Typical bacterial and fungal population of plants groups before ensiling.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"8607",leadTitle:null,fullTitle:"Evaluation of Health Services",title:"Evaluation of Health Services",subtitle:null,reviewType:"peer-reviewed",abstract:"As the costs and resources of delivering health services have increased over the years, the importance of evaluating health services and interventions has become essential. An evaluation provides a systematic process of assessing the efficacy and efficiency of health services, including an assessment of their impact on beneficiaries, whether it be individuals or communities. Evaluation in the health sector includes the evaluation of burden disease where human and economic costs resulting from poor health are measured.In this book, various evaluation studies are detailed, providing an excellent resource for both evaluation practitioners and academics alike. The geographical range and variety of case studies showcase how evaluation has become integral for health service planning and assessment and to assist public health policy makers decide how to use limited resources to minimize burden and inequity. This book will act as a ready resource for both workers experienced in health service evaluation and those intending to learn about burden of disease of evaluation.",isbn:"978-1-83880-163-2",printIsbn:"978-1-83880-154-0",pdfIsbn:"978-1-83880-164-9",doi:"10.5772/intechopen.79149",price:119,priceEur:129,priceUsd:155,slug:"evaluation-of-health-services",numberOfPages:128,isOpenForSubmission:!1,isInWos:null,hash:"dbea1d7a6cd5428a713f35c234f5583b",bookSignature:"Sandeep Reddy and Aida Isabel Tavares",publishedDate:"March 11th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8607.jpg",numberOfDownloads:2502,numberOfWosCitations:0,numberOfCrossrefCitations:7,numberOfDimensionsCitations:7,hasAltmetrics:0,numberOfTotalCitations:14,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 28th 2018",dateEndSecondStepPublish:"October 30th 2018",dateEndThirdStepPublish:"December 29th 2018",dateEndFourthStepPublish:"March 19th 2019",dateEndFifthStepPublish:"May 18th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"230704",title:"Associate Prof.",name:"Sandeep",middleName:null,surname:"Reddy",slug:"sandeep-reddy",fullName:"Sandeep Reddy",profilePictureURL:"https://mts.intechopen.com/storage/users/230704/images/system/230704.jpg",biography:"Sandeep is a certified medical informatician with a background in Medicine, Public Health and Healthcare Management. He is currently engaged in research in medical informatics and program evaluation.",institutionString:"Deakin University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"196819",title:"Prof.",name:"Aida Isabel",middleName:null,surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares",profilePictureURL:"https://mts.intechopen.com/storage/users/196819/images/system/196819.jfif",biography:"Aida Isabel Tavares holds a Ph.D. in Economic Analysis awarded by the Autonoma University of Barcelona in 2008. \r\nShe has been dedicated to research in Applied Health Economics and she published several articles in international peer-reviewed journals. She has also published one book in public economics. Her research areas include health economics and policy, health systems, socioeconomic determinants of health, regulation in health markets and economics evaluation. Dr. Tavares has also been teaching at different universities, specifically several courses related to microeconomics, public economics, and health economics. Currently, she collaborates with the Centre of Studies and Research in Health of the University of Coimbra in Portugal and she an Assistant Professor in Lisbon School of Economics and Management - University of Lisbon.",institutionString:"ISEG - Lisbon School of Economics & Management, University of Lisbon",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1132",title:"Health Care",slug:"medicine-public-health-health-care"}],chapters:[{id:"71087",title:"Introductory Chapter: Evaluation of Health Services",doi:"10.5772/intechopen.91243",slug:"introductory-chapter-evaluation-of-health-services",totalDownloads:200,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sandeep Reddy",downloadPdfUrl:"/chapter/pdf-download/71087",previewPdfUrl:"/chapter/pdf-preview/71087",authors:[{id:"230704",title:"Associate Prof.",name:"Sandeep",surname:"Reddy",slug:"sandeep-reddy",fullName:"Sandeep Reddy"}],corrections:null},{id:"65569",title:"Value-Based Evaluation of Chinese Provincial Health Insurance Policy Schemes",doi:"10.5772/intechopen.84373",slug:"value-based-evaluation-of-chinese-provincial-health-insurance-policy-schemes",totalDownloads:355,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Shanlian Hu, Anke-Peggy Holtorf, Kalman Wijaya, Jiangjiang He and Diana Brixner",downloadPdfUrl:"/chapter/pdf-download/65569",previewPdfUrl:"/chapter/pdf-preview/65569",authors:[{id:"280908",title:"Dr.",name:"Anke-Peggy",surname:"Holtorf",slug:"anke-peggy-holtorf",fullName:"Anke-Peggy Holtorf"},{id:"281689",title:"Prof.",name:"Shanlian",surname:"Hu",slug:"shanlian-hu",fullName:"Shanlian Hu"},{id:"281690",title:"Prof.",name:"Diana",surname:"Brixner",slug:"diana-brixner",fullName:"Diana Brixner"},{id:"281691",title:"Mr.",name:"Kalman",surname:"Wijaya",slug:"kalman-wijaya",fullName:"Kalman Wijaya"},{id:"290614",title:"Dr.",name:"Jiangjiang",surname:"He",slug:"jiangjiang-he",fullName:"Jiangjiang He"}],corrections:null},{id:"70165",title:"Age- and Sex-Specific Burden of Morbidity and Disability in India: A Current Scenario",doi:"10.5772/intechopen.89709",slug:"age-and-sex-specific-burden-of-morbidity-and-disability-in-india-a-current-scenario",totalDownloads:258,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Ajit Kumar Yadav and Akansha Singh",downloadPdfUrl:"/chapter/pdf-download/70165",previewPdfUrl:"/chapter/pdf-preview/70165",authors:[{id:"309064",title:"Dr.",name:"Ajit",surname:"Yadav",slug:"ajit-yadav",fullName:"Ajit Yadav"},{id:"311831",title:"Dr.",name:"Akansha",surname:"Singh",slug:"akansha-singh",fullName:"Akansha Singh"}],corrections:null},{id:"65446",title:"Evaluating the Efficiency of a Collaborative Learning Network in Supporting Third Sector Organisations in the UK",doi:"10.5772/intechopen.84294",slug:"evaluating-the-efficiency-of-a-collaborative-learning-network-in-supporting-third-sector-organisatio",totalDownloads:335,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Scott Steen and John Mellor-Clark",downloadPdfUrl:"/chapter/pdf-download/65446",previewPdfUrl:"/chapter/pdf-preview/65446",authors:[{id:"282707",title:"Prof.",name:"John",surname:"Mellor-Clark",slug:"john-mellor-clark",fullName:"John Mellor-Clark"},{id:"283430",title:"Dr.",name:"Scott",surname:"Steen",slug:"scott-steen",fullName:"Scott Steen"}],corrections:null},{id:"69208",title:"Outbreak of Cholera Due to Cyclone Idai in Central Mozambique (2019)",doi:"10.5772/intechopen.89358",slug:"outbreak-of-cholera-due-to-cyclone-idai-in-central-mozambique-2019-",totalDownloads:255,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Edson Mongo, Edgar Cambaza, Robina Nhambire, Jacinto Singo and Edsone Machava",downloadPdfUrl:"/chapter/pdf-download/69208",previewPdfUrl:"/chapter/pdf-preview/69208",authors:[{id:"300135",title:"Dr.",name:"Edgar",surname:"Cambaza",slug:"edgar-cambaza",fullName:"Edgar Cambaza"},{id:"308847",title:"Dr.",name:"Edson",surname:"Mongo",slug:"edson-mongo",fullName:"Edson Mongo"},{id:"308848",title:"Ms.",name:"Robina",surname:"Nhambire",slug:"robina-nhambire",fullName:"Robina Nhambire"},{id:"308968",title:"Mr.",name:"Jacinto",surname:"Singo",slug:"jacinto-singo",fullName:"Jacinto Singo"},{id:"308969",title:"Ms.",name:"Edsone",surname:"Machava",slug:"edsone-machava",fullName:"Edsone Machava"}],corrections:null},{id:"65369",title:"Weighing Price and Performance for Decisions for Multisource Pharmaceutical Bidding in Public Hospitals in Thailand",doi:"10.5772/intechopen.83823",slug:"weighing-price-and-performance-for-decisions-for-multisource-pharmaceutical-bidding-in-public-hospit",totalDownloads:491,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Anunchai Assawamakin, Anke-Peggy Holtorf and Nikolaos Maniadakis",downloadPdfUrl:"/chapter/pdf-download/65369",previewPdfUrl:"/chapter/pdf-preview/65369",authors:[{id:"280908",title:"Dr.",name:"Anke-Peggy",surname:"Holtorf",slug:"anke-peggy-holtorf",fullName:"Anke-Peggy Holtorf"},{id:"281835",title:"Dr.",name:"Anunchai",surname:"Assawamakin",slug:"anunchai-assawamakin",fullName:"Anunchai Assawamakin"},{id:"281836",title:"Prof.",name:"Nikolaos",surname:"Maniadakis",slug:"nikolaos-maniadakis",fullName:"Nikolaos Maniadakis"}],corrections:null},{id:"70542",title:"The Burden of Informal Caregivers of Alzheimer’s Patients: An Estimation to Portugal",doi:"10.5772/intechopen.90673",slug:"the-burden-of-informal-caregivers-of-alzheimer-s-patients-an-estimation-to-portugal",totalDownloads:187,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Aida Isabel Tavares and Carolina Freitas",downloadPdfUrl:"/chapter/pdf-download/70542",previewPdfUrl:"/chapter/pdf-preview/70542",authors:[{id:"196819",title:"Prof.",name:"Aida Isabel",surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares"}],corrections:null},{id:"70517",title:"Methodology of Estimating Socioeconomic Burden of Disease Using National Health Insurance (NHI) Data",doi:"10.5772/intechopen.89895",slug:"methodology-of-estimating-socioeconomic-burden-of-disease-using-national-health-insurance-nhi-data",totalDownloads:421,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hyeon-Jin Choi and Eun-Whan Lee",downloadPdfUrl:"/chapter/pdf-download/70517",previewPdfUrl:"/chapter/pdf-preview/70517",authors:[{id:"310833",title:"Dr.",name:"Eun-Whan",surname:"Lee",slug:"eun-whan-lee",fullName:"Eun-Whan Lee"},{id:"311130",title:"MSc.",name:"Hyeon-Jin",surname:"Choi",slug:"hyeon-jin-choi",fullName:"Hyeon-Jin Choi"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1673",title:"Evidence Based Medicine",subtitle:"Closer to Patients or Scientists?",isOpenForSubmission:!1,hash:"d767dfe22c65317eab3fd9ff465cb877",slug:"evidence-based-medicine-closer-to-patients-or-scientists-",bookSignature:"Nikolaos M. Sitaras",coverURL:"https://cdn.intechopen.com/books/images_new/1673.jpg",editedByType:"Edited by",editors:[{id:"108463",title:"Prof.",name:"Nikolaos",surname:"Sitaras",slug:"nikolaos-sitaras",fullName:"Nikolaos Sitaras"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5785",title:"Teaching and Learning in Nursing",subtitle:null,isOpenForSubmission:!1,hash:"9bf55bd1257e7753f3719a64ef05d91e",slug:"teaching-and-learning-in-nursing",bookSignature:"Majda Pajnkihar, Dominika Vrbnjak and Gregor Stiglic",coverURL:"https://cdn.intechopen.com/books/images_new/5785.jpg",editedByType:"Edited by",editors:[{id:"195122",title:"Dr.",name:"Gregor",surname:"Stiglic",slug:"gregor-stiglic",fullName:"Gregor Stiglic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6254",title:"Fractal Analysis",subtitle:"Applications in Health Sciences and Social