Summary of some environments caused by SCC on different alloys.
Bicuspid aortic valve (BAV) represents the most common cardiac congenital malformation in the adult age, with strong male predominance. It may occur in isolation, or in association with other congenital heart diseases. The BAV is seen in 1% to 2% of the population and may be complicated by aortic stenosis or aortic insufficiency and infective endocarditis. It may be associated with abnormalities of the aortic wall such as coarctation of the aorta, aortic dissection, and aortic aneurysm. Most patients with a BAV develop some complications during life [1,2].
Congenital coronary anomalies, coronary atherosclerosis, and calcification have been described in association with BAV[3].
BAV has been identified at a prevalence of 4.6 cas-es per 1000 live births. The prevalence of BAV according to sex has been found to be 7.1 cases per 1000 among male neonates, and 1.9 per 1000 among female neonates.
The congenitally BAV may function normally throughout life, may develop progressive calcification and stenosis or may develop regurgitation with or without infection. Aortic root dilatation is common in BAV, even when the valve is haemodynamically normal, and consequently aortic dissection usually occurs in previously asymptomatic patients [4,5].
Aortic stenosis and regurgitation, infective endocarditis and aortic dissection are the most common complications. Left coronary artery dominance is more common in patients with a BAV (29-56.8%) and in 90% of cases, the left main coronary artery is less than 5 mm in length [6-8]. The ignorance of these associations may cause an inadequate myocardial preservation and an increased risk of myocardial infarction[9,10].
Accordingly, associated congenital cardiovascular anomalies have been reported in as many as 25% of patients. Patent ductus arteriosus and ventricular septal defect are the most frequent heart defects associated with BAVdisease [11].
The definitive fetal cardiac structure is evident from the second week of gestation, whereas separation of the heart into four chambers is completed during the sixth and seventh weeks of gestation resulting in separated systemic and pulmonary circulation[12]. The process of aortic valve morphogenesis begins from the cardiac cushions located in the ventricular outflow tract of the primary heart tube. In the outflow tract, the truncal cushion swellings contribute to form three leaflet valves of the aorta and pulmonary artery.The initial endocardial cushions, which will contribute to all four cardiac valves, are formed by the thickening of the extracellular matrix in the region of the atrioventricular and outflow tract.This process is initiated by the secretion of extracellular matrix proteins such as fibronectin and transferrin across the cardiac jelly to the adjacent endocardium. The endocardium then secretes transforming growth factor beta family members, which act synergistically with bone morphogenetic protein-2 secreted by the myocardium, to increase mesenchyme formation and proliferation, which results in the growth of the endothelial cushions. The myocardial cells then invade the margins of the cellular endothelial cushions [13].
The semilunar valves form the division of the truncus arteriosus into two separate channels which form the aortic and pulmonary trunks..The channels are created by the fusion of two truncal ridges across the lumen. In each channel a third swelling occurs opposite the first two which will form the 3rd leaflet. In the normal aortic valve the left and right leaflets of the adult valve are formed from the respective swellings while the posterior leaflet is formed from a swelling in the aortic trunk.
The pathogenesis of BAV is not yet fully understood. There is certainly a genetic component, especially given the association of BAV with other congenital abnormalities. However, fusion of the right and left valve cushions at the beginning ofvalvulogenesis appears to be a key factor in BAV formation [14].
A previous study suggested that BAV is a consequence of the anomalous behavior of cells derived from the neural crest because BAV often is associated with congenital aortic arch malformations and other neural crest-derived systems [15]. Other studies suggest that extracellular matrix proteins may affect the initiation of cell differentiation during valvulogenesis, while a molecular abnormality in this process may lead to the formation of abnormal cusps [16,17]. Some researchers suggest that a molecular abnormality in the extracellular matrix may lead to abnormal valvulogenesis, becouse matrix proteins help direct cell differentiation and cusp formation during valvulogenesis [16-18]. This could also explain why BAVis often linked to other cardiovascular anomalies.
These abnormalities cause the fusion of two cusps and lead to one larger cusp; therefore, the BAV usually includes two unequally sized cusps, the presence of a central raphe, and smooth cusp margin. A previous studies showed that raphal position was between the right and left cusp in 86% of cases [19]. An anomalous origin of coronary arteries depends on the spatial orientation of the two cusps. When the orientation of the cusps is anteroposterior, the coronary arteries originate from the anterior sinus or if cusps laterlateral oriented the right coronary artery originate from the common trunk and right Valsava’s sinus [20].
A recent study has demonstrated that BAVs with fused right and noncoronary leaflets and those with fused right and left leaflets are different etiological entities. BAVs with fused right and noncoronary leaflets result from a morphogenetic defect that occurs before cardiac outflow tract septation on the basis of an exacerbated nitric oxide-dependent epithelialto-mesenchymal transformation. On the other hand, BAVs with fused right and left leaflets result from anomalous septation of the proximal portion of the cardiac outflow tract, caused by dysfunctional neural crest cells [21].
The pulmonary valve can also be bicuspid, although this is much rarer and is most commonly associated with congenital heart disease such as Tetralogy of Fallot. There have been less than 10 cases reported in the literature of an isolated bicuspid pulmonary valve [22].
Deficient fibrillin-1 content in the vasculature of BAV patients may trigger matrix metalloproteinase production, thereby leading to matrix disruption and dilation. It has been noted that the fibrillin-1 content was remarkably reduced in the aorta of BAV patients, compared with that of patients with a tricuspid aortic valve. Aortic elasticity measurements of BAV patients suggest that diminished aortic elasticity is at least part of its causation [23-25].
The bicuspid valve is composed of two leaflets, of which one is usually larger (due to fusion of two cusps leading to one larger cusp), and unequal cusp size the presence of a central raphe (usually in the center of the larger of the two cusps). The raphe or fibrous ridge is the site of congenital fusion of the two components of the conjoined cusps and does not contain valve tissue (Figure 1) Three morphologies are identified: type 1, fusion of right coronary cusp and left coronary cusp; type 2, fusion of right coronary cusp and noncoronary cusp; and type 3, fusion of left coronary cusp and noncoronary cusp. The most common is type 1 (70% to 85%), followed by type 2 (10% to 30%) and most rare type 3 (1% ) [13,19,26] (Figure 2).
Transesophageal short-axis view of a BAV. There is fusion of the right and left cusps. The arrow points to the raphe.
The classification and incidence of BAVs.
The site of cusp fusion can have effects on the prognosis of BAV [27], with the suggestion that type 1 BAVs are more likely to stenose as adults while type 2 valves will have complications at a younger age. The fused valve leaflet in BAV is actually smaller in area. Valvular incompetence is usually caused by the redundancy of one cusp, since the two cusps usually have different dimensions [28]
The coronary anatomy can be abnormal. Most patients with BAV disease have a left dominant coronary circulation [29]. This left coronary can arise from the pulmonary artery. The left main can also be up to 50% shorter than in normal in up to 90% of cases. This is an important consideration for any aortic valve surgery. The commonest abnormality associated with BAV is dilatation of the thoracic aorta, also known as aortopathy. This is thought not only to be due to the altered flow in the aorta, but also due to cellular structural abnormalities including decreased fibrillin, causing smooth muscle cell detachment, and cell death [30].
The other abnormality found in conjunction with BAV disease is coarctation of the aorta. [22,31]. The presence of coarctation and a poor result from repair can lead to more rapid failure of the valve or aortic dissection.
BAV is an inheritable disorder, with a family recurrence rate of approximately 35% [33]. Recent clinical studies have reported a 9% prevalence of BAV in first-degree relatives of patients with BAV which was the estimated population prevalance of 1-2% [33-35].
BAV is likely due to mutations in different genes with dissimilar patterns of inheritance [33].
The first genetic cause of BAV is Anderson syndrome, which is reported to be a result of mutations in the potassium channel gene KCNJ2 (chromosome 17q24.3)], whereas it clinically presents as ventricular arrhythmias, periodic paralysis, and scoliosis [36]. Another mutations in a gene called NOTCH1(gene map locus 9q34.3), a transmembrane receptor that has a role in determining cell outcome in organogenesis, were noted in two families with BAV [37]. Regions 18q, 5q, and 13q are reported to contain genes responsible for BAV and/or associated cardiovascular malformations [38,39]. The region 10q contains the ACTA2 gene, which encodes for smooth muscle alpha-actin (ACTA2), and mutation in this gene can result in thoracic aneurysm and, in some instances, BAV [40]. Also the ubiquitin fusion degradation 1–like gene UFD1L (chromosome 22q11.2) expressed in the outflow tract during embryogenesis is down-regulated in BAV tissue when compared with trileaflet valve tissue [41]. The UFD1L gene encodesa component of a multi-enzyme complex involved in the degradation of ubiquitin fusion proteins, and is highly expressed during embryogenesis in certain tissues. It seems to play a key role in the development of ectoderm-derived structures, including neural crest cells.Downregulation of the UFD1L gene, hypothetically resulting from an anomalous behavior of neural crest cells, may lead to reduced degradation activities, and may finally lead to fusion of valve cushions, a key factor in the development of congenital BAV[42]. Recent American College of Cardiology (ACC)/American Heart Association (AHA) adult congenital heart disease guidelines suggest echocardiographic screening for BAV and aortopathy in first-degree relatives of patients with BAV [43,44].
