Real amount of each factor used in the factorial trial experiments.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"215",leadTitle:null,fullTitle:"Aeronautics and Astronautics",title:"Aeronautics and Astronautics",subtitle:null,reviewType:"peer-reviewed",abstract:"In its first centennial, aerospace has matured from a pioneering activity to an indispensable enabler of our daily life activities. In the next twenty to thirty years, aerospace will face a tremendous challenge - the development of flying objects that do not depend on fossil fuels. The twenty-three chapters in this book capture some of the new technologies and methods that are currently being developed to enable sustainable air transport and space flight. It clearly illustrates the multi-disciplinary character of aerospace engineering, and the fact that the challenges of air transportation and space missions continue to call for the most innovative solutions and daring concepts.",isbn:null,printIsbn:"978-953-307-473-3",pdfIsbn:"978-953-51-6048-9",doi:"10.5772/666",price:159,priceEur:175,priceUsd:205,slug:"aeronautics-and-astronautics",numberOfPages:624,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"311199eb39821f7f12a19ca1efc3fd7f",bookSignature:"Max Mulder",publishedDate:"September 12th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/215.jpg",numberOfDownloads:80620,numberOfWosCitations:67,numberOfCrossrefCitations:71,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:112,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:250,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 21st 2010",dateEndSecondStepPublish:"November 18th 2010",dateEndThirdStepPublish:"March 25th 2011",dateEndFourthStepPublish:"April 24th 2011",dateEndFifthStepPublish:"June 23rd 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"10586",title:"Prof.",name:"Max",middleName:null,surname:"Mulder",slug:"max-mulder",fullName:"Max Mulder",profilePictureURL:"https://mts.intechopen.com/storage/users/10586/images/1739_n.jpg",biography:"Professor Max Mulder is a Full Professor of Aerospace Human-Machine Systems and Head of the Control and Simulation section of the Faculty of Aerospace Engineering, Delft University of Technology. \nMax received his MSc and PhD (cum laude) in Aerospace Engineering from the Delft University of Technology in 1992 and 1999, respectively, for his work on the cybernetics of perspective tunnel-in-the-sky displays. His research interests are twofold. He studies manual control cybernetics and its use in modelling pilot perception and performance, in particular the modelling of pilot self-motion perception and neuromuscular system characteristics. Secondly, he investigates cognitive systems engineering and its application in the design of ecological human-machine systems for pilots and air traffic controllers. Max teaches several graduate courses on stochastic signal analysis and stochastic control systems, avionics, human-machine systems and air traffic management. He (co-)authored more than 350 academic publications.