Sciences",isOpenForSubmission:!1,hash:"770eb45a87f613d3df9b51efc7079ed3",slug:"fractal-analysis-applications-in-health-sciences-and-social-sciences",bookSignature:"Fernando Brambila",coverURL:"https://cdn.intechopen.com/books/images_new/6254.jpg",editedByType:"Edited by",editors:[{id:"60921",title:"Dr.",name:"Fernando",surname:"Brambila",slug:"fernando-brambila",fullName:"Fernando Brambila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5466",title:"Patient Centered Medicine",subtitle:null,isOpenForSubmission:!1,hash:"bade2265c3b5a9f7b5dffb5f512ed244",slug:"patient-centered-medicine",bookSignature:"Omur Sayligil",coverURL:"https://cdn.intechopen.com/books/images_new/5466.jpg",editedByType:"Edited by",editors:[{id:"179771",title:"Prof.",name:"Omur",surname:"Sayligil",slug:"omur-sayligil",fullName:"Omur Sayligil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5929",title:"Clinical Trials in Vulnerable Populations",subtitle:null,isOpenForSubmission:!1,hash:"2214220e9dc00491251c8fdc23d3847a",slug:"clinical-trials-in-vulnerable-populations",bookSignature:"Milica Prostran",coverURL:"https://cdn.intechopen.com/books/images_new/5929.jpg",editedByType:"Edited by",editors:[{id:"43919",title:"Prof.",name:"Milica",surname:"Prostran",slug:"milica-prostran",fullName:"Milica Prostran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6654",title:"Weight Loss",subtitle:null,isOpenForSubmission:!1,hash:"a7b1748cdbd8e86c1cac93238b57242e",slug:"weight-loss",bookSignature:"Ignacio Jáuregui Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/6654.jpg",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9047",title:"Nursing",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"1500bf539d1400c51b941e95f3a1f0f9",slug:"nursing-new-perspectives",bookSignature:"Serpil Çelik Durmuş",coverURL:"https://cdn.intechopen.com/books/images_new/9047.jpg",editedByType:"Edited by",editors:[{id:"189558",title:"Ph.D.",name:"Serpil",surname:"Çelik Durmuş",slug:"serpil-celik-durmus",fullName:"Serpil Çelik Durmuş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6951",title:"Personalized Medicine, in Relation to Redox State, Diet and Lifestyle",subtitle:null,isOpenForSubmission:!1,hash:"2940f812b4520a28d958f5c23c606f02",slug:"personalized-medicine-in-relation-to-redox-state-diet-and-lifestyle",bookSignature:"Faik Atroshi",coverURL:"https://cdn.intechopen.com/books/images_new/6951.jpg",editedByType:"Edited by",editors:[{id:"65639",title:"Dr.",name:"Faik",surname:"Atroshi",slug:"faik-atroshi",fullName:"Faik Atroshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"8270",title:"Maternal and Child Health Matters Around the World",subtitle:null,isOpenForSubmission:!1,hash:"970e2fb7930d29a8d805900b86da459f",slug:"maternal-and-child-health-matters-around-the-world",bookSignature:"Masoud Mohammadnezhad and Nafisa Huq",coverURL:"https://cdn.intechopen.com/books/images_new/8270.jpg",editedByType:"Edited by",editors:[{id:"257189",title:"Dr.",name:"Masoud",surname:"Mohammadnezhad",slug:"masoud-mohammadnezhad",fullName:"Masoud Mohammadnezhad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8036",title:"Healthcare Access",subtitle:"Regional Overviews",isOpenForSubmission:!1,hash:"84f870b3d688da8dd09779ef7507b850",slug:"healthcare-access-regional-overviews",bookSignature:"Umar Bacha, Urška Rozman and Sonja Šostar Turk",coverURL:"https://cdn.intechopen.com/books/images_new/8036.jpg",editedByType:"Edited by",editors:[{id:"244265",title:"Dr.",name:"Umar",surname:"Bacha",slug:"umar-bacha",fullName:"Umar Bacha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7142",leadTitle:null,title:"Human Herpesvirus Infection",subtitle:"Biological Features, Transmission, Symptoms, Diagnosis and Treatment",reviewType:"peer-reviewed",abstract:"The relationship between herpesviruses and humans probably dates from thousands of years ago. In the last few decades, many aspects of herpesvirus infections have been understood, such as infections with a range of manifestations (severe, mild, or subclinical). Herpesvirus can remain latent during a lifetime and sometimes their reactivation can cause different clinical features in the patient. Several conditions have been related to herpesvirus reactivation such as complications in transplant organ recipients and immune regulatory modification in the elderly. Aspects of human herpesvirus simples, varicella-zoster virus, and cytomegalovirus are presented and discussed in this book.",isbn:"978-1-83881-159-4",printIsbn:"978-1-83881-158-7",pdfIsbn:"978-1-83881-160-0",doi:"10.5772/intechopen.73940",price:119,priceEur:129,priceUsd:155,slug:"human-herpesvirus-infection-biological-features-transmission-symptoms-diagnosis-and-treatment",numberOfPages:128,isOpenForSubmission:!1,hash:"beb076fbfc65deb69820f12f934bfdcd",bookSignature:"Ronaldo Luis Thomasini",publishedDate:"April 1st 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7142.jpg",keywords:null,numberOfDownloads:2957,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfDimensionsCitations:5,numberOfTotalCitations:8,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2018",dateEndSecondStepPublish:"September 7th 2018",dateEndThirdStepPublish:"November 6th 2018",dateEndFourthStepPublish:"January 25th 2019",dateEndFifthStepPublish:"March 26th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"81175",title:"PhD.",name:"Ronaldo Luis",middleName:null,surname:"Thomasini",slug:"ronaldo-luis-thomasini",fullName:"Ronaldo Luis Thomasini",profilePictureURL:"https://mts.intechopen.com/storage/users/81175/images/system/81175.jpeg",biography:"Ronaldo Luis Thomasini is a Professor of Microbiology, Parasitology, Pathology, and Pharmacology at the Faculty of Medicine of Diamantina-Federal University of Jequitinhonha and Mucuri Valleys - UFVJM, Brazil. He is a Coordinator of The Center for Studies of Inflammatory and Infectious Diseases and a Professor in the Multi-Centric Post-Graduation Program in Physiological Sciences (PMPGCF-UFVJM), and Post-Graduation Program in Pharmaceutical Sciences (PPGCiFarm-UFVJM). He is a graduate (Licenciate and Bachelor) in Biological Sciences by Herminio Ometto University Center (2002), Master degree in Pharmacology by State University of Campinas - UNICAMP (2007), and PhD in Clinical Medicine by the same university (2011). He has a post-doctoral fellow in Biochemistry and Immunology from the Federal University of Minas Gerais-UFMG and develops studies in clinical pathology, microbiology, virology, immunology and biochemistry, techniques on molecular biology applied to the diagnosis of infectious disease and host-parasite interactions.",institutionString:"Federal University of Vales do Jequitinhonha e Mucuri",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"State University of Campinas",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1046",title:"Infectious Diseases",slug:"infectious-diseases"}],chapters:[{id:"69359",title:"Introductory Chapter: Human Herpesvirus - A Short Introduction",slug:"introductory-chapter-human-herpesvirus-a-short-introduction",totalDownloads:198,totalCrossrefCites:0,authors:[{id:"81175",title:"PhD.",name:"Ronaldo Luis",surname:"Thomasini",slug:"ronaldo-luis-thomasini",fullName:"Ronaldo Luis Thomasini"}]},{id:"64844",title:"Sunlight and Herpes Virus",slug:"sunlight-and-herpes-virus",totalDownloads:839,totalCrossrefCites:1,authors:[{id:"273350",title:"Prof.",name:"Vittorio",surname:"Mazzarello",slug:"vittorio-mazzarello",fullName:"Vittorio Mazzarello"},{id:"274197",title:"Dr.",name:"Marco",surname:"Ferrari",slug:"marco-ferrari",fullName:"Marco Ferrari"},{id:"283742",title:"Prof.",name:"Maria Alessandra",surname:"Sotgiu",slug:"maria-alessandra-sotgiu",fullName:"Maria Alessandra Sotgiu"},{id:"283744",title:"Dr.",name:"Stefano",surname:"Decandia",slug:"stefano-decandia",fullName:"Stefano Decandia"}]},{id:"64988",title:"Neurologic Complications of Varicella-Zoster Virus Infection",slug:"neurologic-complications-of-varicella-zoster-virus-infection",totalDownloads:1074,totalCrossrefCites:1,authors:[{id:"43262",title:"Dr.",name:"Hideto",surname:"Nakajima",slug:"hideto-nakajima",fullName:"Hideto Nakajima"},{id:"286199",title:"Dr.",name:"Makoto",surname:"Hara",slug:"makoto-hara",fullName:"Makoto Hara"},{id:"286200",title:"Dr.",name:"Akihiko",surname:"Morita",slug:"akihiko-morita",fullName:"Akihiko Morita"},{id:"286201",title:"Prof.",name:"Satoshi",surname:"Kamei",slug:"satoshi-kamei",fullName:"Satoshi Kamei"}]},{id:"71254",title:"Extracranial Herpetic Paresis",slug:"extracranial-herpetic-paresis",totalDownloads:207,totalCrossrefCites:0,authors:[{id:"271733",title:"Prof.",name:"Vesna",surname:"Martic",slug:"vesna-martic",fullName:"Vesna Martic"}]},{id:"67401",title:"Human Cytomegalovirus Infection: Biological Features, Transmission, Symptoms, Diagnosis, and Treatment",slug:"human-cytomegalovirus-infection-biological-features-transmission-symptoms-diagnosis-and-treatment",totalDownloads:367,totalCrossrefCites:0,authors:[{id:"269379",title:"M.D.",name:"Şule",surname:"Gökçe",slug:"sule-gokce",fullName:"Şule Gökçe"}]},{id:"69076",title:"The Role of the Epstein-Barr Virus Lytic Cycle in Tumor Progression: Consequences in Diagnosis and Therapy",slug:"the-role-of-the-epstein-barr-virus-lytic-cycle-in-tumor-progression-consequences-in-diagnosis-and-th",totalDownloads:272,totalCrossrefCites:0,authors:[{id:"188773",title:"Prof.",name:"Emmanuel",surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220812",firstName:"Lada",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/220812/images/6021_n.jpg",email:"lada@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"825",title:"Current Topics in Tropical Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ef65e8eb7a2ada65f2bc939aa73009e3",slug:"current-topics-in-tropical-medicine",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/825.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"799",title:"Salmonella",subtitle:"A Dangerous Foodborne Pathogen",isOpenForSubmission:!1,hash:"ba452d8a24ef16b1267d2854b28f6e6a",slug:"salmonella-a-dangerous-foodborne-pathogen",bookSignature:"Barakat S. M. Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/799.