Common brain tumor types with location and frequency [5].
\r\n\tWe are living in a particularly challenging historical moment. People have learned that no matter how much they control their lives, their environment, and their relationships, everything can be changed instantly, at the fancy of a virus that does not respect age, nationality, ancestry, intelligence, or skills. People learned that the limitless power of science and technology was purely illusory, in the face of an absolute and overwhelming force of nature that was almost no longer recognized. After all, the balance of forces between Nature and science and technology was inevitably shaken and the certainties with which people built their lives were jeopardized by an unpredictable and constantly changing reality. Uncertainty is one of the biggest challenges we face today. Never, as today, people management can make such a difference in their future, both personally and professionally.
\r\n\r\n\t
\r\n\tCHROs need to decide where to focus their resources and attention, select their action priorities. This book will aim to provide the reader with a comprehensive overview of the new challenges of people management and provide keys to (re)think about the new/renewed challenges that the new times, the new “normals” place on those who manage people. From the strategic management of HR to people analytics and HR IT architecture and operation, through the new practices of remote work, this book aims to reflect on the future(s) of people management, illuminating trends and reflecting on potential risks or promising achievements.
Tumors of the central nervous system are the most common solid tumors in the pediatric age group and the second most common childhood malignancy. They are the leading cause of morbidity and mortality associated with cancer. Although it affects all ages, the incidence peaks among children between the ages of 3 and 7. In adults and older children, most tumours are supratentorial in location while in young children they are more commonly infratentorial in location [1].
The incidence of childhood CNS tumor varies from 1.12 to 5.14 cases per 100,000 individuals [2]. Based upon data from the Central Brain Tumor Registry of the United States (CBTRUS), the estimated incidence of primary non-malignant and malignant CNS tumors for children and adolescents up to 19 years of age was 7.18 cases per 100,000 person-year in 2016 [3]. More than 100 different histological subtypes of CNS tumours are recognized but their incidence varies with age. Incidence in Africa is around 11 per 10,00,000 and in Japan and Europe it ranges from 20 to 30 per 1,000,000. The male to female ratio is 1.25:1, as slightly higher frequency of medulloblastoma and CNS germinoma is seen in boys [4]. The most common histological subtypes along with location are mentioned below (Table 1).
Location | Tumor type | Relative frequency (%) in 0–17 years old |
---|---|---|
Supratentorial | Pilocytic astrocytoma | 23.5 |
Fibrillary astrocytoma | 5 | |
Ganglioganglioma | 2.5 | |
Dysembryoplastic neuroepithelial tumor | 0.6 | |
Desmoplastic infantile ganglioglioma | 0.6 | |
Choroid plexus papilloma | 0.9 | |
Ependymoma | 3.8 | |
Anaplastic ependymoma | 3.8 | |
Anaplastic astrocytoma | 7.2 | |
Glioblastoma | 7.2 | |
Supratentorial PNET | 1.9 | |
Choroid plexus carcinoma | 0.6 | |
Posterior fossa | Medulloblastoma | 16.3 |
ATRT | 1.3 | |
Pilocytic astrocytoma | 23.5 | |
Ependymoma | 3.8 | |
Brainstem glioma | 10–20 | |
Pineal tumours | Germ cell tumour | 2.5 |
Pineal parenchymal tumour | 1.9 | |
Suprasellar | Craniopharyngioma | 5.6 |
Optic hypothalamic glioma | 3–6 |
Common brain tumor types with location and frequency [5].
Development of brain tumours occurs as a consequence of cellular genetic alterations that allow them to evade normal regulatory mechanisms and destruction by the immune system. These changes may be caused by an inherited or acquired (chemical, physical or biological neuro-carcinogens) cause. Overall, only a very small percentage of brain tumors can be ascribed to the effect of inherited inclination (Table 2). The different environmental factors involved and alleged typically involve ionizing radiation, non-ionizing radiation, N-nitroso compounds, viral infections (JC virus, cytomegalovirus, HIV, SV-40, varicella-zoster, chicken pox) and head injury [6].
Syndrome | Gene locus | Gene | Type of CNS tumour |
---|---|---|---|
NF type 1 | 17q11 | NF1 | Neurofibroma, meningioma, optic nerve glioma |
NF2 | 22q12 | NF2 | Meningioma, schwannoma |
TS | 9q34, 16p13 | TSc1/TSC2 | SEGA |
VHL | 3p35 | VHL | Haemangioblastoma |
Li-Fraumani | 17q13 | p53 | Glioma |
Gorlin’s syndrome | 9q31 | PNET |
CNS tumour along with gene involved.
subependymal giant cell astrocytoma
pilocytic astrocytoma
Pilomyxoid astrocytoma
diffuse astrocytoma
pleomorphic xanthoastrocytoma
anaplastic astrocytoma
glioblastoma
giant cell glioblastoma
gliosarcoma
oligodendroglioma
anaplastic oligodendroglioma
oligoastrocytoma
anaplastic oligoastrocytoma
subependymoma
myxopapillary ependymoma
ependymoma
anaplastic epedymoma
choroid plexus papilloma
atypical choroid plexus papilloma
choroid plexus carcinoma
astroblastoma
angiocentric glioma
chordoid glioma of the third ventricle
gangliocytoma
ganglioglioma
Anplastic ganglioglioma
desmoplastic infantile astrocytoma and ganglioglioma
dysembryplastic neuroepithelial tumor
central neurocytoma
extraventricular neurocytoma
cerebellar liponeurocytoma
paraganglioma of the spinal cord
papillary glioneuronal tumor
Rosette-forming glioneuronal tumor of the fourth ventricle
pineocytoma
pineal parenchymal tumor of intermediate differentiation
pineoblastoma
papillary tumor of the pineal region
medulloblastoma
CNS primitive neuroectodermal tumors
atypical teratoid/rhabdoid tumor
Schwannoma
neurofibroma
perineuroma
malignant peripheral nerve sheath tumors
tumors of meningothelial cells
mesenchymal tumors
primary melanocytic lesions
other neoplasms related to the meninges
hemangioblastoma
malignant lymphoma
plasmacytoma
granulocytic sarcoma
germinoma
embryonal carcinoma
yolk-sac tumors
choriocarcinoma
teratoma
mixed germ cell tumor
craniopharyngioma
granular cell tumor of the neurohypophysis
pituicytoma
spindle cell oncocytoma of the adenohypophysis
Modified from the WHO Classification of Tumors of the CNS, 2007 [7].
The most common presenting symptoms of pediatric brain tumours are due to increased intracranial pressure. Headache and vomiting are two well-known symptoms associated with elevated intracranial pressure. Other signs, which reflect the increase in intracranial pressure, include drowsiness, confusion, nausea, sixth nerve palsy, papilledema, generalized seizures, and cognitive impairment. Focal signs and symptoms reflect the effect of the tumor on specific structures [8].
The features that play an important role in establishing the diagnosis are the age of the patient, location of the tumor and the imaging characteristics. Supratentorial tumors are more common in neonates and infants up to 2 years old, whereas infratentorial tumors are more common in children older than 2 years. Although some tumors may be found both supra- and infratentorially. Tumors that are considered mostly supratentorial and intraaxial include astrocytomas, such as diffuse astrocytoma, anaplastic astrocytoma, pleomorphic xanthoastrocytoma (PXA), subependymal giant cell astrocytoma (SEGA), and glioblastoma multi-forme (GBM); oligodendrocytoma; primitive neuroectodermal tumor (PNET); dysembryo-plastic neuroepithelial tumor (DNET); ganglioglioma; and desmoplastic infantile ganglioglioma. Some supratentorial extraaxial masses include arachnoid cysts, pineal region masses, and choroid plexus tumors.
Imaging is an important aspect in the management of patients with brain tumors. Imaging workup is largely based upon CT and MRI of the lesion. The technical development of CT and MRI methods has greatly enhanced brain tumor detection and sophisticated neuroimaging offers extra data by determining the metabolism and physiology of these lesions, which helps to diagnose and monitor brain neoplasms [9].
CT scan plays an important role in establishing diagnosis of brain tumours. It can detect both blood and calcification. But some tumors, particularly tumors of the brainstem, cerebellum, and suprasellar region as well as infiltrative tumors of the white matter, can be missed on CT neuroimaging [10].
It is the standard of care in children for imaging of suspected brain tumours.
The most useful imaging studies are T1-weighted sagittal images, gadolinium (Gd)-enhanced and unenhanced T1 axial images, T2-weighted axial images, and fluid-attenuated inversion recovery (FLAIR) sequences.
T1 images usually are better at demonstrating anatomy and areas of contrast enhancement. T2 and FLAIR images are more sensitive for detecting edema and infiltrative tumor.
It plays an important role In differentiating low-grade tumors from high-grade tumors. It evaluates several hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT); however, CBV has been shown to be the most useful parameter for the evaluation of intracranial masses [11].
It detects functional areas of the brain by identifying areas of brain activation which have increased blood flow and changes in cerebral metabolism. It is used to determine the extent of resection as it can prevent any functional compromise. It is essential for planning function-preserving surgery in patients with brain tumours [12].
It is useful in the evaluation of brain tumors in pediatric patients by helping determine the diagnosis, grade, and extent of the tumor. MRS can also differentiate radiation necrosis from tumor recurrence because normal metabolite levels after treatment favor edema and postsurgical changes [13].
PET has clearly defined roles in primary brain tumor imaging. The FDG uptake of high-grade gliomas is more as compared with low-grade or well-differentiated neoplasms, and FDG-PET can be useful in making a distinction between low- and high-grade gliomas [14].
A few limitations of FDG-PET as a cerebral imaging agent are that normal brain tissue has high physiologic glucose metabolic rate producing a high FDG uptake which may mask smaller lesions. Another issue is in the detection of tumors with only modest increases in glucose metabolism, such as low-grade tumors which may be difficult to interpret [15]. 18F-fluoroethyl-L-thyrosin (18F-FET) is a promising radiotracer in determining the grade of brain tumors.
Chemistry and cytology of the cerebral fluid are used to determine the spread of the tumor. Findings may be important in subsequent treatment approaches.
Histopathologic diagnosis of brain tumours is necessary for decision making regarding appropriate management. Stereotactic biopsy has emerged as a comparatively safe method of histological diagnosis and has significantly reduced the risks associated with brain biopsy [16]. Tissue sampling can be obtained either with stereotactic, open, or endoscopic procedures and, overall, provides.
Greater than 90% diagnostic yield, while it may be significantly lower (60–70%) in small (<1 cm3) and/or heterogeneous lesions [17].