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Delft University of Technology",institutionURL:null,country:{name:"Netherlands"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"683",title:"Aeronautics",slug:"aeronautics"}],chapters:[{id:"19524",title:"Visualization of Complex Flow Structures by Matched Refractive-Index PIV Method",doi:"10.5772/17786",slug:"visualization-of-complex-flow-structures-by-matched-refractive-index-piv-method",totalDownloads:2686,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kazuhisa Yuki",downloadPdfUrl:"/chapter/pdf-download/19524",previewPdfUrl:"/chapter/pdf-preview/19524",authors:[{id:"29458",title:"Dr.",name:"Kazuhisa",surname:"Yuki",slug:"kazuhisa-yuki",fullName:"Kazuhisa Yuki"}],corrections:null},{id:"19525",title:"Plasma Flow Control",doi:"10.5772/17935",slug:"plasma-flow-control",totalDownloads:4460,totalCrossrefCites:5,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Ying-hong Li, Yun Wu, Hui-min Song, Hua Liang and Min Jia",downloadPdfUrl:"/chapter/pdf-download/19525",previewPdfUrl:"/chapter/pdf-preview/19525",authors:[{id:"29866",title:"Dr.",name:"Yun",surname:"Wu",slug:"yun-wu",fullName:"Yun Wu"},{id:"47361",title:"Prof.",name:"Yinghong",surname:"Li",slug:"yinghong-li",fullName:"Yinghong Li"},{id:"47362",title:"Dr.",name:"Huimin",surname:"Song",slug:"huimin-song",fullName:"Huimin Song"},{id:"47363",title:"Dr.",name:"Hua",surname:"Liang",slug:"hua-liang",fullName:"Hua Liang"},{id:"47364",title:"MSc.",name:"Min",surname:"Jia",slug:"min-jia",fullName:"Min Jia"}],corrections:null},{id:"19526",title:"Nonequilibrium Plasma Aerodynamics",doi:"10.5772/22396",slug:"nonequilibrium-plasma-aerodynamics",totalDownloads:4243,totalCrossrefCites:29,totalDimensionsCites:44,hasAltmetrics:0,abstract:null,signatures:"Andrey Starikovskiy and Nickolay Aleksandrov",downloadPdfUrl:"/chapter/pdf-download/19526",previewPdfUrl:"/chapter/pdf-preview/19526",authors:[{id:"29275",title:"Dr.",name:"Andrey",surname:"Starikovskiy",slug:"andrey-starikovskiy",fullName:"Andrey Starikovskiy"},{id:"47602",title:"Prof.",name:"Nikolay",surname:"Aleksandrov",slug:"nikolay-aleksandrov",fullName:"Nikolay Aleksandrov"}],corrections:null},{id:"19527",title:"Numerical Investigation of Plasma Flows Inside Segmented Constrictor Type Arc-Heater",doi:"10.5772/18769",slug:"numerical-investigation-of-plasma-flows-inside-segmented-constrictor-type-arc-heater",totalDownloads:2109,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Kyu-Hong Kim",downloadPdfUrl:"/chapter/pdf-download/19527",previewPdfUrl:"/chapter/pdf-preview/19527",authors:[{id:"32496",title:"Prof.",name:"Kyu Hong",surname:"Kim",slug:"kyu-hong-kim",fullName:"Kyu Hong Kim"}],corrections:null},{id:"19528",title:"Physico - Chemical Modelling in Nonequilibrium Hypersonic Flow Around Blunt Bodies",doi:"10.5772/18941",slug:"physico-chemical-modelling-in-nonequilibrium-hypersonic-flow-around-blunt-bodies",totalDownloads:3325,totalCrossrefCites:6,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Ghislain Tchuen and Yves Burtschell",downloadPdfUrl:"/chapter/pdf-download/19528",previewPdfUrl:"/chapter/pdf-preview/19528",authors:[{id:"33060",title:"Dr.",name:"Ghislain",surname:"Tchuen",slug:"ghislain-tchuen",fullName:"Ghislain Tchuen"},{id:"45204",title:"Prof.",name:"Yves",surname:"Burtschell",slug:"yves-burtschell",fullName:"Yves Burtschell"}],corrections:null},{id:"19529",title:"A Frequency-Domain Linearized Euler Model for Noise Radiation",doi:"10.5772/19145",slug:"a-frequency-domain-linearized-euler-model-for-noise-radiation",totalDownloads:3314,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Andrea Iob, Roberto Della Ratta Rinaldi and Renzo Arina",downloadPdfUrl:"/chapter/pdf-download/19529",previewPdfUrl:"/chapter/pdf-preview/19529",authors:[{id:"33835",title:"Dr.",name:"Andrea",surname:"Iob",slug:"andrea-iob",fullName:"Andrea