were mixed and then co-ground to thin elements using a laboratory ball mill. During the pyrolysis of simple mixes, the three components devolatilized separately. Interactions are likely to occur outside the particles. During the pyrolysis of intimate mixes, reactions can occur outside the particles in the same way as during the pyrolysis of simple mixes but additional interactions may occur inside the particles. As one component devolatilizes inside the particle, it is submitted to an atmosphere with very high concentrations in gas and condensable vapors; the gases formed are in close contact with the solids of other components. There are also probably interactions inside the particles because CO2 yield of intimate mix is higher than CO2 yield of simple mix. An attempt was then made to predict gas yields of any biomass according to its composition, but an additivity law does not allow the gas yields of a biomass to be correlated with its fractions of cellulose, hemicellulose and lignin. It is concluded that interactions occur between compounds and that mineral matter influences the pyrolysis process.
It is confirmed that the interactions among the components of wood under pyrolysis conditions are insufficiently investigated in the literature. Some issues concerning the interactions among components need to be further addressed for gaining better understanding in this field: 1) the component-mixed sample to simulate/represent the original physico-chemical information among the components in the real biomass; 2) the effect of experimental conditions (temperature, residence time, pressure and so on) and reactor type on the interactions among the components during pyrolysis; 3) specificity of the chemical mechanisms of the interactions among the components in vapor-phase, solid/liquid-phase or morphological-phase. This would be beneficial for expressing pyrolysis of biomass through the pyrolysis of individual components in biomass.
The cell-wall model for lingocellulosic biomass, divided into three main zones, is well –established to represent its morphological structure and distribution of the prominent chemical components (hemicellulose, cellulose and lignin) in different zones. This would facilitate the direct utilization of biomass as bio-material and the improvement of the conversion process of biomass to fuels and chemicals. It needs to be noted that the existed cell-wall model is mostly applicable for woody biomass, while that for other lignocellulosic biomass (such as crops, straws and grass) should be further identified.
For on-line pyrolysis of cellulose, the initial stage of the cellulose pyrolysis, mainly related to the intermolecular hydrogen bonding and that between the different molecular chains, needs to be clarified for gaining better understanding of the whole pyrolytic behavior of cellulose. The kinetic models for the cellulose pyrolysis are improved toward track the mass loss process of solid along with the formation of the typical products with help of the advanced analytic instruments (such as FTIR, GC, NMR and so on). For off-line pyrolysis of cellulose, the yield of the products is tightly allied to the reactor type, temperature, residence time and condensing method. The preference of the various primary reactions and secondary tar (especially levoglucosan) cracking reactions under widely varied experimental conditions with or without the catalysts needs to be further determined, in order to identify and promote the specific compound formation.
The interactions among the main chemical components of lignocellulosic biomass under pyrolytic conditions are remarkably evidenced, regarding the differences between the estimated yield of products and variation of the specific compositions and the experimental data. This proves that the interactions among the components should be significantly considered for gaining better understanding of the pyrolysis of the biomass system. The component-mixed sample representing the original physico-chemical information between the components in real biomass is required for revealing the intrinsic interaction mechanism between them under the pyrolytic condition, favoring to predict the pyrolytic behavior of biomass from pyrolysis of its individual components.
The authors greatly acknowledge the funding support from the projects supported by National Natural Science Foundation of China (51106030 and 51076031) and National Key Basic Research Programs found by MOST of China (2012CB215306 and 2010CB732206)
The ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is structurally similar to other members of Pern-Arnt-Sim (PAS) superfamily [1, 2], which consists of a conserved signaling network that regulates signal exchange between host and environment [3, 4]. It was originally found to play a role in regulating the reactions of exogenous chemicals such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). However, AhR has been recently recognized as an essential regulator of host-pathogen interactions [5, 6, 7, 8, 9], especially affecting immunity, inflammatory response and antibacterial activity [5, 9, 10, 11, 12, 13, 14, 15]. The current chapter focuses on AhR’s function in regulating immunity, inflammatory response and antibacterial activity.
As a highly conserved nuclear receptor [10], AhR can regulate gene expression after binding to a ligand. AhR binds to its co-chaperones and maintains cytoplasmic localization [16, 17]. Ligand binding by AhR results in its release by co-chaperones and translocation into the nucleus, where it forms a heterodimer with the aryl hydrocarbon receptor nuclear translocator (ARNT) [18, 19]. Via binding to the genomic DNA—usually interacting with AhR response elements (AhREs, 5’-GCGTG-3′) [20, 21], also referred to as dioxin (DREs) or xenobiotic (XREs) response elements [9, 10], the AhR-ARNT heterodimer regulates multiple target genes such as Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1), CYP1A2, CYP1B1, TCDD Inducible Poly (ADP-Ribose) Polymerase (TIP ARP), and aryl hydrocarbon receptor repressor (AhRR), which can inhibit AhR via a negative feedback circuit [22]. Target gene regulation is considered to be ligand dependent [21].
As a highly heterogeneous nuclear receptor, AhR binds to many ligands, including exogenous synthetic aromatic hydrocarbons [10, 23], exogenous natural chemicals [5, 6, 10, 14, 24] and endogenous ligands [25, 26, 27, 28, 29]. Tryptophan, an essential amino acid in humans, constitutes the precursor of many important components in the human body. Interestingly, the tryptophan (TRP) pathway has a critical function in immune and inflammatory responses through providing many ligands for AhR. In addition, AhR controls the expression and activation of tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase (IDO), kynureninase (KYNU) and kynurenine 3-monooxygenase (KMO). The aforementioned enzymes catalyze the synthesis of kynurenine (KYN), which is a product of TRP metabolism, thus enabling feedback inhibition because KYN and AhR are agonists [30, 31].