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"322",title:"Flavivirus Encephalitis",subtitle:null,isOpenForSubmission:!1,hash:"269535b3a2f21a46216f4ca6925aa8f1",slug:"flavivirus-encephalitis",bookSignature:"Daniel Růžek",coverURL:"https://cdn.intechopen.com/books/images_new/322.jpg",editedByType:"Edited by",editors:[{id:"33830",title:"Dr.",name:"Daniel",surname:"Ruzek",slug:"daniel-ruzek",fullName:"Daniel Ruzek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2068",title:"Understanding Tuberculosis",subtitle:"New Approaches to Fighting Against Drug Resistance",isOpenForSubmission:!1,hash:"077a11a53e4b135020092b8c1143f93c",slug:"understanding-tuberculosis-new-approaches-to-fighting-against-drug-resistance",bookSignature:"Pere-Joan Cardona",coverURL:"https://cdn.intechopen.com/books/images_new/2068.jpg",editedByType:"Edited by",editors:[{id:"78269",title:"Associate Prof.",name:"Pere-Joan",surname:"Cardona",slug:"pere-joan-cardona",fullName:"Pere-Joan Cardona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3842",title:"Leishmaniasis",subtitle:"Trends in Epidemiology, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"861f3ca84eede677ba6cd863093d62f8",slug:"leishmaniasis-trends-in-epidemiology-diagnosis-and-treatment",bookSignature:"David M. Claborn",coverURL:"https://cdn.intechopen.com/books/images_new/3842.jpg",editedByType:"Edited by",editors:[{id:"169536",title:"Dr.",name:"David",surname:"Claborn",slug:"david-claborn",fullName:"David Claborn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"977",title:"Understanding Tuberculosis",subtitle:"Global Experiences and Innovative Approaches to the Diagnosis",isOpenForSubmission:!1,hash:"cb8288ea48f14bd22680c6ae5b13745b",slug:"understanding-tuberculosis-global-experiences-and-innovative-approaches-to-the-diagnosis",bookSignature:"Pere-Joan Cardona",coverURL:"https://cdn.intechopen.com/books/images_new/977.jpg",editedByType:"Edited by",editors:[{id:"78269",title:"Associate Prof.",name:"Pere-Joan",surname:"Cardona",slug:"pere-joan-cardona",fullName:"Pere-Joan Cardona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"971",title:"Malaria Parasites",subtitle:null,isOpenForSubmission:!1,hash:"d7a9d672f9988a6d5b059aed14188896",slug:"malaria-parasites",bookSignature:"Omolade O. Okwa",coverURL:"https://cdn.intechopen.com/books/images_new/971.jpg",editedByType:"Edited by",editors:[{id:"99780",title:"Associate Prof.",name:"Omolade Olayinka",surname:"Okwa",slug:"omolade-olayinka-okwa",fullName:"Omolade Olayinka Okwa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1273",title:"Non-Flavivirus Encephalitis",subtitle:null,isOpenForSubmission:!1,hash:"fa857119b76ce546ccf16503e982a08e",slug:"non-flavivirus-encephalitis",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/1273.jpg",editedByType:"Edited by",editors:[{id:"62638",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2061",title:"Salmonella",subtitle:"Distribution, Adaptation, Control Measures and Molecular Technologies",isOpenForSubmission:!1,hash:"64584b0d61f32814e0ed682bf052b088",slug:"salmonella-distribution-adaptation-control-measures-and-molecular-technologies",bookSignature:"Bassam A. Annous and Joshua B. Gurtler",coverURL:"https://cdn.intechopen.com/books/images_new/2061.jpg",editedByType:"Edited by",editors:[{id:"101172",title:"Dr.",name:"Bassam",surname:"Annous",slug:"bassam-annous",fullName:"Bassam Annous"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52837",title:"Ensiling of Forage Crops in Semiarid Regions",doi:"10.5772/65446",slug:"ensiling-of-forage-crops-in-semiarid-regions",body:'\nThe semiarid regions are characterized by an irregular distribution of rainfall with greater variability between years and within the same year, and high solar radiation. This hydric variability originates from complex systems of the formation of rain, with the occurrence of concentrated rain in a few months of the year and alternate years, irregularity, existence of geographic barrier concentrating higher humidity in the valleys and leaving dried slopes, and variability of soil with greater or lesser ability to retain water [1].
The variability of rainfall provides the diversity of fauna and flora species in the semiarid region. The soil and climate conditions are associated with the characteristics of species, such as solar radiation, sunshine, and air temperature. The climatic variations suggested that animal production systems operate according to the availability of resources and controlled principally by the availability of water, adopting rational strategies for production.
In semiarid regions, annual rainfall is irregular, low, and highly variable in space and time, with permanently high evapotranspiration rate. Therefore, the agricultural systems used in the semiarid region should be based on plants that develop efficiently and quickly by using the resource availability of pulses [2], because the water dynamics is the main variable for controlling the transformation process of individual nutrients available for plants.
Tropical regions, such as semiarid regions of Brazilian, may have a high capacity for forage production, but climatic variables make it difficult for the development of the animal production system. The quantity and quality of forage are key factors for animal production. The management also influences the forage characteristics and animal production. During the dry season, a significant reduction in native vegetation occurs, and this affects animal forage production.
The shortage of forage during the dry season and low nutritive value of forage may compromise the animal production, resulting in decreased productivity. In this situation, the producers become dependent on the availability of the preserved forage, hay, and silage, cultivated forage crops, and crop residues to feed cattle in the semiarid region [3].
For the efficient production of forage in the semiarid regio, it is essential to know conditioning factors inherent to soil, climatic condition, and plant interaction mechanisms to drought and production capability. Adapted crops, due to their efficiency in the accumulation of green matter in these climatic conditions, are available as a more viable option to the semiarid region. Among other considerations. the forage conservation practices, silage is a better alternative to reduce the qualitative and quantitative fluctuations in the supply of forage to the animals.
As a literature review, this chapter presents scientific reports on ensilage of forage with productive potential for the semiarid regions. This study presents the main crops for ensilage in the semiarid regions and their fermentation characteristics.
Drought is the meteorological event when there is inadequate water availability in the soil or rainfall, including quantitative and qualitative, during the life cycle of a plant, limiting full expression of the gene of the plant potential and preventing the maximum yield from a culture [4].
The planning activities of animal production in drought regions should take into consideration some factors, such as production yield, drought resistance, and water-use efficiency by plants, for crop production. Although a culture presents high production yield, this may not be compatible with higher drought resistance or increased water-use efficiency [5].
In rainfed situations where crops depend on unpredictable seasonal rains, the maximum use of soil moisture is a crucial component for drought resistance, that is, water-use efficiency allows the production yield even in the situations of water deficit [5].
Drought resistance is the ability of a plant to produce with minimal loss in a water-deficit environment. Drought resistance mechanisms can be classifieds into the following three categories: drought escape, drought avoidance, and drought tolerance [6].
Drought escape is the ability of plants to complete the life cycle before there is a serious water deficit for plant and soil. The phenological development of plants is fast with early flowering and maturity and the duration of the growing season depends on water deficit [6]. The success of these species depends on the efficient reproduction before a more intense water stress. With short life cycle and high growth rates and storage, this process uses reserve for seed production [7].
Drought avoidance is the ability of plants to maintain some potential of water in the tissue even with low moisture in the soil. The better absorption of water, mobile water storage, and reduction of water losses are some of the processes that are used for these plants. The balance between turgor, increased depth of rooting, higher absorption efficiency, and lower losses of water allows the survival of plants under dry conditions [6]. Furthermore, older leaf senescence reduces the energy cost of the plant [7] directing all the energy to dry the adaptive mechanism.
Drought tolerance is the ability of plants to resist water deficit with low potential of water in the tissues [6]. In water-limited environments, the plants can produce forage mass using water maintenance mechanisms in the plant. One of the processes is the osmotic adjustment. Osmotic adjustment is an adaptive response to cellular stress that in some cultures increases the avoidance dehydration and supports the production yield under stress [5]. Osmotic adjustment maintains turgor and resists to dehydration through solute accumulation in the cell, an increase in cell elasticity, and a decrease in the cell size [6].
In drought, these plants maintain the water content accumulating several nontoxic solutes that do not interfere with metabolism; these are compatible solutes such as fructan, trehalose, polyols, glycine, proline, betaine, and polyamines [4, 8].
Although the drought resistance is important for crop production in semiarid, the adjustments resulting from this drought tolerance have disadvantages because of lower production output. The stomata closure and reduction in leaf area result in lower carbon dioxide assimilation and higher osmotic adjustments that can have a negative effect on the plant energy requirement [4].
Cultivate crops are grown using more than one mechanism to resist drought [9]. Thus, it is interesting to note that the adaptive mechanisms of crops grown in the semiarid region have a balance of escape, avoidance, and drought tolerance, maintaining the yield production as much as possible. Through conventional breeding or biotechnological methodology, the development of superior genotypes resistant to drought is possible [4].
Most of the crops produced in the world are sensitive to water deficit. Even cultivative crops, such as pearl millet, sorghum, and pigeon pea, in semiarid regions are affected by drought during the reproductive stage [4].
The C4 plants are considered to be dominant in resistance and drought tolerance because they are capable of maintaining photosynthesis with closed stomata. Even with the small reduction of photosynthesis under water stress conditions, the C4 crops such as sorghum and panicum have the ability to grow in dry region and are considered to have a great potential for enhancing forage production and food security in the world [7]. The C4 plants provide competitive conditions of low availability of water, high temperatures, and high light intensities [10]; they have high water-use efficiency and mechanisms for CO2 concentration [7].
Other factor that influences the nature of response of plants to drought is the thermal stress. Thermal stress can reduce transpiration and can dehydrate the plant cells, reduce the availability of nutrients, and cause osmotic stress together with the drought. In the plant growth stage, water stress can interfere with the final yield production of the crop [7]. Corn yield, for example, is a culture that is extremely sensitive to water stress during the period of the previous life cycle of flowering. Crops such as sugarcane may have a greater impact of water stress when its leaves are establish than in the initial period, which may affect the final yield [7, 11].