It is performed as an open technique by intraoperative neuronavigation. Typically, it is asserted for surface brain lesion, where hemostasis is critically vital or a surgical resection depending on frozen section histopathology is arranged. Although morbidity and mortality of open biopsy is more as compared to stereotactic biopsy but neoplastic tissue yield is better and it influences the likelihood of an accurate diagnosis.
It can be frame based and frameless. The frame-based method is focused on the fixation of the stereotactic frame on the patient’s head, whereupon the localizer is attached to the frame with many N-shaped posts. Under stereotactic circumstances, neuroimaging (CT, MRI, positron emission tomography [PET], etc.) is carried out and radiological information is transmitted to the specialized computer platform. The localizer posts are used as space coordinate references. For optimizing the target location and defining the ideal trajectory for biopsy, multiple pictures are combined.
The frameless biopsies are generally technically easier and require less preparatory efforts in comparison to frame-based ones [18].
It is recommended for intra- and periventricular tumors and can be done with or without frameless stereotactic guidance. The advantages of this technique are
direct visualization of the lesion
vascular structures can be seen during tissue sampling
more pathological specimens can be taken.
cerebrospinal fluid (CSF) samples can be taken for tumor marker analysis
In case obstructive hydrocephalus, third ventriculostomy can be simultaneously done [10].
Exception may be produced in chosen patients such as patients with known active systemic cancer and numerous lesions radiographically associated with brain metastases, patients with classic clinical and MRI results of brain stem glioma or optic nerve meningioma, HIV-positive patients with CT or MRI results consistent with primary CNS lymphoma and positive Epstein-Barr virus polymerase chain reaction in the CSF, or patients with secretory germ-cell tumors [19].
Abscess-fever, acutely ill, ±systemic infection, ct findings show cyst cavity with smooth thin walls and restricted diffusion within cavity.
Cerebritis-fever, acutely ill, ±systemic infection, mri findings show diffuse T2 change, no mass meningitis-diffuse enhancement of meninges on T1-weighted imaging.
Infarct—MRI findings show Gray and white matter involvement, wedge like vascular distribution associated with restricted diffusion and low signal.
Subdural hematoma: anemia, retinal hemorrhage.
Bleeding—homogenous, clears quickly, residual hemosiderin ring.
Treatment-related necrosis—central hypodensity, edema, >6 months after radiation therapy or chemotherapy, metabolic scan shows low activity.
Primary-solitary, no prior cancer.
Metastatic-multiple, prior cancer, ++edema, located at gray/white junction hydrocephalus: headache, vomiting, subarachnoid hemorrhage, Guillain-Barré syndrome tuberculoma: exposure to tuberculosis.
Pseudotumor cerebri: after otitis media, hormonal abnormalities.
A focused history and symptom-based neurological examination is required which may be sufficient to raise brain tumor suspicion. Mental status assessment, cranial nerves, motor skills, sensory examination, coordination, and gait are key components of the neurological examination.
Preoperative laboratory testing which includes a complete blood cell count, renal and hepaic profile. A baseline ophthalmologic evaluation, including visual field testing and fundoscopic evaluation, is important in preoperative evaluations because most patients do not complain of visual field deficits at presentation. Glucocorticoids are used to control neurologic signs and symptoms caused by cerebral edema.
Although there is little evidence to support the use of corticosteroids with regard to overall outcome, corticosteroids can relieve headache, nausea, and vomiting and remain a generally accepted treatment.
In assessing a child suspected of having a brain tumor, a thorough neurological examination is of critical importance. Most kids diagnosed with a brain tumor have abnormal results on the presentation of neurological examination [20].
Surgery remains the main treatment modality for most pediatric brain tumors. Depending on tumor type, the goals of surgical intervention are:
Tissue diagnosis
Re-establishment of normal CSF pathways
Diversion of CSF (shunting)
Tumor debulking
Complete tumor resection [5]
In the literature, overall surgical morbidity rates vary from 10 to 54%. The rates highly depend on the location of the tumour, grade and propensity to disseminate [21].
Radiotherapy plays an important role in the management of pediatric brain tumours. It can be used either as adjuvant treatment in case of resectable tumours or as a definitive management option in case of unresectable tumours [22].
The most common long term side effect of radiotherapy in pediatric age group is neurocognitive dysfunction and upto 20–60% patients suffer from neurocognitive deficit as a long term sequelae of radiotherapy [23]. Sophisticated radiotherapy techniques are warranted for to avoid future negative impacts of radiation on pediatric brain development.
Use of better immobilization and more suitable imaging techniques like high-resolution brain imaging with computed tomography (CT) and magnetic resonance imaging (MRI) to accurately define the tumour limits and precisely assess the normal brain structures has greatly improved the degree of efficacy achieved by radiotherapy without increasing the side effects [24].
Technological advancements like use of conformal radiotherapy allows high radiation dose distributions within targeted tissues while simultaneously attempting to reduce dose to surrounding normal tissues. Conformal radiotherapy can be accomplished through a variety of techniques, including intensity-modulated radiotherapy (IMRT), stereotactic radiotherapy and proton beam therapy.
IMRT has shown promise in the treatment of a number of disease sites and is now being investigated in the use of pediatric tumors to reduce long-term toxicity. Stereotactic technique has the ability to reduce the treatment volume as it delivers highly conformal radiation to brain tumours and minimum dose to surrounding brain tissue. It can be delivered as stereotactic radiosurgery in which the entire dose is delivered as a single fraction or as fractionated stereotactic radiotherapy (FSRT) in which the treatment is delivered over weeks with multiple daily fractions. Only small margins of several millimeters are used for brain tumors, greatly reducing the volume of normal brain parenchyma receiving high doses of radiation.
High-dose chemotherapy with or without support by autologous stem cell transplantation, especially in children below the age of 3 years [25].
Palliative chemotherapy:
May induce transient remission
Increases the quality of life
The benefits of chemotherapy or other treatments must be balanced by consideration of the toxicities
Astrocytomas are the most common pediatric brain tumors, accounting for 7–8% of all childhood cancers [26]. Approximately 40% of all pediatric brain tumours are low grade astrocytoma, whereas most common primary CNS malignancy in adults being high grade astrocytoma [7]. Pediatric brain tumors are typically infratentorial, localized predominantly in the posterior fossa and brainstem [27].
Pediatric astrocytic tumours are further sub-classified by WHO grades (Table 3).
Astrocytic tumour | Grade |
---|---|
Subependymal giant cell astrocytoma Pilocytic astrocytoma | I |
Pilomyxoid astrocytoma Diffuse astrocytoma Pleomorphic xanthoastrocytoma | II |
Anaplastic astocytoma | III |
Glioblastoma giant glioblastoma gliosarcoma | IV |
WHO grades of pediatric astrocytic tumours [28].
Most common genomic modification in cases of pilocytic astrocytoma involves activation of
Alternative
Presence of the
Other pediatric low-grade gliomas (e.g., pilomyxoid astrocytoma) are also associated with
In 53% pediatric grade II diffuse astrocytomas, the most common alterations reported are rearrangements in the MYB family of transcription factors [33].
Children having mutation in one of two tuberous sclerosis genes (
The following pediatric high-grade glioma subgroups were identified on the basis of their DNA methylation patterns, and they show distinctive molecular and clinical characteristics:
Histone K27-mutation:
H3.3K27M cases are usually present between ages 5 and 10 years, accounting for approximately 60% of cases in the midline and pons. The prognosis for H3.3K27M patients is extremely poor, with a median survival of <1 year [35].
H3.1K27M cases present at a younger age than H3.3K27M cases and are approximately 5 times less frequent. These cases have a slightly more favorable prognosis than do H3.3K27M cases (median survival, 15 vs. 11 months).
About 5% pediatric high-grade gliomas have
Low-grade astrocytomas (grade I [pilocytic] and grade II) spread by direct extension; dissemination to other CNS sites is uncommon. Complete excision is the treatment of choice and the outcome is favorable especially if the tumor is circumscribed [38].
Markers of poor prognosis for childhood low-grade astrocytomas are:
Young age.
Diffuse histology, especially IDH-mutant.
Inability to obtain a complete resection.
Diencephalic syndrome.
Intracranial hypertension at initial presentation [39].
Metastases.
Gross total resection is recommended for anaplastic astrocytomas. Local invasion of adjacent brain tissue is relatively common. Prognosis is poor for younger patients.
Depending on the degree of resectability, other treatment options are:
Radiotherapy usually causes short-term and partial remission.
Multiagent chemotherapy improve survivability with variable long-term remission
Effective drugs alone or in combination: cisplatin, carboplatin, cyclophosphamide, ifosfamide, etoposide, topotecan, procarbazine, temozolomide, lomustine (CCNU), carmustine (BCNU) [40].
Optic pathway-hypothalamic gliomas are rare astrocytic tumors that are more among young children. They comprise approximately 2% of all central nervous system tumors and account for 3–5% of pediatric intracranial tumors.
OPG was classified by Dodge et al. into the following three stages: (A) limited to the optic nerve; (B) involving optic chiasma (with or without extension to the optic nerve) and (C) involvement of hypothalamus and other structures [41].
The tumours do not produce symptoms at an early stage. The symptoms can be due to impingement on optic nerve or chiasma which leads to visual disturbances, involvement of hypothalamus causing endocrinopathies and hypothalamic dysfunction such as the diencephalic syndrome. It can also cause csf outflow block leading to hydrocephalus [42].
Surgery has a limited role in the treatment of these tumours as they lie close to critical structures. It is usually limited to establishing a histopathological diagnosis or debulking in case of large tumours. Although Gross total resection of low-grade glioma is strongly associated with improvement of both OS and PFS but Aggressive resection, often leads to blindness, hypothalamic damage and cognitive dysfunctions [43].
Carboplatin and Vincristine is the most frequently recommended first-line chemotherapy, and it is considered to be the standard treatment of OPG [44].
Radiotherapy is considered as a treatment option for OPG but at a cost of long term complications of neurocognitive dysfunction and visual disturbances [45]. Radiation may therefore be useful for an adjuvant treatment in the case of chemotherapy refractory tumors. Prognosis depends upon the age of the patient and location of the tumour. Young age and tumour located in optic pathway and hypothalamus are considered as poor prognostic factors.
Pediatric brainstem gliomas occur as two major types:
Focal brainstem gliomas, usually WHO grade I–II tumors.
Diffuse intrinsic pontine gliomas, range from WHO grade III–IV [46]. They usually arise in the medulla, pons, or midbrain.
FBSG is usually insidious in nature and the symptoms are related to site of tumour location. Most common symptoms include neck stiffness, cranial nerve deficit and contralateral hemiparesis.
Hydrocephalus is uncommon except in posterior exophytic tumours [48].