Although these valves are more common in males than females by a factor of 2:1 in the general population, the prevalance was equal in males and females in families having more than one affected individual [45,46].
Clinical findings are usually limited to auscultation with most patients having an ejection systolic murmur heard loudest at the apex [47]. The S1 usually is normal but sometimes may be associated with ejection click. The S2 is soft, and when aortic stenosis is present, S2 occurs simultaneously with P2. In aortic stenosis, an ejection systolic murmur is heard in the left second intercostal space but may also be transmitted to the carotid arteries. If aortic incompetence is present, a diastolic murmur of aortic regurgitation may be heard.
The electrocardiogram is usually normal; and ECG changes are not specific in patients with BAV: left ventricular hypertrophy, atrial enlargement, and arrhythmias may be present.
The mainstay of diagnosis is echocardiography (transthoracic or transoesophageal) which can provide a definitive diagnosis in the majority of patients [ 92% sensitivity and 96% specificity) [48,49]. Transesophageal echocardiography (TEE) is also very important for evaluating the aortic valve and thoracic aorta, whereas the sensitivity and specifity of multiplane technique for assessing aortic valve morphology is high [13].
The parasternal short axis view allows for direct visualization of the valve cusps. In this view the normal triangular opening shape is lost, becoming more “fish mouth-”like in appearance, more similar to the mitral valve. This is especially pronounced in systole, as in diastole the raphe can appear similar to a commissure of the third cusp. Differentiating severe bicuspid aortic stenosis from severe other aortic stenosis can also be difficult. In order to establish the diagnosis, the valve must be visualized in systole in the short-axis view. In the long-axis view, the valve often has an eccentric closure line and there is doming of the leaflets. If there is uncertainty in diagnosis, a TEE can improve visualization of the leaflets [50].
For BAV associated with stenosis, mean gradient and maximal flow velocity should be measured, but when regurgitation is present, the effective regurgitant area and Doppler jet size should be evaluated. For asymptomatic patients with aortic stenosis, echocardiography is recommended for evaluating disease progression. In asymptomatic patients, TTE recommended: every year for severe aortic stenosis, ever 1-2 years for moderate aortic stenosis and every 3-5 years for mild aortic stenosis [51].
In patients with poor acustic window, cardiac magnetic resonance (MRI) and multidetector computed tomography are useful for measuring the aortic valve area and is an alternative method to echocardiography in selected cases. MRI especially will enable views of the valve to be obtained without interference from calcification. It also allows for excellent assessment of the aorta. A recent study of 123 patients with confirmed BAV found that 10% of the patients were misidentified as having a tricuspid valve using transthoracic echo and 28% had a nondiagnostic study, in comparison to 4% being misidentified as having a tricuspid valve by MRI and 2% having a non-diagnostic study [52].
The current guidelines suggest that cardiac magnetic resonance imaging or cardiac computed tomography is reasonable in patients with BAVs when aortic root dilatation is detected by echocardiography to further quantify severity of dilatation and involvement of theascending aorta (Clas IIa; Level of Evidence: B)[53].
The clinical presentation of patients with BAV can vary from severe valve disease in infancy to asymptomatic valve disease in old age. It may be associated with abnormalities of the aortic wall such as coarctation of the aorta, aortic dissection, and aortic aneurysm. Most patients with a BAV develop some complications during life [1,2].
Congenital coronary anomalies, coronary atherosclerosis, and calcification have been described in association with BAV[3].
The congenitally BAV may function normally throughout life, may develop progressive calcification and stenosis or may develop regurgitation with or without infection. Aortic root dilatation is common in BAV, even when the valve is haemodynamically normal, and consequently aortic dissection usually occurs in previously asymptomatic patients [4,5].
Sudden death may occur as a result of obstruction of the left ventricular outflow tract by a congenital BAV [54]. BAV are in most cases remain undetected until infection or calcification supervenes [55].
Aortic stenosis and regurgitation, infective endocarditis and aortic dissection are the most common complications. Left coronary artery dominance is more common in patients with a BAV (29-56.8%) and in 90% of cases, the left main coronary artery is less than 5 mm in length [7,8]. The ignorance of these associations may cause an inadequate myocardial preservation and an increased risk of myocardial infarction[9,10].
Symptoms associated with aortic stenosis are angina pectoris, syncope, and congestive heart failure. The most common complication of aortic stenosis is congestive heart failure symptomatically presented with dyspnea, which is a result of combined diastolic and systolic dysfunction [56]. Angina pectoris occurs in patients with severe aortic stenosis and in those who do not have coronary artery disease; it may be a result of ventricular hypertrophy.
Syncope is another common symptom in patients with BAV. Syncope reflects the cerebral hypoperfusion caused by the inability to increase stroke volume during physical activity.
The clinical presentation in patients with BAV and presence of other cardiac congenital defects depends from structural complexity of the heart. In patients with interventricular septal defects, the clinical presentation depends on the size of the defect area and the grade of aortic stenosis. If the interventricular defect is small, the patient may be asymptomatic, but when the interventricular defect is large, cardiac output will decrease and Eisenmenger syndrome will develop.
Two large recent series reported that clinical course of unoperated patients with BAV depends on age, stenosis, and aortic incompetence. The severe aortic stenosis, and severe aortic incompetence in older patients increases the risk of primary cardiac events including cardiac death. Both these studies suggest that intervention on the basis of early symptoms or incipient cardiac dysfunction may decreases the mortality of patients with BAV [57,58].
The natural history of BAV has been evaluated several cohort studies. It is known to be variable and of course somewhat dependent on associated abnormalities. It can range from severe aortic stenosis in childhood to asymptomatic disease until old age. There have indeed been incidental findings of a minimally calcified BAV in patients in their 70s.More commonly however [in around 75% of patients] there is progressive fibrocalcific stenosis of the valve eventually requiring surgery. This usually leads to presentation in middle age only around 2% of children have clinically significant BAV disease [59].
The prevalence of fibrosis, cystic medial necrosis, elastic fragmentation, and inflammation has been shown to be significantly higher in patients with fusion of the left coronary and right coronary cusps. fusion of the left coronary and right coronary cusps was associated with a larger aortic root diameter and a smaller aortic arch,than was fusion of the right coronary and non-coronary cusps. Another study demonstraed that fusion of the right coronary and non-coronary cusps correlated with the more rapid growth of ascending aortic diameter in the pediatric population [60-63].
There have been a couple of studies looking at long-term followup of patients with unoperated BAV. A cohort of 212 asymptomatic patients with BAV were found to have the same 20-year survival rate as the normal population but an increased frequency of cardiac events including aortic valve surgery, ascending aorta surgery and any other cardiovascular surgery. Predictive factors for cardiovascular events were found to be age ≥50 years and valve degeneration at diagnosis while baseline ascending aorta ≥40 mm independently predicted surgery for aorta dilatation. Another study [64] 642 patients were followed up for a mean of 9 years, again with a 10-year survival rate similar to the normal population [96%]. One or more primary cardiac events occurred in 25% including cardiac death in 3, intervention on aortic valve or ascending aorta in 22%, aortic dissection or aneurysm in 2%, and congestive heart failure requiring hospital admission in 2%. Independent predictors of primary cardiac events were age older than 30 years, moderate or severe aortic stenosis, and moderate or severe aortic regurgitation [50].
In the another study [61].the incidence of aortic dissection was found to be 1.5% in all patients regardless of the progression of BAV; however this increased markedly in patients aged 50 or older at baseline to 17.4% and even more in those found to have aneurysm formation at baseline to [44.9%]. 25-year rate for aortic surgery was 25% and there was a significant burden of progression of disease to cause aortic dissection with 49 of the 384 patients without baseline aneurysms developing them during followup [22].