The adaptive responses are based on complex changes to cope with stress, primarily to maintain water potential in main tissues. Crops such as sorghum and pearl millet are drought tolerant and cultivated on a large scale in the semiarid region. These crops are able to maintain photosynthetic activity under water stress conditions and thus increase the final yield [12].
The osmotic adjustment required for drought tolerance forage can increase the solute values as fructan [4, 8] increases the values of soluble carbohydrate in these forage.
The concentration of water-soluble carbohydrates (WSC) in ensiled materials influences the fermentation profile because the WSC concentrations are used for the production of lactic acid [13]. The minimum content of WSC to appropriate fermentation of good silage varies between 6 and 12% [14]. In contrast, a large amount of WSC concentration may predispose to undesirable occurrence of fermentation realized from yeasts because of the excessive lactic acid production, which leads to losses resulting from the alcoholic fermentation [15].
In the semiarid region, there is a tendency that the forage contains a higher WSC content. The forage sorghum, pearl millet, and buffel grass show a WSC concentration (DM basis) of 13–20, 9, and 3.1%, respectively [16].
Ensiling is a method of forage conservation. It is based on natural fermentation, in which lactic bacteria convert the WSC into organic acids (principally lactic acid) under anaerobic conditions. As a result pH decrease and the silage is preserve [17]. The primordial objective of forage ensiling is to preserve the original composition of nutrients found in natural plant during storage with minimum losses [18].
The forage conservation as silage depend on favorable conditions, such as the amount sufficient WSC to lactic acid production and low buffering capacity, which promote rapid lowering of pH that inhibits the growth of some deleterious microorganisms, maintaining the nutritional values of forage.
Before the ensiling process, aerobic and facultative anaerobic microorganisms are able to grow in high pH and predominance. As long as pH decrease and oxygen is consumed, the anaerobic and anaerobic facultative acid tolerant bacteria grow in the environment.
Ensiling is divided into four phases with different time and intensity [19, 20].
• Aerobic phase: It occurs during filling of silo and extends until a few hours after the packing of silo. The aerobic phase is undesirable because all obligatory and facultative aerobic microorganisms (yeasts, molds, and bacteria) are active in this phase, but it is an inevitable phase. As it is associated with the fermentable substrate and energy losses, it is important to reduce the duration of this phase. It recommended that the forage be chopped, compacted, and rapid packing of the silo [13]. The final stage of the phase includes exhaustion of oxygen in silo.
• Active fermentation phase: After exhaustion of oxygen in silo, there is a decrease in silage pH because of organic acids production from WSC. In initial, enterobacteria and heterofermentative lactic bacteria grow in ensiled mass. With the larger decline of pH, homofermentative lactic bacteria dominate the anaerobic environment. In this phase, there is the more production of organic acid, such as acetic and lactic acids, and also ethanol and CO2. The major growth of lactic acid bacteria (LAB), and consequently, larger lactic acid formation inhibit the development of other microorganisms, principally due to lowering of pH. This phase extends to the stability and reduces excessive microbial activity.
• Stability phase: It a phase with low biologic activity, since it does not penetrate air in the ensiled mass. The pH permanence is stable in 3.8–4.2, inhibiting microbial activity. Only some acid tolerant enzymes maintain activity [20]. The acid pH and anaerobic conditions maintain the ensiled mass stability to the silo opening.
• Discharge phase: It occurs at the opening of the silo and expose the ensiled mass to high oxygen concentration, which favors the growth of enterobacteria, molds, yeasts, and other microorganisms. Yeasts are the first microorganism to develop in silage after the opening, causing deterioration of the conserved forage [13]. There are heat and CO2 production due respiration, which results the decrease in lactic acid and residual WSC, and increase in silage pH [13]. The appropriate management may minimize the losses after opening of silo.
The ensiling process is complex and variable. It consists, basically, in conjunct action of the large number of microorganisms and may be considered a metabiose because it occurs at simultaneous and successive development of different microorganisms that depends on specific pH, substrates, and potential redox in environment of silo.
The microorganisms present in plant before ensiling may be aerobic and anaerobic, desirable and undesirable to fermentation. Table 1 presents the most common types of microorganisms and their presence in plants.
Groups | pH |
---|---|
Total aerobic bacteria | >10,000,000 |
Lactic acid bacteria | 10–1,000,000 |
Enterobacteria | 1000–1,000,000 |
Yeasts | 1000–100,000 |
Molds | 1000–10,000 |
Clostridia | 100–1000 |
Bacillus | 100–1000 |
Acetic acid–producing bacteria | 100–1000 |
Propionic acid–producing bacteria | 10–1000 |
Typical bacterial and fungal population of plants groups before ensiling.
Source: Adapted from Pahlow et al. [20].
The microorganisms present in plants are diverse in genera and species with different fermentative routes. Each group has specific temperature and substrate to grow with higher or lower energy demand. In the fermentation process, microorganisms convert soluble substrates into organic compounds. Table 2 presents the main fermentative routes of microorganism in silage.
Organism | Rota | Substrate | Product | Recuperation (%) | |
---|---|---|---|---|---|
Energy | DM | ||||
LAB | Homofermentative | Glucose | 2 Lactate | 96.9 | 100 |
LAB | Heterofermentative | Glucose | 1 Lactate + 1 Acetate + CO2 | 79.6 | 83 |
LAB | Heterofermentative | Glucose | 1 Lactate + 1 Ethanol + CO2 | 97.2 | 83 |
Yeast | Glucose | 2 Ethanol + 2 CO2 | 97.4 | 51 | |
Clostridia | Glucose | 1 Butyrate + 2 CO2 | 77.9 | 66 | |
Enterobacteria | 2 Glucose | 1 Lactate + 1 Acetate (1 Ethanol) + CO2 | 88.9 | 83 |
Acidify efficiency and fermentation and main fermentative routes of microorganisms in silage.
Source: Adapted from de McDonald et al. [13].
The growth of lactic acid bacteria in ensiled mass is important because its metabolism does not result in considerable DM losses, following the principle of forage preservation. The LAB converts one mole of glucose to two moles of lactic acid without DM losses [13].
In situations where the forage has a low amount of substrates may have predominant of other microorganisms, such as enterobacteria, because the pH is not low sufficiently. In the opposite situation, ensiling of forage with excess WSC may be in the presence of acid tolerant microorganisms such as yeasts that are able to consume lactic acid and WSC. The excess WSC in the plant leads to the formation of acid silage due to excessive lactic acid production. Acid silage, such as sugarcane and saccharine sorghum silages, has high ethanol concentration because of alcoholic fermentation.
The dry matter content is an important factor that affects the fermentation and preservation of ensiled mass. The ideal DM content is between 30 and 35% [13]. However, research studies indicated the values to corn silage being necessary attempt to characteristics of each culture, because it might occur good fermentative profile in silage of forage with inferior DM values.
Generally, the high content of moisture favors undesirable microorganisms, such as Clostridium and enterobacteria that are butyric and acetic acid and ammonia producers, implying in nutrient losses. However, higher DM content impacts the compaction and reduction of air present [21].
The WSC concentration in ensiled materials influences the fermentative profile, because the WSC concentrations are used for the production of lactic acid [13]. The minimum content of WSC required for appropriate fermentation of good silage varies between 6 and 12% [14].
Other important factors that influence the silage are the buffering capacity that is resistance to lowering the pH of ensiled materials. The compounds able of buffering the environment in forage are some organics acid, potassium, and calcium inorganic bases and nitrogen substances, such as protein and products of their degradation, free amino acids, amine, and ammonia [22]. The action of buffering capacity in silage is associated with other factors such as WSC and DM concentration. Thus, the pH of silage is determined by relationship of protein and water-soluble carbohydrate [22].
The ensiling process changes the natural structure of forage and may cause some losses. Besides the natural physical losses, such as crop losses, chemical losses also occur and may compromise the energy and nutritive value of silage. Although some losses may be unavoidable, such as biochemist changes, plant respiration, and fermentation (Table 3), other types of losses can be avoided with appropriate practice of the ensiling procedures.
Process | Losses (%) | Causative agents | Classification |
---|---|---|---|
Respiration | 1–2 | Plant enzymes | Inevitable |
Fermentation | 2–4 | Microorganisms | Inevitable |
Effluent | 5–7 | Moisture | Inevitable |
Secondary fermentation | 0–5 | Plant, moisture, silo environment | Preventable |
Aerobic deterioration in storage | 0–10 | Ensiling time, density, plant, packing | Preventable |
Aerobic deterioration in discharge | 0–15 | Moisture, season, density, technical | Preventable |
Total losses | 8–43 |
The energy and dry matter disappearance is an indicative of losses in the ensiling process. The residual respiration during filling the silo and immediately after sealing, types of fermentation, effluent production, undesirable fermentation during the storage, and aerobic deterioration are the main causes of energy and dry matter losses [21].
The losses related to respiration usually occur early. The respiration in silo initially occurs due to the presence of oxygen in the ensiled materials, thus the cellular respiration use the air oxygen and substrates producing CO2, heat, and H2O. Some factors can affect the respiration rate in the silo, such as temperature, which increase the initial rate of reaction and destruction of enzymes, usually by denaturation; oxygen concentration, the high amount of oxygen in the silo promotes an increase in the respiration rate and higher the temperature, and consume more energy; WSC content: the amount of soluble substrates in ensiled materials can influence the respiration, since they are consumed during respiration.
Silage fermentation usually causes DM losses due to the activity of microbial and enzymes. The losses related to the fermentation represent the highest percentage of losses in the silage process. These losses can be resulting from the production of water, gas, heat, and effluents during the fermentation process [22].
The effluent losses are associated with the DM content of plant, the activity of the water metabolism and the physical procedure of cutting and application of additives in ensiled forage [23] and DM losses can be highly variable [16]. After evaluating the sorghum silages in Brazilian semiarid we observed a variation of 10–24% DM losses.
In ensiling, besides DM losses, nutritional losses should also be taken into account. Sugarcane and sorghum silages can show high nutritional losses because of a high content of WSC, which may result in increase in alcoholic fermentation. Many studies indicate that the application of additives in the ensiled material considerably reduced these losses of substrates [24–26].
Other fermentation can also occur and reduce the nutritive value of silage, as proteolysis. The proteolysis is associated with DM, protein, WSC content, pH, and ensiling time [27]. It is an undesired reaction because the resulting products of the process (ammonia and amines, principally) indicate high nutritional losses.
