Facts and effects of various types of bacteria present in GM
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"9975",leadTitle:null,fullTitle:"Digital Libraries - Advancing Open Science",title:"Digital Libraries",subtitle:"Advancing Open Science",reviewType:"peer-reviewed",abstract:"Over the past decades, traditional academic library environments have transformed into digital libraries. This has resulted in many challenges for libraries in terms of the reinvention of libraries’ roles and organizations, the skill sets of librarians, and library infrastructure. At the same time, this profound transformation has opened the door to many new avenues, such as the support and advancement of Open Science. This book offers insights into the transformation of traditional library environments to digital libraries and details how digital libraries can contribute to Open Science, in particular to Open Access, FAIR and Open Data, and Open Education, by describing methods, criteria, strengths, and weaknesses as well as applications.",isbn:"978-1-83968-201-8",printIsbn:"978-1-83968-200-1",pdfIsbn:"978-1-83968-202-5",doi:"10.5772/intechopen.87798",price:119,priceEur:129,priceUsd:155,slug:"digital-libraries-advancing-open-science",numberOfPages:128,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"ac50e32e9acf00b04326c35b0b8f62f9",bookSignature:"Sadia Vancauwenbergh",publishedDate:"June 30th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9975.jpg",numberOfDownloads:2917,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:3,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"235835",title:"Dr.",name:"Sadia",middleName:null,surname:"Vancauwenbergh",slug:"sadia-vancauwenbergh",fullName:"Sadia Vancauwenbergh",profilePictureURL:"https://mts.intechopen.com/storage/users/235835/images/system/235835.png",biography:"Sadia Vancauwenbergh is head of the Information Management and Strategic Data Analysis Unit at Hasselt University, Belgium, and Project Leader at ECOOM, an Expertise Centre for Research Development monitoring in Flanders, Belgium. She is president of euroCRIS, the International Organization for Research Information, and vice-chair of the International Society of Knowledge Organization – Low Countries Chapter. Dr. Vancauwenbergh’s research interests are focused on Open Science and CRIS systems, particularly semantic interoperability. She was a member of the EOSC Working Groups for Landscape and Skills and Training and is a convener of the EOSC Association Task Force Semantic Interoperability. She is also a member of the Commission International/Federal Cooperation on Open Science, Belgium; the Flemish Open Science Board; and chair of the FOSB Working Group Metadata & Standardization.",institutionString:"University of Hasselt",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Hasselt",institutionURL:null,country:{name:"Belgium"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"576",title:"Digital Media",slug:"information-and-knowledge-engineering-digital-media"}],chapters:[{id:"76617",title:"Evaluating the Processes and Procedure of Digitalization Workflow",doi:"10.5772/intechopen.96851",slug:"evaluating-the-processes-and-procedure-of-digitalization-workflow",totalDownloads:405,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Digitisation is the practice of converting physical information into a digital (computer-readable format), by using digital technologies to modify the existing structure by enhancing the efficiency of an organisational process, foster reliability, and quality. This is a method of incorporating conventional records into a digitised form by eliminating redundancies and limiting the communications chain. This will help to improve accessibility and simplify better information exchange for users. The beginning of a digital revolution in any establishment is to appraise the manual methods with the view to improve and graduate to a user-friendly modern system. Digital workflow is a progressive, reliable arrangement of data, procedures, and responsibilities that make information is more permanent and management easy to access and enable the preservation of crucial data. This research set out to support workflow audit by revealing specific indicators to assist in processes that will enhance digital migration.",signatures:"Collence Takaingenhamo Chisita, Oluwole O. Durodolu and Joseph Ngoaketsi",downloadPdfUrl:"/chapter/pdf-download/76617",previewPdfUrl:"/chapter/pdf-preview/76617",authors:[{id:"301616",title:"Dr.",name:"Oluwole O.",surname:"Durodolu",slug:"oluwole-o.-durodolu",fullName:"Oluwole O. Durodolu"},{id:"310274",title:"Mr.",name:"Joseph",surname:"Ngoaketsi",slug:"joseph-ngoaketsi",fullName:"Joseph Ngoaketsi"},{id:"327927",title:"Dr.",name:"Collence Takaingenhamo",surname:"Chisita",slug:"collence-takaingenhamo-chisita",fullName:"Collence Takaingenhamo Chisita"}],corrections:null},{id:"75034",title:"The Interactive Applications (IAs) in Academic Libraries: Challenges and Opportunities",doi:"10.5772/intechopen.95767",slug:"the-interactive-applications-ias-in-academic-libraries-challenges-and-opportunities",totalDownloads:427,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Presentation tools of academic content are increasing in popularity for educators in Higher Education Institutions (HEI) who want to share ideas and information in a more creative and interactive environment using more effective tools and demand to involve. Interactive Applications are becoming lot more common and is more integrated into our everyday activities, like using mobile apps. The features of the Fourth Industrial Revolution (4IR) began to emerge through Interactive Applications (IAs) such as the applications of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR). Information resources development is no longer restricted and residing within the realm of speculative fiction. By using AR, VR and MR, academic libraries could already deliver a massive revolution in information retrieval. However, the biggest challenge that need to be tackled perhaps remains in how we could tune between these resources and the users so that the greatest possible benefit could be achieved in the light of accelerated technological development. This chapter uncovers the challenges and opportunities in using Interactive Applications (IAs) technologies and should be an eye opener for academic libraries that Interactive Applications technology are important to transform the use of traditional resources to interactive resources.",signatures:"Husain Ghuloum and Zuwainah Al-lamki",downloadPdfUrl:"/chapter/pdf-download/75034",previewPdfUrl:"/chapter/pdf-preview/75034",authors:[{id:"327746",title:"Dr.",name:"Husain",surname:"Ghuloum",slug:"husain-ghuloum",fullName:"Husain Ghuloum"},{id:"328343",title:"Dr.",name:"Zuwainah",surname:"Al-lamki",slug:"zuwainah-al-lamki",fullName:"Zuwainah Al-lamki"}],corrections:null},{id:"77084",title:"Multiple Facets of Open: A Different View on Open Science",doi:"10.5772/intechopen.97815",slug:"multiple-facets-of-open-a-different-view-on-open-science",totalDownloads:252,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Open – a well-known word, but with multiple facets: open, open-minded… In the publishing industry, “open” and “openness” describe a movement which has been setting the scene over the last decades, however the opening of science is not a new momentum. Writing down our thoughts and ideas is regarded as a first indicator of opening the human mind. To cope with information overload, paper slips were used as a favourite device - a precursor to modern index cards and card catalogs. The internet opens the doors to disseminate and share knowledge in a fast and easy way. Now, science is emerging in cyberspace and an innovative level of science is shaping, the evolution of Cyberscience. Science is shifting into the open, Open Science is developing as an additional form of doing research. These diverse perspectives are part of a colorful picture of an evolving scientific landscape, which will rise awareness of changing work behaviors.",signatures:"Anne-Katharina Weilenmann",downloadPdfUrl:"/chapter/pdf-download/77084",previewPdfUrl:"/chapter/pdf-preview/77084",authors:[{id:"327624",title:"Ph.D. Student",name:"Anne-Katharina",surname:"Weilenmann",slug:"anne-katharina-weilenmann",fullName:"Anne-Katharina Weilenmann"}],corrections:null},{id:"74582",title:"Overview of the Principles and Practices of Open Access Publishing",doi:"10.5772/intechopen.95355",slug:"overview-of-the-principles-and-practices-of-open-access-publishing",totalDownloads:653,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"This chapter provides an overview of the principles and practices of open access (OA) publishing. It discusses various aspects of this emerging mode of scholarly publishing, including the definition of Open Access and its different types and models in addition to its growth and impact. The chapter also highlights the implications of open access publishing on copyright issues and how creative commons licenses are used to deal with this issue. The main focus of the chapter is to outline and discuss the different advantages and benefits of open access publishing, refuting a number of myths and misconceptions about OA publishing, and to highlight how authors and researchers can benefit from publishing their intellectual works in an open access channel. The chapter adopts the literature review as a methodology and a tool of data collection.",signatures:"Omer Hassan Abdelrahman",downloadPdfUrl:"/chapter/pdf-download/74582",previewPdfUrl:"/chapter/pdf-preview/74582",authors:[{id:"326361",title:"Associate Prof.",name:"Omer Hassan",surname:"Abdelrahman",slug:"omer-hassan-abdelrahman",fullName:"Omer Hassan Abdelrahman"}],corrections:null},{id:"74524",title:"Origins and Developments of the Open Access Books",doi:"10.5772/intechopen.95357",slug:"origins-and-developments-of-the-open-access-books",totalDownloads:492,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:1,abstract:"The open access books (OAB) are a product of the research that in recent years has gained its place in scientific publishing and open access (OA). Both have gone from initial diffidence (for different reasons) to a growing interest. In the first part of the article, we present the most recent data relating to this kind of publication while in the second one the OAB phenomenon is examined within a more general evolution of the OA. In this way there seems to be a link between the open access monographs and the diffusion of models increasingly distant from the original mission of the OA.",signatures:"Andrea Capaccioni",downloadPdfUrl:"/chapter/pdf-download/74524",previewPdfUrl:"/chapter/pdf-preview/74524",authors:[{id:"327100",title:"Associate Prof.",name:"Andrea",surname:"Capaccioni",slug:"andrea-capaccioni",fullName:"Andrea Capaccioni"}],corrections:null},{id:"76148",title:"FAIR and Open Research Metadata as Leverage for Digital Libraries: The Flemish Case",doi:"10.5772/intechopen.97192",slug:"fair-and-open-research-metadata-as-leverage-for-digital-libraries-the-flemish-case",totalDownloads:306,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Since the advent of the digital age, academic libraries have been transforming from traditional libraries to digital libraries. While digitisation of published materials has been taking place in most libraries, research data is not yet a common good. However, in an era where the Open Science movement affectuates the modus operandi of the entire research ecosystem, it is paramount for digital libraries to include information on other digital objects such as research data. In fact, FAIR and Open research (meta)data can truly act as a leverage for digital libraries and broaden the scope of the library from a place for content consumption to a place for content creation. In order to take on this role, digital libraries must cooperate with ICT and the research community to ensure that the infrastructure is in place to store research (meta)data and that the librarians have the digital skill set for handling FAIR and Open research (meta)data. Throughout the chapter, we will elaborate on the essentials for creating a digital repository, with emphasis on the underlying metadata scheme using the Flemish application profile for research data as example. In addition, we will highlight the essential roles for operating digital libraries containing research data.",signatures:"Sadia Vancauwenbergh",downloadPdfUrl:"/chapter/pdf-download/76148",previewPdfUrl:"/chapter/pdf-preview/76148",authors:[{id:"235835",title:"Dr.",name:"Sadia",surname:"Vancauwenbergh",slug:"sadia-vancauwenbergh",fullName:"Sadia Vancauwenbergh"}],corrections:null},{id:"74737",title:"An Educational Project Based on a Digital Library of Filmed Courses",doi:"10.5772/intechopen.95549",slug:"an-educational-project-based-on-a-digital-library-of-filmed-courses",totalDownloads:382,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter we describe the experience developed around OpenFING, a project based on a digital library of filmed courses. We highlight OpenFING as an initiative of students for students that has obtained the support of the Engineering School of Universidad de la República (Uruguay). Currently, OpenFING seeks its consolidation along with an undergraduate course of initiation to audiovisual and multimedia production. The project aims to be an engine to develop educational innovations and different computer tools to support teaching and learning. The objective is to transform OpenFING into an effective collaborative and interactive open learning platform. From the evidence collected by this work, we can conclude that OpenFING is perceived by students and some teachers as an appropriate resource complementary to learning.",signatures:"Carlos Luna, Clara Raimondi and Fernando Carpani",downloadPdfUrl:"/chapter/pdf-download/74737",previewPdfUrl:"/chapter/pdf-preview/74737",authors:[{id:"294685",title:"Dr.",name:"Carlos",surname:"Luna",slug:"carlos-luna",fullName:"Carlos Luna"},{id:"339490",title:"Prof.",name:"Clara",surname:"Raimondi",slug:"clara-raimondi",fullName:"Clara Raimondi"},{id:"339722",title:"Prof.",name:"Fernando",surname:"Carpani",slug:"fernando-carpani",fullName:"Fernando Carpani"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3771",title:"Data Acquisition",subtitle:null,isOpenForSubmission:!1,hash:"4b6e08b1a966416b7a738a8dd650d183",slug:"data-acquisition",bookSignature:"Michele Vadursi",coverURL:"https://cdn.intechopen.com/books/images_new/3771.jpg",editedByType:"Edited by",editors:[{id:"11823",title:"Dr.",name:"Michele",surname:"Vadursi",slug:"michele-vadursi",fullName:"Michele Vadursi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10260",title:"Digital Service Platforms",subtitle:null,isOpenForSubmission:!1,hash:"11dab65781b3c4347022c56477311f46",slug:"digital-service-platforms",bookSignature:"Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/10260.jpg",editedByType:"Edited by",editors:[{id:"2114",title:"Dr.",name:"Kyeong",surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66068",slug:"addendum-an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia",title:"Addendum - An Overview of PET Radiopharmaceuticals in Clinical Use: Regulatory, Quality and Pharmacopeia Monographs of the United States and Europe",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66068.pdf",downloadPdfUrl:"/chapter/pdf-download/66068",previewPdfUrl:"/chapter/pdf-preview/66068",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66068",risUrl:"/chapter/ris/66068",chapter:{id:"62269",slug:"an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp",signatures:"Ya-Yao Huang",dateSubmitted:"February 25th 2018",dateReviewed:"May 31st 2018",datePrePublished:"November 5th 2018",datePublished:"July 24th 2019",book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"247754",title:"Prof.",name:"Ya-Yao",middleName:null,surname:"Huang",fullName:"Ya-Yao Huang",slug:"ya-yao-huang",email:"careyyh@ntuh.gov.tw",position:null,institution:null}]}},chapter:{id:"62269",slug:"an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp",signatures:"Ya-Yao Huang",dateSubmitted:"February 25th 2018",dateReviewed:"May 31st 2018",datePrePublished:"November 5th 2018",datePublished:"July 24th 2019",book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"247754",title:"Prof.",name:"Ya-Yao",middleName:null,surname:"Huang",fullName:"Ya-Yao Huang",slug:"ya-yao-huang",email:"careyyh@ntuh.gov.tw",position:null,institution:null}]},book:{id:"7373",title:"Nuclear Medicine Physics",subtitle:null,fullTitle:"Nuclear Medicine Physics",slug:"nuclear-medicine-physics",publishedDate:"July 24th 2019",bookSignature:"Aamir Shahzad and Sajid Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/7373.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11626",leadTitle:null,title:"Brassica - Recent Advances",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tBrassicas are one of the important crops. They have grown in around 50 different countries. They exhibit great diversity in production which is reflected in different species, differences in sowing and harvesting time, duration of the growing season, cultivars, traits such as quality, insect pests, and diseases that attack them. Brassica plants possess a myrosinase-glucosinolate defense system that is unique to crucifers. It acts as a defense against several insect pests and diseases. Among the different Brassica species, Brassica napus, B. Rapa, and B. Juncea are widely grown for oilseed production while B. Oleracea var. Italica, capitata, botrytis and Gemmifera, and B. Rapa var. Chinensis are grown as vegetables. B. Carinata has been grown in Ethiopia. Over the years, numerous publications on various aspects of Brassica with useful information have been published. The present book will compile all the data comprehensively. It will be of immense use to Brassica researchers, teachers, and students.