The interactions of AhR and its ligands, including polycyclic aromatic hydrocarbons (PAHs), can be used as a cytoplasmic signal sensor. The conformation of AhR changes, and it is transferred from the cytoplasm to the nucleus. The high-affinity ligand TCDD can exert toxic effects by binding with and activating AhR [32, 33]. Structural analysis of AhR revealed three domains: 1) The amino-terminal DNA binding domain (DBD) comprises the basic helix–loop–helix (bHLH) region and the nuclear localization signal (NLS); 2) The central PAS region encompasses two degenerate repeats; 3) The carboxy-terminal region features the transactivation domain (TAD) [34]. In addition, phylogenetic data showed that AhR constitutes an ancient protein whose functional orthologues are found in reptiles, amphibians, birds and mammals. However, there are many structural differences between human and murine AhR genes. Sequence analysis revealed approximately 85% structural similarity in the amino-terminal sequence, while the C-terminal region shows a low homology. The TAD or N-terminal domain is the least conservative [34]. The C-terminal domain is a highly unstructured sequence containing a transcriptionally active region and contributes to receptor transformation [35, 36].
AhR, heat shock protein 90 and X-associated protein 2 form multiple protein complexes in the cytoplasm. In the presence of ligands or agonists, AhR complexes undergo nuclear translocation and form heterodimers with ARNT. With a core sequence of 5′-GCGTG-3′, the AhR/ARNT complex interacts with DREs in the proximal site of promoters of target genes. Both AhR and ARNT recruit additional transcription co-activators for gene regulation, e.g., CYP and AhRR. Once transferred into the nucleus, AhR undergoes proteasome-induced degradation [37]. AhR function is modulated and weakened by AhRR, another member of the PAS family. After AhR activation, the level of AhRR increases rapidly [38]. Meanwhile, AhRR has a transcriptional repressor domain and can dimerize with ARNT even without an agonist, to fulfill its function [39].
It is known that AhR has a critical function in controlling responses to a variety of microbial pathogens. For example, it is required to effectively clear the Gram-positive pathogenic bacteria
When inoculated with log-phase LM intravenously, AhR deficient C57BL/6 J mice (AhR−/−) showed higher susceptibility compared with AhR heterozygous (AhR+/−) littermates. In comparison with AhR+/− animals, AhR−/− counterparts showed more colony forming units (CFUs) of LM in the spleen and liver, and more pronounced alterations in liver histopathology. Serum monocyte chemotactic protein 1 (MCP-1), IL-6, TNF-α and Interferon γ (IFN-γ) amounts were similar in AhR−/−and AhR+/−mice infected with LM. Elevated IL-12 and IL-10 amounts were detected in AhR−/−mice infected with LM. In terms of capacity of uptake and inhibition of intracellular growth of LM, AhR+/−and AhR−/−macrophages were comparable
Huang et al. described the first pathogenic
Lipopolysaccharide (LPS) stimulation is often utilized to model Gram-negative bacteria-induced sepsis for assessing AhR’s functions in infection resistance and septic shock regulation. AhR and TDO2 are required for survival after the initial exposure to LPS [14, 20], while subsequent exposures are dependent on AhR and IDO1/2. LPS up-regulates TDO2 and IDO1/2, the rate-limiting enzymes of TRP transformation into KYN, and further induces AhR, thus downregulating pro-inflammatory cytokines and regulating long-term systemic inflammation [20]. In addition, compared with AhR wild type mice or immune cells, LPS challenged AhR−/−mice or immune cells produce higher concentrations of pro-inflammatory cytokines, including IL-1 β, IL-6, IL-18, IL-12, TNF-α and IFN-γ, as well as NLR Family Pyrin Domain Containing 3 (NLRP3) that regulates multiple pro-inflammatory cytokines. The AhR agonists 3-methylcholine (3-Mc), 6-Formylindolo[3,2-b]carbazole (FICZ), KYN and TCDD could protect AhR WT mice, but conferred no protection to AhR−/− animals, from extremely high amounts of pro-inflammatory cytokines and septic shock [45]. Thus, the immune response to bacterial pathogens requires AhR, and the underlying mechanisms are vital in identifying novel therapeutic agents to combat bacterial pathogens.
AhR is also associated with response to viral pathogens. For example, herpes simplex virus (HSV)-associated eye infection can lead to chronic immune-inflammatory response, causing blindness. However, in a mouse model, a single dose of TCDD could alleviate herpetic keratitis lesions, reduce viral load and decrease pro-inflammatory cytokine levels. However, similar effects were not obtained with FICZ, thus indicating a difference between both AhR ligands [46]. Therefore, response to viral pathogens requires AhR, and nontoxic AhR agonists could be used in the treatment of HSV-induced eye infections.
In influenza virus infection, activation of AhR doubles the number of neutrophils in the airway and interstitium of the lung, which reduces the survival rate from an otherwise sub-lethal infection [47, 48]. Interestingly, no increase in neutrophil inflammation or decreased survival was observed in AhR deficient mice treated with TCDD and influenza virus [37]. Innate immune reactions, including excessive pulmonary neutrophilia, can lead to severer pathological conditions and poor clinical outcomes after influenza virus infection [49, 50, 51]. Meanwhile, epidemiological reports have shown that exposure to environmental AhR ligands is associated with elevated respiratory tract infection, pulmonary congestion and exacerbation of inflammatory lung disease [52, 53, 54]. Therefore, there is parallel evidence in rodent animal models and humans that AhR regulates neutrophil inflow during infection. Overall, these data suggest that AhR regulates a new pathway to regulate neutrophil migration during influenza virus infection. A possible new target gene of AhR is inducible nitric oxide synthase (iNOS). Meanwhile, activation of AhR can increase the expression of iNOS in the mouse lung upon infection with influenza virus [55].