Although the clinical presentation of patients with BAV can vary from severe valve disease in infancy to asymptomatic valve or thoracic aortic disease in old age, symptomstypically develop in adulthood. The clinical manifestations relate to the function of the aortic valve,the aortopathy/dissection, and acquired complications such as endocarditis. However in childhood, BAV disease is commonly asymptomatic [61]
Estimates of late cardiac events were approximately 25% at a mean age of 44 years in the study from Toronto and 40% at a mean age of 52 years in the Olmsted County study [62,63]. In the Olmsted County series, 27% of adults with BAV and no significant valve disease at baseline required cardiovascular surgery within 20 years of follow-up. Twenty-two percent of the patients in the Toronto cohort required intervention within 9 years of follow-up. In both studies, age was an important determinant of outcomes supporting the notion held by many that eventually most patients with BAV would require some form of intervention.
A common complication of BAV disease is aortic stenosis. BAV is recognized as a frequent cause of aortic stenosis in adults. Aortic stenosis has been found in 72% of adults with BAV. In 388 patients with severe aortic valve disease alone, BAVs were found in 45% of the patients with aortic stenosis and 24% of the patients with aortic regurgitation. In 110 patients with severe combined aortic and mitral valve disease, BAVs were found in only 12% [64].
Among the 600 patients analyzed, 213 (36%) had pure aortic stenosis, 265 (44%) had pure aortic regurgitation and 122 (20%) had combined stenosis and regurgitation. BAVs represented 18%, as the third most important cause of aortic disorder following degenerative and rheumatic changes, followed by infective endocarditis (5%) [65].
The main symptoms are exertional dyspnea, syncope, and chest pain. These patients should be evaluated and managed similarly to patients with tricuspid aortic valve stenosis.
In the Joint Study of the Natural History of Congenital Heart Defects, one-third of the children in the cohort had increases in catheterization gradients during the 4- to 8-year follow-up period. In the follow-up study, children with baseline peak left ventricular to aortic gradients >50 mm Hg were at risk for serious cardiac events at a rate of 1.2% per year. In theUnited Kingdom cohort.20% of children with mild aortic stenosis at baselinehad mild disease after 30 years of follow-up. Age was the primary determinant of valvular disease progression [50,66].
In adults, with BAV, stenosis occurs by similar methods to the process in patients with tricuspid aortic valves. It is felt to be due to calcification, endothelial dysfunction, inflammation, lipoprotein deposition, and ossification of the aortic side of the valve leaflets. There has been a suggestion that leaflet orientation may be a predictive factor in the rate of valve stenosis. The folding and creasing of the valves and the turbulent flow are felt to contribute to development of fibrosis and calcification [59].more rapid progression in aortic valve gradients occurred in patients with anteroposteriorly located cusps[60]. However, not all studies have found this association, and the 2 large studies in adults have not identified leaflet orientation as a risk factor for late adverse events. Olmsted County study identified a composite index of valve degeneration, which incorporated valve thickening, calcification, and mobility, that was an independent predictor of long-term cardiac events in a population of adults with no baseline valve dysfunction. The predictive role of both morphology and function in adults with BAV parallels that observed in series examining older adults with aortic stenosis mostly of acquired basis [50,62,63].
Primary aortic regurgitation without infective endocarditis was uncommon, and 32% had an apparently normally functioning aortic valve [67].
One cohort of 118 BAV patients found that of 70 patients without aortic stenosis, 28 (40% had moderate to severe aortic regurgitation. The mechanisms of aortic incompetence in children are usually due to prolapsing cusps, myxoid degeneration, postvalve surgery and after balloon valvuloplasty or endocarditis, while as the patients age dilatation of the ascending aorta can lead to a functionally regurgitant valve[68,69]. With age, aortic incompetence may also develop secondary to dilation of the ascending aorta. In the Olmstead study of asymptomatic adults, 47% had some degree of aortic incompetence at baseline; however, interventions for severe aortic incompetence were relatively uncommon, occurring in only 3% of the cohort during follow-up. In the Toronto study 21% of the population had moderate or severe aortic incompetence at baseline; however, only 6% had an intervention for symptomatic aortic incompetence or progressive left ventricular dysfunction [62,63].
BAV patients tend to develop vascular abnormalities of the aorta, such as dilation, coarctation and dissection. Aortic dilation in BAV patients is thought to be caused by intrinsic aortic disease that is characterized by cystic medial necrosis and disruption of the extracellular matrix due to fibrillin deficiency. BAV is often associated with dilatation of the aortic root and the ascending aorta. This is otherwise known as aortopathy. This can lead to aneurysm and dissection. The dilatation has been reported during childhood, and it has also been suggested that increased aortic size at baseline is predictive for earlier dilatation and worse outcomes. Aortic size is larger generally in patients with BAV compared to those with normal valves. The most likely risk factor for progression is felt to be age. Aortic root size itself is related to valve morphology and the presence of significant disease [22,6]; however, a recent study did suggest that while most patients with BAV and ascending aortic aneurysm had severe valve dysfunction, there was a small proportion of patients (5%) who did have aneurysm formation without any aortic valve dysfunction [50].
In the ascending aorta as well as the pulmonary trunk, the severity of cystic medial necrosis, elastic fragmentation and changes in the smooth muscle cell orientation have been found to be significantly more severe in patients with bicuspid valves than in those with tricuspid valves.
Factors leading to aortic dissection four years after the Bentall operation have been considered to be an impact of congenital BAV or proximal anastomosis of venous grafts, or both [70].
Studies have suggested that patients with BAV have an intrinsic defect in the aortic wall that results in aortic disease, regardless of aortic valve function. BAV was associated with significantly less intimal change, and less fragmentation and loss of elastic tissue, compared with patients with a tricuspid aortic valve. Type I and III collagens were significantly decreased in dilated aortas of BAV patients, compared with controls, particularly at the convexity. Expression of messenger RNA [ribonucleic acid] for collagens was lower than normal only in the regurgitant subgroup. Fewer smooth muscle cells and greater severity of elastic fiber fragmentation were observed at the convexity than at the concavity [71-73].
Among 119 cases of fatal dissecting aneurysm of the aorta, 11 cases of congenital BAV (9%) were observed. Among the latter, three had coarctation of the aorta and one had Turner’s syndrome without coarctation. In each case, cystic medial necrosis of the aorta was present. Hypertension was either established or inferred from cardiac weight in 73% of the cases. The high incidence among subjects with dissecting aneurysm suggested a causative relationship between BAV and aortic dissecting aneurysm [74].
Many theories have been postulated for the mechanism of BAV aortopathy. For a long time there has been felt to be a genetic component; however there is increasing evidence for a haemodynamic mechanism. It is felt that it is due to defects in the aortic media, such as elastin fragmentation, loss of smooth muscle cells, and an increase in collagen [6,22]. Systemic features have also been noted in BAV patients which may predispose to aneurysm formation including systemic endothelial dysfunction and higher plasma levels of matrix metalloproteinases [75].
Pathological examination of surgical specimens from the aortic wall of patients with aortic dissection associated with BAV showed cystic medial necrosis or mucoid degeneration [76].
Matrix metalloproteinases (endogenous enzymes that degrade matrix components) have been implicated in atherosclerotic aortic aneurysm formation and appear to be elevated in the aorta of patients with BAVs [77].
The histological findings of BAV are nonspecific, and had been described by several authors in patients with Marfan syndrome [78-80]. The histopathological appearance of thoracic aortic aneurysm in Marfan and BAV is similar, and includes evidence of vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix degeneration in the absence of a significant inflammatory response [81].
Abnormalities in the ascending aorta of the patients with BAV, specifically premature medial layer VSMC apoptosis, have been described, explaining the higherthan-expected prevalance of aortic dissection in these patients [82].
Also recently studies show less elastic tissue in the aortas of BAV patients [83,84].
In patient with BAV there are fibrillin, fibronectin, and tenascin abnormality. Additionally Bonderman et al suggested that a primary role for VMSC apoptosis in the development of aneurysm these patients [85].
The FBN1 gene encodes fibrillin-1, a large glycoprotein that is secreted from cells and deposited in the extracellular matrix in structures called microfibrils. Microfibrils are found at the periphery of elastic fibers, including the elastic fibers in the medial layer of the ascending aorta, and in tissues not associated with elastic fibers.
The histopathological appearance of thoracic aortic aneurysm in Marfan and BAV is similar, and includes evidence of VSMC apoptosis and extracellular matrix degeneration in the absence of a significant inflammatory response. Abnormalities in the ascending aorta of the patients with BAV, specifically premature medial layer smooth muscle cell apoptosis, have been described, explaining the higherthan-expected prevalance of aortic dissection in these patients [82,83].