",isbn:"978-1-83962-502-2",printIsbn:"978-1-83962-501-5",pdfIsbn:"978-1-83962-635-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"79b540fc5f61052fefeddda2b07fcde9",bookSignature:"Dr. Sarwan Kumar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11626.jpg",keywords:"Herbivore, Defense, Antixenosis, Antibiosis, Phytophagous, Herbivore, Rapeseed, Mustard, Myrosinase, Glucosinolate, Defense, Adaptation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2022",dateEndSecondStepPublish:"May 11th 2022",dateEndThirdStepPublish:"July 10th 2022",dateEndFourthStepPublish:"September 28th 2022",dateEndFifthStepPublish:"November 27th 2022",remainingDaysToSecondStep:"6 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Kumar has more than 15 years of work experience on host plant resistance to insect pests with particular reference to Brassica crops. He has worked as Visiting Academic at The University of Queensland, Australia, and he is the holder of the Australia Award. Dr. Kumar has published 42 research papers, 4 book chapters, 21 abstracts, and teaching manuals besides teaching courses in entomology.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"229507",title:"Dr.",name:"Sarwan",middleName:null,surname:"Kumar",slug:"sarwan-kumar",fullName:"Sarwan Kumar",profilePictureURL:"https://mts.intechopen.com/storage/users/229507/images/system/229507.jpg",biography:"Sarwan Kumar is working as Senior Entomologist (Associate Professor) at Punjab Agricultural University, India. He has more than 15 years of work experience on host plant resistance to insect pests with particular reference to Brassica crops. He has worked as Visiting Academic at The University of Queensland, Australia. His research interests include pest management on oilseed Brassica, peanuts, sunflower, sesame and flaxseed with focus on the development of sustainable pest management solutions such as host plant resistance.\nMore than 15 years of experience on host plant resistance to insect pests. Published 42 research papers, 4 book chapters, 21 abstracts and teaching manuals besides teaching courses in entomology.",institutionString:"Punjab Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Punjab Agricultural University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70655",title:"An Insight into the Changing Scenario of Gut Microbiome during Type 2 Diabetes",doi:"10.5772/intechopen.90697",slug:"an-insight-into-the-changing-scenario-of-gut-microbiome-during-type-2-diabetes",body:'\nOur quality of life and health status are modulated by our food habits and lifestyle. Hence several metabolic disorders and are the greatest global health issues are influenced by improper diet and lifestyle [1]. The other factors that are involved in the development of metabolic disorders and diseases are environmental factors, maternal health, and host genetic makeup. The resident microorganisms in our gastrointestinal tract are collectively collected as the gut microbiota (GM). GM consists of bacteria, fungi, Archaea, protozoa, and viruses. In case of mammals, GM comprises of four main phyla: Firmicutes (64%), Bacteroidetes (23%), Proteobacteria (8%), and Actinobacteria (3%). These phyla are important for the regulation of host metabolism and physiology [2]. The total number of both prokaryotic cells and host eukaryotic cells in the gut is approximately 100 trillion, which is three times that of the total number of human body cells [3]. Hence, our unique gut environment is considered as a functional and measurable organ [4]. However, the composition of GM varies along the gastrointestinal tract, and differs within and between individuals depending on the gestational age, mode of delivery, breastfeeding, antibiotic exposure, dietary lifestyle and nutritional status of the individual status of [5, 6]. The colonization of GM is limited in stomach and small intestine, but quite dense and diverse in the colon owing to the absence of digestive secretions, slow peristalsis, and rich nutrient supply [7]. This variety in composition of GM and its function is influenced by the consumption of improper diet, which in turn affects the health condition of the host. GM regulates the energy homeostasis, intestinal integrity and immunity against invading pathogens by participating in the digestive process and energy production, hampering pathogen colonization, and modulating the immune system; hence GM can modulate the overall health status of the host. Gut microbiome also influences an individual’s metabolic status such as calorie derived from indigestible dietary substances and storage of calories in adipose tissue, which regulates incidence of obesity in an individual. Studies from germ-free and wild type mice showed alteration in homeostasis in kidney, liver, and intestine in germ-free mice depicting the fact that GM influences whole body metabolism [8, 9, 10, 11, 12, 13]. GM also plays a vital role in vitamin production, energy harvest and storage, fermentation and absorption of undigested carbohydrates. The distribution of GM is determined by diet to a large extent as evident from individuals who follow a diet high in animal fat have dominance of Bacteroides in GM, whereas those who follow a carbohydrate-rich diet have a
Gut microbiota | \nFacts and effects | \n
---|---|
Bifidobacteria | \nPopulation reduces in high fat-fed mice gut increasing endotoxemia [14] | \n
Bacteroidetes | \nPopulation high in the gut of people consuming animal-based food rich diet [15] | \n
\n | \nPopulation high in the gut of people consuming plant-based food rich diet [16] | \n
\n | \nBreak down bile acid in the intestine to its secondary metabolites like deoxycholic acid and lithocholic acid. These metabolites bind to TGR5 receptor (G-protein-coupled receptor) present in the endocrine glands, adipocytes, muscles, immune organs, spinal cord and enteric nervous system, and stimulates the secretion of incretin hormone GLP-1 and insulin [19] | \n
\n | \nThey are capable of reducing T2D markers like serum glucose, glycated hemoglobin and c-peptide in high-fructose-fed rats along with reduction in inflammatory cytokines IL-6 and TNF-α in adipose tissue and down-regulated forms of GLUT 4 and PPAR-γ [58] | \n
\n | \nThey can increase lipopolysaccharide-binding protein expression in plasma and diminishes endotoxemia [63] | \n
\n | \nThey can restrict bacterial translocation in intestine alleviating bacteremia in early stages of T2D [64] | \n
\n | \nOral administration can ameliorate impaired glucose tolerance in hyperinsulinemic rats induced by high-fructose [65] | \n
\n | \nOral administration is positively correlated with expression of CB2 receptor [76] | \n
\n | \nOral administration is negatively correlated with CB2 expression probiotics control GM through CB2 receptor expression [76] | \n
\n | \nImpairs inflammation by altering the intestinal permeability [80, 81] | \n
Bacteroidetes:Firmicutes ratio | \nLow in GM of obese patients [112, 113] | \n
Butyrate-producing bacteria ( | \nLow population in GM of T2DM patients [113] | \n
Firmicutes (Gram-positive) and Bacteroidetes (Gram-negative) | \n90% of the bacterial species present in gut [15, 16] | \n
Proteobacteria and particularly | \nHigh in T2D patients [113, 121] | \n
Enterobacteriaceae | \nPopulation elevated by T2D drugs [122] | \n
\n | \nPopulation lowered by T2D drugs [122] | \n
\n \n | \nMetformin increases the populations of | \n
Facts and effects of various types of bacteria present in GM
Several reports have shown that the metabolites derived by GM from fermentation of food play a key role in maintenance of the host metabolism. Clostridium and Eubacterium from our GM break down bile acid in the intestine to its secondary metabolites like deoxycholic acid and lithocholic acid. These metabolites bind to Takeda G protein coupled receptor-5 TGR5 receptor (G-protein-coupled bile receptor) present in the endocrine glands, adipocytes, muscles, immune organs, spinal cord and enteric nervous system, and stimulates the secretion of incretin hormone GLP-1 and insulin. Hence these metabolites in turn promote energy expenditure (Table 1) [19]. Long chain fatty acids, for example linoleic acid produced by the GM regulates our lipid profile finally resulting in obesity [20]. Short chain fatty acids (SCFs) another secondary metabolite of gut microbial fermentation is formed by the digestion of indigestible polysaccharides and oligosaccharides that are neither digested nor absorbed in the proximal jejunum [21]. SCFs mainly acetate and propionate contributed by Bacteroidetes and butyrate produced by Firmicutes balance the host metabolism by influencing energy homeostasis, lipid accumulation and appetite [22]. SCF produced in the gastrointestinal tract are also known to control the pH of the lumen by increasing the absorption of nutrients. SCFs also act as a source of nutrition for GM due to high carbon content [23]. Butyrate is the main source of energy for colonocytes. It aids in the proliferation, maturation, maintenance of colonocytes and also protects the colon by enhancing mucin expression and immune response [24]. Acetate and propionate can cross the liver epithelium, and propionate gets metabolized in the liver, whereas acetate stays in the peripheral circulation [25]. SCF also regulates epithelial barrier integrity by maintaining the tight junction proteins like claudin-1, occludin, and Zonula Occludens-1. Suppression of these proteins leads to invasion of bacteria and lipopolysaccharides (LPS) stimulating an inflammatory response [26]. Hence SCF acts as energy source and also regulates host biological responses including inflammation, oxidative stress, and immune response toward Crohn’s disease, ulcerative colitis, and colorectal cancer [27, 28]. Host metabolism is activated by SCFs by direct stimulation of G-coupled receptors like free fatty acid receptors 2 and 3 (FFAR2/GPR41 and FFAR3/GPR41) occurring mainly in the gut epithelial cells. They also activate host metabolism by inhibiting nuclear class I histone deacetylases (HDACs) present in the epithelial cells [27]. FFAR2 acts as the receptor for acetate and FFAR3 is the receptor for butyrate and propionate. Activation of these receptors regulates the level of satiety hormones like ghrelin (orexigenic peptide), glucagon like peptide-1 (GLP-1), and peptide YY (PYY) (anorexigenic peptide) [29]. Ghrelin secretion occurs pre-meal, while GLP-1 and PYY are secreted post-meal, which in turn stimulates insulin production in the pancreatic 𝛽 cells. GLP-1 and PYY also reduce food intake, normalizes weight loss and maintain the balance of energy intake. Increase in the production of SCFs enhances the secretion of PYY and GLP-1 but decreases secretion of ghrelin, which ultimately leads to increased satiety and reduction in food intake [30]. The other factors inducing reduced appetite is mediated by butyrate and propionate by (i) enhanced expression of leptin in adipocytes, direct regulation of body weight and energy homeostasis by decreased food intake and upregulated energy expenditure [31], (ii) promoting gluconeogenesis in the intestinal cells [32] and (iii) inhibition of histone acetyltransferase and deacetylases which exhibit anti-inflammatory responses, epigenetic modification necessary for proliferation and differentiation of immune cells, activated AMP-activated protein kinase (AMPK) pathway synchronised adiponectin secretion, induction of mitochondrial biogenesis and fatty acid oxidation [33]. In healthy subjects SCF regulates integrity of gut, secretion of hormones, and immune responses, while in metabolically unhealthy subjects SCF implements protection from diabetes, ulcerative colitis, colorectal cancer, and neurodegenerative disorders [24, 34].