The immune response to parasites also requires AhR. For example, immune response to
After intraperitoneal infection with
Therefore, AhR is necessary for parasitic pathogen response. This provides information on a response pathway and can be used to design new treatments.
AhR is found at high levels in the epithelial barrier [58], and the intestinal barrier of AhR−/−mice is inadequate, suggesting AhR might be important in maintaining or generating a healthy intestinal barrier [19]. In addition, low levels of AhR and AhR’s target genes are found in sterile mice [9], and AhR is needed for maintaining the RORγt+ innate lymphoblastoid cell (ILC) balance in the intestine [18]. In addition, the TRP metabolizing indole biosynthesized by select bacterial components of the intestinal microbiota is an AhR ligand [59, 60]. Diet without indole or antibiotic treatment can lead to the differentiation of mononuclear phagocytes, dependent on AhR, into dendritic cells (DCs) [48], which are more susceptible to gut pathogens in mice [17]. Overall, the above findings suggest AhR might be important in host gut-microbiota interactions.
AhR also plays a role in the reciprocal relationship among intestinal bacteria, bacterial metabolites and the intestinal immune system. AhR-deficient RORγt+ ILCs (the main producers of gut IL-22) with lower IL-22 amounts make mice easily die upon
In AhR-null mice, the number of intraepithelial lymphocytes (IELs) in the small intestine is significantly reduced [6, 64, 65], which is related to lower IL-22 amounts, and therefore to downregulated ileal antimicrobial peptides, including RegIIIb and RegIIIg. The microbial loads of the small and large intestines are also elevated. Loss of IELs is cell-intrinsic since AhR-deficient bone marrow cells do not reconstruct the gut in Rag−/− mice [51]. Over time after birth, intestinal Group 3 Innate Lymphoid Cells (ILC3s) [66], ILC22 and CD32NKp46+ lymphoid tissue inducer cells are lost in AhR-deficient mice. Similarly, ILC3’s inability to multiply in AhR-deficient mice constitutes an intrinsic function since AhR is required for the transcription of the cell-specific proliferator c-kit [67, 68]. As a result, secondary lymphoid structures, including cryptopatches and innate lymphoid follicles, are absent from the gut of AhR-deficient mice, which show susceptibility to
AhR-deficient mice have lower amounts of skin and intestinal IELs and intestinal ILCs, thereby increasing susceptibility to
AhR plays an important role in controlling adaptive immunity, and regulating T cell differentiation and direct or indirect functions by affecting antigen presenting cells. It was found that TCDD-activated AhR could inhibit the immune response [76], which is subsequently associated with CD4+ T cell induction [77, 78, 79]. In addition, the role of AhR in Th17 function and T cell-induced IL-22 biosynthesis have also been determined [74, 80, 81, 82, 83].
AhR shows high expression in Th17 cells, undetectable amounts in Th1 and Th2 cells, and low expression in Tregs. Tregs constitute a T cell subgroup, which helps maintain tolerance to autoantigens, preventing autoimmune pathologies. FoxP3+ Tregs [84, 85] and IL-10-producing type 1 regulatory T cells (Tr1 cells) [86] are the most typical Treg entities. Foxp3+ Tregs and Tr1 cells are associated with AhR.
TCDD, ITE, KYN and laquinimod derivatives activate AhR, thus increasing FoxP3+ Treg amounts via various mechanisms, e.g., by directly activating epigenetic modifications that regulate Foxp3 transcriptionally and via DC regulation [80, 87, 88, 89, 90, 91, 92]. In the presence of TGF - β 1, activating AhR with TCDD can also upregulate SMAD1 in human Tregs, resulting in stable expression of FoxP3 [93]. It was shown in mice with AhR-deficient T cells that AhR could also inhibit the activation of STAT1, which in turn inhibits FoxP3+ Treg differentiation [94]. In addition, AhR regulates the epigenetic modifier Aiolos, which downregulates genes associated with T cell’s effector function, such as IL-2 [87]. However, the effect of AhR on FoxP3+ Tregs may be affected by the applied experimental model, which may reflect the different effects of tissue-specific action and/or AhR agonist provided by the symbiotic flora [95].
Tr1 cells participate in controlling tissue inflammation via IL-10 secretion. IL-27 promotes the differentiation of Tr1 cells [96, 97, 98], while IL-21 plays an autocrine role in their stabilization [98, 99]. IL-27 upregulates AhR in Tr1 cells via STAT3. Then, AhR amounts are maintained by transactivation of the AhR promoter by AhR itself [100, 101, 102]. The important role of AhR in Tr1 cells
AhR triggered CD39 equally affects Tr1 cell differentiation. After induction, T cells secrete eATP [103], which then interferes with the differentiation of Tr1 cells through hypoxia inducible factor-1α (HIF1-α). HIF1-α binding is superior to the interaction between AhR and ARNT, and promotes the degradation of AhR through the immune proteasome, thus inhibiting the differentiation of AhR dependent Tr1 cells [101]. The expression of CD39 driven by AhR can deplete eATP and promote the differentiation of Tr1 cells. Therefore, AhR regulates central genes in the Tr1 cell transcription program, while limiting the inhibitory effect of eATP-dependent HIF1-α induction on Tr1 cell differentiation. Overall, the above findings confirm AhR as a potential therapeutic target for immunomodulation.