Aortic root dilation has been documented in childhood, suggesting that this process begins early in life. Furthermore, children with BAV have greater increases in aortic dimensions than do children with trileaflet valves. In both children and adults, progressive dilation of the aorta is more common in patients with larger aortas at baseline. In BAV disease, the aortic annulus, sinus, and proximal ascending aorta are larger than those found in adults with trileaflet valves [50].
In the Olmsted County study, the prevalence of ascending aorta dilation (>40 mm) was 15% and in the subset of patients with repeat measurements, the prevalence increased to 39% at study completion. Dilation of the ascending aorta was an independent risk factor for ascending aorta surgery. Although there are a number of risk factors associated with dilation of the ascending aorta including increased systolic blood pressure, male sex, and significant valve disease, the most important variable is likely age [50,63,64]. Aortic root size is shown to be related to valve morphology and the presence of significant valve disease. In the Toronto series, the prevalence of dissection was 0.1% per patient-year of follow-up, and in the Olmsted County study, there were no cases of dissection. Despite the low rates of dissection, the increasedprevalence of BAV disease relative to Marfan syndrome make dissections due to BAV equal to or more common than dissections due to Marfan syndrome [86]. Dissection in BAV, when it occurs, typically involves the ascending aorta, but involvement of the descending aorta has been reported in older patients. Although dissection is more common in patients with dilated aortas, there are reports of dissection in normal-sized aortic roots and after valve replacement. Risk factors for dissection have included aortic size, aortic stiffness, male sex, family history, and the presence of other lesions such as coarctation of the aorta or Turner syndrome [50].
Endocarditis is more common in BAV. The estimated incidence is 0.16% per year in unoperated children and adolescents [87]. In adults the case series by Michelena give an incidence of 2% per year [56].
Outcomes in BAV patients with infective endocarditis tend to be worse than in those with normal valves. A recent study of 310 patients with infective endocarditis found that the 50 patients with BAV were younger at presentation and had a higher incidence of aortic perivalvular abscess. In-hospital mortality and 5-year survival were also comparable to patients with normal valves [22].
Most patients are unaware of their condition until the onset of infective endocarditis
Patients with BAV endocarditis are young, and there is strong male predominance. Staphylococci and viridans streptococci account for nearly three-quarters of the cases affecting BAVs. Endocarditis can lead to severe acute aortic incompetence, heart failure and it is poorly tolerated [88].
Endocarditis risk was estimated to range between 2% or 0.3%/year. Because the risk of endocarditis is felt to be low, the ACC/AHA practice guidelines no longer suggest bacterial endocarditis prophylaxis in patients with straightforward BAV disease, except in patients with a prior history ofendocarditis [50,89].
Some reports have also suggested that the involvement of coronary arteries, including congenital coronary artery anomalies, coronary artery fistulas, spontaneous coronary artery dissection, immediate bifurcation and a shorter length of the left main coronary artery [6,13]. The incidence of left dominance in BAVs has been found to be unusually high (24.4-56.8%), compared with the incidence in tricuspid valves [9.5%]. Patients with BAVs have higher incidence of immediate bifurcation of the left main coronary artery, and higher incidence of left main coronary length less than 10 mm. The mean length of the left main coronary artery is significantly shorter in BAV patients [90].
Anomalous origins of the right 20,21 and left 22 coronary arteries, association with annuloaortic ectasia, and anomalous origins of the left circumflex coronary artery 23 and single left coronary artery,24 have been noted in patients with BAVs. Spontaneous coronary artery dissection may occur in BAV patients [91]
There have also been some case reports describing patients with BAVdisease associated with coronary heart disease [92] and even with acute myocardial infarction[10].
Also Recently studies[93]Yuan et al. suggested that the prevalence rate of angiographic coronary heart disease was higher among the patients with BAVdisease.
Patent ductus arteriosus and ventricular septal defect are the most frequent congenital heart defects associated with BAV. Patent ductus arteriosus is usually present in pediatric patients with BAV and may be associated with hand anomalies. BAV is reported to be present in up to 30 % of adult patients with small ventricular septal defects. However, BAV may also be associated with large ventricular septal defects and poor clinical outcome. There is significantly higher incidence of aortic arch obstruction (51.1%). The frequency of BAV in specimens with complete transposition of great arteries has been found to be 1% [13,50].
Hypoplastic left heart syndrome, complete atrioventricular canal defect, Ebstein’s anomaly, partial or total anomalous pulmonary venous return, tetralogy of Fallot, double-outlet right ventricle, septal left ventricular diverticulum,Williams syndrome,Down syndrome and annuloaortic ectasia are occasionally associated with BAV. Shone’s complex, which is defined by four cardiovascular defects including supravalvular mitral membrane, valvular mitral stenosis with a parachute mitral valve, subaortic stenosis and aortic coarctation, is a rare entity and forms another association in BAV cases [94].
It has been reported that BAV is presented in > 50 % of patients with coarctation of the aorta [COA]. Patients with COA and BAV are reported to have more severe disease associated with aortic stenosis, aortic regurgitation, and aortic aneurysm. The risk of dissection of the aorta and death is greater when COA and BAV are comorbid.
Turner syndrome characterized by a defect in or the absence of one X chromosome. Except for gonadal dysgenesis, cardiovascular defects are commonly present in this group of patients. Clinical research on patients with Turner Syndrome reports that BAV is present in 30% of cases, that over 95% of BAV s result from fusion of the right and left coronary leaflets, and that aortic ascending diameters are significantly greater in this group of patients [13].
Thrombus formation in a native BAV is a rare complicaton. Pathological studies have indicated that post-inflammatory changes ocur in the resected BAV, which is prone to develop thrombosis on the valve surface or in the calcification area [95].
Microthrombus formation and valve thickening with incompetence could result in embolization, and subsequent cerebrovascular events [96].
Embolization from calcific BAVs may lead to stroke and myocardial infarction. Conservative management with anticoagulation, to treat associated post-stagnation thrombosis, or aortic valve replacement as the treatment, is debatable [97].
Medical therapies are to try and alleviate symptoms and slow progression. It is generally felt that blood pressure should be aggressively controlled to try and slow the progression of aortopathy [51].
High blood pressure should be aggressively treated in patients with BAV disease. In Marfan-associated aortopathy, treatment with beta-blockers to slow the rate of progression is the standard of care at many centers, although debate exists about their effectiveness [50,101]. The ACC/AHA guidelines for the management of adult congenital heart disease and guidelines for the management of patients with valvular heart disease suggest that it is reasonable to use beta-blockers in this population [Class IIa recommendation] [53]. There are emerging data in animal models and in 1 small study in humans supporting the use of angiotensin II receptor blockers to decreased aortic root dilation in Marfan syndrome [50]. Whether these agents will have a role in BAV aortopathy has not yet been demonstrated. Also long-term vasodilator therapy in BAV disease with aortic regurgitation is only recommended if there is concomitant systemic hypertension [47]. The relationship between risk factors for atherosclerosis and the development and progression of degenerative aortic valve disease has been well studied [99]. However, the role of treatment with cholesterol-lowering agents is unresolved. The use of lipid lowering agents specifically in young patients with BAV has not been studied, and the current ACC/AHA guidelines for the management of patients with valvular heart disease do not endorse the use of statins to slow the degenerative process in this population [51]. Concomitant conditions and risk factors should be treated as in the normal population.
Indications for valve surgery in patients with BAV are similar to those with tricuspid aortic valve disease or degenerative aortic valve disease [100].
The 2006 AHA/ACC guidelines also suggest concomitant replacement of the ascending aorta if it is greater than 45 mm in diameter [51]. Estimated 15-year freedom from complications was 86% in patients with an aortic diameter less than 40 mm, dropping down to 81% in those with diameter 40–44 and 43% in patients with a diameter 45 mm or greater.
When rheumatic disease is excluded, a significant portion of adults undergoing surgery for aortic valve disease will have a congenitally malformed valve. During childhood, insertion of a prosthetic valve is suboptimal because of the continuing growth of the child. Fortunately, at this stage, the aortic valve is usually not calcified and valvuloplasty can successfully disrupt the commissural fusion and relieve obstruction. Valvuloplasty is the interventional strategy of choice in children and in some young adults with BAV and aortic stenosis. Symptomatic aortic stenosis is an indication for intervention, similar to standard indications for trileaflet valve disease. However, in the pediatric setting, indications include children with peak-topeak gradients >50 mm Hg who develop symptom at rest or with exercise. An additional indication includes asymptomatic children with peak-to-peak gradients >60 mm Hg. In adulthood, aortic valve replacement is the most common intervention for either aortic valve stenosis or incompetence, and valvuloplasty is rarely performed [50,51,62].