\nRecent studies targeting metagenomics have disclosed that approximately 90% of the bacterial species in the GM of adult humans are Bacteroidetes (Gram-negative) and Firmicutes (Gram-positive) [35, 36]. A healthy person fosters 500–1000 bacterial species at a single time and almost 1012–1014 colony-forming units (CFU) with a total mass weight of about 1–2 kg in the total gut [37] with 109–1012 CFU/ml in the colon, 101–103 CFU/ml in jejunum and 104–108 CFU/ml in the ileum [38]. Transfer of microbiota from mother to embryo takes place in utero or during birth and attains strength by the 2 years. Composition of GM is shaped by host genetics, environmental factors and early exposure to microbes during birth. The other factors that regulate formation of a stale GM are exposure to vaginal microbiome during normal delivery, skin microbiota during cesarean sections, breast-feeding and antibiotics in neonatal or early childhood.
\nNormal diet of a healthy human contains a considerable percentage of carbohydrates comprising of monosaccharides, disaccharides and complex polysaccharides. The difference lies in the absorption of the sugars, for example common sugars like cane sugar and fruit sugars are readily absorbed in the intestine, disaccharides like maltose, lactose and sucrose and complex polysaccharides like pectin, starch and hemicellulose are broken down into monosaccharides in the ileum with the help of bacterial enzymes like glycosidases before being absorbed [39]. After food intake consisting of carbohydrate-rich diet, glucose levels in the blood rise, and later are strongly regulated and kept at a homeostatic level by the help of two hormones, insulin and glucagon. Carbohydrate digestion and absorption occurs in the upper digestive tract via glucose transporters called GLUTs (glucose transporters) located on the epithelial cells [40]. GLUT proteins uptake glucose into the pancreatic β-cells. Metabolization of glucose stimulates insulin secretion due to increased ATP/ADP ratio, membrane depolarization and closure of potassium channels, resulting in calcium dependant exocytosis of insulin [41].
\nThe role of gut environment and gut associated lymphoid tissue plays a pivotal role in T2D [42]. T2D is a chronic metabolic disorder characterized by fasting serum hyperglycemia, non-responsiveness of insulin and insulin insufficiency [43]. Insulin resistance or non-responsiveness occurs in the liver and skeletal muscle cells when they undergo failure to sense insulin. Other factors in T2D are non-responsiveness or deficiency of incretins, amplified lipid catabolism, increased glucagon levels in circulation and increased salt and water renal retention [43, 44]. High-fat-diet-fed germ-free mice, wild type mice and standard diet fed mice exhibit different metabolic and immunological characters depending on diet and GM [45, 46]. Also mice belonging to same genotype and diet exhibit different metabolism of glucose depending on their GM [47].
\nIn the earlier sections it has been discusses that our GM plays a key role in digestion and absorption of food. Increased population of Bacteroidetes lead to increase in energy production. The population of Bifidobacteria reduce in high fat-fed mice gut increasing endotoxemia. Prebiotic supplementation can restore Bifidobacteria levels in the mouse gut [48, 49]. Bacteroidetes are more widespread in the gut of people consuming animal-based food rich diet.
Low-grade inflammation is a key pathophysiological factor behind the progression of type 2 diabetes (T2D), and incidence of hyperglycemia and insulin resistance [55]. Progression of T2D occurs along with reduced GM diversity and increased gut inflammation. Gut inflammation includes innate immune responses via toll-like receptors, (TLRs) secretion of proinflammatory cytokines and increased endotoxemia. Also during high-fat diet induced obesity, intestinal Gram-negative bacteria translocates in the circulatory system, adipose tissue and cause endotoxemia [56].
\nProbiotics enhance production of interleukin-10 (IL-10) an important regulatory and anti-inflammatory cytokine in diabetic mice. Increased IL-10 down-regulates proinflammatory cytokines like interferon-γ (IFN-γ) and interleukin-2 (IL-2)/interleukin 1-β (IL-1β) preventing inflammation and incidence of diabetes [56, 57].
Influence of gut microbiota in various physiological responses [
Increased gut permeability provides the relation between high-fat diet and LPS by causing LPS entry into circulation via the portal system in T2D patients [66]. Animal model studies have provided evidence between increased intestinal permeability and progression of obesity and insulin resistance [67, 68]. Consumption of prebiotics increase gut microbiota, rectify intestinal permeability, diminish inflammation, alleviate endotoxemia and ameliorate glucose tolerance [68]. High-fat diet induce decrease in tight junction proteins regulating epithelial integrity of gut lining and gut permeability such as zonula occluden-1 (ZO-1) and occludin. Dietary fatty acids activate toll-like receptor 2 (TLR-2) and toll like receptor 4 (TLR-4) signaling pathways. TLR-4 leads to LPS translocation into intestinal capillaries and induces insulin resistance in mice [69, 70, 71]. Altered gut permeability and plasma LPS levels are related with distribution of ZO-1 and occluding and endocannabinoid (eCB) system. Gut microbes selectively modify expression of the cannabinoid receptor 1 (CB1) in colon also affecting zona occluding ZO-1 and occludin [72]. Administration of probiotics changes the gut microbiota resulting in reduced gut permeability in obese mice. Antibiotic exposure induces metabolic endotoxemia in mice fed with high-fat diet, along with increased gut permeability, secretion of proinflammatory cytokines, and incidence of diabetes and obesity (Figure 1). Modulation of the eCB system is connected with inflammation and diabetes [72, 73]. Moderation of GM controls eCB expression in gut, thereby regulating gut permeability and plasma LPS levels through the CB1 receptor [72]. Changes in the gut microbiota due to prebiotic feeding reduce gut permeability in obese mice. Modulation of gut permeability occurs through the distribution of tight junction proteins through eCB systems [55]. Activation of cannabinoid CB2 receptor and blocking of CB1 receptor improves glucose tolerance [74, 75].
GM has a close association with host obesity, since the increase in total body fat in wild type mice is high when compared to germ free mice consuming more food. Transplanting of cecum-derived microbiota induced an increase in body fat mass and insulin resistance, adipocyte hypertrophy, and increased level of circulating leptin and glucose [78]. Germ free mice when fed with a diet rich in fat and sugar content showed lean phenotype however wild type mice who were fed with the high sugar and high fat diet turned obese. Also the germ free mice showed enhanced insulin sensitivity, leading to improved glucose tolerance and altered cholesterol metabolism diminishing cholesterol storage and increasing cholesterol excretion via fecal route. GM alters intestinal permeability, causes endotoxemia, enhances calorie provision, stimulates endocannabinoid system (eCB), regulates lipid metabolism by increasing activity of lipoprotein lipase and lipogenesis resulting in host obesity. Lipopolysaccharides (LPS), present in the cell membrane of Gram-negative bacteria, stimulate low-grade inflammation and incidence of insulin resistance (IR). LPS reaches the circulation from gut by diffusion either by enhanced intestinal permeability or absorption after association with chylomicron [79]. LPS acts as a ligand for toll-like receptors TLR-4 occurring in immune cells, liver and adipose tissue. LPS activated TLR-4 prompts conformational changes recruiting adapter molecules like myeloid differentiation primary factor MyD88 protein, IL-1 receptor associated kinase IRAK, TNF receptor associated factor TRAF6, and NF-κB inducing kinase NIK, phosphorylating and degrading inhibitor of nuclear factor kappa B kinase IKKB, inhibitor of nuclear factor kappa light chain enhancer of activated B cells NF-κB. Activated NF-κB translocates to the nucleus triggering expression of inflammatory proteins and various pathways like janus kinase JNK, p38 microtubule associated protein kinase MAPK, and extracelluar signal regulated kinase ERK finally resulting in insulin resistance (Figure 1). Colonization of
Bile acids affect glucose homeostasis via activation of nuclear farnesoid X receptor (FXR) and the membrane-bound G protein coupled receptor, TGR5. These receptors are expressed in liver, ileum and pancreas [85]. Some bile acids act as agonists for FXR, and others are FXR antagonists [86, 87, 88]. Known FXR agonists are CDCA, lithocholic acid, deoxycholic acid, and cholic acid [89]. The antidiabetic effects exhibited by vertical sleeve gastrectomy, bariatric surgery, occurs through FXR [90]. Also, intestinal FXR agonist treatment can improve insulin sensitivity [91]. In the ileum, activation of FXR leads to the production of fibroblast growth factor-19, a hormone that affects glucose tolerance through mechanisms that are largely independent of insulin [92, 93]. Activation of TGR5 produces glucagon-like peptide-1 (GLP-1) from ileum improves both energy and glucose homeostasis [94]. Activation of FXR in pancreas regulates insulin transport and secretion [95], and protects the islets from lipotoxicity [96]. FXR activation in liver improves insulin sensitivity in T2D patients [97]. The GM can modulate the amount and type of secondary bile acids produced via FXR and TGR5 signaling. GM enzymes such as bile salt hydrolase for deconjugation, 7-alpha dehydroxylase for dihydroxylation and 7α-hydroxysteroid dehydrogenase for epimerization of bile acids are reduced in T2D patients compared to healthy controls [98]. Bile acid concentrations in the circulation show a diurnal pattern since they increase after food intake [99].