In discharge of silo to offer silage to animals aerobic deterioration can also occur, which is one of the main problems after exposure to air [28]. This process occurs due the penetration of air in ensiled materials, which is favorable for the grown of aerobic microorganisms, acid tolerant, and the oxide products resulting in silage fermentative process [29]. The air exposure of silage can chance its chemical compositions and alter the nutritional value.
The mains characteristics that determine the fermentation profile during ensiling involve the interaction of factors such as: DM content, WSC concentration, and buffering capacity of plant. In the case of semiarid, plant species resistance to hydric deficit and climatic conditions are indicated to ensiling. The main forages are sorghum, pearl millet, tropical grasses, leguminous, and cactus pear.
Sorghum (Sorghum bicolor L. Moench) is an appropriate grass for silage with agronomic and nutritional characteristics, because it is tolerant to drought and responds even in soils with limited nutrients [30] and its phenotypic characteristics facilitate planting, management, harvesting, and storage. The other significant characteristic of sorghum is that it will regrowth after each harvesting [31].
The sorghum is a resistant to hydric deficit in semiarid. Their resistance is associated with the physiology characteristics and efficiency of rain. Researchers evaluated the efficiency of rain in sorghum genotypes in semiarid and found positive results, values between 944.37 and 126.25 kg DM/ha/mm that indicated high efficiency in covert water of rain in production [32].
In addition to their agronomic traits, sorghum has desirable characteristics for fermentation, such as a suitable dry matter content, high carbohydrate concentration, and low of buffering substance content [33, 34].
Sorghum is a crop that has desirable characteristics for the production of silage; however, as the WSC concentration is higher in the stem, forage sorghum and saccharine sorghum usually have high concentration of carbohydrates, which can facilitate the multiplication of yeasts, molds, and enteric bacteria. The presence these microorganisms cause losses in silage process of sorghum.
In general, the fermentation losses imply in the reduction of the availability of the ensiled forage, since there is no way to recover the DM losses in the form of gases and effluent.
The exposure of silage to air, converting the anaerobic environment (responsible for the conservation of forage) to aerobic, can cause changes in its chemical composition, altering its nutritional value, because the population of microorganisms that were dormant (bacteria, yeasts, and then mold action) and with oxygen began intense metabolic activity [35].
There is reduction in soluble components of silage, which are used as substrates for these microorganisms [30] and may even be a degraded part of the fibrous portion of food by fungal microbiota [28].
Evaluation of the aerobic stability of sorghum silages [26] found the aerobic deterioration losses of 85.6 kg/t DM in silages upon exposure to air during 48 hours. As the air to silage exposure is unavoidable during discharge, many research studies aim to reduce the aerobic deterioration with the use of additives [36].
The adding urea to acidic silage can neutralize part of acidity in the chemical reaction by partial neutralization, where, in an acid environment, an agent that has alkalizing action forms salts of organic acids [37] and subsequently providing the nitrogen applied [24].
Chemical additives such as urea can also benefit from the silage sorghum (Table 4). Although sorghum silage with urea present pH values and higher N ammonia, it does not mean that the fermentation process is undesirable. Urea may act primarily in the metabolism of microorganisms, such as yeasts, reducing the conversion of the soluble compounds to ethanol, reducing DM losses. Furthermore, the addition of urea in sorghum silage had no negative effect on the production of lactic acid [26].
TRAT | pH | NH3/TN | LA | AA | ET |
---|---|---|---|---|---|
Sorghum | 4.73 | 0.228 | 6.01 | 0.83 | 0.44 |
Sorghum + LB | 4.78 | 0.257 | 3.09 | 3.93 | 0.46 |
Sorghum + LP | 4.25 | 0.189 | 12.46 | 0.56 | 0.40 |
Sorghum + 0.5% urea | 3.69 | 0.169 | 5.27 | 0.85 | 0.60 |
Sorghum + 1.0% urea | 3.73 | 0.401 | 6.69 | 0.37 | 0.26 |
Sorghum + 2.0% urea | 3.76 | 0.525 | 5.71 | 0.70 | ND |
Sorghum + 4.0% urea | 3.98 | 0.767 | 6.72 | 0.83 | ND |
The sorghum has high WSC that can excessively acidify the silage due to excessive lactic acid production. The effect of different doses of urea on sorghum silage [26] found that the addition of urea reduced DM and WSC losses, reducing the production of ethanol from treated silages. Another benefit noted by the author was a high possibility of recovery of the nitrogen applied in the silages by incorporating the biomass ensiled.
The use of microbiological and chemical additives in sorghum silage can benefit from the fermentation process, and prolong the aerobic stability of silages [26].
After evaluating sorghum silage inoculated with lactic acid bacteria homofermentative and heterofermentative (Table 4), the researchers observed that the pH and WSC concentration decreased during fermentation, while increased lactic acid, acetic acid, ethanol, and ammonia content [38].
The addition of inoculants from lactic acid bacteria, such as Lactobacillus buchneri and Lactobacillus plantarum can benefit fermentation. Sorghum silages additive with L. plantarum showed low pH, lower content of acetic acid, ammonia nitrogen, and increased the production of lactic acid [38]. While silage inoculated with L. buchneri had a higher content of acetic acid and ethanol and lower lactic acid concentration [38].
L. buchneri is heterofermentative bacteria capable of converting water-soluble carbohydrates into lactic acid and other compounds with less acidifying power of the medium, such as acetic acid [39]. Still, these bacteria are capable of producing ethanol, which justifies higher values in the silage [39].
Another alternative is production of sorghum silage mixed with grasses. The sorghum silage has a high carbohydrate concentration, which implies the production of acid silage with predisposition to the development of deleterious microorganisms such as yeasts, and when under aerobic conditions in the silo-opening phase, aerobic stability is reduced.
In turn, grasses silages have lower amounts of WSC, buffering capacity, and relatively larger pH, which would lead to an increase in the production of acetic acid, the resulting product is essentially heterofermentative bacteria. Acetic acid has antifungal properties and may delay the development of fungi and degradation of nutrients in silage with high nutritional value, thus increasing the aerobic stability.
Considering these characteristics, the production of mixed silage sorghum with grass could promote appropriate fermentation profile, resulting in silage quality, as well as increase the aerobic stability of silage when exposed to air in the discharge phase, resulting in the reduction of aerobic degradation losses.
Evaluating sorghum silage mixed with 0, 25, 50, 75, and 100% of elephant grass, researchers found losses are reduced by gases (up to the level of 50%) and effluent (when added 75% grass elephant) in sorghum silage mixed with elephant grass [40]. Still mixed with elephant grass silages showed high resistance to heating after exposure to air of silage, there was an improvement in the aerobic stability of silage.
The pearl millet (Pennisetum glaucum) is a grass of tropical region that can be considered alternative to forage production in Brazilian semiarid because it is a short cycled plant with high nutritive value adapted to climatic and soil conditions and it has great potential of production [41]. Because of its hardiness, rapid growth, adaptation to low soil fertility, and excellent biomass production capacity, it is an alternative to semiarid climates, where there are large climatic uncertainties.
This grass species has been widely used by producers as an alternative to attempt the requirements of animals in the critical part of the year. Pearl millet has been used as forage for the production of silage in periods of drought because of its specific characteristic such as more persistent drought, adapted to low fertility soils, fast growth, and good biomass production [35, 42].
Researchers evaluated the recovery of dry matter and losses of dry matter in the form of gases and effluent, and pH in silage of two pearl millet genotypes under nitrogen fertilization and found that the silages with lower pH were decreased the DM recovery and increased the soluble carbohydrates, which triggered the alcoholic fermentation [16].
The release of effluent can contribute to significant losses in the silage, considering that the DM content of pearl millet plants is relatively low. In many cases, good results have been achieved by using moisture-absorbing additives.
The incorporation of substances that absorb moisture inside the silo, such as citrus pulp, corn disintegrated with straw, corn cornmeal, and sorghum, favors the fermentation process. The incorporation of 3–7% of additives is sufficient to increase the DM content of the silage up to 25% DM, but this strategy should always be evaluated based on cost. Another alternative is to prewilting of the forage to be ensiled. This practice is effective. However, due to the significant increase in hand-to-work has proved more viable for small-scale silage production.
Grasses cultivated under tropical conditions have high production in favorable season and reduction in unfavorable periods. Usually, there has been a fodder surplus in times of water, which should be maintained for subsequent supply in the drought period of the year. In this context, the grasses surplus ensiling can be a good practice to increase the supply of dry matter to animals in unfavorable times. Nevertheless, grasses have low DM and WSC content, as well as a limited number of indigenous bacteria, so that they require the techniques that increase their DM content and favoring the production of lactic acid bacteria [43].
The tropical grasses have low dry matter content, high power buffer, and low in soluble carbohydrates in the growth stages that have adequate nutritional value, which may harm the conservation process through the silage due to the possibilities of arising secondary fermentations, increasing the losses, and reducing the final quality of the ensiled material [44].
Researchers evaluated the effect of plant maturity on the DM content [45] and found the DM contents of 19.42, 21.06, 20.25, and 22.41% for 30 crops with heights of 40, 50, and 60 cm, which are unfavorable for appropriate fermentation of grass silage.
The WSC content in grasses is generally low depending on species and time of harvesting. The minimum WSC concentration to ensure the appropriate fermentation process is in the range 8–10% (DM basis) [13]. The WSC represents the main substrate for lactic acid bacteria, and must be at high concentration in plants prior to ensiling, so that the fermentation process is accelerate and the pH lowered rapidly, thereby inhibiting the growth of undesirable microorganisms.
The WSC and DM contents and buffering capacity influence directly the fermentation process of silage. Researchers [46] found that the DM and WSC content increases with the increase of regrowth age. Water-soluble carbohydrate levels in tropical grasses are low and thus it is difficult to reduce pH because of the absence of substrate for lactic acid bacteria, which suppresses the fermentation process.
Besides WSC and DM contents, buffering capacity also influences the ensiling process. The buffering capacity of forage resists changes in pH, which reduced the rapid lowering of pH necessary for forage preservation. The ratio of WSC and buffering capacity is important for the silage process. When the ratio is decreased it needs to increase in the DM content to avoid undesirable fermentation inside the silo.
The control of the ensiling process may be realized by the use of additives. Researchers [47] evaluated the effect of citrus pulp on Tanzania grass silage and found increased ratio of WSC and buffering capacity, which resulted in improved fermentation characteristics of silages with reduction of pH and ammonia-N values.
Another way to increase the level of soluble carbohydrates of forages before ensiling is the inclusion of sugarcane. The benefits of using sugarcane are similar to molasses to increase the WSC content, resulting in reduction of pH and ammonia-N concentration and increasing the DM content [48].
Other sources that are used as additives, which are rich in soluble carbohydrates, are the residuals of fruit processing, such as cherry, pineapple, guava, passion fruit, mango, and papaya. These residues are usually dry, and used as both WSC sources and to increase the DM content of grass silage.