BAV disease involves younger patients and involves both the valves and the ascendan aorta; therefore, surgical decision making is more complicated. Approximately 30% of adults undergoing aortic valve replacement will also need aortic root surgery[63]. The guideline suggest that a cutoff of 5.0 cm be used for intervention or 4.5 cm if the surgery is otherwise being performed for valve indications. In addition, suggest that changes in root size more than 0.5 cm/year are an indication for root replacement [53].
Recently published Guidelines [53] for the diagnosis and management of patients with thoracic aortic disease recommendations for BAV are summarized below:
CLASS I
First-degree relatives of patients with a BAV, premature onset of thoracic aortic disease with minimal risk factors, and/or a familial form of thoracic aortic aneurysm and dissection should be evaluated for the presence of a BAV and asymptomatic thoracic aortic disease. (Level of Evidence: C)
All patients with a BAV should have both the aortic root and ascending thoracic aorta evaluated for evidence of aortic dilatation (Level of Evidence: B)
Should undergo elective operation at smaller diameters (4.0 to 5.0 cm)to avoid acute dissection or rupture. ()Level of Evidence: C)
Patients with a growth rate of more than 0.5 cm/year in an aorta that is less than 5.5 cm in diameter should be considered for operation. (Level of Evidence: C)
Patients undergoing aortic valve repair or replacement and who have an ascending aorta or aortic root of greater than 4.5 cm should be considered for concomitant repair of the aortic root or replacement of the ascending aorta. (Level of Evidence: C)
Elective aortic replacement is reasonable for patients with BAV when the ratio of maximal ascending or aortic root area (πr2) in cm2 divided by the patient’s height in meters exceeds 10 (CLASS IIa, Level of Evidence: C).
In regard to valve surgery, there is controversy regarding the use of the Ross procedure and the use of valve repairs in this population. Abnormalities of the media are seen in both the aorta and the pulmonary artery in BAV disease. Intrinsic abnormalities in the wall of the pulmonary artery [neoaorta] may contribute to progressive neoaortic root dilation and/or aortic regurgitation when the pulmonary root is placed in the systemic position [101].
When to surgically treat asymptomatic patients with BAV remains controversial. The risk of sudden death in asymptomatic adult patients with severe aortic stenosis is reported to be less than 1% per year, however, current practice guidelines recommended aortic valve replacement in patients with reduced left ventricular systolic function (EF< 50%) without other explanation even when they are asymptomatic [51].
For high-risk patients to undergo conventional novel methods including aortic balloon valvulotomy or transfemoral valve implantation may be helpful. A patient considered inoperable should be treated orally with angiotensin converting enzyme (ACE) inhibitors, diuretics, and digitalis. In patients with depressed LV associated with pulmonary congestion and atrial fibrillation, diuretics and digitalis may be used with the understanding that in some cases intensive hemodynamic monitoring is needed. Patients with aortic root dilatation > 4.0cm who are not candidate for surgical treatment should be given β-adrenergic blocking agents [51].
During pregnancy there are changes in hemodynamics as well as changes in the aortic media, and therefore, women with BAV and significant aortic stenosis and/or dilated aortic roots are at risk for complications during pregnancy.
In rare instances, women will develop progressive symptoms during pregnancy and require either valvuloplasty or valve surgery. Both interventions can be performed during pregnancy, but are associated with both maternal and fetal risks and should be performed only when necessary.
Although pregnancy can be successfully completed in most instances, aortic surgery may be required early after pregnancy in some women with severe aortic stenosis. Pregnancy itself seems to accelerate the need for surgery postpartum in women with moderate or severe aortic stenosis, perhaps by affecting the ability of the left ventricle to adapt to the fixed outflow obstruction. It is therefore important that women be counseled about both the risk of pregnancy and the potential for late complications [102,103].
Additionally, guidelines suggest that women with BAV and significant aortopathy (ascending aorta diameter >4.5 cm)“should be counseled against the high risk of pregnancy” [43].
There are little data available to support recommendations regarding exercise in subjects with BAV. In children with congenital severe aortic stenosis, for instance, sudden death can occur during exercise [121]. The Task Force on Exercise in Patients with Heart Disease recommends that athletes with severe aortic stenosis or severe aortic incompetence with left ventricular dilation [left ventricular dimensions >65 mm] should not participate in competitive athletics. Athletes with or without aortic valve disease who have dilated aortic roots (>45 mm) are advised to only participate in low-intensity competitive sports. No restrictions exist for those with BAV with no significant valve dysfunction or aortic root/ascending aorta dilation(>40 mm) [50,104,105].
Consequently aortic stenosis and regurgitation, infective endocarditis and aortic dissection are the most common complications of BAV additionaly this process continues after valve replacement. The person with BAV requires continuous surveillance to treat associated lesions and prevent complications. Arterial hypertension should be meticulously controlled. Smoking should be discouraged and control of hypercholesterolaemia considered, in view of the impact of these factors on the development of aortic stenosis. Aortic root dilatation is common in BAV, even when the valve is haemodynamically normal, and consequently aortic dissection usually occurs in previously asymptomatic patients. Beta-blockers and statins are the possibilities for medical treatment, and aortic valve repair/replacement and ascending aorta replacement are indicated for patients with a severely diseased aortic valve and aorta. All patients should therefore be regularly reviewed to identify progressive root dilatation [6,94].
Stress corrosion cracking (SCC) in chemical, petrochemical, and power plant industries is an insidious form of corrosion, which causes a lot of financial losses and human damages [1, 2, 3, 4, 5]. This phenomenon is associated with a combination of tensile stress, environment, and some metallurgical conditions as described in Figure 1.
The essential requirements for SCC.
During stress corrosion cracking, the metal or alloy is virtually unattacked over most of its surface, while fine and branch cracks progress through the bulk of material [6]. It is shown in Figure 2. This cracking phenomenon has serious consequences since it can occur under stresses much lower than design stresses and lead the equipment and structures to premature failures [7, 8, 9, 10, 11].
Crack development in carbon steel exposed to nitrate solution.
Stress corrosion cracking starts from corrosion sites at the material surfaces and progresses into a brittle manner. The process of cracking is not strictly a mechanical process, as the corrosivity of the environment strongly affects the fracture mode. Both intergranular and transgranular stress corrosion cracking are observed. Intergranular cracking proceeds along grain boundaries, while transgranular cracking advances without apparent preference for boundaries [12]. An example of stress corrosion cracking in which the crack has progressed in both intergranular and transgranular paths is shown in Figure 3. The development mode of cracking depends on the composition and microstructure of the material and environment.
Intergranular and transgranular stress corrosion cracking of the AISI 316L stainless steel at polythionic acid environment [8].
In this chapter, the conditions for the occurrence of SCC are first introduced. Then, the stress corrosion cracking mechanism for various materials in conditions that are susceptible is discussed in detail. The design of industrial structures and components is usually based on tensile properties, which have many disadvantages. So, the science of fracture mechanics applies in the situations prone to SCC because of the inevitability of manufacturing and service defects in materials and for considering the role of such imperfections. Methods of prevention based on corrosion science and empirical data are presented. Finally, practical examples are given to better understand the issue.
Not all metal-environment combinations are susceptible to cracking. In other words, the environment for occurrences of SCC for each metal or alloys is specific. Also, the resources of stress for each case of failure may be different.
Austenitic stainless steels suffer from SCC in chlorides, caustic, and polythionic acid. When austenitic stainless steels with sufficient carbon content (more than 0.03 wt.%) are heated in the range of 415–850°C, their microstructure becomes susceptible to precipitation of chromium carbides (M23C6) along grain boundaries known as sensitization [9, 12, 13]. Formation of Cr-rich carbides along grain boundaries may drastically deplete free chromium content in the area adjacent to the grain boundaries and render them susceptible to rapid preferential dissolution. Sensitized steels are most susceptible; the stress corrosion cracking of nonsensitized steels is also observed [14, 15]. Dissolution of grain boundaries in some corrosive environments aside from tensile stress led these types of materials to SCC.
Seasonal cracking of brass in the rainy season in an ammoniacal environment is another classical example of SCC. This was first identified on the brass cartridge used by the British Army in India. Since it is usually identified during the rainy season, it is also called seasonal cracking [12]. Alpha brass is an alloy of Cu-Zn. It can crack either intergranularly or transgranularly in nontarnishing ammonia solutions, depending on its zinc content [16, 17, 18]. Transgranular stress corrosion cracking, TGSCC, is observed in alloys with 20 or 30% Zn but not in alloys with 0.5 or 10% Zn [19, 20]. Stress corrosion cracking of Cu-Zn and Cu-A1 alloys in cuprous ammonia solutions can only occur when the parting limits for dealloying are exceeded. The parting limits are about 14 and 18 a/o for Cu-A1 and Cu-Zn, respectively [21]. Cu-A1 and Cu-Ga alloys have shown similar behaviors [19, 22].