\nOur body metabolism, inflammatory processes and innate immune system are regulated by dietary lipids [100]. The dietary lipids can also act as (proinflammatory) ligands which can bind to nuclear receptors [101]. The nuclear receptors are peroxisome-proliferator-activated receptors (PPAR) and liver X receptors (LXR) which regulate metabolic and inflammatory pathways. Hence the dietary lipids can improve insulin action and down-regulate secretion of pro-inflammatory cytokines [102, 103]. Lipids can also activate G-protein coupled receptors (Gpcr) such as Gpr43 when activated by dietary-metabolite acetate lipolysis in adipocytes is decreased leading to reduced plasma-free fatty acids. Gpr43 can be considered as a potential target for regulation of lipid metabolism [104]. Inflammation and lipid accumulation are characteristic features of atherosclerosis [105]. Recent evidences provide sufficient link between atherosclerosis and GM variety [106]. Short-term antibiotic administration can alter the composition of GM which can convert dietary choline and l-carnitine to trimethylamine (TMA). TMA is later oxidized into TMAO by the action of hepatic Flavin monooxygenases [107]. Dietary choline is highly available in foods rich in lipid phosphatidylcholine, lecithin, such as in eggs, red meat, milk, poultry, liver, and fish [108]. Bile acids are key modulators of lipid and cholesterol metabolism, and they facilitate intestinal absorption and transport of nutrients, vitamins, and lipids. Production of bile occurs in the liver and 95% of bile acids are reabsorbed in the ileum. Later the bile acids are re-absorbed in liver, entering the enterohepatic circulation. GM converts primary bile salts to secondary bile salts by bile acid de-hydroxylation [109]. Bile acids can also result in the release of GLP-1 from enteroendocrine L cells via activation of Takeda G protein coupled receptor-5 (TGR5) (Figure 1). This phenomenon affects insulin secretion sensitivity [110]. Bile acids have another receptor called farnesoid X receptor (FXR) present in liver, intestine, and pancreatic beta cells [111]. Hence, bile acids improve our metabolism in the long term after bariatric surgery by enhancing intestinal hormone secretion.
\nThe GM of T2D patients exhibit low population of Firmicutes and Clostridia and high ratio of Bacteroidetes:Firmicutes (Table 1) [112, 113]. However, the GM of T2DM and obese patients are not always identical because the GM of obese patients show decreased Bacteroidetes:Firmicutes ratio [113, 114, 115, 118]. GM of T2DM patients also show low population of butyrate-producing bacteria. Short-chain fatty acids (SCFAs) like butyrate, acetate, and propionate are fermented from dietary fiber in large intestine by GM. SCFAs regulate energy metabolism, immune responses and tumorigenesis in gut. Butyrate is the energy source for colonic epithelial cells. Butyrate perpetuates intestinal integrity and thereby avert translocation of Gram-negative intestinal bacteria across the lumen of the gut. This phenomenon ultimately leads to endotoxemia triggering a low-grade inflammation during T2D [15, 113, 115].
\nThe major risk factors behind T2D are genetic predisposition, less physical activity, fetal programming, obesity and altered GM [114, 116]. Total weight of GM in the distal gut is about 1.5 kg and it is considered as a microbial organ. The GM consists of embers from Bacteria, Archaea, Eukarya and viruses, but a large part of the population includes anaerobic bacteria. 90% of the bacterial species present in gut are grouped into the two bacterial phyla Firmicutes (Gram-positive) and Bacteroidetes (Gram-negative) (Table 1) [15, 16]. An average adult fosters a minimum of 160 bacterial species and a set of genes in the GM is obligatory for proper functioning of the GM [15]. The GM gives protection from disease causing pathogens and facilitates the immune system. GM also help in production of vitamin K and many B-vitamins like folate, vitamin B12. Metagenomic studies about sequencing of T2D patients exhibit dysbiotic GM and less butyrate-producing bacteria (
Antibiotics have become very popular for elimination of pathogenic bacteria. However, antibiotics are also harmful to the local population of beneficial GM. Hence excess use of antibiotics must be prevented for healthy maintenance of GM. Bacterio-therapeutic use of antibiotics in farm animals has increased increase growth and food production, but has taken a toll of their metabolic pathways [115]. Excess of usage of antibiotics in early infancy show chronic effects on GM diversity, overweight in infants, obesity in adults. For example, excess of bacterio-therapy with vancomycin has increased the incidence of obesity in adults. Even, short-term treatment with vancomycin impeded peripheral insulin sensitivity and other related metabolic syndromes affecting GM (Table 2) [115]. Hence, even short-term treatment with oral antibiotics harness intense and chronic damage to GM diversity and function.
\nTypes of cure | \nEffects | \n
---|---|
Antibiotics | \n\n
| \n
Prebiotics and probiotics | \n\n\n | \n
Dietary modulation | \n\n
| \n
Metformin | \n\n
| \n
Fecal microbiota transplant | \n\n\n | \n
Bariatric surgery | \n\n\n | \n
Types of treatments for T2D involving modulation of GM and their effects.
Recently prebiotics and probiotics have gained a lot of popularity among individuals as a healthy substitute for antibiotics. Prebiotics are actually indigestible carbohydrates that improve the growth and function of colonic bacteria boosting host health. Prebiotics include oligosaccharides which cannot be digested in the upper GI tract. These oligosaccharides are fermented, producing SCFAs in the colon and result in stimulation of growth of colonic. Prebiotics can be obtained from a large number of dietary elements like barley, garlic, asparagus, wheat bran and onions and both prebiotics and probiotics can be obtained from pickled and fermented foods like sauerkraut, kimchi, miso, yogurt [15, 16]. Probiotics obtained from food and supplements contain some very popular strains like bifidobacteria and lactobacilli. These bacteria alter the composition and function of GM as well as host system activity. The prebiotics and probiotics compete with pathogenic bacteria, intensify the intestinal barrier by secreting some antimicrobial substances and enhances the immune system (Table 2) [15, 16, 115].
\nChanges in diet plan can modulate activity of GM and host metabolism. A fat and carbohydrate restricted diet increased the ratio of Bacteroidetes to Firmicutes in obese patients with T2D [118]. Also calorie deficient diet plans or diet plans rich in high-fiber macrobiotics like complex carbohydrates, legumes, fermented products, sea salt, and green tea and free of animal protein fat, and added sugar improved dysbiosis, increased GM ecosystem diversity, and enhanced SCFA producers in T2D patients. Macrobiotic diet can more efficiently reduce fasting and postprandial glucose, A1C, serum cholesterol, insulin resistance, BMI, waist and hip circumferences than the control diet. Also macrobiotic diet could effectively reduce pro-inflammatory bacterial strains (Table 2) [124].
\nMetformin, already a well-established drug for T2D, has recently been known to have bacterio-therapeutic effects on microbial composition and production of SCFA. Several recent reports have shown that metformin affects GM of T2D patients like increasing the levels of butyrate-producing bacteria. Metformin can also decrease the levels of Lactobacillus which remains high in T2D patients (Table 2) [125].
\nFecal microbiota transplant, or stool transplant also called bacteriotherapy, which is the process of replacing fecal bacteria from a healthy individual into a host individual has been quite effective in restoring GM composition. Fecal microbiota transplant is used in treating recurrent
Bariatric surgery, or Roux-en-Y gastric bypass (RYGBP), is removal of a portion of stomach and re-routing the small intestine to a small stomach pouch. It is performed on people as an efficient tool to treat obesity. After bariatric surgery huge changes occur in the GM, Proteobacteria rises and Firmicutes and Bacteroides lowers, BMI reduces by 15–32%, C-reactive protein decreases and T2DM is attenuated. However, increase in some bacteria are highly significant than the normal levels in lean controls, which means these alterations are linked with GM modification, and not body weight (Table 2) [112, 117, 118].
\nThe GM makes one of the largest organs in human body and remains the reason behind various metabolic disorders such as obesity, atherosclerosis, type 2 diabetes and so on. The alterations in GM is very susceptible to changes in our diet and environment which makes them vulnerable and ultimately ends in the incidence of diseases. Reversal of the GM alterations can restore the normal physiological functions and health. Hence further investigation is required in order to get a detailed scenario of the composition of various GM and their detailed function. Scrutiny of the composition of the GM and the change in their population in various metabolic disorders can create new avenues in finding out the treatment for those diseases. Deeper insights in the composition and function of GM can also provide more ideas for development of various techniques and drugs for the enhancement of the GM for better physiological responses and treatment of diseases.
\nAM is thankful to the Science & Engineering Research Board (SERB), Department of Science & Technology, Govt. of India, for her JRF fellowship (Grant No. ECR/2017/001028). DC thankful DBT for JRF. SD thanks UGC, New Delhi for SRF. The authors are thankful to Dr. Rakesh Kundu for technical assistance and constant encouragement.
\nThe authors declare no conflict of interest.
The authors thank to the Head of the Department of Zoology, for providing the assistance in their research work.
\nThe earliest known description of motor neuron disease was in 1824 by Charles Bell, although it may have been described even earlier. The term amyotrophic lateral sclerosis was coined by Jean-Martin Charcot in his paper in 1874, where he described the condition and its connection to underlying neurological problems [1]. In 1886, Alfred Vulpian described the flail arm presentation of ALS. In 1918, Pierre Marie and his student, Patrikios, described the flail leg presentation of ALS. In 1945, the US Navy reported ALS concomitant with dementia and parkinsonism in Guam. Later, in 2011, we would know that this is due to the C9ORF72 mutation [2]. In the 1969, electrodiagnostic criteria were established for the diagnosis of ALS and updated in 2008 [3]. In 1990, the El Escorial criteria for diagnosis were established at the World Federation of Neurology meeting [4]. The first mutation related to ALS identified was the SOD1 mutation in 1993. As a result of this discovery, mouse models were created and the first medication for ALS was developed, riluzole. In 2015, the second ALS medication, edaravone, was approved [2].
The most common motor neuron disease is ALS with an incidence of up to 8 per 100,000 people worldwide [5]. On average, the age of onset is 56 in sporadic ALS and 46 in familial ALS. Men are more likely to develop ALS than women. Disease duration has been quoted to be 3 years, on average; however, this is extremely variable, and it is impossible to predict the rate of decline. Cause of death is usually respiratory failure [2].
There are several clinical phenotypes that describe the symptom onset of amyotrophic lateral sclerosis. The classic (Charcot) phenotype is characterized by limb onset with pyramidal signs, which are not predominant [6]. This includes patients who have onset in the proximal legs. The flail arm phenotype has progressive proximal weakness and wasting in the arms for at least 12 months before the involvement of the legs or bulbar [6]. By contrast, patients with the flail leg phenotype have progressive distal onset of weakness and wasting in the legs and feet for 12 months before the involvement of the arms or bulbar. These patients are more likely to have an SOD1 mutation, with an odds ratio of 3.75 [6].
Predominantly upper motor neuron (UMN) ALS has pyramidal signs, such as severe spastic para- or tetraparesis [6]. Upper motor neuron signs, such as Babinski, Hoffmann and hyperactive reflexes or jaw jerk, are present [6]. These patients also have dysarthria or pseudobulbar affect and must show clear signs of lower motor neuron disease to differentiate them from primary lateral sclerosis [2]. This is indicated by muscle weakness or wasting, or by the presence of denervation on EMG in at least 2 different muscles [3]. These patients are more likely to have a TARDP mutation, with an odds ratio of 2.65 [6].
The bulbar phenotype has a bulbar onset of disease, characterized by dysarthria or dysphagia. They have wasting of the tongue with fasciculations on examination, and they seem to spare the limbs for at least 6 months [6]. This phenotype is more typically seen in patients with the C9ORF72 mutation with an odds ratio of 2.39 [6]. Finally, in the respiratory phenotype, prevalent respiratory impairment is apparent at onset. This may include orthopnea or dyspnea on exertion or at rest. Upper and lower motor neuron signs in this subgroup are mild in the first 6 months of disease [6].
The El Escorial criteria are used to make the diagnosis of ALS [2]. They are broken down into possible, probable or definite ALS. The criteria require progression of upper and lower motor neuron deficits [4]. The signs can be clinical or electrodiagnostic (laboratory-supported ALS has been incorporated into the other categories) [3]. Definite ALS is defined by the combination of upper and lower motor neuron signs in three regions of the body, including limbs (each limb is a region) and bulbar. In probable ALS, only two regions are required, although at least one upper motor neuron sign should be more rostral. In possible ALS, only one region of both upper and lower motor neuron signs is needed. Alternatively, two regions of the upper motor neuron signs are caudal to the lower motor neuron signs [4].