On MRI, FBSG can be seen with defined borders, lack of surrounding edema, iso- or hypointensity on T1, hyperintensity on T2, and homogeneous contrast enhancement [49].
Surgical resection has emerged as treatment of choice due to development of modern imaging and neurosurgical techniques. FBSG confined to cervicomedullary region and/ or exophytic are amenable to complete resection [50] even with incomplete resection, the long-term prognosis for this patient population is excellent.
Chemotherapy can be used as adjuvant after complete or incomplete tumour resection or in cases of tumour progression. Most commonly used chemotherapy regimen is vincristine and carboplatin, which achieves at least stable disease in 68–75% of patients, and a positive response in about 40% [51]. Other regimens comprise of 6-thioguanine, procarbazine, lomustine, and vincristine (TPCV), vinblastine [52], bevacizumab with or without irinotecan [53], everolimus [54], and a metronomic, oral, anti-angiogenic regimen consisting of celecoxib, thalidomide, fenofibrate, cyclosphosphamide, and etoposide [55].
Radiation therapy (RT), while often effective in inducing prolonged remission in FBSG, has severe associated toxicities, especially for young children.
The patients have DIPG have a more lethal and shorter duration course than FBSG as it is more aggressive disease. Patients usually present within 3 months of tumour development. The most common symptoms are cranial nerve palsies, most often of cranial nerves VI and VII but sometimes including III, IV, IX, and/or X, as well as long tract signs like hemiparesis.
On CT scan, DIPG appears isodense or hypodense, without calcifications. On MRI, DIPG is most often hypointense on T1 and hyperintense on T2. Contrast enhancement is variable in both modalities but is usually not diffusely uniform, as it often is in FBSG. Diffusion is most often increased [57].
Apart from medical management starting with dexamethsone, aimed to relieve neurological symptoms, not many treatment options are available. RT is the only therapy proven to prolong survival of patients, that too it is palliative in nearly every case.
Currently, RT is given at a dose of 54–59 Gy at 1.8 Gy daily fractions for 30–33 days locally, to the area of the tumor plus a 1–2 cm surrounding margin.
Chemotherapy has not shown any benefit in concurrent, adjuvant or palliative form.
The prognosis for DIPG patients remains devastatingly poor. Recent studies have shown median progression free survival of 7 months and an overall survival of 9–11 months. In one large series, 77% of patients responded to treatment, and it was for a transient period as the therapy is rarely curative [58]. Poor prognostic marker at diagnosis or post treatment is the presence of leptomeningeal disease and no studies confirm these patients will benefit from craniospinal irradiation [59].
Medulloblastoma is the second most common central nervous system tumour of childhood, most commonly occurring between 4 and 7 years of age. It usually arises from the roof of the fourth ventricle or from the midline structures of the brain [60].
Etiology: for most patients the etiology is unknown but is associated with certain genetic disorders (i.e., Gorlin syndrome, Turcot syndrome, Li-Fraumeni syndrome, Rubinstein-Taybi syndrome, and ataxia telangiectasia) [61].
It has the propensity to disseminate along the cerebrospinal fluid (CSF) pathway, and metastatic disease at diagnosis is found in approximately 30% of patients. Spread outside the central nervous system (CNS) is very rare at diagnosis.
WHO classification 2007 categorises medulloblastoma as grade IV neoplasms under the group of embryonal neuroepithelial tumours. There are several histopathological subtypes of medulloblastoma. In addition to classic variant, other subtypes include desmoplastic/nodular medulloblastoma, medulloblastoma with extensive nodularity (MBEN), anaplastic medulloblastoma, and large cell medulloblastoma [25].
Molecular subgrouping of medulloblastoma divides it into four distinct subgroups which are identified on the basis of transcriptional profiling studies as wingless (Wnt), sonic hedgehog (Shh), Group 3, and Group 4 (Table 4). Each subgroup is defined by a unique set of demographic and clinical features, genetics, and gene expression [63].
WNT | SHH | GROUP 3 | GROUP 4 | |
---|---|---|---|---|
Percentage | 10% | 30% | 25% | 35% |
Age | Children and adults | Mainly infants and adults | Mainly infants and children | Mainly children and adults |
Somatic nucleotide variant | ||||
Somatic copy number alterations | ||||
Cytogenetics | Monosomy 6 | Gain of 3q, 9p, loss of 9q, 10q, 14q, 17p | i17q, loss of 8, 10q, 11, 16p, 17p, gain of 1q, 7, 17q, 18q | i17q, loss of 8p, 11p, X, gain of 7q, 18q |
Prognosis | Very good | Intermediate | Poor | Intermediate |
Incidence of metastasis | 5–10% | 10–15% | 40–45% | 35–40% |
Pattern of relapse | Local and distal | Local | Distal | Distal |
Molecular subgroups of medulloblastoma [62].
It shows characterstics of each molecular subgroups of medulloblastoma.
Signs and symptoms: usually due to increased intracranial tension, hydrocephalus and cerebellar dysfunction, and comprise vomiting, macrocephalus, loss of developmental achievements in infants, and headache, vomiting, ataxia, and cranial nerve palsy in older patients.
Management: biopsy has no role in the diagnosis if it is radiographically supported. Medulloblastomas have distinct imaging characteristics on both computed tomography (CT) and magnetic resonance imaging (MRI). Since 75% of medulloblastomas arise from the cerebellar vermis, they tend to protrude into the fourth ventricle in pediatric age group. On CT scan, in case of young patients, effacement of the fourth ventricle is seen along with its dilatation which is secondary to obstructive hydrocephalus. In case of older patients, they are most commonly seen as a hyperdense mass arising from the vermis with cyst formation or necrosis.
On MRI, medulloblastomas are hypointense to grey matter on T1-weighted imaging with heterogeneous gadolinium enhancement on T2-weighted imaging they appear iso- to hyperintense to grey matter and can seem heterogeneous due to cyst formation, calcification and necrosis. MR spectroscopy shows elevated choline peaks and decreased creatine and N-acetyl acetate peaks, with occasional elevation in lactic acid and lipid peaks [64].
Maximal safe resection is recommended in all medulloblastoma patients. Apart from surgical resection, the current standards of radiation therapy and medical management vary by extent of disease and age of the patient. Radiation therapy can be used to decrease the risk of recurrence but neurocognitive effects of radiation therapy have to be considered by weighing the risk benefit ratio.
Patients who are 3 years of age or older are stratified as either “average-risk” or “high-risk” depending upon postoperative residual tumor volume and the presence or absence of disseminated disease (Table 5).
Average risk | High risk | |
---|---|---|
Residual postoperative tumour volume | <1.5 cm2 | ≥1.5 |
CSF cytology/evidence of disease dissemination on MRI in brain and spine | Absent | Present |
Risk stratification of medulloblastoma.
Patients who are younger than 3 years of age, are treated without upfront radiation therapy due to the unacceptably high risk of severe neurocognitive impairment [65].
In the postoperative setting, average-risk patients >3 years old were previously treated with 36 Gy craniospinal irradiation (CSI) but now a boost to the posterior fossa is given for a total dose of 54 Gy due to the high rate of relapse within the posterior fossa. CSI dose of 23.4–24 Gy can be given with the addition of chemotherapy as supported by Studies conducted by the International Society of Pediatric Oncology (SIOP) and the Children’s Oncology Group [66].
Current recommendations for post-radiation chemotherapy in average-risk patients include approximately 1 year of therapy consisting of 8 cycles at 6-week intervals of cisplatin, lomustine (CCNU), and vincristine. The St. Jude Medulloblastoma-96 trial has demonstrated a similar event-free survival of 83% when an alkylator-based, dose-intensive chemotherapy regimen consisting of four 4-week cycles of cyclophosphamide, cisplatin, and vincristine with autologous stem cell rescue was employed following each cycle [67].
For high risk medulloblastoma cases in children 3 years or older, the treatment is surgical resection followed by post-operative “standard dose” RT (36 Gy CSI with a boost to both the posterior fossa and focal sites of metastatic disease to 55.8 Gy) as well as adjuvant chemotherapy.
The most common adverse effect of craniospinal irradiation in children <3 years age is neurocognitive deficit. Therefore radiotherapy is either delayed or omitted in this subset of patients. There is evidence that regimens consisting of surgery and chemotherapy without RT can be successful in specific subsets of medulloblastoma patients. Outcomes in patients with relapsed disease are generally poor, with reported 5-year survival rates of approximately 25% [68]. Unfavorable prognostic factors include large tumor, csf dissemination, age <4 years, subtotal tumour resection (<90%), chromosome deletion 17p, c-
Atypical teratoid rhabdoid tumours (ATRTs) are the most common malignant central nervous system tumours in children ≤1 year of age and represent approximately 1–2% of all pediatric brain tumours [69]. ATRT is a primarily monogenic disease characterized by the bi-allelic loss of the
In patients <3 years of age, the most common treatment is high dose chemotherapy with autologous stem cell rescue, so that CSI can be avoided in young patients as poor outcomes are seen due radiotherapy induced neurocognitive impairment [72].
Despite using chemotherapy and radiotherapy as treatment options, ATRT has poor survival outcomes due to early dissemination and progression of the tumours [73].
Incidence of pineal tumours in children ranges from 2.7 to 11% [74]. Germ cell tumors (GCTs) account for nearly 50–75% of all pineal tumors [75], Pineal parenchymal tumors account for nearly 15–27% of pineal tumors and include pineocytoma, parenchymal tumor of intermediate differentiation, pineoblastoma and papillary tumor of the pineal region. Other described pineal tumors include glioma, ependymoma and atypical teratoid or rhabdoid tumors [76].
Preferred treatment strategy of different pineal region tumours [77] (Table 6).
Pineoblastoma <3 years | Radiotherapy is avoided Induction chemotherapy followed by consolidation myeloablative chemotherapy with stem cell rescue |
Pineoblastoma 3–6 years | Induction chemotherapy followed by consolidation myeloablative chemotherapy with stem cell rescue |
Pineoblastoma >6 years | Full-dose craniospinal irradiation (36 Gy) plus boost (total of 54 Gy) to the primary site along with concomitant daily carboplatin and weekly vincristine followed by 6 cycles of maintenance chemotherapy |
Germinoma | Four cycles of chemotherapy with carboplatin and etoposide followed by whole ventricular irradiation to 23.4 Gy plus a boost to the primary site to a total dose of 30 Gy |
Non-germinomatous germ cell tumour | Six cycles of chemotherapy with carboplatin, ifosfamide and etoposide followed by 30 Gy whole ventricular irradiation plus a boost to the primary site to a total dose of 50 Gy in patients with a radiographic and serologic complete response |
Treatment strategies of different pineal tumours.