The leguminous species found in semiarid regions are drought tolerance. In order to reduce production costs, leguminous are often used as protein banks to feed ruminant animals, since the protein is expensive nutrient for animal nutrition [49].
The main leguminous fed to cattle in the semiarid region are leucaena (Leucaena leucocephala), pigeon pea (Cajanus cajan), Gliricidia (Gliricidia sepium), jitirana (Merremia aegyptia), sisal (Agave sisalana), perennial peanut (Arachis pintoi), among others.
Although these species are widely used as protein bank, some species of leguminous produced in the semiarid region have antinutritional compounds such as cyanide and tannin. These compounds may have a negative effect on ruminal degradation and become toxic when leguminous are present in excess. The ensiling process can soften or remove these undesirable compounds, improving the quality of food that provides to animals. This process has often been used for feeding animals in feedlot [50].
Leguminous species are not favorable for silage because of low concentrations of dry matter and water-soluble carbohydrates, and high protein content and buffering substances [51]. Because the amount of soluble carbohydrates, DM content, and buffer capacity [39], the fermentation process of leguminous silage may not be acceptable. However, the use of additives can improve the silage fermentation of these leguminous.
The fermentation of the silage leguminous is resistant to pH reduction due to the high buffering capacity and low content of soluble carbohydrates, which makes the highest production of lactic acid. There are a high number of pulses present in semiarid. Thus, it is important to use techniques which aimed at improving the ensiling process of legumes, making it favorable for silage.
The dry matter content directly influences the fermentative activity [13]. High moisture content and buffering capacity associated with low soluble carbohydrate content can lead to increased butyric fermentation, with losses of nutrients in the final food.
Leguminous have a high content of protein and minerals. Salts of organic acids, sulfate, nitrates, chlorides, and orthophosphate form the anion fraction of forage, which correspond approximately 68–80% of buffer capacity [52]. The disadvantages of leguminous silage are the need for increased lactic acid production to compensate for the high buffering capacity and reduce the pH to values below 4.0 [53].
Some strategies are used which can modify and improve the fermentation process of leguminous ensiling. In Table 5, we found that the silage pH perennial peanut had reduced after the addition of corn meal. Furthermore, additive increased the amount of lactic acid and acetic acid and reduced the content of ammonia nitrogen, butyric acid, and propionic acid. The additive corn meal positively changed the fermentation process of silage perennial peanut.
TRAT | pH | NH3/TN | LA | AA | BA | PA |
---|---|---|---|---|---|---|
Perennial peanut (PP) | 5.48a | 18.22a | 0.67h | 0.09c | 1.21a | 1.61a |
PP + 5% corn meal | 4.76c | 11.70ab | 0.64h | 0.17c | 0.65b | 0.86b |
PP + 10% corn meal | 4.57c | 8.06bcd | 2.29e | 1.74ab | 0.20de | 0.86b |
PP Wilted (PPW) | 4.70c | 4.15cd | 1.10f | 0.60bc | 0.04e | 0.03b |
PP + Inoculant | 5.18b | 14.04ab | 0.21i | 3.25a | 0.34cd | 0.39b |
PPW + Inoculant | 4.67c | 3.93cd | 0.86g | 1.15bc | 0.03e | 0.02b |
Values of pH, relation ammoniacal nitrogen/total nitrogen (NH3/TN), lactic acid (LA), acetic acid (AA), butiric acid (BA), and propionic acid (PA) of perennial peanut silage.
Note: Means followed by the same letter in the column do not differ by 5% Tukey test.
Source: Adapted from Paulino et al. (2009).
Other techniques such as wilting reduce losses in silage legumes. The wilting reduces the formation of organic ions that can result in the buffering effect on the silage fermentation process [54]. In Table 5, we confirmed the effect of wilting on silage perennial peanuts. Wilting reduced the pH, ammonia nitrogen content, butyric acid, and propionic acid, and increased the amounts of lactic and acetic acid. These changes are desirable, since lactic acid has preservative effect on the fermentation of silage to acidify [13].
The biological additives can be used in leguminous silage. Table 5 shows the results of the addition of inoculant in perennial peanuts silage, when the wilting before ensiling occurred. This can be explained by the fact that due to the lower moisture content in the forage activity of lactic acid bacteria is increases and reduced the activity of other bacteria, such as clostridia, which are sensitive to osmotic pressure.
The cactus pear (Opuntia ficus-indica and Nopalea cochenillifera Salm Dyck) has been increasing in the face of constant climate changes in the current production scenario [55] and its use in the objective Brazilian semiarid minimize the action of seasonality in the production process, providing energy and increasing the availability of water via food for animals.
In order to rationalize the use of this forage resource, the cactus pear as a silage is an alternative to this region. From the productive point, and the conservation of the nutritional value of the forage, the cactus pear silage maximizes the use of natural resources found in the Brazilian semiarid, enabling ranchers a new alternative for conservation of foods rich in water and energy, which adds more value to this Cactaceae in arid and semiarid regions.
Cactus pear has a low DM content and high WSC content, which could lead to alcoholic fermentation. However, researchers [56] evaluated cactus pear silages added with urea and found appropriate fermentation and low nutrient losses in silage. Despite some unfavorable attributes for silage, other characteristic of the cactus pear as per their bioactive compounds must be taken into consideration.
During rainy seasons, the cactus pear crop is not recommend for the ensiling process, because of the high moisture content that may bring difficulties in handling this material.
Other aspects related to fermentation kinetics of cactus pear silage are the percentage of organic acids found in the cactus pear cladodes, such as oxalic, citric, malonic succinic, and tartaric acids [57], which buffers the environment that impedes the lowering of pH.
Cactus pear is forage with low DM content and high WSC concentration, which may favor the development of undesirable fermentation. However, the bioactive compounds present in cactus pear promote homeostatic conditions in ensiled mass.
The emulsifier gel is formed after cutting of cactus pear, resulting of breaking of chlorenchyma and parenchyma cells, it is store mucilage, a hydrocolloid that promotes fluid retention. The hydrocolloids are compounds formed by highly hydrophilic polysaccharides, which reduce the movement of water providing increased viscosity of materials and thus the mucilage formation [58]. These compounds may be responsible for reducing effluent losses due to mucilage aggregates of fluid compounds.
The interaction of forage characteristics and its associative effects, as well as the handling, during ensiling directly influence the efficiency of the preservation process. The additives, in general, have been test more often in order to facilitate the practice of forage silage with high moisture and WSC content. The reports evaluating the silage cactus pear are still incomplete, as well as studies indicating additives for silage.
In recent studies with silage palm, researchers [56] conducted experiments to evaluate the losses resulting from the fermentation of forage cactus pear using additives such as urea and wheat bran. It observed that the urea reduced the effect of the increasing DM content and the crude protein values of cactus pear silage.
The cactus pear has favorable characteristics for the ensiling process; it is possible to produce good quality silage. Although many believe that the characteristics of the cactus pear, especially high WSC content, imply in inadequate fermentation characteristics. Cactus pear consists of elements that make it potential to be used as silage. Still, cactus pear silage is composed of a diet rich in energy for ruminants, as well as serve as an alternative source of metabolic water readily available in animal feed, especially in times of drought.
The use of plant to appropriate silage in combination with cultivate, harvesting, and silo filling results in a successful preservation of forage as silage.
Tropical crops, due to the tolerance of low water availability, are ideal for preserving forage as silage. In semiarid regions, the fermentative process of forages varies with conditions, and sometimes it requires additives.
Today, the increase of requirements for indoor cooling demands improves thermal human comfort inside residential buildings, reduces the divergence between the energy supply and energy demand by the use of low-grade heat sources such as solar energy and industrial waste heat, lowers the CO2 emissions in the building sector due to the use of air condition systems, and finally reduces the peak of energy consumption of air conditioning processes generated by the use of conventional vapor compression system especially during summer period for the buildings and spaces that have high latent loads. All above reasons make the solar cooling that has been received much more attention as innovative, promising, efficient, and environmentally friendly air conditioning systems as alternative options for conventional air conditioning systems [1, 2]. The building sector is considered as a major contributor to energy consumption in the world. Numerically, 41.1% of the total energy in the United States in 2011 was consumed in the building sector, and this state is expected to increase to 42.1% in 2035 [3]. In Europe, buildings consumed for 39% of total energy consumption, which 26% is for residential buildings and 13% for commercial architectures [4]. In China, 25–30% of the total energy is consumed by civil and industrial buildings [5]. A same scenario in Australia which the building industry consumes 40% of the total energy produced [6]. According to the report issued by EU strategy on heating and cooling 2016, the energy consumption for cooling and heating in buildings demonstrated about 80%. Although less than 20% is presently exploited for cooling purposes, the domestic cooling building still has a high potential for growth. Moreover, the use of the innovative low-energy cooling technologies for heating and cooling will bring fuel savings of 5 Mtoe per year in 2030, corresponding to 9 million ton of CO2 [7]. Therefore, the annual energy for air-conditioning purposes for a room was increased considerably, which was 1.7 GWh in 1990 and it reached 44 GWh in 2010 [8]. The Mediterranean countries have saved 40–50% of their energy consumed for refrigeration and air-conditioning by using solar-driven air-conditioning system techniques [9, 10]. It is stated that the solar system was able to contribute up to 70% of total energy consumption for heating and air-conditioning for domestic buildings. Many solar cooling technologies such as solar absorption, solar adsorption, desiccant, and ejector systems have been studied by researchers. Among these technologies, solar absorption is the most widely used technology with 59% of the installed systems in Europe against 11% for solar adsorption and 23% for desiccant cooling [11]. Many investigations have been done on solar thermal-driven absorption refrigeration machines in the small range of refrigeration capacity (5–30 kW). Some of the investigation results have been published in [12, 13, 14]. A design guide for solar cooling systems is presented in [15].
\nSolar cooling systems can be classified into two main categories according to the energy used to drive them: solar thermal cooling systems and solar electric cooling systems. In solar thermal cooling systems, the cooling process is driven by solar collectors collecting solar energy and converting it into thermal energy, and uses this energy to drive thermal cooling systems such as absorption, adsorption, and desiccant cycles; whereas in solar electric cooling systems, electrical energy that is provided by solar photovoltaic (PV) panels is used to drive a conventional electric vapor compressor air-conditioning system. Both types of solar cooling can be used in industrial and domestic refrigeration and air-conditioning processes, with up to 95% saving in electricity [16].
\nIn general, the solar electrical cooling system consists of two parts: photovoltaic panel and electrical refrigeration device. Photovoltaic cells transform light into electricity through photoelectric effect. The power generated by solar photovoltaic panel is supplied either to the vapor compression systems, thermoelectrical system, or Stirling cycle.