Th17 cells, forming a unique CD4+ T cell subgroup, can biosynthesize Th17 cytokines and play key roles in the pathogenetic mechanisms of multiple inflammatory ailments. Their differentiation is triggered by IL-6 and transforming growth factor-beta (TGF-β). AhR can modulate Th17 cells by binding to the DRE site in the IL-17 promoter. In addition, AhR and STAT3 can synergistically upregulate Aiolos (IKZF3), an Ikaros family member, which can decrease the expression of IL-2, thus increasing Th17 cell amounts [64].
Th17 cells, producing IL-17A and expressing ROR-γt, are involved in immune responses to extracellular bacterial and fungal pathogens, and participate in the pathological mechanisms of multiple autoimmune diseases [104, 105]. Their differentiation involves joint effects of TGF-β and IL-6 or IL-21 [106, 107, 108]. AhR shows high expression in Th17 cells and is activated by FICZ, which can enhance Th17 cell differentiation and promote IL-22 expression. On the contrary, AhR deficiency can cause Th17 cells to produce IL-22, which may reflect AhR’s function in promoting RORγt recruitment to the IL-22 promoter.
Th22 cells are a CD4+ T cell subpopulation. They produce IL-22 without IL-17’s intervention and their differentiation is induced by IL-6, IL-21 or IL-23. AhR controls the production of IL-22 in Th22 cells, and other cellular factors are essential for their mucosal immune functions [73, 109, 110, 111].
The AhR pathway also significantly affects CD8+ T cells. Activation of AhR by TCDD indirectly inhibits the primary response of CD8+ T cells to influenza virus through the regulatory mechanism of DC function [112]. In addition, CD8+ T cells of mouse models administered the AhR agonist TCDD in the developmental stage show a weak response to influenza virus infection later in life [113]. The above data indicate epigenetic alterations that can lead to prolonged functional defects in CD8+ T cells detectable after viral attack. Compared with other CD8+ T cell subsets, AhR expression is much higher in tissue resident CD8+ memory cells (TRMs). Taken together, these findings indicate that, similar to previously reported CD4+ T cell data, the AhR pathway plays a major role in regulating specific CD8+ T cell subgroups, such as TRMs and DP IELs.
AhR equally regulates γδ T cells, which are tissue resident lymphocytes. It regulates first-line immune response at epithelial sites and controls tissue homeostasis [114]. Despite AhR expression in the totality of γδ T-cell subgroups, AhR-deficiency significantly reduces the amounts of skin intraepithelial lymphocytes, mostly composed of Vγ3 and Vγ5 γδ T cells in the intestine and CD8αα αβ T cells [115]. AhR also regulates IL-22 expression by γδ T cells that produce IL-17 [116, 117]. The above data indicate that AhR has a significant effect on T cells residing in tissues, which supports further investigation of AhR’s function in non-CD4+ T cells.
In conclusion, AhR controls T cell responses at many levels and regulates transcription factors, enzymes, epigenetic modifiers and effector molecules that modulate T cell stability and metabolism. Lineage-specific responses to AhR induction may lead to ligand-specific effects, which are combined with cytokine-driven activities on the genome, thereby regulating AhR-interacting chaperones and controlling the accessibility of AhR’s direct and indirect transcription targets [118]. Comprehensive studies of these interactions should provide insights into the design of immune-modulators against AhR.
The B lymphocyte is an important part of humoral immunity, which has high specificity against a variety of pathogens. After stimulation via an antigen receptor, activation of immature B cells leads to clonal expansion, antibody isotype conversion and differentiation into antibody-secreting plasma cells, thus producing strong immune reactions [119]. In the process of infection, mature B cells in the lymph nodes and secondary lymphoid organs undergo somatic hypermutation and produce plasma cells featuring elevated antigen affinity and unique effector function [120].
It seems that all B cells produce AhR, but specific subsets, e.g., marginal B cell and B1 B cell subsets, have higher levels than the others. Li and collaborators demonstrated that AhR contributes to the development of B lymphocytes, based on cord blood CD34 and feeder cells, which promote B cell development. Meanwhile, AhR induction inhibits the formation of early B cells and pro-B cells. AhR controls B cell differentiation by transcriptionally suppressing the early B cell genes EBF1 and PAX5 [121].
AhR, overtly induced after activation of B cells, has a critical function in regulating the fate of activated cells. Vaidyanathan and colleagues revealed AhR suppresses switch-like recombination by changing the amounts of activated cytidine deaminase. These authors showed that AhR suppresses B cell transformation into plasmablasts and plasma cells that secrete antibodies [122]. In addition, Villa et al. provided evidence of a role for AhR in B cells, revealing that AhR expression is increased after administration of IL-4 as well as B cell receptor engagement. Nevertheless, the proliferation of AhR-deficient B cells is decreased, and cells could not progress to the S-phase. Furthermore, AhR-deficient B cells could not compete with the decreased AhR+/+ B cell capability of reconstructing the empty host, and could not induce antigen-dependent proliferation in mice. Gene expression profile analysis showed that AhR excision downregulates cyclin O, an important gene controlling the cell cycle [123].
DCs are essential in controlling T cell response and regulating immune tolerance [124]. AhR regulates DC differentiation and function, thereby profoundly affecting T cell-dependent immune reactions. AhR also affects antigen presentation by DCs. Bone marrow derived DCs (BMDCs) exposed to TCDD show decreased CD11c amounts, but increased production of MHC-II, CD86, IL6 and TNFα [125]. Similar findings were reported in TCDD treated splenic DCs [126]. However, different results were observed by using the AhR agonist ITE. The expression of MHC-II and co-stimulatory molecules and the production of Th1 and Th17 polarization cytokines in splenic DCs were decreased by ITE stimulation of AhR.