Iob"},{id:"46381",title:"Dr.",name:"Roberto",surname:"Della Ratta Rinaldi",slug:"roberto-della-ratta-rinaldi",fullName:"Roberto Della Ratta Rinaldi"},{id:"46382",title:"Prof.",name:"Renzo",surname:"Arina",slug:"renzo-arina",fullName:"Renzo Arina"}],corrections:null},{id:"19530",title:"High-Order Numerical Methods for BiGlobal Flow Instability Analysis and Control",doi:"10.5772/21152",slug:"high-order-numerical-methods-for-biglobal-flow-instability-analysis-and-control",totalDownloads:2203,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Javier de Vicente, Daniel Rodríguez, Leo González and Vassilis Theofilis",downloadPdfUrl:"/chapter/pdf-download/19530",previewPdfUrl:"/chapter/pdf-preview/19530",authors:[{id:"42005",title:"Dr.",name:"Vassilis",surname:"Theofilis",slug:"vassilis-theofilis",fullName:"Vassilis Theofilis"},{id:"49948",title:"Dr.",name:"Javier",surname:"De Vicente",slug:"javier-de-vicente",fullName:"Javier De Vicente"},{id:"49949",title:"Dr.",name:"Daniel",surname:"Rodríguez",slug:"daniel-rodriguez",fullName:"Daniel Rodríguez"},{id:"49950",title:"Dr.",name:"Leo",surname:"González",slug:"leo-gonzalez",fullName:"Leo González"}],corrections:null},{id:"19531",title:"Rotorcraft Design for Maximized Performance at Minimized Vibratory Loads",doi:"10.5772/25235",slug:"rotorcraft-design-for-maximized-performance-at-minimized-vibratory-loads",totalDownloads:3456,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Marilena D. Pavel",downloadPdfUrl:"/chapter/pdf-download/19531",previewPdfUrl:"/chapter/pdf-preview/19531",authors:[{id:"62582",title:"Dr.",name:"Marilena D.",surname:"Pavel",slug:"marilena-d.-pavel",fullName:"Marilena D. Pavel"}],corrections:null},{id:"19532",title:"Concurrent Subspace Optimization for Aircraft System Design",doi:"10.5772/19143",slug:"concurrent-subspace-optimization-for-aircraft-system-design",totalDownloads:2984,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ke-shi Zhang",downloadPdfUrl:"/chapter/pdf-download/19532",previewPdfUrl:"/chapter/pdf-preview/19532",authors:[{id:"33820",title:"Dr.",name:"Ke-Shi",surname:"Zhang",slug:"ke-shi-zhang",fullName:"Ke-Shi Zhang"}],corrections:null},{id:"19533",title:"The Assessment Method for Multi-Azimuth and Multi-Frequency Dynamic Integrated Stealth Performance of Aircraft",doi:"10.5772/17918",slug:"the-assessment-method-for-multi-azimuth-and-multi-frequency-dynamic-integrated-stealth-performance-o",totalDownloads:2691,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ying Li, Jun Huang, Nanyu Chen and Yang Zhang",downloadPdfUrl:"/chapter/pdf-download/19533",previewPdfUrl:"/chapter/pdf-preview/19533",authors:[{id:"29830",title:"Dr.",name:"Ying",surname:"Li",slug:"ying-li",fullName:"Ying Li"},{id:"35587",title:"Prof.",name:"Jun",surname:"Huang",slug:"jun-huang",fullName:"Jun Huang"},{id:"92596",title:"Dr.",name:"Chen",surname:"Nanyu",slug:"chen-nanyu",fullName:"Chen Nanyu"},{id:"92597",title:"MSc.",name:"Yang",surname:"Zhang",slug:"yang-zhang",fullName:"Yang Zhang"}],corrections:null},{id:"19534",title:"Aircraft Gas-Turbine Engine’s Control Based on the Fuel Injection Control",doi:"10.5772/17986",slug:"aircraft-gas-turbine-engine-s-control-based-on-the-fuel-injection-control",totalDownloads:6368,totalCrossrefCites:14,totalDimensionsCites:16,hasAltmetrics:0,abstract:null,signatures:"Alexandru-Nicolae Tudosie",downloadPdfUrl:"/chapter/pdf-download/19534",previewPdfUrl:"/chapter/pdf-preview/19534",authors:[{id:"30042",title:"Dr.",name:"Alexandru