Aluminum and all its alloys can fail by cracking along grain boundaries when simultaneously exposed to specific environments and stresses of sufficient magnitude [23, 24]. Of eight series of aluminum alloys, 2xxx, 5xxx, and 7xxx aluminum alloys are susceptible to SCC. Among them, 7xxx series aluminum alloys have a specific application in aerospace, military, and structural industries due to superior mechanical properties. In these high-strength 7xxx aluminum alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service [25].
Carbon and low alloy steels have shown SCC in a wide range of environments that tend to form a protective passive or oxide film [26, 27, 28, 29, 30]. The environments that would passivate carbon steels have been found to cause SCC, including strong caustic solutions, phosphates, nitrates, carbonates, ethanol, and high-temperature water. The problems are important for both economic and safety reasons, due to the extensive use of carbon steels [31]. For example, nitrate cracking in an ammonium nitrate plant caused by catastrophic failures and a lot of financial losses. Caustic cracking of steam-generating boilers made of low alloy steels was a serious problem, which led an ammonia plant to repeated emergency shutdowns.
Stress corrosion cracking may be a problem whenever certain high-strength titanium alloys are exposed to aqueous and certain solvent environments [32, 33, 34, 35, 36]. For the first time, SCC of titanium was reported by Kiefer and Harple who describe the cracking phenomena with commercially pure titanium in red fuming nitric acid [37]. Hot salt cracking of titanium alloys was reported in turbine blades that operate at high temperature in the mid-1950s. The subject became very active in the early 1960s because of the SCC problem connected to these alloys in a transportation program [38].The first known report of stress corrosion cracking of titanium alloys in room temperature aqueous environments was that of Brown. He found that titanium alloys, 8% aluminum–1% molybdenum–1% vanadium alloy (Ti, 8–1–1), were susceptible to SCC in seawater [38].
Another requirement for SCC to occur is a corrosive environment. The environments for SCC are specific because not all environments promote SCC. For those alloys that develop a protective film, an aggressive ion is required to promote SCC. The aggressive media to passive layer of stainless steels are chlorides, caustic, and polythionic acid. The austenitic stainless steel series 300 is more susceptible in an environment containing chlorides. Chlorides will not cause SCC unless an aqueous phase is present. It appears that stress corrosion cracking in austenitic stainless steels in the presence of chlorides proceeds transgranularly and usually occurs at temperature above 70°C
Metal | Environment |
---|---|
Al alloys | NaCl-H2O2 solutions |
NaCl solutions | |
Seawater | |
Copper alloys | Ammonia vapor and solutions |
Amines | |
Water or water vapor | |
Gold alloys | FeCl3 solutions |
Acetic acid-salt solutions | |
Inconel | Caustic soda solutions |
Lead | Lead acetate solutions |
Magnesium alloys | NaCl-Na2CrO4 solutions |
Rural and coastal atmospheres | |
Seawater | |
Distilled water | |
Nickel | Fused caustic soda |
Steels | NaOH solutions |
NaOH-Na2SiO4 solutions | |
Calcium, ammonium, and sodium nitrite solutions | |
Mixed acids (H2SO4-HNO3) | |
Acidic H2S solutions | |
Seawater | |
Carbonate-bicarbonate solutions | |
Stainless steels | Acidic chloride solutions |
NaCl-H2O2 solutions | |
Seawater | |
H2S | |
NaOH-H2S solutions | |
Condensing steam from chloride waters | |
Titanium alloys | Red fuming nitric acid |
Seawater | |
Methanol-HCl |
The stress in the form of tensile (not compressive) plays a key role in the SCC fracture processes. In fact, SCC would never have occurred in the absence of stress. The required tensile stresses may be in the form of directly applied stresses, thermal, in the form of residual stresses, or a combination of all [8, 50]:
For SCC to occur alone by applied stress, it must have a very high magnitude. The welding and mechanical residual stresses are the main sources of stress attributed to the stress corrosion cracking. The welding residual stress is produced as a result of nonuniform temperature changes during welding operation and can be calculated from thermal strain vectors.
The thermal strain vector,
in which
The operational thermal stress can also be calculated from Eq. 2. Mechanical workings such as cold deformation and forming, machining, and grinding are the other sources, which introduce residual stresses [8, 51].
Extensive investigations have been devoted to find mechanisms of SCC for different materials and environments. An SCC failure illustrates the combined effects of mechanical, physical, and chemical/electrochemical factors causing the separation of metal bonds at the crack tip, thereby advancing the crack. Three mechanisms for SCC have been proposed through the investigations [52]:
This model supposes that there are pre-existing paths in an alloy that is susceptible to anodic dissolution. Because of precipitation or solute segregation of impurities like sulfur, phosphorus, and chromium carbides, the electrochemical properties of the matrix and segregates are changed. The area adjacent to the grain boundaries is depleted from one or more alloying elements, and so under such conditions, localized galvanic cells are created (Figure 4). Since precipitation or segregation is generally anodic to the matrix of the grains, dissolution under an anodic reaction occurs and provides active path for localized corrosions [53]. Also, the removal of the protective film at the pre-existing crack tips by plastic deformation would facilitate the onset of localized corrosion.
Galvanic cell mechanism [52].
This mechanism has been extensively studied in stress corrosion cracking of alpha brass in ammoniacal environment and also proposed for caustic cracking of boiler steel. The model is based on the idea of a strain-induced rupture of the protective film, and so plastic strains play a main role in failure processes [52, 55]. The theory assumes the existence of a passivation film on a metal surface. The passivation film protects the underlying metal against corrosive agents. The passivation film is ruptured by plastic strain due to mechanical workings. After the film is ruptured, the bare metal is exposed to the corrosive environment. The processes of disruptive strain (disruption of protective film) and film formation (due to repassivation) have occurred and alternate with each other. The crack propagates when the rate of rupture of oxide film is higher than the rate of repassivation of the film [52]. The mechanism is shown in Figure 5.
Strain-generated active path mechanisms. (A) Film rupture model and (B) slip-step dissolution model [52].
This model is based on the effects of environmental species on interatomic bond strength. The theoretical fracture stress required to separate two layers of atoms of spacing b is given by [56].
where E is the Young modulus, γ is the surface energy, and b is the spacing between atoms.
This theory implies that if surface energy is reduced, then
The design of steel structure and component based on tensile properties has many disadvantages that do not take into account the role of imperfections. Fracture mechanic introduces another material characteristic, namely, fracture toughness, KIC, which considered the role of cracks and imperfection in the form of cracks in designs. In its simplest form [57].
where
According to this equation, fracture occurs when stress intensity factor,
Effects of corrosive environment on fracture toughness [12].
Since the exact mechanism of SCC has not been completely understood, prevention methods are either general or empirical in nature. Appropriate strategy should be done in order to minimize this problem to ensure not only the safety of human life but also the safety of cost. The following general methods are recommended to overcome the SCC problems [12, 52, 58, 59]:
Lowering the tensile stress in the welded component using post weld heat treatment. The post weld heat treatment reduced or eliminated residual stress on surface and through the bulk of material. Plan and low alloy steels may be a stress relief at 1100–1200°F. The range of residual stress relief temperature for austenitic stainless steels is from 1500 to 1700°F. Reduction of tensile stresses by shot peening is also recommended. Shot peening introduces surface compressive stresses.
Eliminating aggressive agents from the environment by, for example, degasification, demineralization, or distillation.
Changing the alloy is one possible solution if neither the environment nor stress can be changed. For example, it is a common practice to use Inconel (raising the nickel content) when typ. 304 stainless steel is not satisfactory.
Applying cathodic protection: impressed current cathodic protection system has been successfully used to prevent SCC of steels.
Adding inhibitors to the system if feasible: high concentrations of phosphate have been successfully used.
Coatings are sometimes used, and they depend on keeping the environment away from the metal.
After only 3 years’ service of a circulation water heater (heat exchanger), it has been shown to sever leakage and has led a methanol plant to emergency shutdown. An on-site investigation revealed extensive cracking initiated at weld area and through the tube sheet holes as it is shown in Figure 7.
Failed area (a) cracks extending in the weld joint of tube sheet to plugs and (b) branched cracks in the surface of the tube sheet and through the holes [8].