Recent experiments in ovalbumin-induced asthma models provide additional evidence for the physiological regulation of AhR in DCs, with AhR-deficient mice exhibiting enhanced inflammatory reactions, elevated Th2 differentiation and higher DC MHC-II and CD86 amounts [127]. In addition, AhR signaling has been reported to regulate the activity of CD103+/CD11b+ DCs during influenza virus infection, thereby reducing induction in protective CD8+ T cells [128]. Overall, this evidence confirms that AhR is a potential therapeutic target for regulating T cell responses in DC.
Multiple mechanisms are involved in AhR-associated regulation of DC function. AhR upregulates IDO 1 and 2 [129, 130], which catalyze the production of KYN, thus promoting the differentiation of FoxP3+ Tregs [131]. Indeed, AhR-deficient DCs could not induce Treg differentiation and Th17 cell proliferation in culture. It is consistent with the immunosuppressive effect of AhR in DCs. Recently, it was reported that IDO expression is maintained by an autocrine loop involving AhR and KYN in tumor infiltrating tolerogenic DCs [132]. Additionally, AhR induction in DCs induces a retinoic acid-dependent enzymatic mechanism, thus promoting FoxP3+ Treg differentiation and inhibiting effector T cells [133, 134, 135, 136, 137].
Studies evaluating AhR’s functions in immune cell development, immune response modulation and immune tolerance have aroused great interest. Originally, AhR was considered a protein sensing environmental substances and regulating drug metabolism. Recently, the role of AhR in regulating normal physiological processes has attracted increasing attention. The organism must perceive and mount substantial responses to environmental changes. Indeed, AhR senses biochemical, chemical and physical environments. Combined with a small amount of high-affinity physiological ligands, including FICZ and ICZ, AhR plays a role in cell proliferation, differentiation and function.
Current evidence indicates that AhR has a critical function in host response to bacterial pathogens. It also overtly influences resistance to infections by extracellular and intracellular bacteria. AhR is considered the best resistance factor for LM. It may have a new function in the innate immunity of LM infection, and AhR-deficient mice have increased sensitivity to LM. Activation of AhR can protect mice from the deadly attack of
AhR | aryl hydrocarbon receptor |
PAS | pern-arnt-sim |
TCDD | 2,3,7,8-tetrachlorodibenzo-p-dioxin |
ARNT | aryl hydrocarbon receptor nuclear Translocator |
AhREs | AhR response elements |
DREs | dioxin |
XREs | xenobiotic |
CYP1A1 | cytochrome P450 family 1 subfamily A member 1 |
AhRR | aryl hydrocarbon receptor repressor |
TDO2 | 2,3-dioxygenase |
IDO | 2,3-dioxygenase |
KYNU | kynureninase |
KMO | kynurenine 3-monooxygenase |
KYN | kynurenine |
DBD | the amino-terminal DNA binding domain |
Bhlh | basic helix–loop–helix |
NLS | the nuclear localization signal |
TAD | the transactivation domain |
LM | Listeria monocytogenes |
IL-6 | interleukin 6 |
TNF-α | tumor necrosis factor alpha |
NF-κB | the nuclear factor kappaB |
CFUs | colony forming units |
MCP-1 | monocyte chemotactic protein 1 |
IFN-γ | interferon γ |
ROS | reactive oxygen species |
BPI/LBP | bactericidal/permeability-increasing protein / lipopolysaccharide-binding protein |
LPS | lipopolysaccharide |
NLRP3 | NLR family pyrin domain containing 3 |
3-Mc | 3-methylcholine |
FICZ | 6-formylindolo[3,2-b]carbazole |
HSV | herpes simplex virus |
iNOS | inducible nitric oxide synthase |
DCs | dendritic cells |
ILC | lymphoblastoid cell |
RegIIIg | Type III Reg gamma |
IELs | intraepithelial lymphocytes |
ILC3s | group 3 Innate lymphoid cells |
DSS | dextran sulfate sodium |
Tr1 cells | type 1 regulatory T cells |
HIF1-α | hypoxia inducible factor-1α |
Th17 | T helper 17 |
TGF-β | transforming growth factor-beta |
TRMs | tissue resident CD8+ memory cells |
DCs | dendritic cells |
BMDCs | bone marrow derived DCs |
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11641",title:"Updates on Fermentation",subtitle:null,isOpenForSubmission:!0,hash:"a40ca422d610cac17d09b0df36469351",slug:null,bookSignature:"Dr. Raúl Ferrer-Gallego",coverURL:"https://cdn.intechopen.com/books/images_new/11641.jpg",editedByType:null,editors:[{id:"353129",title:"Dr.",name:"Raúl",surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11475",title:"Food Security Challenges and Approaches",subtitle:null,isOpenForSubmission:!0,hash:"090302a30e461cee643ec49675c811ec",slug:null,bookSignature:"Dr. Muhammad Haseeb Ahmad, Dr. Muhammad Imran and Dr. Muhammad Kamran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",editedByType:null,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11607",title:"Aquatic Plants - Biology and Environmental Impacts",subtitle:null,isOpenForSubmission:!0,hash:"9103c1501af58e2c24202646f15f0940",slug:null,bookSignature:"Dr. Abd El-Fatah Abomohra, Dr. Mei Li and Dr. Adel W. Almutairi",coverURL:"https://cdn.intechopen.com/books/images_new/11607.jpg",editedByType:null,editors:[{id:"186114",title:"Dr.",name:"Abdelfatah",surname:"Abomohra",slug:"abdelfatah-abomohra",fullName:"Abdelfatah Abomohra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:82},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1009",title:"Pre-Hospital Emergency Medicine",slug:"emergency-medicine-pre-hospital-emergency-medicine",parent:{id:"177",title:"Emergency