Electrodiagnostic criteria of ALS have been established [3]. CMAPs should be no less than 75% of their normal value and reduction of amplitude between two points of stimulation should not be more than 30%, as this would constitute a conduction block [3]. Motor latencies and durations should be normal, or not more than 1.5 times the upper limit of normal [3]. F-response latencies should not be more than 1.3 times the upper limit of normal [3]. There should be no conduction block, as this is a sign of multifocal motor neuropathy [2]. Sensory evoked potentials should be normal in ALS [2]. On electromyography, there should be positive sharp waves, fibrillation potentials and/or fasciculation potentials in at least 2 regions [3]. Chronic neurogenic changes, such as motor unit configuration of increased duration/amplitude, polyphasia, early/reduced recruitment and increased envelope amplitude of interference pattern, are expected to be present [3].
The differential diagnosis of ALS is broad and includes infectious, inflammatory, paraneoplastic and toxic/metabolic causes [7]. Benign fasciculation syndrome is a common differential to ALS. The fasciculations in benign fasciculation syndrome are exacerbated by exercise, anxiety, caffeine, thyrotoxicosis and alcohol [7]. Only a small subset of patients who present with fasciculations progress to include other motor neuron signs. Calf fasciculations are particularly benign in nature. On electromyography, the fasciculations in ALS can double, are shorter in duration, have polyphasia and have a higher firing rate than those in benign fasciculation syndrome [4].
Multifocal motor neuropathy with conduction block has a prevalence of 0.6 per 100,000 people, which is 10 times rarer than ALS. Compared with ALS, there is a slower progression and younger onset age, and it tends to be more distal with minimal wasting [7]. Wrist drop or finger drop is a common presentation. Sensory system is not involved, unless this is a rarer form, such as MADSAM [2]. Reflexes are variable and can be brisk in up to 20% of patients. There is no bulbar or respiratory involvement [7]. The presence of conduction block on motor nerve conduction studies or triple stimulation technique (TST) is significant. Multifocal motor neuropathy and its subtypes are treatable with IVIG [2, 7].
Chronic inflammatory demyelinating polyradiculopathy has a motor predominant form that can mimic ALS [2]. The disease is symmetric with a relapsing and remitting course, which distinguishes it from ALS [7]. CSF protein elevation is important in its diagnosis and treatment is IVIG [2, 7].
Inclusion body myositis is a myopathy that mimics the anterior horn disease. Involvement of specific muscle groups, including quadriceps, wrist and finger flexors, is suspicious for this disease [2]. About 5% of these patients can have overactive reflexes and up to 40% can have fasciculations [7]. To further complicate things, electrodiagnostic studies of these patients can look more neurogenic than myogenic [7]. Quantitative motor unit analysis of the quadriceps is most sensitive in revealing a myogenic pattern with short duration units [7]. Muscle biopsy is diagnostic [2]. There is no treatment for inclusion body myositis [2].
Spinobulbar muscular atrophy is a different motor neuron disease caused by an x-linked polyglutamine mutation with CAG repeats in the androgen receptor gene [2]. This makes the androgen receptor less functional and causes atrophy and weakness in bulbar and limb girdle muscles [2]. Endocrine signs, such as gynecomastia, diabetes mellitus and testicular atrophy, differentiate this from ALS [7]. There is no treatment for spinobulbar muscular atrophy [2, 7].
Primary progressive multiple sclerosis can mimic ALS; however, this is easily excluded with MRIs of the neuroaxis or the presence of oligoclonal bands in the CSF [7]. Myasthenia gravis, particularly MUSK, may mimic ALS [7]. Myasthenia gravis is characterized by fatigable weakness, differentiating it from the weakness of ALS [2]. Serum antibody testing can differentiate myasthenia gravis from ALS [7].
Infectious causes of motor neuron mimic syndromes include human T-lymphotropic virus (HTLV) and West Nile virus, as well as post-poliomyelitis syndrome [7]. Polio infections affect the anterior horn cells [2]. West Nile virus has an associated myelitis, among other neurologic symptoms [2]. HTLV causes a demyelinating upper motor neuron disease called tropical spastic paraparesis [7]. Bladder dysfunction and sensory changes differentiate this from ALS [7].
The mainstay of treatment at this time is riluzole [2]. Edaravone is also approved for the treatment of ALS; however, its intravenous administration and requirement of a port leads to complications [8]. An oral form of Edaravone is being developed. A third approved drug, a combination of dextromethorphan and quinidine, has been beneficial for pseudobulbar affect and other bulbar dysfunction in ALS [2].
Respiratory function is monitored using forced vital capacity (FVC) every 3 months [9]. It is more accurately done lying down [9]. Unfortunately, FVC is not a good measure of early respiratory decline and can be confounded by the inability to create an adequate seal on the mouthpiece [9]. Respiratory failure in ALS is best treated with the use of noninvasive ventilation (NIV) [2]. These methods include cough assist early on and then may advance to BiPAP [9]. Invasive ventilation, such as intubation and tracheostomy, are options for emergent respiratory support or severe respiratory failure in ALS; however, there will be a difficult decision to withdraw invasive respiratory support, should the patient worsen. Early discussion of advanced directives (before dementia or inability to communicate) is essential to prevent unwanted invasive procedures in an emergency [9].
Physical and occupational therapy can help improve function by training patients in compensatory skills and providing assistive devices for every step of the way. A study that looked at exercise in ALS showed there is no risk of worsening disease with moderate exercise [10]. Low-impact aerobic exercises can improve cardiovascular health and decrease depressive symptoms [10]. Speech-language pathology is important for tracking bulbar dysfunction and giving advice on how to speak more clearly or modify foods and drink to prevent choking [10].
Maintaining weight using a high-calorie diet has been shown to improve quality of life and survival in patients with ALS [11]. More studies on which macronutrients are most beneficial are needed, although current studies show that high-fat and high-cholesterol diets are beneficial [11]. If bulbar dysfunction progresses to the point where the patient cannot eat or drink without choking, or if the patient loses more than 5% of his or her body weight between visits (3 months), a feeding tube (usually a percutaneous endoscopic gastrostomy, or PEG) is recommended [11]. Unfortunately, there is weak evidence that PEG tubes prolong survival, despite benefits of reducing weight loss, preventing dehydration and administration of medications [11].
The future of directed treatments for ALS is bright. Later in this chapter, I will discuss research into the treatment of genetic ALS.
About 10% of ALS cases are genetic [2]. Most are autosomal dominant, although they can be recessive or X-linked [2]. Over 30 genes related to ALS have been discovered so far. The most common of these are C9ORF72 (about 30% in Europeans and 2.3% in Asians), SOD1 (14.8% in Europeans and 30% in Asians), TAR DNA-binding protein (4.2% in Europeans and 1.5% in Asians) and fused in sarcoma (2.8% in Europeans and 6.4% in Asians) [12]. Ubiquilin2 (UBQLN2), ALSIN, senataxin (SETX), spatacsin, vesicle-associated membrane protein-associated protein B (VAPB), angiogenin (ANG), factor-induced gene 4 (FIG 4), optineurin (OPTN) and “other unknown genes” account for the rest [2]. Only a few of these, such as C9ORF72, are causal. The rest are disease-modifying genes [12].
C9ORF72 is a protein differentially expressed in normal and neoplastic cells, which modulate (via Rab or Ras GTPase) endosomal trafficking and autophagy in primary neurons [12, 13]. The gene is located on chromosome 9p21.2 and is a hexanucleotide repeat of GGGGCC [2]. In a healthy person, there are 20–30 repeats; however, someone with the mutation can have hundreds of repeats [13]. Although anticipation is shown in trinucleotide repeat disorders, it has not been demonstrated in hexanucleotide repeat disorders [14]. Repeats are typically expanded in multiples of 3 to preserve the genetic reading frame [15]. Most repeat disorders do not cause catastrophic frame shift mutations, unless a stop codon is the triplet added [15]. There is a transitional number between the normal number of repeats to the permutation and finally to the number of repeats that determine a mutation, although exact numbers are currently not agreed upon in ALS [13].
Typically, after inheritance of a repeat expansion, it remains dormant in the cell [13]. As the cells divide, the repeats tend to continue to expand when more repeats are copied onto the daughter strands during replication [13]. Repeat DNA is more susceptible to damage [15]. Fibroblasts and lymphocytes from patients with Huntington’s disease, ALS, Alzheimer’s disease and Parkinson’s disease all have DNA that is relatively sensitive to ionizing radiation and chemical mutagens [15]. When the damaged DNA is repaired, more repeats are created during DNA repair [15]. Mismatch and base-excision repair cause somatic expansion of repeated sequences of trinucleotide repeat disorders [15]. As this in more cells, the organism eventually reaches a critical point at which a significant number of cells meet the threshold number of repeats to produce disease [13, 15]. Progression of disease occurs when more cells reach this threshold and enter a pathologic state [13, 15].
Repeat expansion mutations in the C9ORF72 gene, such as the hexanucleotide repeat seen in ALS, lead to the formation of R-loops in the DNA [16]. R-loops are a hybridization of mRNA with dsDNA with looped intron sequences, which have been spliced out of the mRNA during the transcription process [16]. R-loops occur naturally in several cellular processes, including mitochondrial DNA replication, and in the transcription bubble [16]. R-loops have been thought to rarely occur as transcriptional by-products but are more common than once thought [16]. Others believe that R-loops are natural intermediates of transcription that are eliminated by Senataxin [17].
RNA:DNA hybrids are more stable than dsDNA [16]. High G-content (like in the C9ORF72 hexanucleotide repeat) encourages and stabilizes R-loops by facilitating the opening of the transcriptional bubble while DNA strands are still separated [16]. SETX is one of the genes involved in terminating transcription and senataxin depletion (such as in SETX ALS) correlates with the accumulation of RNA:DNA hybrids [17]. The mRNA would usually move out of the nucleus and not interact with the dsDNA as much; however, this mRNA becomes sequestered in the nucleus [16]. This enlarges the nucleolus and recruits the cell DNA damage response [16]. If unsuccessful, the DNA damage response will signal for apoptosis of the neuron [16].
Haploinsufficient proteins form from translated GGGGCC introns that are not degraded after splicing [18]. These are exported out of the nucleus by an unknown mechanism and translated in the cytoplasm [18]. The resulting haploinsufficient C9ORF72 protein forms toxic dipeptide aggregates that accumulate in the neuron [18]. These haploinsufficient proteins may have properties of prions [18].
SOD (superoxide dismutase) is a cytoplasmic enzyme of 153 amino acids: one copper atom for function and one zinc atom for structural stability [18]. It converts oxygen radicals into peroxide and oxygen [18]. The cell is then able to turn the peroxide into water and oxygen with catalase [18]. This is an extremely stable protein, but can unfold from dimer to two unfolded monomers via a folded monomer intermediate step [18]. A complex combination of molecular pathways and cell interactions cause ALS [2]. Oxidative stress, aberrant RNA processing and protein misfolding/insoluble proteins have all been implicated in motor neuron degeneration in ALS [2]. This is an example of an oversimplified mechanism of SOD1-mediated ALS. Microglia secrete cytokines, stimulating inflammation by recruiting astrocytes [18]. Astrocytes come and release nitric oxide and prostaglandin E2 [18]. SOD comes to convert NO into peroxide and oxygen [18]. In ALS patients, the SOD that arrives is mutated and aggregates, leading to endoplasmic reticulum (ER) stress [18]. The ER helps with endosomal trafficking, so defective endosomal trafficking causes organelle disruption, including mitochondrial disruption, and activates apoptosis of the neuron [18]. ER stress also causes dysfunction in axonal transport, leading to axonal loss [18].
The SOD1 gene is located on chromosome 21q22 [2] and contains 5 exons [18]. About 150 mutations of this gene have been identified, which are predominantly missense mutations, but also include nonsense mutations, insertions and deletions [2]. Notable mutations in this group include SOD1A4V-ALS for its rapid clinical progression, SOD1A89V-ALS for its sensory neuropathy, SODI113T-ALS for its diversity of phenotype and SOD1G93A-ALS for its use in transgenic mice [2, 18]. The SOD1D90 mutation is recessive in Scandinavians, but dominant in other groups [18]. SOD1 knockout mice do not develop clinical ALS [18]. Instead, they develop age-dependent distal motor neuropathy, suggesting a toxic gain of function in the SOD [18].