Ependymoma accounts for 6–12% of all brain tumors in childhood. It represents the third most common brain tumor in this age group, following astrocytomas and medulloblastomas [78]. Ependymoma are classified according to the WHO pathological grading system (Table 7).
Tumour type | Grade |
---|---|
Subependymoma (benign) myxopapillary ependymoma | I |
Ependymoma | II |
Anaplastic ependymoma | III |
WHO pathological grades of ependymoma.
They are usually located in or adjacent to ventricles within the parenchyma. In pediatric age group majority of intracranial ependymoma are located at infratentorial region in posterior fossa, usually arising at the floor of fourth ventricle.
Prognostic factors include tumor location, size, surrounding anatomical structures, tumor appearance, genotype, comorbidities, clinical symptoms, and patient age [79].
The current treatment of choice for pediatric patients with cranial ependymoma is resection, if possible, followed by radiation therapy alone [80].
They are low histological grade (WHO I) tumours which arise from epithelial remnants of rathke’s pouch. They are usually located in sellar or parasellar location with an overall incidence of 0.5–2.0 new cases per million of the population per year, and constitute 1.2–4.0% of all childhood intracranial tumors.
Symptoms depend upon the location of the tumour:
Craniopharyngimas can present with nonspecific symptoms like headache and nausea due to increased intracranial pressure.
Intrasellar lesions can compress the pituitary gland and hypothalamus involving the hypothalamic-pituitary axes in 52–87% cases, leading to endocrine defects, particularly deficits in the secretion of growth hormone (75% of cases), gonadotropins (40%), adrenocorticotropic hormone (25%) and TSH (25%) [81].
Prechiasmal lesions may compress the optic pathway, leading to visual field cuts, decreased central visual acuity or vision impairment (62–84% of cases in children).
Retrochiasmal lesions may grow into the third ventricle and cause hydrocephalus or compress the optic tracts.
Craniopharyngiomas can cause direct impingement of brain parenchyma and produce neurological deficit.
In case of localized tumours the preferred choice of treatment is complete resection with preservation of visual, pituitary and hypothalamic function [82]. In case of incomplete resection, there are chances of residual tumour progression in 71–90% of patients, whereas the rate of progression after incomplete resection followed by radiotherapy is 21%. Therefore radiotherapy is recommended after surgical resection [83].
Since brain tumours are a leading cause of morbidity and mortality among children, the focus lies on how effectively they can be treated. Surgery plays a major role and can be curative in a number of tumours including pilocytic astrocytoma. Radiotherapy is curative in cases of PNET and ependymoma.
The survival and long-term outcome of patients with brain tumors will continue to enhance with future advances in nonsurgical methods, molecular and translational oncology research. For longer survival and reduced morbidity, new molecular diagnostics and new therapies such as immunotherapy, gene therapy and stem cell therapy may be promising.
Terahertz (THz) radiation is a small portion of the electromagnetic spectrum lying between the microwave and infrared regions. There is no precise range defining THz band, but it is most often –considered as frequencies in the range of 0.3–3.0 THz. Although sometimes it refers to 0.1–10 THz as well. The THz spectral range has drawn tremendous attention recently due to its promising applications in various domains. For example, in the field of biomedicine, THz radiation has been explored to detect various biomaterials like nucleic acids, proteins, cells and tissue applications [1, 2]. In the field of medical applications, the THz system has been demonstrated as a highly effective technique in cancer imaging, particularly for skin cancer [3, 4]. A portable real-time THz imaging system could be used to assist early detection of diseases during routine health checkups. Since many non-metallic, non-polar materials are transparent to THz radiation, scanning of humans is feasible with no health hazards. Due to this, THz radiation is widely used for security and public safety applications. THz radiation can detect concealed weapons, explosives (e.g., C-4, HMX, RDX and TNT), illicit drugs (e.g., methamphetamine and heroin), and more [1]. THz imaging has become a valuable characterization tool for non-destructive testing, process control and quality inspection for inspection of silicon solar cells, nanocomposites, polymer films and dielectric films [1, 5, 6]. Space- and ground-based THz instruments have been explored significantly in the field of astronomy. For example, the THz system is extensively used to study the origin of the universe, formation of stars and galaxies, composition of planets and planetary atmospheres, the climate and environmental balance of our planet Earth, and more [7, 8].
Despite these tremendous potential applications, the so-called THz Gap is not fulfilled to the required level due to technology requirements of high-power sources and efficient and sensitive detectors in the THz range. Semiconductor devices and circuits like transistor and frequency multipliers work well towards the low end of THz frequency, but their power level drops off precipitously as the frequency increases. These devices can be operated up to ∼1 THz with very low power. Conversely, semiconductor photonic devices like lasers can be utilized in the high-frequency THz range. Again, lasers are limited due to the non-availability of lower bandgap semiconductor materials towards low-frequency THz. The THz quantum cascade lasers (QCLs) showed promising results to fill this THz gap from 1 to 10 THz. However, QCLs required bulky cooling requirements, and reported maximum operating temperature is in the range of 150–200 K, which is too low for general applications [9, 10]. The demand for a compact, efficient and high-speed THz detector and source operating at room temperature has increased drastically. The non-availability of a room-temperature THz source and detector is a prime limitation of the modern THz system.
In this chapter, novel theoretical models and experimental techniques for the intersubband transitions (ISBT) phenomenon are illustrated for ambient THz applications. Section 2 covers the theoretical models and simulations based upon plasmonic metamaterials-assisted ISBT and describes the GaN HEMT response towards the THz spectrum. Section 3 covers the fabrication and measurement of a GaN HEMT device. Section 4 is investigates ambient temperature ISBT in a GaN HEMT device.
In this section, we present our theoretical model based on ISBT, metamaterial and plasmonic phenomena for GaN HEMT THz applications [11, 12, 13]. We proposed a combined plasmonic and metamaterial-driven ISBT phenomenon as one of the possible modes that can extend GaN HEMT operating frequency well beyond its present cut-off frequency to the THz band. ISBT is the prime mechanism to explore as a potential mechanism for THz operation, while metamaterial and plasmonic effects improve the strength of ISBT in a GaN HEMT structure. Theoretical modeling started with the role of polarization in a wurtzite semiconductor followed by the self-consistent solution of Schrodinger and Poisson equations; k.p model and Fermi Golden rule are used to compute ISBT in the GaN HEMT structure. The size and geometry of an HEMT device act as THz metamaterial (this concept is explored in-depth in Section 2.4) and it couples THz radiation to two-dimensional electron gas (2DEG) inside a triangular quantum well. Further, very small gate lengths in the range of 100–250 nm are selected for high-frequency operation of HEMT. This fine nanometric-sized gate structure of HEMT excites surface plasmon waves at the interface between the gate metallic contact and 2DEG channel in the GaN heterostructure (this concept is explored in-depth in Section 2.5). These combinations (i.e., plasmonic metamaterial-assisted ISBT) govern the THz response of the GaN HEMT device.
GaN heterostructure is generally grown on sapphire or silicon carbide (SiC) substrate. Figure 1(a) shows the most widely used GaN heterostructure, which consists of a 60-nm AlN nucleation layer, 2-μm thick undoped GaN layer, 1-nm AlN spacer layer, 20 nm-undoped Al0.3Ga0.7N barrier layer, and 3-nm Si3N4 passivation layer. Introducing a thin 1-nm AlN interlayer between AlGaN and GaN plays a crucial role. Better carrier confinement, reduced alloy scattering and enhanced conductivity are achieved by inserting a thin AlN layer [14, 15]. The cross-sectional view of the simulated GaN HEMT device by Silvaco TCAD is shown in Figure 1(b). Computation mesh to simulate the device structure is shown in Figure 1(c). In the regions beneath the gate, at the edges of the source and drain contacts and at the AlGaN/AlN/GaN interface, fine meshing is done to achieve the convergence and accuracy of the calculations. The spacing between different electrodes, namely, source to gate, gate to drain and source to drain are set to 0.9, 2.0 and 3.0 μm, respectively. Gate length is kept as 100 nm. To obtain lower gate resistance, gate geometry is selected as T-gate in simulation as well as in fabrication.
(a) GaN Heterostructure, (b) HEMT cross-sectional view and (c) HEMT mesh structure (reprinted with permission from Ref. [
Generally, high-power RF GaN HEMT is fabricated in a multi-finger configuration. Two ground-source-ground (GSG) configurations are shown in Figure 2: 2 × 150 and 8 × 150. To measure the RF performance of the device GSG configuration is widely used for HEMT fabrication. The 2 × 150 configuration contains two gate fingers with 150-micron unit gate width of the device. Similarly, the 8 × 150 configuration contains eight gate fingers with 150-micron unit gate width. To expand the device length for high-power applications, a greater number of gate fingers are used. For example, if the power handling capability of the fabricated GaN HEMT is 5 W/mm, the 2 × 150 = 0.3-mm device can be used for 1.5 W RF power. Similarly, the 8 × 150 = 1.2-mm device can be used for 6.0 W RF power. Before further discussion on plasmonic metamaterial-assisted ISBT, the following section refreshes some fundamentals about polarization in III-N (nitride) semiconductors.
Typical configurations of GaN HEMT (a) 2 gate fingers with 150 micron gate width (2 × 150) (zoom image for gate fingers visualization and (b) 8 gate fingers with 150 micron gate width (8 × 150). Representation 3.0/0.10/8/150 indicates source to drain distance 3.0 μm, 0.1 μm (100 nm) gate length, 8 fingers device with 150 μm gate width.
The nitride semiconductor materials exhibit inherent polarization properties. Having the large ionicity of the nitride bond (Ga–N, Al–N, In–N, etc.), it possesses a piezoelectric polarization (PPE) component, while the absence of the center of inversion symmetry and uniaxial nature of the crystal structure produces spontaneous polarization (PSP). Total polarization (PT) in the nitride semiconductor heterostructure is a combination of spontaneous polarization (PSP) and piezoelectric polarization (PPE), as shown in Eq. (1).