Medicine",slug:"emergency-medicine"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:238,numberOfWosCitations:153,numberOfCrossrefCitations:123,numberOfDimensionsCitations:264,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1009",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7908",title:"Emergency Medicine and Trauma",subtitle:null,isOpenForSubmission:!1,hash:"4d0e9d0c91eff59a61e29cd67cbb036b",slug:"emergency-medicine-and-trauma",bookSignature:"Ozgur Karcioglu and Müge Günalp Eneyli",coverURL:"https://cdn.intechopen.com/books/images_new/7908.jpg",editedByType:"Edited by",editors:[{id:"221195",title:"Prof.",name:"Ozgur",middleName:null,surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5949",title:"Resuscitation Aspects",subtitle:null,isOpenForSubmission:!1,hash:"876e8435664e85af78acd71c44e3e0a4",slug:"resuscitation-aspects",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/5949.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5851",title:"Sepsis",subtitle:null,isOpenForSubmission:!1,hash:"140438644d49079e214fd82e9fe5e5ac",slug:"sepsis",bookSignature:"Vijay Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/5851.jpg",editedByType:"Edited by",editors:[{id:"63844",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5202",title:"Extracorporeal Membrane Oxygenation",subtitle:"Advances in Therapy",isOpenForSubmission:!1,hash:"f7c8f9c0cf1cf50455fba7e2607e9268",slug:"extracorporeal-membrane-oxygenation-advances-in-therapy",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/5202.jpg",editedByType:"Edited by",editors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2621",title:"Hyperthermia",subtitle:null,isOpenForSubmission:!1,hash:"e3557de8bc852fa2c1a8b17e026cd37c",slug:"hyperthermia",bookSignature:"Nagraj Huilgol",coverURL:"https://cdn.intechopen.com/books/images_new/2621.jpg",editedByType:"Edited by",editors:[{id:"146901",title:"Dr.",name:"Nagraj",middleName:"G",surname:"Huilgol",slug:"nagraj-huilgol",fullName:"Nagraj Huilgol"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2583",title:"Sepsis",subtitle:"An Ongoing and Significant Challenge",isOpenForSubmission:!1,hash:"85121c8c358a97497c254ca2832be903",slug:"sepsis-an-ongoing-and-significant-challenge",bookSignature:"Luciano Azevedo",coverURL:"https://cdn.intechopen.com/books/images_new/2583.jpg",editedByType:"Edited by",editors:[{id:"72846",title:"Prof.",name:"Luciano",middleName:null,surname:"Azevedo",slug:"luciano-azevedo",fullName:"Luciano Azevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1737",title:"Emergency Medicine",subtitle:"An International Perspective",isOpenForSubmission:!1,hash:"937b8698946595f200066b643e153534",slug:"emergency-medicine-an-international-perspective",bookSignature:"Michael Blaivas",coverURL:"https://cdn.intechopen.com/books/images_new/1737.jpg",editedByType:"Edited by",editors:[{id:"106834",title:"Dr.",name:"Michael",middleName:null,surname:"Blaivas",slug:"michael-blaivas",fullName:"Michael Blaivas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"802",title:"Severe Sepsis and Septic Shock",subtitle:"Understanding a Serious Killer",isOpenForSubmission:!1,hash:"7ac9a759048ec9ec47c283813a4131cc",slug:"severe-sepsis-and-septic-shock-understanding-a-serious-killer",bookSignature:"Ricardo Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/802.jpg",editedByType:"Edited by",editors:[{id:"76827",title:"Dr.",name:"Ricardo",middleName:null,surname:"Fernandez",slug:"ricardo-fernandez",fullName:"Ricardo Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"44713",doi:"10.5772/52208",title:"Local Hyperthermia in Oncology – To Choose or not to Choose?",slug:"local-hyperthermia-in-oncology-to-choose-or-not-to-choose-",totalDownloads:3781,totalCrossrefCites:15,totalDimensionsCites:22,abstract:null,book:{id:"2621",slug:"hyperthermia",title:"Hyperthermia",fullTitle:"Hyperthermia"},signatures:"Andras Szasz, Nora Iluri and Oliver Szasz",authors:[{id:"141192",title:"Prof.",name:"Andras",middleName:null,surname:"Szasz",slug:"andras-szasz",fullName:"Andras Szasz"}]},{id:"51450",doi:"10.5772/63888",title:"ECMO Biocompatibility: Surface Coatings, Anticoagulation, and Coagulation Monitoring",slug:"ecmo-biocompatibility-surface-coatings-anticoagulation-and-coagulation-monitoring",totalDownloads:4436,totalCrossrefCites:9,totalDimensionsCites:17,abstract:"The interaction between the patient and the ECMO (extracorporeal membrane oxygenation) circuit initiates a significant coagulation and inflammatory response due to the large surface area of foreign material contained within the circuit. This response can be blunted with the appropriate mix of biocompatible materials and anticoagulation therapy. The use of anticoagulants, in turn, requires appropriate laboratory testing to determine whether the patient is appropriately anticoagulated. Physicians must balance the risks of bleeding with the risks of thrombosis; the proper interpretation of these tests is often shrouded in mystery. It is the purpose of this chapter to help demystify the coagulation system, anticoagulants, biocompatible surfaces, and coagulation testing so that ECMO practitioners can make informed decisions about their patients and to spur coordinated efforts for future research to improve our understanding of these complex processes.",book:{id:"5202",slug:"extracorporeal-membrane-oxygenation-advances-in-therapy",title:"Extracorporeal Membrane Oxygenation",fullTitle:"Extracorporeal Membrane Oxygenation - Advances