FUS is a DNA- and RNA-binding protein that repairs damage and breaks, especially double-strand breaks in DNA [19, 20]. Loss of function mutations in FUS gene (16p11.2) lead to impairment of the poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response, leading to increased DNA damage, especially in neurons [19]. The mutated FUS aggregates [19]. In ALS, the mutations are located in the nuclear localization sequence in the c-terminus [19]. This causes FUS to lose its ability to stay in the nucleus and the mutated FUS will instead aggregate in the cytoplasm [19]. ALS due to the TARDBP gene has a similar mechanism also with cytoplasmic aggregates [20]. Inclusion bodies that are FUS positive, TDP-43 negative may be found [19]. The typical phenotype for FUS-ALS is a lower motor neuron predominant syndrome without bulbar involvement [2]. They may have frontotemporal dementia as well [2]. The typical age at onset ranges from as young as the mid-twenties to as late as the eighth decade of life [2]. Mean duration of this form of ALS is 33 months [2].
CRISPR (clustered regularly interspaced short palindromic repeats) was discovered in 1987 in Osaka by Ishino et al. in
There are three steps of CRISPR/Cas-mediated immunity [21]. The first step is adaptation [21]. Prokaryotes place protospacers in their DNA made up of pieces of foreign DNA (from phages and plasmids that previously invaded) attached to palindromic repeats [21]. The second step is expression with maturation [21]. Transcription of the protospacers and repeats yields a precursor CRISPR-RNA, which will mature into the guide RNA (gRNA) [21]. The third step is interference [21]. Once mature, the guide RNA is used in the CRISPR/Cas system to recognize and create a double-strand break by foreign DNA [21].
Pieces of foreign DNA are stored by the prokaryote in the form of a genetic library of phages and plasmids, which have previously invaded [21]. Cas (CRISPR-associated protein) scans bacterial DNA for bacteriophage DNA that matches the guide RNA attached to CRISPR and cleaves it, when found [21]. Cas is a DNA endonuclease that allows for unwinding of DNA, checking for sites complementary to the guide RNA (20 BP spacer region) [21]. Once a match is found, it cleaves both strands of the DNA [21]. When the cell attempts to repair the break, mutations are often introduced, deactivating the viral gene [21]. The repair can be done via nonhomologous end joining (NHEJ), which can be done at any point in the cell cycle. In certain stages of the cell cycle, homology-directed repair (HDR) occurs, allowing for more precise DNA repair [21]. Researchers have been working on enhancing this type of repair for high-fidelity CRISPR/Cas-mediated gene editing [22]. This process can be manipulated for gene inactivation or insertion of foreign DNA [22]. Mammalian cells predominantly rely on nonhomologous end joining for DNA repair, which is error-prone, resulting in insertion and deletion (indels) mutations [21]. Specifically in neurons, which are terminally differentiated postmitotic cells, homology-directed repair is limited, but nonhomologous end joining is easier [22].
In 2012, Jennifer Doudna from UC Berkeley and Emmanuelle Charpentier from Umea University in Sweden demonstrated the use of CRISPR/Cas for human controlled genetic editing [21]. She fused CRISPR RNA (crRNA) with trans-activating CRISPR RNA (tacrRNA) to form a chimeric single-guide RNA (sgRNA) to allow for site-specific gene editing in a eukaryote [21]. This method is popular due to its low cost and ease of production in a lab [21]. Since then, research in CRISPR has expanded to include every species: from attempts to drive malaria-carrying mosquito species to extinction to combating antibiotic resistance to agriculture, making crops hardier [21].
Unfortunately, the CRISPR/Cas9 system is not specific enough to prevent it from cleaving nontarget DNA [21]. DNA does not have to fully match the guide RNA (can tolerate 3–5 mismatches) for it to introduce a double-strand break, which leads to unpredictable mutations [21]. Researchers have been working to increase the specificity of CRISPR/Cas9 systems by using two guide RNAs or shorter (truncated) guide RNAs [22]. Decreasing the GC content of guide RNAs also helps specificity [23]. Adding a short-lived ribonucleoprotein to the CRISPR-Cas9 system decreases off-target effects by allowing the complex to break down after a short period of activity [22]. This allows for more locally acting gene editing. There is also the possibility of introducing the Cas protein instead of the Cas gene into a subject, so the effect on the genome is shorter-lived [22].
There are other downsides, including immune attacks on the system, due to its bacterial origin [21]. PEGylation, the modification of biomolecules by adding polyethylene glycol (PEG), a nontoxic, nonimmunogenic polymer, is one method to circumvent immune attack [21]. Humanization of the proteins is another method of circumventing this problem [22].
The Cas protein may be modified in many different ways, including deactivating one or both cutting domains and adding deaminases, transcriptional activators or blockers (dCas-sgRNA) [22]. Deactivating one of the cutting domains, creating a ‘nick’ instead of a ‘break,’ prevents unwanted damage in off-target sites [22]. One may opt to deactivate both cutting domains (dead Cas or dCas) and attach other enzymes to the complex, such as deaminases, which cause point mutations [22]. These point mutations may include stop codons to prevent transcription of a disease gene (CRISPR interference CRISPRi), or they may change a disease-causing mutation to a healthy gene [23]. Transcriptional activators, such as VP64 or MS2 coat protein, may be added to recruit transcription machinery and promote transcription of specific genes (CRISPR activation or CRISPRa) [21]. CRISPRi is accomplished by adding a Kruppel-associated box (KRAB) domains to inactivate transcription by recruiting factors that physically block the gene [21].
Alternatively, one can use a different type of Cas. Each bacterial species has its own Cas protein, or multiple types of Cas [22]. Strep. pyogenes Cas9 (spCas9) was found first and is most commonly used in a CRISPR type II system, may be directed by two guide RNAs [22]. Cas9 cuts double-stranded DNA that matches the guide RNA [21]. Staph. aureus Cas9 (saCas9) is small, which allows it to fit inside adeno-associated virus, making it a convenient choice for that vector [24]. Strep. thermophilus Cas9 (stCas9) is more specific, requiring a match to not only the guide RNA but also a protospacer-adjacent motif (PAM) (a specific sequence next to the viral DNA) [24]. This prevents unwanted off-target effects. CasX is the smallest known Cas so far and less immunogenic [25]. Jennifer Doudna discovered CasX, found in ground-dwelling bacteria, which are unfamiliar to the human immune system and nonpathologic, decreasing the chance of immunogenicity [25]. Cas12 cuts double-stranded DNA that matches the guide, as well as all single-stranded DNA in a cell in a nonspecific way [21]. Cas13 cuts all single-stranded RNA in a cell [21]. Cas14 is found in Archaea and is very small [22]. It cuts all single-stranded DNA in a cell in a more specific way, with a system (DETECTR) that detects infectious organisms and genetic mutations [22]. Cpf1 is an endonuclease that leaves an overhang on one side of the double-strand break (DSB), which promotes nonhomologous end joining in neurons [21].
Delivery methods for the CRISPR/Cas system include viral vectors, nanoparticles, lipofectamine, nucleofection, microinjection, short-lived ribonucleoproteins and electroportation [23]. Some of these methods, including microinjection and electroportation, can damage cells and are not possible in vivo [23]. In electroportation, an electric field increases permeability of cell membrane, allowing entry of the CRISPR/Cas system into the cell [23]. Nucleofection, nanoparticles and lipofectamine are less commonly used by researchers due to the tendency for low cell penetrance using these methods [23]. Viral vectors are the most common and effective delivery systems. AAV (adeno-associated viral vector) is the most commonly studied vector [26, 27]. The limiting factors in the use of viral vectors are low cargo capacity, immunogenicity and tissue specificity [26]. AAV is a small virus that does not cause disease, just a very mild immune response [26]. It attaches and infiltrates the host cell. The virus transfers DNA into the nucleus, leading to sustained gene expression [26]. There is ~ 4.7 kb AAV vector packaging limit [26]. Therefore, when using this delivery system with spCas9, two AAVs are required: one to package spCas9 and the other to package the sgRNAs [26]. With smaller Cas types, such as saCas9, only one AAV is required [26]. AAV is specific to muscle, liver, brain and eye tissue [27]. Immune response (mainly humoral, due to prior infection with AAV) was found in 96% of patients in one study [27]. These patients demonstrated antibodies for AAV [26, 27]. Other delivery systems use other viruses, such as adenovirus and lentivirus [26]. Short-lived ribonucleoproteins (RNP) are proteins that shuttle the CRISPR-Cas system into a cell [27]. Since they are short-lived, the action of the CRISPR-Cas system tends to be local to where the RNPs are injected [27]. These decrease off-target effects and are less immunogenic than viral vectors [23].
Antisense oligonucleotides (ASOs) are synthetic nucleic acid sequences that bind RNA to modulate gene expression [28]. ASOs can restore protein function by splice modification, decrease aberrant protein function by silencing, modify protein function or reduce toxicity of an aberrant protein [28]. ASOs penetrate their target with the help of ribose alteration, avoid degradation by nucleases and avoid immune response by alterations in their phosphate group, ribose and nucleosides [28]. Two ASOs were FDA approved in 2016: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy [28]. Proteinuria has been a common side effect with the ASOs, although it has been mostly benign [28].
About 14% of patients who have Duchenne muscular dystrophy contain the mutation at exon 51, where eteplirsen takes action [29]. It works by mRNA knockdown via activation of RNA-H, which breaks down the RNA-DNA complex before translation [29]. It aims to skip the mutated exon to convert the frame shift mutation back into the reading frame [29].
Nusinersen works via alteration of gene splice site [30]. It targets intronic splicing silencer N1 (ISSN1), causing inclusion of exon 7 in SMN2 pre-mRNA [30]. This results in SMN2 protein translation that looks identical to SMN1 protein [30].
CRISPR-Cas systems have some benefit over ASOs, such as being less cytotoxic and requiring less number of treatments [23].
Meganucleases are large endonucleases, able to cut out large, 14–40 base pair (BP) long, DNA sequences [31]. They were discovered in the 1980s [31]. Although these are specific, they are costly to create, requiring expertise and more time than CRISPR, which makes it inefficient [31]. Meganucleases have been studied in Duchenne muscular dystrophy [31]. One group designed a meganuclease that cuts upstream of the deletion ‘hot spot’ of intron 44 of the dystrophin gene [31]. It was delivered via a lentiviral vector [31]. After administration, expression of a fully corrected dystrophin gene was observed via western blot [31].
Zinc finger nucleases recognize short sequences (3 BP) of DNA, but can be combined with several other zinc fingers to accommodate longer sequences [32]. They are less specific, but are expensive to make as they require expertise, time and effort to create [32]. They are cytotoxic to cells, so currently, they are mainly in use for modifying stem cells and immune cells [32]. Ousterout et al. used this technology in myoblast cell cultures to yield dystrophin expression [32].
Transcription activator-like effector nuclease (TALEN) are artificial restriction enzymes, fused to a nuclease and designed to recognize specific DNA sequences of 33 or 34 amino acid repeats [33]. They are able to perform DNA repair, replacement, insertion or deletion [33]. This is a precise method that is easy to make and is not costly [33]. TALEN has been used successfully in human cell cultures (myoblasts and dermal fibroblasts) with Duchenne muscular dystrophy, as well as to treat Golden Retrievers with muscular dystrophy [33].
RNA interference (RNAi) is used in the cell to control gene expression [34]. Two types of RNAs are known to perform this function: small interfering RNAs (siRNA) and microRNAs (miRNA) [34]. After RNA polymerase II produces mRNA, the mRNA travels to the cytoplasm for transcription, unless it is intercepted by RNA interference [34]. siRNA or miRNA binds to enzymes that break down mRNAs that match or closely match a sequence in them [34]. miRNAs are about 21 nucleotides long and bind to dicer, an enzyme that cleaves mRNA that matches the single-stranded microRNA [34]. After cleavage, the mRNA is degraded [34]. Argonaut is another enzyme that performs the same function [34]. Once bound to miRNA or siRNA, the complex is called RISC (RNA-induced silencing complex) [34]. siRNAs differ from miRNAs in that they are double stranded [34]. RNAi requires multiple treatments and can be cytotoxic [34].