Furthermore, the strain-induced effect at the interface between two nitride semiconductors enhances piezoelectric polarization in the heterostructure. Piezoelectric polarization of the crystal is generally defined in terms of strain (ɛ) and stress (σ) components. Stress and strain are correlated in a crystal by elastic coefficient ɛij = Cij σij. The piezoelectric polarization in heterostructure grown along the z-axis (0001) is given by,
where E33, and E31 are piezoelectric coefficients, and ɛx, ɛy and ɛz are strain in x, y and z-directions, respectively. The crystal edge length and height are represented as a0 and c0 respectively in a hexagonal crystal lattice. The strain along the x, y and z-axis is given by (in-plane strain along x-axis and y-axis are assumed to be isotropic),
where a0 and c0 are the equilibrium or unstrained values of lattice constants and a and c are the strain lattice constant due to growth of heterostructure. For hexagonal lattice crystal, the strain components along ɛz and ɛx are related with elastic coefficients as per the following equation,
where C13 and C33 are the elastic constants. Substituting Eqs. (3) and (4) in Eq. (2),
The macroscopic piezoelectric polarization is defined by variations of the lattice constants a and c. The microscopic piezoelectric polarization is expressed in terms of an internal parameter u, defined as the anion–cation bond length along the z-axis (0001) [16]. Substituting elastic constant values for AlN and GaN in Eq. (5), one gets piezoelectric polarization of AlN greater than GaN. Spontaneous polarization closely depends upon crystal structure c/a ratio. The ideal c/a ratio in the hexagonal, closed-pack crystal structure is 1.633. The spontaneous polarization is found to be greater in actual crystal structures as the c/a ratio is different from its ideal value [16]. This nonideality of c/a ratio in AlN is also greater than GaN, which leads the greater spontaneous polarization. The spontaneous and piezoelectric polarization for alloy (i.e., AlGaN) is obtained by linear interpolation of the binary constituents (Vegard’s law). In summary, the spontaneous and piezoelectric polarizations for AlGaN over the whole range of compositions are larger than that of a GaN buffer layer.
The polarization-induced charge density and sheet density in the heterostructure is given by,
The polarization-induced charge density and sheet density for the case of AlGaN/GaN heterostructure is given by,
Extracted 2DEG concentration, purely due to polarization effects, is the order of ∼1013 cm−2 for nitride heterostructures. Unlike GaAs MODFET heterostructures, no doping is required in nitride heterostructures to generate 2DEG concentration, which is a great advantage of these structures.
The basic equations of physical processes are solved for every grid point in the simulation. These equations include Poisson’s equation, continuity equations and transport equations, derived from Maxwell’s equations [17]. The computation of 2DEG properties due to spontaneous and piezoelectric polarization effects is performed using a polarization model [18, 19]. An induced, strong polarization field is introduced to calculate band diagrams. To increase the reliability of simulation, measurement-based ohmic contact resistance and Schottky barrier height data were incorporated in the simulation to define source, drain and gate contacts. A low field mobility model is used to account for the temperature-dependent drift of electrons and holes separately [20]. The Shockley–Read–Hall recombination model is used to estimate the statistics of holes and electrons as well as their recombination rate. The traps/defects in the heterostructure play a crucial role in the performance of GaN devices. Accordingly, we also introduced interface traps energy level and density in the modeling. Output results were extracted by solving the basic equations for every grid point with the different biasing conditions. The variation of the drain current with respect to applied drain (Vd) and gate (Vg) biasing voltage is plotted in Figure 3. The simulated output characteristics (Id-Vd) and transfer characteristics (Id-Vg) are shown in Figure 3(a) and (b), respectively. The extracted transconductance is >350 mS/mm as shown in Figure 3(c). The extracted capacitance-gate voltage (Vg) and 2DEG density with applied gate bias are depicted in Figure 4(a) and (b), respectively.
(a) Output characteristics (id-Vd), (b) transfer characteristics (id-Vg) and (c) Transconductance of the simulated device (reprinted with permission from Ref. [
Extracted (a) CV profile and (b) 2DEG profile with applied gate voltage (reprinted with permission from Ref. [
The current gain cutoff frequency (ft) and maximum frequency of oscillations (fmax) are the two most pertinent parameters for high-speed device application. ft and fmax are extracted from small signal RF simulation. Current gain (h21) and maximum available power gain (Ga) are simulated at bias conditions Vds = 7 V and Vgs = −1.5 V and plotted with respect to frequency in Figure 5. A summary of simulated DC and RF device parameters is given in Table 1 that closely matches the corresponding process design kit (PDK) datasheet of renowned international GaN foundries.
Current gain and power gain of the simulated device (reprinted with permission from Ref. [
Simulated result | |
---|---|
Idss (A/mm) | 0.995 |
Vknee (V) | 5 |
Ron (ohm*mm) | 3.5 |
Vth (V) | −3.0 |
gm (mS/mm) | 384 |
ft (GHz) | 110 |
fmax (GHz) | 180 |
Summary of extracted DC and RF device parameters.
The cutoff frequency of field effect transistor (FET) including HEMT is defined by
The interaction between photons and electrons in the semiconductor can be expressed by the Hamiltonian,
where mo is the free electron mass, V(r) is the periodic crystal potential (in the present case it is the triangular potential function given by, V(z) = eFz), e is charge of electron, Fz is electric field, and A is vector potential of applied electromagnetic field. Hamilton can be expanded into,
Here H0 is unperturbed Hamiltonian and H′ is perturbed Hamiltonian due to the interaction of the electromagnetic wave.
Consideration of the strain effects for extraction of effective-mass Hamiltonian is of prime importance for wurtzite semiconductors. This Hamiltonian is used to derive the electronic band structures of bulk and quantum-well wurtzite semiconductors. Kane’s model is applied to derive the band-edge energies and the optical momentum-matrix elements for strained wurtzite semiconductors. We then derive the effective-mass Hamiltonian by using the k.p perturbation theory. The developed k.p model is applied to our heterostructures structures, especially quantum well via the envelope function approximation (EFA) method [33, 34]. An envelope function model is derived for electrons in a semiconductor heterostructure. The materials-dependent Hamiltonian extraction by EFA method is most suitable for abrupt semiconductor junction [35]. The finite element method [36] is used to solve the coupled multi-band Schrödinger Poison’s equation [37] numerically.
Under triangular quantum well, the solution of the wave function is given by [38, 39],
where mz* is the effective mass of electron in the GaN, Fz is the electric field in the z-direction, Ei is the eigenvalues of energy with i = 0,1,2,…. for the ground state, 1st excited state and so on. Airy (Ai) function is given by
The eigen value is given by [37, 38],
When an incident THz radiation illuminates the GaN HEMT, electrons may absorb the photon energy and jump to a higher energy subband. Carriers below Fermi energy levels were collected by drain electrode when we applied voltage between source and drain. Using Fermi’s golden rule for the transition from i state to j state, we can calculate the absorption coefficient by [34, 40],
where H′ is interaction Hamiltonian as per Eq. (10).
By applying the dipole approximation, we obtain [34, 40],
The matrix element in the above equation can be expanded in terms of interband and ISBT as follows,
Applying the envelope function matrix element in the z-direction can be written as
The dimensionless optical field strength between the two-energy state is given by [33, 38],
where
<i/z/j > can be expressed as,
with, ti and L are electric length expressed as,
By substituting Eqs. (15)–(17) in Eq. (14) we get,
By substituting i = 0 and j = 1,2,3,… oscillation strength for transition can be calculated as f01 = 0.73, f02 = 0.12, f03 = 0.045, and so on. The oscillator strength of all the transitions is sum up to 1. Calculated transition indicates that the probability for higher-level transitions is very weak.
The gradual pinning of Fermi level inside the quantum well is possible by increasing gate voltage. When gate voltage is sufficiently negative (0 > Vt > Vg), the conduction band is above the Fermi level. In this case, the channel is completely depleted of 2DEG. When the gate voltage is greater than the threshold voltage (Vg > Vt), charges start filling the channel. As the gate voltage increases, the Fermi level gradually pins inside the quantum well and 2DEG carriers are filled among allowed subbands in the channel. When gate voltage is sufficiently higher (Vg > 0 > Vt), the carrier occupies all allowed subband below the Fermi energy level. For this case, total 2DEG charges are distributed in the allowed energy subband and take participation in channel conduction. The triangular quantum-well conduction band energy profile for GaN HEMT with different gate biasing conditions is shown in Figure 6(a). Fermi energy level pinning inside the subbands of triangular quantum well with different applied gate biasing is shown in Figure 6(b)–(d). The spacing and charge filing inside the subband strongly depends upon gate-biasing voltage. In other words, the gate biasing-assisted tuning of intersubband resonance (ISR) frequency is possible in the HEMT structure.
Conduction band energy profile with different applied gate voltage and Fermi energy level with filled subband inside triangular quantum well with different applied gate biasing (b) Vg > 0 > Vt, (c) Vg = 0 > Vt and (d) 0 > Vt > Vg (reprinted with permission from Ref. [
In the simulation, we extracted up to four ISB energy levels inside the triangular quantum well. The ISR frequency as a function of applied gate-biasing field is calculated using Eq. (12) and by solving self-consistency Schrodinger–Poison solver for different gate-biasing voltage. The same are shown in Figure 7(a) and (b). The ISB tuning is one order higher in asymmetric triangular well potential as compared to the conventional square well potential. Moreover, 2DEG carrier concentration inside the GaN HEMT channel also depends upon Al composition and AlGaN barrier layer thickness. Figure 8(a) and (b) show the simulated 2DEG carrier concentration variation with AlGaN thickness and Al composition, respectively. It clearly indicates that increment in barrier layer thickness, and Al composition enhances the 2DEG density inside the channel. It further implies that manipulation in ISR is possible in GaN HEMT devices based on variation in 2DEG density, which provide tuning in the THz region.
Intersubband resonance frequency as a function of the applied field (a) calculated using
2DEG carrier concentration of AlGaN/AlN/GaN heterostructure for (a) different AlGaN thickness, (b) different Al composition in AlGaN layer (reprinted with permission from Ref. [
The combination of ISBT in semiconductor quantum wells with metamaterials shows great potential in the THz region [41, 42, 43, 44, 45, 46, 47]. There are large numbers of metamaterial structures that have been employed and demonstrated enhanced performance in the THz region. In the present modeling work, we report that the standard GSG device geometry of HEMT itself acts as a metamaterial structure. The enhancement of THz interaction with 2DEG inside the triangular quantum well is reported for GaN HEMT. The resonance mode in metamaterial structure is dynamically manipulating the carrier distribution inside the quantum well.
For the metamaterial modeling work, the GaN heterostructure and device geometry are kept identical, as shown in Figure 1. A finite difference frequency domain CST Microwave Studio simulator has been used to simulate the entire device configuration, which acts as THz metamaterial. Standard GSG configuration along with 50- to 150-micron gate width has been used for 3D electromagnetic modeling as shown in Figure 9(a)–(c). Very fine localized tetrahedral sub-meshing has been used in the active source to drain region to enhance the accuracy of calculations as shown in Figure 9(d). THz radiation (0.3–3 THz) is illuminated on the entire GSG device configuration, which includes the active GaN HEMT region as well. Table 2 shows the dimensions used in 3D EM simulation work. Three different geometries, 2 × 50, 2 × 100 and 2 × 150, have been used in the present study. The E-field of the incident THz plane wave is kept at 1 V/m for all three devices.