in Therapy"},signatures:"Timothy M. Maul, M Patricia Massicotte and Peter D. Wearden",authors:[{id:"182691",title:"Dr.",name:"Timothy",middleName:"Michael",surname:"Maul",slug:"timothy-maul",fullName:"Timothy Maul"},{id:"187110",title:"Dr.",name:"Peter",middleName:null,surname:"Wearden",slug:"peter-wearden",fullName:"Peter Wearden"},{id:"187112",title:"Dr.",name:"Patti",middleName:null,surname:"Massicotte",slug:"patti-massicotte",fullName:"Patti Massicotte"}]},{id:"39638",doi:"10.5772/51484",title:"The History of Sepsis from Ancient Egypt to the XIX Century",slug:"the-history-of-sepsis-from-ancient-egypt-to-the-xix-century",totalDownloads:10550,totalCrossrefCites:5,totalDimensionsCites:15,abstract:null,book:{id:"2583",slug:"sepsis-an-ongoing-and-significant-challenge",title:"Sepsis",fullTitle:"Sepsis - An Ongoing and Significant Challenge"},signatures:"Johan Sebastián Hernández Botero and María Cristina Florián Pérez",authors:[{id:"141171",title:"Dr.",name:"Johan",middleName:"Sebastian",surname:"Hernandez Botero",slug:"johan-hernandez-botero",fullName:"Johan Hernandez Botero"},{id:"141520",title:"Dr.",name:"Maria Cristina",middleName:null,surname:"Florian Perez",slug:"maria-cristina-florian-perez",fullName:"Maria Cristina Florian Perez"}]},{id:"27970",doi:"10.5772/27889",title:"Anti-Inflammatory Role of Natural Polyphenols and Their Degradation Products",slug:"anti-inflammatory-role-of-natural-polyphenolic-compounds",totalDownloads:5074,totalCrossrefCites:5,totalDimensionsCites:12,abstract:null,book:{id:"802",slug:"severe-sepsis-and-septic-shock-understanding-a-serious-killer",title:"Severe Sepsis and Septic Shock",fullTitle:"Severe Sepsis and Septic Shock - Understanding a Serious Killer"},signatures:"Balázs Veres",authors:[{id:"71968",title:"Dr.",name:"Balazs",middleName:null,surname:"Veres",slug:"balazs-veres",fullName:"Balazs Veres"}]},{id:"44708",doi:"10.5772/55108",title:"Principles and Application of RF System for Hyperthermia Therapy",slug:"principles-and-application-of-rf-system-for-hyperthermia-therapy",totalDownloads:3945,totalCrossrefCites:0,totalDimensionsCites:11,abstract:null,book:{id:"2621",slug:"hyperthermia",title:"Hyperthermia",fullTitle:"Hyperthermia"},signatures:"Timothy A. Okhai and Cedric J. Smith",authors:[{id:"145574",title:"Mr.",name:"Timothy",middleName:"Anton",surname:"Okhai",slug:"timothy-okhai",fullName:"Timothy Okhai"},{id:"167249",title:"Prof.",name:"Cedric",middleName:null,surname:"Smith",slug:"cedric-smith",fullName:"Cedric Smith"}]}],mostDownloadedChaptersLast30Days:[{id:"51795",title:"ECMO Cannulation Techniques",slug:"ecmo-cannulation-techniques",totalDownloads:4333,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"An extracorporeal membrane oxygenation (ECMO) circuit consists of a pump and a membrane oxygenator. This circuit can interface with the human body in a variety of cannulation strategies to provide different forms and levels of support. These various support techniques can be divided into two broad categories: those designed to support the body’s respiratory functions (lungs) and those designed to support the body’s blood circulation (heart). In this chapter we discuss various cannulation techniques used.",book:{id:"5202",slug:"extracorporeal-membrane-oxygenation-advances-in-therapy",title:"Extracorporeal Membrane Oxygenation",fullTitle:"Extracorporeal Membrane Oxygenation - Advances in Therapy"},signatures:"Chand Ramaiah and Ashok Babu",authors:[{id:"183646",title:"Dr.",name:"Chand",middleName:null,surname:"Ramaiah",slug:"chand-ramaiah",fullName:"Chand Ramaiah"},{id:"189073",title:"Dr.",name:"Ashok",middleName:null,surname:"Babu",slug:"ashok-babu",fullName:"Ashok Babu"}]},{id:"27955",title:"Transfusion-Associated Bacterial Sepsis",slug:"transfusion-associated-sepsis",totalDownloads:8276,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"802",slug:"severe-sepsis-and-septic-shock-understanding-a-serious-killer",title:"Severe Sepsis and Septic Shock",fullTitle:"Severe Sepsis and Septic Shock - Understanding a Serious Killer"},signatures:"Jolanta Korsak",authors:[{id:"72828",title:"Prof.",name:"Jolanta",middleName:null,surname:"Korsak",slug:"jolanta-korsak",fullName:"Jolanta Korsak"}]},{id:"51211",title:"Triple Cannulation ECMO",slug:"triple-cannulation-ecmo",totalDownloads:4831,totalCrossrefCites:3,totalDimensionsCites:8,abstract:"Extracorporeal membrane oxygenation (ECMO) has emerged as an invaluable tool for bridging severe isolated or combined failure of lung and heart. Due to massive technical improvements, the application of ECMO is growing fast. While historically ECMO was initiated and maintained by cardiac surgeons, in recent times interventional cardiologists and intensive care specialists increasingly run ECMO systems independently with great success. Percutaneous ECMO circuits are usually set up in a dual cannulation mode, either as veno-venous or as veno-arterial configuration. A novel advanced strategy is the cannulation of three large vessels (triple cannulation), resulting in veno-veno-arterial or veno-arterio-venous cannulation. Both veno-venous and veno-arterio-venous cannulation may further be upgraded to veno-pulmonary-arterial or veno-arterial-pulmonary arterial cannulation, respectively. Triple cannulation expands the field of ECMO application but substantially increases the complexity of ECMO circuits. In this chapter, we review percutaneous dual and triple cannulation strategies, featuring a recently proposed unifying nomenclature. This unequivocal code universally applies to both dual and triple cannulation strategies (VV, VPa, VA, VVA, VAV, VAPa). The technical evolution of ECMO is growing fast, but it has to be noted that current knowledge of ECMO support is mainly based on observation. Thus controlled trials are urgently needed to prospectively evaluate different ECMO modes.",book:{id:"5202",slug:"extracorporeal-membrane-oxygenation-advances-in-therapy",title:"Extracorporeal Membrane Oxygenation",fullTitle:"Extracorporeal Membrane Oxygenation - Advances in Therapy"},signatures:"L. Christian Napp and Johann Bauersachs",authors:[{id:"180959",title:"Dr.",name:"L. Christian",middleName:null,surname:"Napp",slug:"l.