\nPhotovoltaic powered refrigerators are an alternative option to produce cooling in remote areas of developing countries. Photovoltaic cell converts the incident solar radiation to DC power which can drive the compressor of vapor compression system. This system as depicted in Figure 1 consists of a DC compression refrigerator connected to controller, a battery to supply and store energy, and a photovoltaic (PV) generator which supplies the refrigerator and charges the battery with excess energy. The main advantage of this system compared to the other air-conditioning systems is that it does not require an outside fuel supply. In order to run the system at highest efficiency, the voltage should be close to the voltage produced at the maximum possible power.
\nA configuration of a PV solar-powered vapor compression systems.
Thermoelectric device utilizes the Peltier effect to make a temperature gradient by creating heat flux between two different types of semiconductors materials. Riffat and Qiu [17] defined the Peltier effect as presence of cooling or heating effect at junction of two different conductors due to electricity flow. The main principle of working thermoelectric cooling systems is shown in Figure 2 and follows these steps: an electric current flows across the joint of n- and p-type semiconductor materials by applying a voltage. When the current passes through the junctions of the two conductors, heat is removed at one junction and absorbs the heat from its surrounding space to create a cooling effect. Heat is deposited at the other junction. When a direction of the current is reversed, the air-conditioning system operates in the heating manner due to reverse of the heat flow direction. The main advantages of using thermoelectric cooling compared to vapor compression cycle are as follows: (a) compact and lightweight due to no bulky compressor units needed; (b) no moving parts; (c) environment friendly due to no hazardous gases; (d) silent operation; (e) high reliability in which a mean time between failures (MTBF) is more than 100,000 h; (f) precise temperature stability in which a tolerance of better than +/−0.1°C; and (g) finally cooling/heating mode option, which is fully reversible with switch in polarity and supports rapid temperature cycling. But on the other side, high cost and low efficiency are the main disadvantages.
\nThermoelectric cooling configuration.
The cooling cycle is split into four steps as depicted in Figure 3. The cycle starts when the two pistons are in their most left positions:
Process (a\n
Process (b\n
Process (c\n
Process (d\n
The gas temperature rises from TL to Ta so heat is taken up from the regenerator material. This completes the cycle.
(a) Schematic diagram of a Stirling cooler; (b) four states in the Stirling cycle; and (c) PV-diagram of the ideal Stirling cycle.
The absorption refrigeration cycle is one of the oldest refrigeration technologies. Absorption refrigeration cycle operates under the same principle as the conventional vapor compression refrigeration cycle in the refrigerant side. The mechanical compressor in the conventional vapor compression refrigeration cycle is replaced by the thermal compressor in the absorption refrigeration cycle. The thermal compressor consists of absorber and generator. Figure 4 shows the general schematic of a single effect absorption cycle [18]. The absorption chiller cycle consists of the following steps:
The rich solution (rich on coolant) will be pumped from the absorber to the generator passing the solution heat exchanger (economizer).
Through the heat supply in the generator from a driving heat source (solar collectors), a part of the coolant will be driven out from the rich solution and flows to the condenser. After that, the remaining poor solution (poor on coolant) flows back to the absorber.
In the condenser, the refrigerant vapor from the generator condenses in the condenser. The heat of condensation must be rejected at an intermediate temperature level by the use of the cooling water supplied from a cooling tower.
The refrigerant condensate flows back to the evaporator at low pressure through an expansion device. The cycle of the coolant then repeats.
In the evaporator, the refrigerant is vaporized at very low pressure to produce the cooling power by extracting heat from the low-temperature medium. The coolant vapor flows to the absorber.
In the absorber, refrigerant vapor is absorbed by the poor solution, which flows back from the generator passing the economizer and the throttle. Then, the heat of absorption and mixing is rejected by the cooling water stream supplied from a cooling tower. After that, the cycle of the solution will repeat again.
Schematic of the absorption chilling cycle [18].
The two main pairs of refrigerant/absorbent that are widely used are water/lithium bromide (H2O/LiBr) and ammonia/water pair (NH3/H2O), where water is the refrigerant (coolant) and LiBr is the absorbent; while for the second pair, ammonia and water are the refrigerant and absorbent, respectively.
\nList of advantages of using water/LiBr pair, which is the most common for solar air-conditioning application, is as follows:
uses nontoxic substances;
low working pressures; and
nonvolatile absorbent, i.e., there is no need of rectification of the refrigerant.
However, there are disadvantages associated with the water/LiBr pair and are as follows:
Water cooling is required, which is commonly accomplished by a cooling tower. Cooling towers have the risk of legionella;
Systems have bigger sizes which are due to the large volume of the water vapor;
Risk of corrosion of the components; and
Risk of the crystallization of the solution at very low cooling temperatures.
Adsorption refrigeration cycle is similar to absorption refrigeration cycle. The main difference in the former is that the refrigerant is adsorbed on the internal surface of highly porous solid material instead of the refrigerant being absorbed by a liquid solution. In the adsorption refrigeration cycle, the solid sorbent and the refrigerant form the adsorption pairs such as activated carbon-ammonia, activated carbon-methanol, activated carbon-ethanol, silica gel-water, and zeolite-water.
\nAdsorption is a physical or chemical process that is different from absorption, which is a chemical process. Just as there is an attraction between a liquid and a solid at a surface, there is also an attraction between a gas and a solid at a surface. Adsorption is a surface phenomenon which can be divided into physical adsorption (physisorption) and chemical adsorption (chemisorption). Physical adsorption generally resulted by the Van der Waals forces through physical process, and chemical adsorption usually achieved by valency forces through chemical process. The heat of adsorption is usually large in chemical adsorption and small in physical adsorption. Adsorbent substances can be retained to original properties by a desorption process under the application of heat.
\nThe adsorption refrigeration cycle consists of two sorption chambers, a condenser, and an evaporator, as illustrated in Figure 5. The adsorption cycle achieves a COP of 0.3–0.7, depending upon the driving heat temperature of 55–90°C.
\nSchematic of adsorption cycle solar cooling system.
The working cycle of 5–7 min consists of the following four steps [19]:
In the first step, the adsorbed water is desorbed after the application of thermal energy (as example from solar energy). The collector becomes the generator (1).
In the second step, the desorbed refrigerant (water) is cooled and condensed to liquid in the condenser by rejecting the heat through the cooling water supplied from a cooling tower.
In the third step, the condensed water flows through the expansion valve to the evaporator, where it vaporizes under low partial pressure and low temperature in the evaporator while the useful cooling is produced, then heat is taken away from the chilled water.
In the fourth and final step, the vaporized water is adsorbed in the collector (2) until the silica gel is saturated, then it is switched to the second adsorber chamber.
The circuit is completed as the condensed water is fed back into the evaporator through a valve.
The functions of two sorption chambers are reversed by alternating the opening of the butterfly valves and the direction of the heating and cooling refrigerants. In this way, the chilling refrigerant is obtained continuously. The cycle then repeats.
Advantages of adsorption chiller systems compared to absorption chiller systems [20, 21] are as follows:
The operating temperatures can be lower, e.g., 55–90°C as compared to 70–120°C for absorption chillers.
There is no low limit to the temperature reservoir.
There is no limitation for the low cooling water temperature, because there is no risk of crystallization problem as in the case of absorption chillers.
No risk of corrosion problem as in the case of absorption chillers, because there are heat sources with temperature close to 500°C that can be used directly.
The adsorption systems have flexibility in regeneration temperature and do not require frequent replacement of adsorbent.
The adsorption systems do not need a rectifier for the refrigerant or solution pump in comparison with absorption systems.
The disadvantages of adsorption chiller systems include [22]:
Adsorption technology is more expensive than absorption technology.
The average COP of adsorption chillers is lower than the absorption chillers.
The adsorption chillers are both heavy weight and larger than the absorption chillers.
Heat recovery is very complex, because the adsorption system is intermittent system.
Advantages of absorption and adsorption chiller systems compared to vapor compression systems:
Absorption and adsorption systems are environmentally friendly. The equipment uses completely harmless working fluids.
The maximum cooling load can be achieved with the maximum available solar radiation and hence potential of the refrigeration system.
Maintenance costs are lower due to fewer moving parts like solenoid valves and vacuum pumps. It is almost noiseless system, where there are not many moving parts, other than the solution pump in the absorption refrigeration systems.
Taking advantage of solar thermal plants in the sorption refrigeration technology even when there is no heat demand.
Operation costs are lower due to low electricity consumption in comparison with vapor compression systems.
The desiccant air-conditioning system utilizes the capability of desiccant materials in removing the air moisture content by sorption process. All materials that attract moisture at different capacities are called desiccant [4]. The desiccant cooling system can be a suitable selection for thermal comfort especially in climates with high humidity. Moreover, this technique allows us to utilize renewable energy or low-temperature gains from solar energy, waste heat, and cogeneration to drive the cooling cycle. The comparison between desiccant system and conventional systems is listed in Table 1. There are many required properties for any desiccant materials selected in open-cycle cooling based on [23]: (i) mechanical and chemical stability; (ii) large moisture capacity per unit weight; (iii) low heat of adsorption/absorption to regenerate; (iv) sorption rate; (v) large adsorption/absorption capacity at low water vapor pressures; (vi) cheap cost; (vii) sorption at low relative humidity; and (viii) finally ideal isotherm shape.
\nParameter | \nConventional system | \nDesiccant system | \n
---|---|---|
Operation cost | \nHigh | \nLow | \n
Performance | \nHigh | \nLow | \n
Energy source | \nMainly electricity | \nLow-grade energy | \n
Environmental safety | \nLess | \nHigh | \n
System care | \nLess | \nHigh | \n
Control over humidity | \nAverage | \nAccurate | \n
Indoor air quality | \nLess | \nMore | \n
System installation | \nSimple | \nMore complicate | \n
Energy storage capacity | \nMainly not applicable | \nApplicable | \n
Installation cost | \nHigh | \nLow | \n
System control | \nAverage | \nComplicate | \n
The comparison between desiccant system and conventional systems.
Two configurations were described in detail below: ventilation and recirculation modes. The schematic of the ventilation mode representation is demonstrated in Figure 6a. On the conditioning side of the system (air processing side), warm and humid air enters the slowly rotating desiccant wheel and is dehumidified by adsorption of water (1–2). Since the air is heated up by the adsorption heat, a heat recovery wheel is passed (2–3), resulting in a significant precooling of the supply air stream. Subsequently, the air is humidified and thus further cooled by a controlled humidifier (3–4) according to the set-values of supply air temperature and humidity. In order to control the sensible heat factor, the remix air is introduced by the mix evaporatively cooled room air with the cooled and dried room make-up air (5–6). On the regeneration side of the system, the exhaust air stream of the rooms is humidified (6–7) close to the saturation point to exploit the full cooling potential in order to allow an effective heat recovery (7–8). After that, the sorption wheel has to be regenerated (8–9) by applying heat in a comparatively low temperature range from 50 to 75°C and to allow a continuous operation of the dehumidification process. Finally, the cold and humid air is exhausted to the atmosphere (9–10) and the cooling cycle is completed.