Three different configuration (a) 2 × 50, (b) 2 × 100 and (c) 2 × 150 of GaN HEMT and (d) GaN HEMT meshing (reprinted with permission from URSI RCRS 2020, IEEE Xplore).
Device configuration | Distance between S and D (μm) | Gate width (μm) | Gate length (nm) | Total device dimension (μm x μm) |
---|---|---|---|---|
Device A (2 x 50) | 3.0 | 50 | 100 | 350 x 400 |
Device B (2 x 100) | 3.0 | 100 | 100 | 400 x 400 |
Device C (2 x 150) | 3.0 | 150 | 100 | 450 x 400 |
Different device configurations used in simulations.
The wavelength corresponding to the entire THz spectrum (0.3 to 10 THz) is about 30–1000 micron. If the device dimension is of the order of incident radiation, it acts as an antenna. Antenna size and shape largely determine the frequency it can handle. Antenna-coupled THz source and detector show a potential advantage in the performance of devices for the THz region [48, 49, 50, 51, 52]. The dimensions of the devices as listed in Table 2 are of the order of illuminated THz radiation wavelength. These devices act as antennas, which leads to convergence of incident radiations towards the active channel region. The resultant electric field intensity inside the active channel region between source and drain is greatly enhanced. The enhancement of the field due to illumination strongly depends on the frequency of incident radiation and device dimension. For example, the electric field intensity distribution for 0.4 THz incident radiation is shown in Figure 10 (a)–(c) for three different GaN HEMT devices. Each device structure has a unique resonance response towards incident THz radiation. Similarly, the resonance response of a 2 × 100 GaN HEMT device towards incident THz radiations, namely 0.3, 0.7 and 1.75 THz, is shown in Figure 10
Electrical field enhancement for 0.4 THz incident radiation on (a) 2 × 50, (b) 2 × 100 and (c) 2 × 150 of GaN HEMT devices. Electrical field enhancement for 2 × 100 GaN HEMT device at (d) 0.3°THz, (e) 0.7°THz and (f) 1.75°THz incident radiation (reprinted with permission from URSI RCRS 2020, IEEE Xplore).
Electrical field enhancement due to illumination of terahertz radiation on GaN HEMT devices.
A plasmonic nanostructure provides unique opportunities for manipulating electromagnetic waves in the THz range. Recently many novel plasmonic nanostructure-based devices such as photoconductor antennas [52, 53], detectors [31], and plasmonic photomixers [54], QCLs [55] showed significant improvement in device performance.
For plasmonic structure simulation, the finite element frequency domain COMSOL Multiphysics numerical method has been used to solve Maxwell’s equation to predict electromagnetic interaction in each layer of the semiconductor heterostructure. Heterostructure stack, device geometry and device structure are kept identical as used in semiconductor modeling shown in Figure 1. We kept 1 V/m incident plane wave THz radiation from 0.3 to 3 THz to interact with the GaN heterostructure. The surface plasmon is generated at the interface between nanometric gate contact and heterostructure.
The field in the vicinity of the fine gate structure is drastically increased due to surface plasmon generation. Subsequently, the THz incident wave is coupled to 2DEG inside the channel. The concentration of the induced electric field is considerably enhanced in close proximity to the device gate contact electrodes. The induced electric field is approximately 5.5E+06 on the gate and 8.5E+06 V/m on the gate edge for 0.4 THz due to plasmonic structure as shown in Figure 12. As the incident frequency increases, the plasmonic-induced electric field also increases and saturates towards higher frequency as depicted in Figure 13. It was interesting to find that the plasmonic-enhanced field (∼107 V/m) is approximately one order greater than the externally applied bias field (∼104 V/cm = 106 V/m) at the gate (Figure 7).
Electrical field enhancement for 0.4°THz incident radiation on GaN HEMT device using a finite element method-based electromagnetic solver (COMSOL).
Induced electrical field due to terahertz radiation illumination on GaN HEMT device using a finite element method-based electromagnetic solver (COMSOL).
The outcome of the entire simulation activities clearly demonstrates GaN HEMT device operation in the THz range beyond its cut-off frequency. It is also shown that overall performance of GaN HEMT is governed by aggregate effects of ISBT, plasmonic structure and metamaterial behavior.
In this section we report fabrication and measurement details for experimental investigation of room-temperature, photon-induced electrical tuning of ISBT in GaN HEMT, which extends the device operating frequency well beyond its present cut-off frequency [56]. For sample fabrication, an AlGaN/AlN/GaN-based heterostructure was grown by metalorganic chemical vapor deposition (MOCVD) on 6H polytype of silicon carbide (6H-SiC) wafer. The layer sequence, thickness and composition were kept identical as used in our modeling and simulation work (Figure 1(a)). A 60-nm aluminum nitride (AlN) nucleation layer was grown on (0001) the face of a semi-insulating silicon carbide (SI–SiC) wafer. In the MOCVD growth, unintentionally doped (UID) GaN buffer layer thickness was set to ∼2 μm. On the top of the GaN buffer layer, a 1-nm AlN spacer layer followed by an undoped Al0.3Ga0.7N barrier layer was grown to form a triangular quantum well of GaN HEMT. A small 3-nm Si3N4 passivation layer was kept as a top protective layer. For the purpose of characterization of this GaN heterostructure to assess quality and properties, highly precise standard semiconductor characterization tools like Hall measurement (nanomagnetic instruments), high-resolution XRD (Bruker D8 Discover), photoluminescence (PL) system (DongWoo Optron), and others were used. Room-temperature mobility and 2DEG carrier concentration were measured using the Hall measurement method. Composition, thickness and lattice constants for heterostructure materials were extracted using HR-XRD. The growth quality was evaluated using the PL method.
A standard fabrication process flow as shown in Figure 14 was adopted for GaN HEMT device fabrication. Device-to-device isolation was performed by MESA etching using BCl3/Cl2/Ar dry plasma. An inductively coupled plasma-reactive ion etching (ICP-RIE) system was used for HEMT device isolation. Source-drain spacing was kept at 3.0 micron and electron beam lithography was used for ohmic contact (source and drain) patterning. Recess etching of the barrier AlGaN layer was required to fabricate good ohmic contacts. An optimized recessed etching process was followed to etch ∼10 nm of the AlGaN layer using BCl3/Cl2/Ar plasma. During recess, BCl3/Cl2/Ar flow rates were maintained at 20/10/10 SCCM with ICP power and RF power at 350 W and 60 W, respectively. Post recess, the sample was dipped in HCl:DI (1:10) for one minute to minimize the impact of oxidation on the surface. A Ti/Al/Ni/Au (20/210/55/45 nm) lift-off metallization scheme was selected and deposited by electron beam evaporation for ohmic contact. The sample was annealed at 870°C for 45 s under N2 atmosphere using rapid thermal annealing to form the ohmic contact [57]. The ohmic contact resistance was measured using a standard transmission line model (TLM) with the help of a semiconductor characterization system (Model Keithley 4200). Electron beam lithography was used to form a mushroom gate contact. A Ni/Au metallization scheme was selected for gate contact to achieve high Schottky barrier height. A Ni/Au (30/300 nm) stack was deposited using electron beam evaporation and lift-off technique followed by annealing at 450°C for 120 s under N2 atmosphere using rapid thermal annealing system [58]. To address the DC-RF dispersion issue, the Si3N4 passivation layer of 120-nm thickness was deposited using PECVD. Contact pad thickening was formed by 800-nm Ti/Au deposition to reduced resistive loss. The fabricated GaN HEMT wafer (1 square inch) having more than 300 GaN HEMT devices is shown in Figure 15. A sufficient number of variants are kept in fabrication in terms of device length and number of device fingers for wider statistical data. Device length varies from 50 to 300 micron (50, 100, 150, 200, 300), while number of fingers varies from 2 to 12 (2, 4, 6, 8, 10, 12). All devices have a 100-nm mushroom gate structure. The wafer also contains varieties of process control monitors (PCMs) for ohmic contact, Schottky contact, short, open and through the structure for RF measurement.
GaN HEMT fabrication flow along with the cross-sectional view of the device.
(a) GaN HEMT fabricated wafer (b) 100°nm 2 × 100 GaN HEMT device (reprinted with permission from Ref. [
Current–voltage (IV) measurements on the fabricated sample were performed using a highly accurate and precise Keithley 4200 source measurement unit (SMU) inside a vacuum chamber equipped with a Janis probe station and Lakeshore temperature controller. IV measurements were performed in dark mode (no illumination) and radiation illumination mode to extract the ISBT in fabricated GaN HEMT devices. 1-mW blue, yellow and red LEDs as well as 300-W halogen lamp-based perpendicular illumination sources were used in our experiment to excite the deep-level traps in the GaN HEMT device, while 1-mW broadband infrared illumination sources like a red laser (630–690 nm), near-infrared (NIR) LED (650–850 nm) and short-wave infrared (SWIR) LED (1.7–2.1 micron) based illumination at an oblique angle of incident (AOI) were used to investigate the ISBT at ambient temperature. Moreover, to confirm the transition is solely dependent upon the bandgap phenomenon, low-temperature PL and IV measurements were also carried out. Most devices showed the ambient temperature ISBT, however, we selected the 2 × 100 device for demonstration.
Post growth, the GaN heterostructure was extensively evaluated using standard, highly accurate semiconductor characterization techniques. Table 3 shows the summary of extracted heterostructure properties using various characterization techniques. Room-temperature mobility and 2DEG carrier concentration were found to be 1885 cm2/V.s and 1.1E + 13 cm−2, respectively, using the Hall measurement method. The composition and thickness of the AlGaN barrier layer play crucial roles in polarization and 2DEG carrier accumulation inside the GaN HEMT. Thickness of 21 nm and Al composition of 31% were found in the AlGaN barrier layer against targeted thickness of 20 nm and Al composition of 30%. Ohmic and Schottky contacts to GaN heterostructures play a vital role in the development of a GaN HEMT device. Low contact resistance of ∼0.27 Ω.mm and high barrier height of ∼0.72 eV were extracted using IV measurements. Surface traps were present in the GaN HEMT devices and led to significant degradation of DC and RF performance. High-quality Si3N4 surface passivation deposition was used to effectively reduce surface traps. The improvement in drain current density is about 35 mA/mm and in RF gain is 4 dB at 10 GHz after Si3N4 deposition, which clearly indicates the majority of surface traps are saturated after passivation. The saturation drain current density (@ Vg = 0 V) was measured at ∼1 A/mm, while cut-off frequency of ∼89 GHz was extracted for the fabricated 100-nm GaN HEMT.