The circulation water heater is a vertical U-type heat exchanger made of austenitic stainless steels. The equipment used to decline reforms gas temperature in a methanol plant. The hot reformed gas at approximately 385°C entered the tubes and is cooled down to 168°C by exchanging the heat with processed water in the shell. The gases that flow through the tubes are mainly CO2, CO, H2, CH4, and N2 and at a pressure of 3.9 MPa. At the shell cooling process, water flows with about 6 MPa pressure.
Deposits had formed on top of the tube sheet due to shutdown errors. AISI 316L materials overheated in service because of the insulation role of the deposits. Material sensitization occurs since overheating. The presence of sulfur in the process gas aside from moisture formed polythionic acid during shutdowns. Residual stress produced by heavy machining and welding aside from operational thermal stress provided tensile stress, which is needed for SCC. Stress corrosion cracking is induced by polythionic acid. Concentrated water with other aggressive agents such as caustic and chlorides leaked through the cracks aid the failures.
Cleaning of the shell by demineralized water after each shut down in order to prevent the forming of insulating deposits above the tube sheet
Reduction of sulfur in feeding gas
Reduction of caustic and chlorides in processed water
Carryover of caustic soda (NaOH) in the steam path caused catastrophic failure of superheater stainless steel tubes in a gas-fired heater and led to an unexpected shutdown after just 5 months of continuous service following the start of production. The failure areas are shown in Figure 8. Three types of cracks are identified in various regions of the tube: circumferential cracks adjacent to the seam weld, circumferential cracks at the ribbon of the seam weld, and longitudinal cracks on the U-bend. The path of cracks was complex on the surface or in the bulk metal; all had nucleated from inside the tubes. A visual inspection revealed a white deposit, high in sodium, around the cracks on the surface of the tubes.
(a and b) Circumferential cracks adjacent to the seam weld, (c and d) circumferential cracks at the ribbon of seam weld, and (e) longitudinal cracks on the U-bend [9].
The superheater tube material was made of AISI 304H austenitic stainless steel material.
The gas-fired steam heater (FH) generates high-pressure (HP) steam for turbines for the processing of methanol. Demineralized water for the boiler and subsequent steam path is prepared in the water treatment unit. Caustic soda is injected to demineralized water for pH control. The water is transferred to the preheat exchangers, is converted to saturated high-pressure steam at 325°C and 119 MPa, and is sent to the FH. Through the FH tubes, saturated steam converted to supersaturate steam at a temperature of 505°C and pressure of 119 MPa.
The main cause of crack initiation was the increase of pH due to the rise of caustic concentration in condensed drops. Sensitized austenite grains caused by chromium carbide depletion adjacent to the grain boundaries were attacked by concentrated caustic in the HAZ metal and U-bend area and led the heater to the caustic SCC failure.
Using A335 Grade P9, a low alloy steel tube shows higher resistance to SCC than AISI 304H stainless steel
Proper discharge of the tubes during shutdowns to prevent the formation of the concentrated deposits of caustic through the tubes
After a general overhaul of a thermal power plant in Serbia in November 2014, failure of hundreds of brass condenser tubes occurred during the hydrostatic test. Also, it was noted that some backing plates had fallen off from the tubes before this test. Fracture is observed only in condenser tubes of brass, as can be seen in Figure 9.
Failure of brass condenser tubes near joining location with backing plate.
The failed tube material of the condenser was made of brass CuZn28Sn1 (admiralty brass). The cooling water (roughly filtered river water) flows through the tubes, while the hot steam flows around the tubes.
Analysis of fracture surfaces using scanning electron microscopy (SEM) has shown the brittle transgranular fracture due to the occurrence of SCC. The condenser tubes are made of brass CuZn28Sn1. Ammonia and other nitrogen compounds in the cooling water through the tubes were found. These compounds are specific agents that cause stress corrosion cracking (SCC) in brass. In the joining region of condenser tubes to backing plates, there are residual tensile stresses. During the floods in May 2014, there was an increase in the concentration of ammonia and other nitrogen compounds in the river cooling water flowing through the condenser tubes. Failure of brass condenser tubes occurred due to SCC, because the necessary conditions for the SCC occurrence were fulfilled.
The risk of SCC in brass condenser tubes can be reduced if specific substances responsible for SCC occurrence are removed, as much as possible. This can be achieved by cleaning and drying the tubes immediately after the operation delay of the power plant.
Another way to reduce the risk of SCC occurrence in condenser tubes is the replacement of existing tubes (made of brass CuZn28Sn1, very susceptible to SCC) with tubes made of alloys of greater resistance to SCC, such as copper-nickel alloys or Bi-brass alloys [61].
Stress corrosion cracking is one of the main causes of unforeseen and dangerous destruction of industrial plants. The sensitized material, certain environments, and stress are three factors necessary for the occurrence of these types of failures. The environment prone to the cracking for each metal or alloy is specific because not all environments promote the SCC. Austenitic stainless steels suffer from SCC in chlorides, caustic, and polythionic acid. Copper alloys corrode in ammonia-containing environments. Well-known specific environments for the stress corrosion cracking in Al alloys include water vapor, aqueous solutions, organic liquids, and liquid metals. The SCC of Ti alloys in aqueous chloride and methanolic chloride environments has been widely reported. The tensile stress plays a key role in the stress corrosion cracking phenomenon. The required tensile stresses may be in the form of directly applied stresses, thermal, in the form of residual stresses, or a combination of all.
If one of these three components does not exist, this type of corrosion will not occur. Therefore, the solving methods should be based on the elimination of one of these three factors. Corrosive environment modification, the stress in the form of compression, and using proper material are three general proposed methods of prevention.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6,16"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10725",title:"Paranasal Sinuses Anatomy and Conditions",subtitle:null,isOpenForSubmission:!0,hash:"7373bad684eb0c956ad2725227cd7227",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10725.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10709",title:"Heart Valve Surgery",subtitle:null,isOpenForSubmission:!0,hash:"cb3479fd272d968ee7eee95ae09ea9db",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10709.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10723",title:"Brachial Plexus Injury",subtitle:null,isOpenForSubmission:!0,hash:"441fb315d751efcdc4ae3fdb03808b46",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10723.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10730",title:"Extracorporeal Membrane Oxygenation",subtitle:null,isOpenForSubmission:!0,hash:"2ac3ed12d9db14ee4bc66d7808c82295",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10707",title:"Primary Care",subtitle:null,isOpenForSubmission:!0,hash:"bdb1aeb61b1eb116c1bdb09d25593686",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10712",title:"Thrombectomy",subtitle:null,isOpenForSubmission:!0,hash:"853e71d74c3dd5007277d3770e639d47",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10712.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10719",title:"Diverticulum and its Related Diseases",subtitle:null,isOpenForSubmission:!0,hash:"87a9b5a36a9ddb31f3281d5e5961fede",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10719.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10715",title:"Brain MRI",subtitle:null,isOpenForSubmission:!0,hash:"6d56c88c53776966959f41f8b75daafd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10715.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10731",title:"Cannabinoids",subtitle:null,isOpenForSubmission:!0,hash:"1d2e090ecf2415b8d3c9fba15856b7b1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10731.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10703",title:"Cardiovascular Risk Factors",subtitle:null,isOpenForSubmission:!0,hash:"74951b49bbb62ec0de58ef39b777256b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10703.