\nSchematic of desiccant cooling system in (a) ventilation mode and (b) recirculation mode.
The recirculation mode representation is depicted in Figure 6b. It uses the same components as the ventilation mode except the process air side in the recirculation mode is a closed loop, whereas the regeneration air side is an open cycle where the outdoor air is used for regeneration.
\nA solar-driven ejector cooling system consists of an ejector cooling cycle and a collector circuit. The main components of the system are collector array, generator, ejector, condenser, expansion valve, evaporator, and cycle pump. A schematic diagram of the solar ejector cooling system and its component is presented in Figure 7. The working principle of the ejector systems follows the below states [24, 25]:
\nSchematic presentation of the solar ejector cooling configuration.
In the generator, the refrigerant is vaporized as a primary steam by utilizing the solar energy coming from the solar collector. This primary steam leaves the generator at a relatively high pressure and enters the supersonic nozzle of the ejector to accelerate it at supersonic velocity and creating low pressure at the nozzle exit section. This low pressure draws the secondary flow coming from the evaporator into the chamber. The primary and secondary streams are mixed in the mixing chamber. These mixing steams enter into diffuses where increases its pressure to the condensing pressure. The mixing stream discharges from the ejector to the condenser, where the stream is converted into liquid refrigerant by rejection heat to the surrounding. Some part of the liquid refrigerant pumps to the generator and the remaining liquid part leaves the condenser and enters the evaporator through expansion value.
\nIn expansion value, the refrigerant pressure is dropped and this refrigerant enters the evaporator to absorb heat from space that required to cool and the refrigerant is converted into vapor and enters to the ejector.
\nOne of the promising methods that utilize solar heat to produce mechanical work and then use it to drive a conventional vapor compression cycle is solar Rankine cooling systems. Two different configurations of solar Rankine cooling systems were suggested by different scholars [26]. One arrangement is using separate power and cooling system where the compressor of the vapor compression cycle is mechanically coupled with the expander of organic Rankine cycle. Another arrangement is an integrated system by the use of one joint condenser for both cycle coupled with the expander-compressor.
\nThe main advantages of a second configuration are the use of a same working fluid in both loops to remove a leakage and mixing problems. Moreover, the integrated design is simpler but on the other side reduces the system flexibility.
\nFigure 8 depicts a schematic for two widely solar Rankine cooling system arrangements. In the first loop of organic Rankine cycle, high-pressure liquid coming from the pump is vaporized inside the boiler (state 1) that absorbs the heat from solar collector. The vapor (state 2) enters the expander and produces a useful work which is used to drive a compressor of a conventional refrigeration cycle. The working fluid pressure from the expander outlet is same to the condenser pressure (state 3). After that, a rejection heat to the surrounding inside the condenser converts the working fluid to saturated fluid. Subsequently, a pressure of the working fluid is increased by using pump to enter a boiler as subcooled liquid (state 1).
\nRepresentation of a Rankine solar cooling system as (a) separate configuration for power and refrigeration cycles and (b) integrated configuration for power and refrigeration cycle.
The executed investigations on the field of solar thermal-driven cooling systems and the gained results can be concluded as follows:
The investigations on solar thermal-driven systems show that solar thermal refrigeration systems are promised technologies, especially in the small and middle cooling capacity ranges.
The work temperatures have a big impact on the refrigeration capacity of the chiller.
The higher is the required chilled water temperature, the higher are the refrigeration capacity and the coefficient of performance (COP) of the absorption refrigeration machine.
The lower is the cooling water temperature; the higher are the refrigeration capacity and the COP of the absorption refrigeration machine.
There are a big potential for further research at this field to optimize the system operation and to reduce the specific costs (€/kW cooling capacity).
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"403",title:"Microbial Genetics",slug:"karyology-microbial-genetics",parent:{title:"Karyology",slug:"karyology"},numberOfBooks:5,numberOfAuthorsAndEditors:169,numberOfWosCitations:69,numberOfCrossrefCitations:34,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"karyology-microbial-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5085",title:"Telomere",subtitle:"A Complex End of a Chromosome",isOpenForSubmission:!1,hash:"2a8f40859d7bc312dea327fd9b058a20",slug:"telomere-a-complex-end-of-a-chromosome",bookSignature:"Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5085.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4720",title:"Flow Cytometry",subtitle:"Select Topics",isOpenForSubmission:!1,hash:"5a842a00d86bc7f956a5fd1fe6d62b8a",slug:"flow-cytometry-select-topics",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/4720.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3536",title:"Chromatin Remodelling",subtitle:null,isOpenForSubmission:!1,hash:"31abe97fe35989e4547bab854b38e03a",slug:"chromatin-remodelling",bookSignature:"Danuta Radzioch",coverURL:"https://cdn.intechopen.com/books/images_new/3536.jpg",editedByType:"Edited by",editors:[{id:"165250",title:"Dr.",name:"Danuta",middleName:null,surname:"Radzioch",slug:"danuta-radzioch",fullName:"Danuta Radzioch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1578",title:"Flow Cytometry",subtitle:"Recent Perspectives",isOpenForSubmission:!1,hash:"fccad401cbcf998ea4de62d524abf82d",slug:"flow-cytometry-recent-perspectives",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/1578.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2291",title:"Clinical Flow Cytometry",subtitle:"Emerging Applications",isOpenForSubmission:!1,hash:"a5414617aafe62d7c6ec8205028f6967",slug:"clinical-flow-cytometry-emerging-applications",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/2291.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"44225",doi:"10.5772/55370",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3389,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]},{id:"52461",doi:"10.5772/65353",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"37421",doi:"10.5772/38616",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2396,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]}],mostDownloadedChaptersLast30Days:[{id:"49878",title:"Immunophenotyping of Acute Leukemias – From Biology to Clinical Application",slug:"immunophenotyping-of-acute-leukemias-from-biology-to-clinical-application",totalDownloads:2485,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Francesco Mannelli",authors:[{id:"178848",title:"M.D.",name:"Francesco",middleName:null,surname:"Mannelli",slug:"francesco-mannelli",fullName:"Francesco Mannelli"}]},{id:"50878",title:"Detection of Anti-HLA Antibodies by Flow Cytometer",slug:"detection-of-anti-hla-antibodies-by-flow-cytometer",totalDownloads:2351,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Tülay Kılıçaslan Ayna and Aslı Özkızılcık Koçyiğit",authors:[{id:"178265",title:"Dr.",name:"Tulay",middleName:null,surname:"Kilicaslan Ayna",slug:"tulay-kilicaslan-ayna",fullName:"Tulay Kilicaslan Ayna"}]},{id:"37054",title:"Effect of Monocyte Locomotion Inhibitory Factor (MLIF) on the Activation and Production of Intracellular Cytokine and Chemokine Receptors in Human T CD4+ Lymphocytes Measured by Flow Cytometry",slug:"effect-of-monocyte-inhibitory-locomotion-factor-mlif-on-the-activation-and-production-of-intracellul",totalDownloads:1566,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"clinical-flow-cytometry-emerging-applications",title:"Clinical Flow Cytometry",fullTitle:"Clinical Flow Cytometry - Emerging Applications"},signatures:"Sara Rojas-Dotor",authors:[{id:"109461",title:"Dr.",name:"Sara",middleName:null,surname:"Rojas-Dotor",slug:"sara-rojas-dotor",fullName:"Sara Rojas-Dotor"}]},{id:"50807",title:"The Role of Cytometry for Male Fertility Assessment in Toxicology",slug:"the-role-of-cytometry-for-male-fertility-assessment-in-toxicology",totalDownloads:1268,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Maria de Lourdes Pereira, Helena Oliveira, Henrique M.A.C.\nFonseca, Fernando Garcia e Costa and Conceição Santos",authors:[{id:"79715",title:"Prof.",name:"Maria De Lourdes",middleName:null,surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"174419",title:"Prof.",name:"Fernando",middleName:null,surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"},{id:"185982",title:"Prof.",name:"Helena",middleName:null,surname:"Oliveira",slug:"helena-oliveira",fullName:"Helena Oliveira"},{id:"185983",title:"Prof.",name:"Henrique M.A.C.",middleName:null,surname:"Fonseca",slug:"henrique-m.a.c.-fonseca",fullName:"Henrique M.A.C. Fonseca"},{id:"185984",title:"Prof.",name:"Conceição",middleName:null,surname:"Santos",slug:"conceicao-santos",fullName:"Conceição Santos"}]},{id:"37421",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2393,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]},{id:"37445",title:"Retracted: Applications of Quantum Dots in Flow Cytometry",slug:"applications-of-quantum-dots-in-flow-cytometry",totalDownloads:1852,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"Dimitrios Kirmizis, Fani Chatzopoulou, Eleni Gavriilaki and Dimitrios Chatzidimitriou",authors:[{id:"45414",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kirmizis",slug:"dimitrios-kirmizis",fullName:"Dimitrios Kirmizis"},{id:"122229",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Chatzidimitriou",slug:"dimitrios-chatzidimitriou",fullName:"Dimitrios Chatzidimitriou"},{id:"134576",title:"BSc.",name:"Fani",middleName:null,surname:"Chatzopoulou",slug:"fani-chatzopoulou",fullName:"Fani Chatzopoulou"},{id:"134577",title:"Dr.",name:"Helen",middleName:null,surname:"Gavriilaki",slug:"helen-gavriilaki",fullName:"Helen Gavriilaki"}]},{id:"51979",title:"Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases",slug:"telomeres-and-cellular-senescence-in-metabolic-and-endocrine-diseases",totalDownloads:1188,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Ryusaku Matsumoto and Yutaka Takahashi",authors:[{id:"187040",title:"Dr.",name:"Yutaka",middleName:null,surname:"Takahashi",slug:"yutaka-takahashi",fullName:"Yutaka Takahashi"}]},{id:"52461",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"44220",title:"Condensins, Chromatin Remodeling and Gene Transcription",slug:"condensins-chromatin-remodeling-and-gene-transcription",totalDownloads:2090,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Laurence O. W. Wilson and Aude M. Fahrer",authors:[{id:"164464",title:"Mr.",name:"Laurence",middleName:null,surname:"Wilson",slug:"laurence-wilson",fullName:"Laurence Wilson"},{id:"164788",title:"Dr.",name:"Aude",middleName:null,surname:"Fahrer",slug:"aude-fahrer",fullName:"Aude Fahrer"}]},{id:"44225",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3388,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]}],onlineFirstChaptersFilter:{topicSlug:"karyology-microbial-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/164340/luca-macarini",hash:"",query:{},params:{id:"164340",slug:"luca-macarini"},fullPath:"/profiles/164340/luca-macarini",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()