FET shows the response towards THz beyond its cutoff frequency even at room temperature irrespective of semiconductor material systems [22, 24, 25, 26, 27, 28]. The Dyakonov–Shur plasma wave theory [22, 23] classically explains the THz behavior of the device starting from conventional semiconductors like Si, GaAs, and GaN to recently developed 2D materials system like graphene, MoS2, WS2, black phosphorous, and others. We proposed ISBT transition at ambient temperature as another potential mechanism for THz response of the GaN HEMT device. ISBT is demonstrated using IV measurement of the GaN HEMT device under dark and illuminated conditions. Usually, IV characteristics are the combination of all possible phenomenon in the FET. It is very difficult to distinguish the defects- or traps-assisted transitions, thermal transitions and ISBTs in the IV characteristics of FET. However, electrical tuning of ISBT in GaAs HEMT has been demonstrated [59]. There are three following key challenges involved in supporting the ambient ISBT mechanism in FET/HEMT.
rule out plasma wave mechanism
Defects−/traps-based transitions
Thermal energy-assisted transitions
The basic physics involved in plasma wave theory is that 2DEG instability in short-channel HEMTs has a resonant response to incident electromagnetic radiation. The resonance frequency is governed by the size and shape of the channel (i.e., the geometrical plasmon frequency). Tuning the plasmon resonant frequency to the incident THz wave is used for detectors, mixers and multipliers, as the carrier resonance happens in the THz frequency range only. It is not possible to generate plasma wave inside the FET channel if the incident radiation has a frequency other than THz. In other words, if we are using a source other than a THz radiation source that is capable of inducing the ISBT, the generation of plasma waves can be ruled out inside the FET/HEMT.
The deep-level traps- or defects-assisted transitions have been well reported since the invention of heterostructure [60]. The traps’ energy level and density depend upon several parameters like heterostructure growth condition, materials system, and others. Especially in GaN-based wide bandgap semiconductor materials, the domination of the deep-level traps is even more significant than GaAs semiconductor material [61]. It is highly difficult to prevent the transitions through these traps. However, control over traps-based transition is possible, as it shows the different responses towards the incident radiations. If we are selecting the illumination source that has the least significance for trap excitation and the most significance for ISBT, then defects−/traps-assisted transitions can also be also ruled out.
The thermal energy associated at room temperature is ∼25 mev (∼ 6 THz), which is much higher than the spacing between the subband in a quantum well. It is very difficult to negligible thermal energy contribution. Thermal occupation of electrons in a higher subband may prevent the observation of ISBT at ambient temperature [59]. Measurement are done at ambient as well as low temperature in vacuum condition with a precise and accurate temperature controller to quantified the thermal transitions. Furthermore, source-measurement units (SMUs) are accurate for detecting very small changes in measurement for dark and illuminated conditions. The background thermal energy contribution in transitions is equally present in both dark and illumination modes, which clearly indicates the presence of ISBT in the measurement.
In summary, to confirm the transitions solely occurring due to ISB inside the triangular quantum well of the heterostructure, we used a 1-mW SWIR LED because it is least significant for trap excitation [62, 63], whereas it is most significant for ISBT. Moreover, the use of a SWIR source that is not in the THz frequency range ensures that the generation of plasma wave inside the channel is not possible. The blue LED was selected for measuring traps-assisted transitions. Table 4 summarizes the key challenges involved along with possible solutions to confirm room-temperature ISBT in GaN HEMT.
Properties | AlGaN | GaN | Measurement method |
---|---|---|---|
Thickness | 21 nm | 2.0 | HR-XRD |
Composition (%) | Al0.31Ga0.69N | — | HR-XRD |
Lattice constant (A°) | 5.121 | 5.185 | HR-XRD |
Bang gap (eV) | — | 3.44 | PL |
2DEG | — | 1.1E+13 | Hall |
Mobility (RT) | — | 1885 | Hall |
Measured heterostructure properties using standard semiconductor characterization equipment.
Sr. No | Discrimination ISBT from other mechanism | Used excitation source/methods |
---|---|---|
1 | Plasma wave mechanism | Non terahertz radiation source |
2 | Defects/traps induced transition | Blue LED |
3 | Thermal energy contribution | Measurement in vacuum, precise temperature control with highly accurate SMUs Confirm with low temperature IV and PL |
4 | ISBT | SWIR (1.7–2.1 μm) source |
Measurement methods and excitation sources used to confirm ISBT.
To excite the deep-level traps in a GaN heterostructure, 1-mW blue, yellow and red LEDs as well as a 300-W halogen lamp-based perpendicular illumination were used. It is well proven that as we move from NIR to UV radiations, the trap excitation becomes more efficient. It is difficult to excite traps larger than 870 nm [62, 63]. In our experiments, blue LED was found to be more efficient among all used light sources to excite the deep-level traps. To extract the trap-assisted transitions, a 90-degree AOI under blue LED illumination for 10 min was used. The Id-Vd characteristics and change in drain current (ΔId) of the 100-nm GaN HEMT without and with illumination are shown in Figure 16(a). Deep-level traps-assisted transitions increased the drain current up to approximately 24 mA/mm as shown in Figure 16(b). It was found that after 10 min of illumination, there was no further significant increase in drain current, which confirms that most traps were saturated and the equilibrium condition was reached.
Effect of 90° AO Iillumination with blue LED (a) on id-Vd characteristics of 100 nm GaN HEMT device (b) change in drain current (reprinted with permission from Ref. [
Red laser (630–690 nm), NIR LED (650–850 nm) and SWIR LED (1.7–2.1 micron) broadband infrared sources were used in our experiment to investigate physical phenomena other than plasma wave at ambient temperature. It is noted that the ISB absorption characteristics were found to be identical for all used IR sources (red laser, NIR and SWIR LEDs) with the highest absorption found for the case of SWIR LED.
For ISBT experiments, we selected 1-mW SWIR LED as it is least significant for trap excitation [62, 63], whereas it is most significant for ISBT. GaN heterostructure materials have a wide bandgap with lower cut-off wavelengths than the wavelength of the IR light source, ensuring the transition of the carriers from valance band to the conduction band is forbidden.
When light is incident perpendicular to the sample surface ISBT cannot be induced, as the electric field has component only in the quantum-well plane [40]. We illuminated the sample at an oblique angle of incidence to discriminate ISBT with other transitions. When the sample is illuminated with an oblique angle, IR radiation interacts with carriers inside the subband of the triangular quantum well and transitions occur within the conduction band. The Id-Vd characteristics and change in drain current (ΔId) of the 100-nm GaN HEMT without and with 30 s of 45-degree AOI SWIR LED illumination are shown in Figure 17(a) and (c). A zoom portion of the Id-Vd curve for −0.5 and − 1.0 gate voltage is shown in Figure 17(b) for visualization purposes, as the change in drain current was very small due to illumination. Infrared lamp-assisted photoinduced ISBT in doped and undoped multiple quantum wells was reported by Olszakier et al. in a series of experiments [64, 65, 66, 67, 68]. It was concluded that the ISBT involves free electrons as well as excitons. The exciton-based transitions have greater frequency and oscillator strength than those of the bare electrons.
Effect of 45° AO Iillumination with SWIR led (a) on id-Vd characteristics of 100°nm GaN HEMT device (b) zoom portion of id-Vd characteristics for drain current change visualization and (c) change in drain current (reprinted with permission from Ref. [
The bulk wurtzite semiconductor band diagram along with the two E0 and E1 subbands in the triangular quantum well involves transition of free electrons and excitons-based transition as shown in Figure 18(a)–(c), respectively. In the asymmetrical (triangular) quantum well, inversion symmetry with respect to the quantum well center is broken, which leads to a relaxation of the selection rules (i.e., transitions between all subbands are allowed) [40]. It is possible to tune subbands inside the quantum well by external electrical field in an HEMT device. Free electron-based ISBT (0.5–10 THz) and exciton-assisted ISBT (for higher frequency) can be exploited as potential tunable sources and detectors for the entire THz range.
(a) Band structure for wurtzite (WZ) bulk semiconductor with conduction band (CB), light and heavy holes (HH, LH). The ISBT is shown in (b) well electrons and (c) the exciton schemes. (reprinted with permission from Ref. [
The spacing between subband and quantum-well width depends on gate biasing. Let us consider only two subbands, E0 and E1 inside a well having N0 and N1 electrons, respectively. The gate voltage is selected in such a way where ground state E0 is situated below the Fermi level as shown in Figure 19(a). The 2DEG carriers below the Fermi energy level are extracted as a drain current by applying a potential between source and drain. When the sample is illuminated, the electrons in a ground state E0 interact with an external electromagnetic field. The electrons pick up photons from the illuminating field, which allows them to enter an excited energy state E1 within the subband as shown in Figure 19(b). These excited electrons are in the energy level E1 that is above the Fermi level. As these electrons are not contributed to conduction, the drain current Id is decreased. This mechanism is clearly observed in Figure 17(c) in terms of decrease in drain current due to illumination, which shows ISB absorption. The amount of absorption strictly depends upon the distribution of electrons in the subband and the spacing between subband and width of well. To rule out thermal energy contribution in IV characteristics, measurement is done in vacuum conditions. The precise and accurate temperature controller and SMUs are used in measurement, which are able to detect a very small change in drain current in dark and illuminated conditions. Moreover, to confirm the transition is solely dependent upon the bandgap phenomenon, low-temperature PL and IV measurements were carried out. The temperature-dependent bandgap shifting in GaN found in PL measurement, as shown in Figure 20, matches with previously published results [69]. Low-temperature 200-K and 100-K ISB absorption measurements were also carried out. It was found that the intensity of absorption increases as the temperature decreases, as shown in Figure 21(a) and (b). It indicates that thermal energy contribution decreases with a decrease in temperature. The temperature-dependent bandgap variation in GaN perfectly matches with ISB absorption (Vg = 0 V, Vds = 8 V), as depicted in Figure 22.
(a) Band-schematic of the first two subbands in a 2DEG with respect to the Fermi level (b) absorption in the subband. (reprinted with permission from Ref. [
Low-temperature PL measurement of GaN heterostructure (reprinted with permission from Ref. [
Change in drain current due to 45° AOI and 30°second illumination with SWIRLED at temperature (a) 200 K and (b) 100 K (reprinted with permission from Ref. [
Temperature dependent GaN band gap and change in drain current (vg = 0 V and Vds = 8 V) due to illumination (reprinted with permission from Ref. [
In conclusion, low-temperature and angle-dependent illumination-based measurements were used to confirm the ISB transition in GaN HEMT. We have experimentally explored electrical tuning of ISB resonance phenomena inside the triangular quantum well for a GaN HEMT device, which shows the potential of GaN HEMT technology to be realized as a room-temperature THz source and detector.