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10783",title:"Huntington's Disease",subtitle:null,isOpenForSubmission:!0,hash:"014e040c96e46bcafb2a4f3610ed1883",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10783.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:64},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5221},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"613",title:"Statistics",slug:"numerical-analysis-and-scientific-computing-statistics",parent:{title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:1,numberOfAuthorsAndEditors:21,numberOfWosCitations:6,numberOfCrossrefCitations:11,numberOfDimensionsCitations:19,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"numerical-analysis-and-scientific-computing-statistics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5832",title:"Uncertainty Quantification and Model Calibration",subtitle:null,isOpenForSubmission:!1,hash:"1c1cdab73d684310946ba7c3b390ca9c",slug:"uncertainty-quantification-and-model-calibration",bookSignature:"Jan Peter Hessling",coverURL:"https://cdn.intechopen.com/books/images_new/5832.jpg",editedByType:"Edited by",editors:[{id:"20815",title:"Dr.",name:"Jan Peter",middleName:null,surname:"Hessling",slug:"jan-peter-hessling",fullName:"Jan Peter Hessling"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"54755",doi:"10.5772/68049",title:"Fitting Models to Data: Residual Analysis, a Primer",slug:"fitting-models-to-data-residual-analysis-a-primer",totalDownloads:1684,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Julia Martin, David Daffos Ruiz de Adana and Agustin G. Asuero",authors:[{id:"190870",title:"Dr.",name:"Agustín G.",middleName:null,surname:"Asuero",slug:"agustin-g.-asuero",fullName:"Agustín G. Asuero"},{id:"190871",title:"Dr.",name:"Julia",middleName:null,surname:"Martín",slug:"julia-martin",fullName:"Julia Martín"},{id:"203694",title:"Mr.",name:"David",middleName:null,surname:"Daffos Ruiz De Adana",slug:"david-daffos-ruiz-de-adana",fullName:"David Daffos Ruiz De Adana"},{id:"203695",title:"Mr.",name:"Alberto",middleName:null,surname:"Romero Gracia",slug:"alberto-romero-gracia",fullName:"Alberto Romero Gracia"}]},{id:"54982",doi:"10.5772/intechopen.68484",title:"Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation",slug:"polynomial-chaos-expansion-for-probabilistic-uncertainty-propagation",totalDownloads:1998,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Shuxing Yang, Fenfen Xiong and Fenggang Wang",authors:[{id:"200594",title:"Dr.",name:"Fenfen",middleName:null,surname:"Xiong",slug:"fenfen-xiong",fullName:"Fenfen Xiong"},{id:"200601",title:"Prof.",name:"Shuxing",middleName:null,surname:"Yang",slug:"shuxing-yang",fullName:"Shuxing Yang"},{id:"205382",title:"Mr.",name:"Fenggang",middleName:null,surname:"Wang",slug:"fenggang-wang",fullName:"Fenggang Wang"}]},{id:"55003",doi:"10.5772/intechopen.68507",title:"Uncertainty Quantification and Reduction of Molecular Dynamics Models",slug:"uncertainty-quantification-and-reduction-of-molecular-dynamics-models",totalDownloads:888,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Xiaowang Zhou and Stephen M. Foiles",authors:[{id:"201277",title:"Dr.",name:"Xiaowang",middleName:null,surname:"Zhou",slug:"xiaowang-zhou",fullName:"Xiaowang Zhou"},{id:"205437",title:"Dr.",name:"Stephen M.",middleName:null,surname:"Foiles",slug:"stephen-m.-foiles",fullName:"Stephen M. Foiles"}]}],mostDownloadedChaptersLast30Days:[{id:"54755",title:"Fitting Models to Data: Residual Analysis, a Primer",slug:"fitting-models-to-data-residual-analysis-a-primer",totalDownloads:1677,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Julia Martin, David Daffos Ruiz de Adana and Agustin G. Asuero",authors:[{id:"190870",title:"Dr.",name:"Agustín G.",middleName:null,surname:"Asuero",slug:"agustin-g.-asuero",fullName:"Agustín G. Asuero"},{id:"190871",title:"Dr.",name:"Julia",middleName:null,surname:"Martín",slug:"julia-martin",fullName:"Julia Martín"},{id:"203694",title:"Mr.",name:"David",middleName:null,surname:"Daffos Ruiz De Adana",slug:"david-daffos-ruiz-de-adana",fullName:"David Daffos Ruiz De Adana"},{id:"203695",title:"Mr.",name:"Alberto",middleName:null,surname:"Romero Gracia",slug:"alberto-romero-gracia",fullName:"Alberto Romero Gracia"}]},{id:"54982",title:"Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation",slug:"polynomial-chaos-expansion-for-probabilistic-uncertainty-propagation",totalDownloads:1996,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Shuxing Yang, Fenfen Xiong and Fenggang Wang",authors:[{id:"200594",title:"Dr.",name:"Fenfen",middleName:null,surname:"Xiong",slug:"fenfen-xiong",fullName:"Fenfen Xiong"},{id:"200601",title:"Prof.",name:"Shuxing",middleName:null,surname:"Yang",slug:"shuxing-yang",fullName:"Shuxing Yang"},{id:"205382",title:"Mr.",name:"Fenggang",middleName:null,surname:"Wang",slug:"fenggang-wang",fullName:"Fenggang Wang"}]},{id:"55731",title:"Introductory Chapter: Challenges of Uncertainty Quantification",slug:"introductory-chapter-challenges-of-uncertainty-quantification",totalDownloads:1045,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Jan Peter Hessling",authors:[{id:"20815",title:"Dr.",name:"Jan Peter",middleName:null,surname:"Hessling",slug:"jan-peter-hessling",fullName:"Jan Peter Hessling"}]},{id:"55556",title:"An Improved Wavelet‐Based Multivariable Fault Detection Scheme",slug:"an-improved-wavelet-based-multivariable-fault-detection-scheme",totalDownloads:1014,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Fouzi Harrou, Ying Sun and Muddu Madakyaru",authors:[{id:"197090",title:"Dr.",name:"Fouzi",middleName:null,surname:"Harrou",slug:"fouzi-harrou",fullName:"Fouzi Harrou"}]},{id:"55887",title:"Bayesian Uncertainty Quantification for Functional Response",slug:"bayesian-uncertainty-quantification-for-functional-response",totalDownloads:999,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Xiao Guo, Yang He, Binbin Zhu, Yang Yang, Ke Deng, Ruopeng Liu\nand Chunlin Ji",authors:[{id:"198216",title:"Dr.",name:"Chunlin",middleName:null,surname:"Ji",slug:"chunlin-ji",fullName:"Chunlin Ji"},{id:"199075",title:"Dr.",name:"Xiao",middleName:null,surname:"Guo",slug:"xiao-guo",fullName:"Xiao Guo"}]},{id:"55003",title:"Uncertainty Quantification and Reduction of Molecular Dynamics Models",slug:"uncertainty-quantification-and-reduction-of-molecular-dynamics-models",totalDownloads:888,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Xiaowang Zhou and Stephen M. Foiles",authors:[{id:"201277",title:"Dr.",name:"Xiaowang",middleName:null,surname:"Zhou",slug:"xiaowang-zhou",fullName:"Xiaowang Zhou"},{id:"205437",title:"Dr.",name:"Stephen M.",middleName:null,surname:"Foiles",slug:"stephen-m.-foiles",fullName:"Stephen M. Foiles"}]},{id:"54863",title:"Epistemic Uncertainty Quantification of Seismic Damage Assessment",slug:"epistemic-uncertainty-quantification-of-seismic-damage-assessment",totalDownloads:1012,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Hesheng Tang, Dawei Li and Songtao Xue",authors:[{id:"199018",title:"Associate Prof.",name:"Hesheng",middleName:null,surname:"Tang",slug:"hesheng-tang",fullName:"Hesheng Tang"},{id:"199024",title:"MSc.",name:"Dawei",middleName:null,surname:"Li",slug:"dawei-li",fullName:"Dawei Li"},{id:"199025",title:"Prof.",name:"Songtao",middleName:null,surname:"Xue",slug:"songtao-xue",fullName:"Songtao Xue"}]},{id:"54841",title:"State‐of‐the‐Art Nonprobabilistic Finite Element Analyses",slug:"state-of-the-art-nonprobabilistic-finite-element-analyses",totalDownloads:1056,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Wang Lei, Qiu Zhiping and Zheng Yuning",authors:[{id:"196882",title:"Prof.",name:"Zhiping",middleName:null,surname:"Qiu",slug:"zhiping-qiu",fullName:"Zhiping Qiu"},{id:"198421",title:"Dr.",name:"Lei",middleName:null,surname:"Wang",slug:"lei-wang",fullName:"Lei Wang"},{id:"204754",title:"Dr.",name:"Yuning",middleName:null,surname:"Zheng",slug:"yuning-zheng",fullName:"Yuning Zheng"}]},{id:"55478",title:"Practical Considerations on Indirect Calibration in Analytical Chemistry",slug:"practical-considerations-on-indirect-calibration-in-analytical-chemistry",totalDownloads:1237,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"uncertainty-quantification-and-model-calibration",title:"Uncertainty Quantification and Model Calibration",fullTitle:"Uncertainty Quantification and Model Calibration"},signatures:"Antonio Gustavo González",authors:[{id:"87305",title:"Prof.",name:"A. Gustavo",middleName:null,surname:"Gonzalez",slug:"a.-gustavo-gonzalez",fullName:"A. Gustavo Gonzalez"}]}],onlineFirstChaptersFilter:{topicSlug:"numerical-analysis-and-scientific-computing-statistics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/170466/romina-solorza",hash:"",query:{},params:{id:"170466",slug:"romina-solorza"},fullPath:"/profiles/170466/romina-solorza",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()