Treatment of ALS has been limited by the limited understanding of the mechanism of disease [2]. Some of the use of CRISPR/Cas9 research done in ALS is to identify the mechanism by which the various genes cause toxicity, discovering modifiers and RNA-processing pathways [35].
Researchers did a proof of concept study, which demonstrated that using CRISPR/Cas9 in an AAV delivery system in G93A-SOD1 mice targeting the SOD1 mutation has delayed onset, increased survivability of motor neurons, decreased motor atrophy, increased motor function and prolonged lifespan, compared to control mice [36]. G93A-SOD1 transgenic mice were infused at birth or first day of life with the delivery system [36]. Typically, the mice develop symptoms at 90 days of life [36]. A single peptide is changed in the SOD1 mutation in this model [36]. The amount of mutant SOD1 protein in the spinal cord was reduced by the infusion, compared with control mice [36]. This delayed the onset of disease by a range of 2–36 days, but did not slow disease progression once the onset came [36]. However, the delay in onset prolonged survival in test mice by 25%, compared to diseased controls [36].
Another group was able to produce gene-corrected fibroblast stem cells using a CRISPR/Cas9 system from ALS patients with SOD1 and FUS mutations [37]. They first collected and cultured FUS and SOD1-mutated fibroblasts and confirmed their mutations [37]. Then, they used a CRISPR/Cas system with electroportation to target the FUS mutation for correction with single-stranded oligodeoxynucleotide as a repair template [37].
In 2017, researchers demonstrated that they could use genetically modified mesenchymal stem cells to express neurotrophic factors [38]. Neurotrophic factors are peptides that promote growth, survival and differentiation of neurons [38]. This paper proposes that CRISPR/Cas in an AAV delivery system is a good way to genetically modify mesenchymal stem cells to express these factors, which are neuroprotective [38].
Other researchers are looking at using CRISPR/Cas13 to target aberrant mRNAs in C9ORF72 ALS patients [39]. CRISPR/Cas13 cuts RNA and this group modified it to be more specific toward the toxic mRNAs, which do not leave the nucleus and lead to R-loops in DNA [39]. Their mouse models have shown improvement in motor symptoms [39].
This group [40] was able to eliminate toxic microsatellite repeat expansion RNAs with an RNA-targeting Cas9 in myotonic dystrophy cell cultures. They developed a programmable CRISPR/Cas9 system to visualize and eliminate repetitive RNAs retained and aggregating in the nucleus [40]. Although these experiments were conducted in myotonic dystrophy cell cultures, not cell cultures expressing C9ORF72, they are theoretically applicable [40].
In 2018, a group did a genome-wide survey, looking for suppressors and enhancers of C9ORF72 dipeptide repeat toxicity in human cells [41]. These were validated using primary mouse neurons with CRISPR/Cas9 screening [41]. They discovered several modifiers, but one in particular, called TMX2, modulated the endoplasmic reticular stress caused by C9ORF72 dipeptide repeats, increasing survival to 100% (from 10%) in their mouse models [41].
Additional researchers used a SaCas9 endonuclease to disrupt HERV-K env, a retroviral gene, human mouse mammary tumor virus-like 2, related to prostate cancer motor neuron disease [42]. They found this inhibited molecules involved in amyotrophic lateral sclerosis, including epidermal growth factor receptor (EGF-R), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), SF2/ASF and TDP-43 [42]. These molecules are important for RNA-binding and alternative splicing [42].
Tofersen is an antisense oligonucleotide that binds to the mRNA from the SOD1 gene [43]. This drug is being studied in patients with ALS caused by the SOD1 mutation [43]. In the phase 1/2 trial, treatment with tofersen 100 mg in 10 patients with SOD1 fALS over a three-month period resulted in a statistically significant lowering of SOD1 protein levels in the cerebrospinal fluid and a slowed decline in the ALS Functional Rating Scale-Revised (ALSFRS-R) compared to 12 patients receiving a placebo [44]. They also noted slowed decline in muscle strength and vital capacity in the study group [44].
Amyotrophic lateral sclerosis is a disease with no cure; however, current research is promising for a cure in the near future. Technologies in genetic editing show particular promise in the field of neurodegeneration. Molecular mechanisms of genetic diseases, even those with known mechanisms, are oftentimes much more complex than initially thought. Discoveries regarding transcription modulators have proven particularly useful in research to find treatments for ALS. Given the recent advances in these areas, the future appears brighter for patients with ALS.
I would like to thank the Muscular Dystrophy Association for their support.
I would like to acknowledge Dr. Dale Lange for inspiring my interest in neuromuscular medicine.
My program director, Dr. Dora Leung, was instrumental in defining the path of my career. For this, I am extremely grateful.
The author declares no conflict of interest.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6583},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12511},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12511},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11807",title:"Advances in Diptera - Insight, Challenges and Management Tools",subtitle:null,isOpenForSubmission:!0,hash:"530031c8ad9b3661090e69f0561e31f0",slug:null,bookSignature:"Dr. Sarita Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11807.jpg",editedByType:null,editors:[{id:"177117",title:"Prof.",name:"Sarita",surname:"Kumar",slug:"sarita-kumar",fullName:"Sarita Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11609",title:"Fungicides - Application, Technologies, and Materials for the Future of Plant Disease Management",subtitle:null,isOpenForSubmission:!0,hash:"3a8c9d55c21ce8d69d2edc94f9e592f3",slug:null,bookSignature:"Dr. Mizuho Nita",coverURL:"https://cdn.intechopen.com/books/images_new/11609.jpg",editedByType:null,editors:[{id:"98153",title:"Dr.",name:"Mizuho",surname:"Nita",slug:"mizuho-nita",fullName:"Mizuho Nita"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11648",title:"Current Status and Ecological Aspects of Seabirds",subtitle:null,isOpenForSubmission:!0,hash:"7754b354f7deebdb8576189aefbdbc5c",slug:null,bookSignature:"Dr. Muhammad Nawaz Rajpar",coverURL:"https://cdn.intechopen.com/books/images_new/11648.jpg",editedByType:null,editors:[{id:"183095",title:"Dr.",name:"Muhammad Nawaz",surname:"Rajpar",slug:"muhammad-nawaz-rajpar",fullName:"Muhammad Nawaz Rajpar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11620",title:"Tomato - From Cultivation to Processing Technology",subtitle:null,isOpenForSubmission:!0,hash:"cdc23b5aad5d52bc0f0327c453ac7a1b",slug:null,bookSignature:"Prof. Pranas Viskelis, Dr. Dalia Urbonaviciene and Dr. Jonas Viskelis",coverURL:"https://cdn.intechopen.com/books/images_new/11620.jpg",editedByType:null,editors:[{id:"83785",title:"Prof.",name:"Pranas",surname:"Viskelis",slug:"pranas-viskelis",fullName:"Pranas Viskelis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11020",title:"Dietary Supplements - Challenges and Future Research",subtitle:null,isOpenForSubmission:!0,hash:"2283ae2d0816c17ad46cbedbe4ce5e78",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/11020.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11627",title:"Oilseed Crops - Biology, Production and Processing",subtitle:null,isOpenForSubmission:!0,hash:"010cdbbb6a716d433e632b350d4dcafe",slug:null,bookSignature:"Prof. Mirza Hasanuzzaman and MSc. Kamrun Nahar",coverURL:"https://cdn.intechopen.com/books/images_new/11627.jpg",editedByType:null,editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11615",title:"Humus and Humic Substances - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"a9b75be6b30278fca930c4dd560a8b2b",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/11615.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11802",title:"Honey - Composition and Properties",subtitle:null,isOpenForSubmission:!0,hash:"60482dae5e08f5b22b0c7a2749cdfc02",slug:null,bookSignature:"Dr. Muhammad Imran, Dr. Muhammad Haseeb Ahmad and Dr. Rabia Shabir Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/11802.jpg",editedByType:null,editors:[{id:"208646",title:"Dr.",name:"Muhammad",surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocytes in Brain Communication and Disease",subtitle:null,isOpenForSubmission:!0,hash:"8b6a8e2bb5f070305768945fdef8eed2",slug:null,bookSignature:"Prof. Denis Larrivee",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11667",title:"Marine Pollution - Recent Developments",subtitle:null,isOpenForSubmission:!0,hash:"e524cd97843b075a724e151256773631",slug:null,bookSignature:"Dr. Monique Mancuso",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",editedByType:null,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11619",title:"Root Vegetables",subtitle:null,isOpenForSubmission:!0,hash:"2c5535e66fed5abd8f80ee521b51b2d3",slug:null,bookSignature:"Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11619.jpg",editedByType:null,editors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:72},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"858",title:"Biofuels",slug:"environmental-sciences-environmental-management-biofuels",parent:{id:"130",title:"Environmental Management",slug:"environmental-sciences-environmental-management"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:46,numberOfWosCitations:149,numberOfCrossrefCitations:56,numberOfDimensionsCitations:172,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"858",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"324",title:"Bioethanol",subtitle:null,isOpenForSubmission:!1,hash:"8b4842c55f8a1470b59fde5f49952ecd",slug:"bioethanol",bookSignature:"Marco Aurelio Pinheiro Lima and Alexandra Pardo Policastro Natalense",coverURL:"https://cdn.intechopen.com/books/images_new/324.jpg",editedByType:"Edited by",editors:[{id:"60496",title:"Prof.",name:"Marco Aurelio",middleName:null,surname:"Pinheiro Lima",slug:"marco-aurelio-pinheiro-lima",fullName:"Marco Aurelio Pinheiro Lima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"27352",doi:"10.5772/23987",title:"Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives",slug:"hydrolysis-of-lignocellulosic-biomass-current-status-of-processes-and-technologies-and-future-perspe",totalDownloads:9676,totalCrossrefCites:40,totalDimensionsCites:85,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Alessandra Verardi, Isabella De Bari, Emanuele Ricca and Vincenza Calabrò",authors:[{id:"54789",title:"Dr.",name:"Isabella",middleName:null,surname:"De Bari",slug:"isabella-de-bari",fullName:"Isabella De Bari"},{id:"54793",title:"Dr.",name:"Alessandra",middleName:null,surname:"Verardi",slug:"alessandra-verardi",fullName:"Alessandra Verardi"},{id:"54794",title:"Dr.",name:"Emanuele",middleName:null,surname:"Ricca",slug:"emanuele-ricca",fullName:"Emanuele Ricca"},{id:"54795",title:"Prof.",name:"Vincenza",middleName:null,surname:"Calabrň",slug:"vincenza-calabrn",fullName:"Vincenza Calabrň"}]},{id:"27350",doi:"10.5772/20489",title:"Sorghum as a Multifunctional Crop for the Production of Fuel Ethanol: Current Status and Future Trends",slug:"sorghum-as-a-multifunctional-crop-for-the-production-of-fuel-ethanol-current-status-and-future-trend",totalDownloads:4957,totalCrossrefCites:1,totalDimensionsCites:28,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Sergio O. Serna-Saldívar, Cristina Chuck-Hernández, Esther Pérez-Carrillo and Erick Heredia-Olea",authors:[{id:"39203",title:"Dr.",name:"Sergio",middleName:"O.",surname:"Serna-Saldivar",slug:"sergio-serna-saldivar",fullName:"Sergio Serna-Saldivar"},{id:"94103",title:"Ms.",name:"Cristina",middleName:null,surname:"Chuck-Hernandez",slug:"cristina-chuck-hernandez",fullName:"Cristina Chuck-Hernandez"},{id:"94104",title:"Dr.",name:"Esther",middleName:null,surname:"Perez-Carrillo",slug:"esther-perez-carrillo",fullName:"Esther Perez-Carrillo"},{id:"94105",title:"Mr.",name:"Erick",middleName:null,surname:"Heredia-Olea",slug:"erick-heredia-olea",fullName:"Erick Heredia-Olea"}]},{id:"27348",doi:"10.5772/23112",title:"Cassava Bioethanol",slug:"-cassava-bioethanol",totalDownloads:10416,totalCrossrefCites:4,totalDimensionsCites:17,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Klanarong Sriroth, Sittichoke Wanlapatit and Kuakoon Piyachomkwan",authors:[{id:"50646",title:"Dr.",name:"Klanarong",middleName:null,surname:"Sriroth",slug:"klanarong-sriroth",fullName:"Klanarong Sriroth"},{id:"58635",title:"Dr.",name:"Kuakoon",middleName:null,surname:"Piyachomkwan",slug:"kuakoon-piyachomkwan",fullName:"Kuakoon Piyachomkwan"}]},{id:"27353",doi:"10.5772/23825",title:"Second Generation Bioethanol from Lignocellulosics: Processing of Hardwood Sulphite Spent Liquor",slug:"second-generation-bioethanol-from-lignocellulosics-processing-of-hardwood-sulphite-spent-liquor",totalDownloads:5008,totalCrossrefCites:1,totalDimensionsCites:10,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Daniel L. A. Fernandes, Susana R. Pereira, Luísa S. Serafim, Dmitry V. Evtuguin and Ana M. R. B. Xavier",authors:[{id:"53912",title:"Prof.",name:"Ana",middleName:"Maria Rebelo Barreto",surname:"Xavier",slug:"ana-xavier",fullName:"Ana Xavier"},{id:"57360",title:"Dr.",name:"Daniel L.A.",middleName:null,surname:"Fernandes",slug:"daniel-l.a.