We have developed theoretical models for electrically tunable plasmonic metamaterials-assisted ISBT in GaN HEMT. Experimental demonstration of electrical tuning of ISBT in a GaN HEMT device at room temperature has not only provided a new alternate mechanism but also discriminates ISBT from other transitions induced by deep-level traps and defects in the 100-nm GaN HEMT device. The chapter also explored the photonics ISBT phenomenon in a GaN HEMT device for external biasing, which depends on tuning of the subband. A novel approach for ISBT in GaN HEMT helps to overcome the THz gap in the electromagnetic spectrum at ambient temperature.
We are thankful to the director of SAC for continuous encouragement and guidance during this study. We extend our sincere thanks to Prof Solomon Ivan at the Department of Physics, IIST Thiruvananthapuram, for helpful discussions and providing valuable suggestions. We are also thankful to the Microelectronics Group for providing fabrication and characterization support.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:489},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1224",title:"Life Science",slug:"life-science",parent:{id:"228",title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:25,numberOfWosCitations:100,numberOfCrossrefCitations:65,numberOfDimensionsCitations:155,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1224",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5075",title:"Modern Electron Microscopy in Physical and Life Sciences",subtitle:null,isOpenForSubmission:!1,hash:"e13d28339466917a0d43e0621dd19fb2",slug:"modern-electron-microscopy-in-physical-and-life-sciences",bookSignature:"Milos Janecek and Robert Kral",coverURL:"https://cdn.intechopen.com/books/images_new/5075.jpg",editedByType:"Edited by",editors:[{id:"15744",title:"Dr.",name:"Milos",middleName:null,surname:"Janecek",slug:"milos-janecek",fullName:"Milos Janecek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8761,totalCrossrefCites:37,totalDimensionsCites:84,abstract:"Sample preparations are essential in scanning electron microscopy. Flawed sample preparations can undermine the quality of results and lead to false conclusions. Thus, the aim of this chapter is to equip researchers, post graduate students and technicians with essential knowledge required to prepare samples for scanning electron microscopy (SEM) investigations in the life sciences.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"49537",doi:"10.5772/61781",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10157,totalCrossrefCites:11,totalDimensionsCites:32,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]},{id:"49526",doi:"10.5772/61634",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4326,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"49520",doi:"10.5772/61719",title:"Immunogold Techniques in Electron Microscopy",slug:"immunogold-techniques-in-electron-microscopy",totalDownloads:4409,totalCrossrefCites:1,totalDimensionsCites:8,abstract:"Ever since electron microscopy became an important tool in the scientific research, the focus had been mainly on ultrastructural analysis with little success in the development and application of suitable techniques for the localization of macromolecules in cells. The emergence of immunogold techniques in the 1960s managed to fill this gap in serving this function. The aim of this chapter is to equip researchers, postgraduate students, and technicians with essential knowledge to utilize immunogold techniques for ultrastructural investigations in the life sciences. The principles and factors involved have been highlighted to give researchers a quick review of the techniques before embarking on their ultrastructural localization procedures. The advantages and limitations of the four types of immunogold labeling techniques have been discussed.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"}]},{id:"49496",doi:"10.5772/61811",title:"Evaluation of the Glomerular Filtration Barrier by Electron Microscopy",slug:"evaluation-of-the-glomerular-filtration-barrier-by-electron-microscopy",totalDownloads:2773,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"The plasma filtration and formation of the urine is a very complex process necessary for the elimination of metabolites, toxins, and excessive water and electrolytes from the body. The initial process of urine formations is done by the glomerular filtration barrier inside the glomeruli. This specialized barrier consists of three layers, fenestrated endothelium, basement membrane, and podocytes, which ensure that water and small molecules pass through while cells and large molecules are retained. The glomerular filtration barrier is found with abnormal morphology in several diseases and is associated with renal malfunction; thus, it is interesting to study these structures in different experimental and clinical conditions. The normal glomerular barrier and its alterations in some conditions (hypertension, diabetes, and fetal programming) are discussed in this chapter. Furthermore, some methods for studying the glomerular filtration barrier by electron microscopy, both by qualitative and quantitative methods, are present.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Diogo Benchimol de Souza, Bianca Martins Gregório, Marlene\nBenchimol and Fernanda Amorim de Morais Nascimento",authors:[{id:"176343",title:"Dr.",name:"Diogo Benchimol",middleName:null,surname:"De Souza",slug:"diogo-benchimol-de-souza",fullName:"Diogo Benchimol De Souza"},{id:"176436",title:"Prof.",name:"Bianca Martins",middleName:null,surname:"Gregório",slug:"bianca-martins-gregorio",fullName:"Bianca Martins Gregório"},{id:"176437",title:"Prof.",name:"Fernanda Amorim De Morais",middleName:null,surname:"Nascimento",slug:"fernanda-amorim-de-morais-nascimento",fullName:"Fernanda Amorim De Morais Nascimento"},{id:"177637",title:"Prof.",name:"Marlene",middleName:null,surname:"Benchimol",slug:"marlene-benchimol",fullName:"Marlene Benchimol"}]}],mostDownloadedChaptersLast30Days:[{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4325,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10155,totalCrossrefCites:11,totalDimensionsCites:32,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]},{id:"49846",title:"Scanning Electron Microscopy with a Retarded Primary Beam",slug:"scanning-electron-microscopy-with-a-retarded-primary-beam",totalDownloads:2062,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The general trend for reducing the energies of primary electrons in electron microscopy has been faced with a gradual deterioration of the image resolution. Biasing the sample to a high negative voltage and making the electrons arbitrarily slow solely on and inside the sample has shown itself to be far more feasible than originally expected. The fundamental aberration coefficients (spherical and chromatic) of a combination of an objective lens and an immersion electrostatic lens formed by the biased sample decrease with the decreasing landing energy of the electrons. As a result, the spot size in scanning systems may become nearly independent of the landing energy of the electrons. The requirements placed on samples are strict but feasible, and detection of signal electrons is greatly facilitated by the acceleration of both reflected and transmitted electrons in the field of the biased sample and their collimation toward the optical axis. The interaction of slow electrons is not only more intensive than that at standard energies but even scattering phenomena appear which are not otherwise observed. Several application examples are presented. The benefits of very low energy EM are still being uncovered after its having been in routine use for several years.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Luděk Frank",authors:[{id:"16460",title:"Dr.",name:"Ludek",middleName:null,surname:"Frank",slug:"ludek-frank",fullName:"Ludek Frank"}]},{id:"49627",title:"Observation of Fungi, Bacteria, and Parasites in Clinical Skin Samples Using Scanning Electron Microscopy",slug:"observation-of-fungi-bacteria-and-parasites-in-clinical-skin-samples-using-scanning-electron-microsc",totalDownloads:3651,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"This chapter highlights the description of the clinical manifestation and its pathogen and the host tissue damage observed under the Scanning Electron Microscope, which helps the clinician to understand the pathogen’s superstructure, the change of host subcell structure, and the laboratory workers to understand the clinical characteristics of pathogen-induced human skin lesions, to establish a two-way learning exchange database with vivid images",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Ran Yuping, Zhuang Kaiwen, Hu Wenying, Huang Jinghong, Feng\nXiaowei, Chen Shuang, Tang Jiaoqing, Xu Xiaoxi, Kang Daoxian, Lu\nYao, Zhang Ruifeng, Ran Xin, Wan Huiying, Lama Jebina, Dai Yalin\nand Zhang Chaoliang",authors:[{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran"}]},{id:"49519",title:"Microstructure Evolution in Ultrafine-grained Magnesium Alloy AZ31 Processed by Severe Plastic Deformation",slug:"microstructure-evolution-in-ultrafine-grained-magnesium-alloy-az31-processed-by-severe-plastic-defor",totalDownloads:1938,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Commercial MgAlZn alloy AZ31 was processed by two techniques of severe plastic deformation (SPD): equal channel angular pressing and high pressure torsion. Several microscopic techniques, namely light, scanning and transmission electron microscopy, electron backscatter diffraction, and automated crystallographic orientation mapping were employed to characterize the details of microstructure evolution and grain fragmentation of the alloy as a function of strain imposed to the material using these SPD techniques. The advantages and drawbacks of these techniques, as well as the limits of their resolution, are discussed in detail. The results of microstructure observations indicate the effectiveness of grain refinement by severe plastic deformation in this alloy. The thermal stability of ultrafine-grained structure that is important for practical applications is also discussed.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Jitka Stráská, Josef Stráský, Peter Minárik, Miloš Janeček and Robert\nKrál",authors:[{id:"15744",title:"Dr.",name:"Milos",middleName:null,surname:"Janecek",slug:"milos-janecek",fullName:"Milos Janecek"},{id:"177102",title:"Dr.",name:"Jitka",middleName:null,surname:"Stráská",slug:"jitka-straska",fullName:"Jitka Stráská"},{id:"177103",title:"Dr.",name:"Josef",middleName:null,surname:"Strasky",slug:"josef-strasky",fullName:"Josef Strasky"},{id:"177104",title:"Dr.",name:"Petr",middleName:null,surname:"Minarik",slug:"petr-minarik",fullName:"Petr Minarik"},{id:"177105",title:"Dr.",name:"Robert",middleName:null,surname:"Kral",slug:"robert-kral",fullName:"Robert Kral"}]}],onlineFirstChaptersFilter:{topicId:"1224",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinspired Technology and Biomechanics",value:8,count:1,group:"subseries"},{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:2,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:20,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\r\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\r\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Orthodontist, Assoc Prof in the Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"344229",title:"Dr.",name:"Sankeshan",middleName:null,surname:"Padayachee",slug:"sankeshan-padayachee",fullName:"Sankeshan Padayachee",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"315727",title:"Ms.",name:"Kelebogile A.",middleName:null,surname:"Mothupi",slug:"kelebogile-a.-mothupi",fullName:"Kelebogile A. Mothupi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"337613",title:"Mrs.",name:"Tshakane",middleName:null,surname:"R.M.D. Ralephenya",slug:"tshakane-r.m.d.-ralephenya",fullName:"Tshakane R.M.D. Ralephenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:209,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:239,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz Ahmad Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:205,totalCrossrefCites:2,totalDimensionsCites:1,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/157294",hash:"",query:{},params:{id:"157294"},fullPath:"/profiles/157294",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()