-christian-napp",fullName:"L. Christian Napp"},{id:"181634",title:"Prof.",name:"Johann",middleName:null,surname:"Bauersachs",slug:"johann-bauersachs",fullName:"Johann Bauersachs"}]},{id:"51612",title:"Neurologic Issues in Patients Receiving Extracorporeal Membrane Oxygenation Support",slug:"neurologic-issues-in-patients-receiving-extracorporeal-membrane-oxygenation-support",totalDownloads:2726,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for patients experiencing acute severe cardiac and/or respiratory failure. Unfortunately, despite noteworthy improvements in patient selection, technology, and multidisciplinary team management, significant complications are still common. The most dramatic and potentially severe complications are neurologic. However, the incidence of neurologic complications (i.e. embolic stroke, intracerebral hemorrhage, seizures, and anoxic injuries) has not been completely defined. Unfortunately, brain death and neurologic injuries are significant causes of morbidity and mortality for patients requiring an ECMO support. Critical to the management of patients requiring ECMO is a broader understanding of neurologic monitoring along with the clinical assessment and management of neurologic events. It is important to evaluate and potentially intervene early in the event of a neurologic problem to minimize its clinical significance. Hopefully, with a better understanding of the pathophysiology, diagnostic and therapeutic tools, and prevention strategies, the true incidence of neurologic complications can be understood and minimized.",book:{id:"5202",slug:"extracorporeal-membrane-oxygenation-advances-in-therapy",title:"Extracorporeal Membrane Oxygenation",fullTitle:"Extracorporeal Membrane Oxygenation - Advances in Therapy"},signatures:"Susana M. Bowling, Joao Gomes and Michael S. Firstenberg",authors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"},{id:"183813",title:"Associate Prof.",name:"Dr. Susana",middleName:null,surname:"Bowling",slug:"dr.-susana-bowling",fullName:"Dr. Susana Bowling"},{id:"183815",title:"Dr.",name:"Joao",middleName:null,surname:"Gomes",slug:"joao-gomes",fullName:"Joao Gomes"}]},{id:"44705",title:"Diffusion of Magnetic Nanoparticles Within a Biological Tissue During Magnetic Fluid Hyperthermia",slug:"diffusion-of-magnetic-nanoparticles-within-a-biological-tissue-during-magnetic-fluid-hyperthermia",totalDownloads:3079,totalCrossrefCites:2,totalDimensionsCites:6,abstract:null,book:{id:"2621",slug:"hyperthermia",title:"Hyperthermia",fullTitle:"Hyperthermia"},signatures:"Mansour Lahonian",authors:[{id:"143110",title:"Dr.",name:"Mansour",middleName:null,surname:"Lahonian",slug:"mansour-lahonian",fullName:"Mansour Lahonian"}]}],onlineFirstChaptersFilter:{topicId:"1009",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:228,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334239",title:"Prof.",name:"Leung",middleName:null,surname:"Wai Keung",slug:"leung-wai-keung",fullName:"Leung Wai Keung",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Hong Kong",country:{name:"China"}}}]}},subseries:{item:{id:"4",type:"subseries",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",slug:"felix-bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:376,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8176",title:"DNA Methylation Mechanism",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8176.jpg",slug:"dna-methylation-mechanism",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Metin Budak and Mustafa Yıldız",hash:"1de018af20c3e9916b5a9b4fed13a4ff",volumeInSeries:15,fullTitle:"DNA Methylation Mechanism",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",institutionString:"Trakya University",institution:{name:"Trakya University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7012",title:"Biochemical Testing",subtitle:"Clinical Correlation and Diagnosis",coverURL:"https://cdn.intechopen.com/books/images_new/7012.jpg",slug:"biochemical-testing-clinical-correlation-and-diagnosis",publishedDate:"April 29th 2020",editedByType:"Edited by",bookSignature:"Varaprasad Bobbarala, Gaffar Sarwar Zaman, Mohd Nasir Mohd Desa and Abdah Md Akim",hash:"1aa28a784b136633d827933ad91fe621",volumeInSeries:12,fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD",profilePictureURL:"https://mts.intechopen.com/storage/users/207119/images/system/207119.jpg",institutionString:"Adhya Biosciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",institutionString:"Australian College of Business & Technology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/170579",hash:"",query:{},params:{id:"170579"},fullPath:"/profiles/170579",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()