-fernandes",fullName:"Daniel L.A. Fernandes"},{id:"57361",title:"MSc.",name:"Susana R.",middleName:null,surname:"Pereira",slug:"susana-r.-pereira",fullName:"Susana R. Pereira"},{id:"57362",title:"Dr.",name:"Luísa",middleName:null,surname:"Serafim",slug:"luisa-serafim",fullName:"Luísa Serafim"},{id:"57363",title:"Prof.",name:"Dmitry",middleName:null,surname:"Evtyugin",slug:"dmitry-evtyugin",fullName:"Dmitry Evtyugin"}]},{id:"27354",doi:"10.5772/21008",title:"Bioethanol Production from Steam Explosion Pretreated Straw",slug:"bioethanol-production-from-steam-explosion-pretreated-straw",totalDownloads:3867,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Heike Kahr, Alexander Jäger and Christof Lanzerstorfer",authors:[{id:"41412",title:"Dr.",name:"Christof",middleName:null,surname:"Lanzerstorfer",slug:"christof-lanzerstorfer",fullName:"Christof Lanzerstorfer"},{id:"133428",title:"Dr.",name:"Alexander",middleName:null,surname:"Jäger",slug:"alexander-jager",fullName:"Alexander Jäger"},{id:"133430",title:"Dr.",name:"Heike",middleName:null,surname:"Kahr",slug:"heike-kahr",fullName:"Heike Kahr"}]}],mostDownloadedChaptersLast30Days:[{id:"27352",title:"Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives",slug:"hydrolysis-of-lignocellulosic-biomass-current-status-of-processes-and-technologies-and-future-perspe",totalDownloads:9678,totalCrossrefCites:40,totalDimensionsCites:85,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Alessandra Verardi, Isabella De Bari, Emanuele Ricca and Vincenza Calabrò",authors:[{id:"54789",title:"Dr.",name:"Isabella",middleName:null,surname:"De Bari",slug:"isabella-de-bari",fullName:"Isabella De Bari"},{id:"54793",title:"Dr.",name:"Alessandra",middleName:null,surname:"Verardi",slug:"alessandra-verardi",fullName:"Alessandra Verardi"},{id:"54794",title:"Dr.",name:"Emanuele",middleName:null,surname:"Ricca",slug:"emanuele-ricca",fullName:"Emanuele Ricca"},{id:"54795",title:"Prof.",name:"Vincenza",middleName:null,surname:"Calabrň",slug:"vincenza-calabrn",fullName:"Vincenza Calabrň"}]},{id:"27353",title:"Second Generation Bioethanol from Lignocellulosics: Processing of Hardwood Sulphite Spent Liquor",slug:"second-generation-bioethanol-from-lignocellulosics-processing-of-hardwood-sulphite-spent-liquor",totalDownloads:5012,totalCrossrefCites:1,totalDimensionsCites:10,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Daniel L. A. Fernandes, Susana R. Pereira, Luísa S. Serafim, Dmitry V. Evtuguin and Ana M. R. B. Xavier",authors:[{id:"53912",title:"Prof.",name:"Ana",middleName:"Maria Rebelo Barreto",surname:"Xavier",slug:"ana-xavier",fullName:"Ana Xavier"},{id:"57360",title:"Dr.",name:"Daniel L.A.",middleName:null,surname:"Fernandes",slug:"daniel-l.a.-fernandes",fullName:"Daniel L.A. Fernandes"},{id:"57361",title:"MSc.",name:"Susana R.",middleName:null,surname:"Pereira",slug:"susana-r.-pereira",fullName:"Susana R. Pereira"},{id:"57362",title:"Dr.",name:"Luísa",middleName:null,surname:"Serafim",slug:"luisa-serafim",fullName:"Luísa Serafim"},{id:"57363",title:"Prof.",name:"Dmitry",middleName:null,surname:"Evtyugin",slug:"dmitry-evtyugin",fullName:"Dmitry Evtyugin"}]},{id:"27348",title:"Cassava Bioethanol",slug:"-cassava-bioethanol",totalDownloads:10418,totalCrossrefCites:4,totalDimensionsCites:17,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Klanarong Sriroth, Sittichoke Wanlapatit and Kuakoon Piyachomkwan",authors:[{id:"50646",title:"Dr.",name:"Klanarong",middleName:null,surname:"Sriroth",slug:"klanarong-sriroth",fullName:"Klanarong Sriroth"},{id:"58635",title:"Dr.",name:"Kuakoon",middleName:null,surname:"Piyachomkwan",slug:"kuakoon-piyachomkwan",fullName:"Kuakoon Piyachomkwan"}]},{id:"27360",title:"Catalytic Hydrogen Production from Bioethanol",slug:"catalytic-hydrogen-production-from-bioethanol",totalDownloads:4039,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Hua Song",authors:[{id:"38731",title:"Dr.",name:"Hua",middleName:null,surname:"Song",slug:"hua-song",fullName:"Hua Song"}]},{id:"27351",title:"Simultaneous Production of Sugar and Ethanol from Sugarcane in China, the Development, Research and Prospect Aspects",slug:"simultaneous-production-of-sugar-and-ethanol-from-sugarcane-the-process-technical-and-economic-aspec",totalDownloads:8241,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"324",slug:"bioethanol",title:"Bioethanol",fullTitle:"Bioethanol"},signatures:"Lei Liang, Riyi Xu, Qiwei Li, Xiangyang Huang, Yuxing An, Yuanping Zhang and Yishan Guo",authors:[{id:"45746",title:"Dr.",name:"Lei",middleName:null,surname:"Liang",slug:"lei-liang",fullName:"Lei Liang"},{id:"54152",title:"Prof.",name:"Qi Wei",middleName:null,surname:"Li",slug:"qi-wei-li",fullName:"Qi Wei Li"},{id:"54153",title:"Prof.",name:"Xiang Yang",middleName:null,surname:"Huang",slug:"xiang-yang-huang",fullName:"Xiang Yang Huang"},{id:"54154",title:"Prof.",name:"Yuxing",middleName:null,surname:"An",slug:"yuxing-an",fullName:"Yuxing An"},{id:"54180",title:"Ms",name:"Yuangping",middleName:null,surname:"Zhang",slug:"yuangping-zhang",fullName:"Yuangping Zhang"}]}],onlineFirstChaptersFilter:{topicId:"858",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:'Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the "new normal". Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.',institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:9,paginationItems:[{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus Between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",hash:"2bd98244cd9eda2107f01824584c1eb4",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 17th 2022",isOpenForSubmission:!0,editors:[{id:"270856",title:"Associate Prof.",name:"Suna",surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79866",title:"Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants",doi:"10.5772/intechopen.101582",signatures:"Yosra Ahmed Soltan and Amlan Kumar Patra",slug:"ruminal-microbiome-manipulation-to-improve-fermentation-efficiency-in-ruminants",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78998",title:"Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds",doi:"10.5772/intechopen.100142",signatures:"Mardiati Zain, Rusmana Wijaya Setia Ningrat, Heni Suryani and Novirman Jamarun",slug:"effect-of-various-feed-additives-on-the-methane-emissions-from-beef-cattle-based-on-an-ammoniated-pa",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:7,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:1},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80959",title:"Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes",doi:"10.5772/intechopen.102874",signatures:"Mejra Bektašević and Olivera Politeo",slug:"biological-application-of-essential-oils-and-essential-oils-components-in-terms-of-antioxidant-activ",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80859",title:"Antioxidant Effect and Medicinal Properties of Allspice Essential Oil",doi:"10.5772/intechopen.103001",signatures:"Yasvet Yareni Andrade Avila, Julián Cruz-Olivares and César Pérez-Alonso",slug:"antioxidant-effect-and-medicinal-properties-of-allspice-essential-oil",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80777",title:"Starch: A Veritable Natural Polymer for Economic Revolution",doi:"10.5772/intechopen.102941",signatures:"Obi P. Adigwe, Henry O. Egharevba and Martins O. Emeje",slug:"starch-a-veritable-natural-polymer-for-economic-revolution",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80673",title:"Teucrium ramosissimum Derived-Natural Products and Its Potent Effect in Alleviating the Pathological Kidney Damage in LPS-Induced Mice",doi:"10.5772/intechopen.102788",signatures:"Fatma Guesmi and Ahmed Landoulsi",slug:"teucrium-ramosissimum-derived-natural-products-and-its-potent-effect-in-alleviating-the-pathological",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80600",title:"Essential Oil as Green Preservative Obtained by Ecofriendly Extraction Techniques",doi:"10.5772/intechopen.103035",signatures:"Nashwa Fathy Sayed Morsy",slug:"essential-oil-as-green-preservative-obtained-by-ecofriendly-extraction-techniques",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Nashwa",surname:"Morsy"}],book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79875",title:"Comparative Study of the Physiochemical Composition and Techno-Functional Properties of Two Extracted Acorn Starches",doi:"10.5772/intechopen.101562",signatures:"Youkabed Zarroug, Mouna Boulares, Dorra Sfayhi and Bechir Slimi",slug:"comparative-study-of-the-physiochemical-composition-and-techno-functional-properties-of-two-extracte",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80395",title:"History, Evolution and Future of Starch Industry in Nigeria",doi:"10.5772/intechopen.102712",signatures:"Obi Peter Adigwe, Judith Eloyi John and Martins Ochubiojo Emeje",slug:"history-evolution-and-future-of-starch-industry-in-nigeria",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80122",title:"Pharmaceutical and Therapeutic Potentials of Essential Oils",doi:"10.5772/intechopen.102037",signatures:"Ishrat Nazir and Sajad Ahmad Gangoo",slug:"pharmaceutical-and-therapeutic-potentials-of-essential-oils",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80018",title:"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers",doi:"10.5772/intechopen.101831",signatures:"Saleem Siddiqui, Naseer Ahmed and Neeraj Phogat",slug:"potato-starch-as-affected-by-varieties-storage-treatments-and-conditions-of-tubers",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80023",title:"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response",doi:"10.5772/intechopen.101833",signatures:"Veda Krishnan, Monika Awana, Debarati Mondal, Piyush Verma, Archana Singh and Shelly Praveen",slug:"binary-interactions-and-starch-bioavailability-critical-in-limiting-glycemic-response",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79856",title:"Starch-Based Hybrid Nanomaterials for Environmental Remediation",doi:"10.5772/intechopen.101697",signatures:"Ashoka Gamage, Thiviya Punniamoorthy and Terrence Madhujith",slug:"starch-based-hybrid-nanomaterials-for-environmental-remediation",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda",middleName:"R.",surname:"Gharieb",fullName:"Reda Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/156528",hash:"",query:{},params:{id:"156528"},fullPath:"/profiles/156528",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()