Nicolae",surname:"Tudosie",slug:"alexandru-nicolae-tudosie",fullName:"Alexandru Nicolae Tudosie"}],corrections:null},{id:"19535",title:"Plasma-Assisted Ignition and Combustion",doi:"10.5772/17727",slug:"plasma-assisted-ignition-and-combustion",totalDownloads:5895,totalCrossrefCites:8,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Andrey Starikovskiy and Nickolay Aleksandrov",downloadPdfUrl:"/chapter/pdf-download/19535",previewPdfUrl:"/chapter/pdf-preview/19535",authors:[{id:"29275",title:"Dr.",name:"Andrey",surname:"Starikovskiy",slug:"andrey-starikovskiy",fullName:"Andrey Starikovskiy"},{id:"47602",title:"Prof.",name:"Nikolay",surname:"Aleksandrov",slug:"nikolay-aleksandrov",fullName:"Nikolay Aleksandrov"}],corrections:null},{id:"19536",title:"O2/CH4 Kinetic Mechanisms for Aerospace Applications at Low Pressure and Temperature, Validity Ranges and Comparison",doi:"10.5772/21336",slug:"o2-ch4-kinetic-mechanisms-for-aerospace-applications-at-low-pressure-and-temperature-validity-ranges",totalDownloads:3056,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Angelo Minotti",downloadPdfUrl:"/chapter/pdf-download/19536",previewPdfUrl:"/chapter/pdf-preview/19536",authors:[{id:"42740",title:"Dr.",name:"Angelo",surname:"Minotti",slug:"angelo-minotti",fullName:"Angelo Minotti"}],corrections:null},{id:"19537",title:"Creep Behaviors and Influence Factors of FGH95 Nickel-Base Superalloy",doi:"10.5772/21879",slug:"creep-behaviors-and-influence-factors-of-fgh95-nickel-base-superalloy",totalDownloads:2907,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tian Sugui and Xie Jun",downloadPdfUrl:"/chapter/pdf-download/19537",previewPdfUrl:"/chapter/pdf-preview/19537",authors:[{id:"45197",title:"Dr.",name:"Tian",surname:"Sugui",slug:"tian-sugui",fullName:"Tian Sugui"}],corrections:null},{id:"19538",title:"Multi-Dimensional Calibration of Impact Models",doi:"10.5772/21636",slug:"multi-dimensional-calibration-of-impact-models",totalDownloads:2003,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Lucas G. Horta, Mercedes C. Reaves, Martin S. Annett and Karen E. Jackson",downloadPdfUrl:"/chapter/pdf-download/19538",previewPdfUrl:"/chapter/pdf-preview/19538",authors:[{id:"44055",title:"Dr.",name:"Lucas",surname:"Horta",slug:"lucas-horta",fullName:"Lucas Horta"}],corrections:null},{id:"19539",title:"An Agile Cost Estimating Methodology for Aerospace Procurement Operations: Genetic Causal Cost CENTRE-ing",doi:"10.5772/intechopen.84035",slug:"an-agile-cost-estimating-methodology-for-aerospace-procurement-operations-genetic-causal-cost-centre",totalDownloads:5269,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"R. Curran, P. Watson and S. Cowan",downloadPdfUrl:"/chapter/pdf-download/19539",previewPdfUrl:"/chapter/pdf-preview/19539",authors:[{id:"64523",title:"Prof.",name:"Ricky",surname:"Curran",slug:"ricky-curran",fullName:"Ricky Curran"}],corrections:null},{id:"19540",title:"Developing Risk Models for Aviation Inspection and Maintenance Tasks",doi:"10.5772/21156",slug:"developing-risk-models-for-aviation-inspection-and-maintenance-tasks",totalDownloads:5368,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Lee T. Ostrom and Cheryl A. Wilhelmsen",downloadPdfUrl:"/chapter/pdf-download/19540",previewPdfUrl:"/chapter/pdf-preview/19540",authors:[{id:"42015",title:"Dr.",name:"Lee",surname:"Ostrom",slug:"lee-ostrom",fullName:"Lee Ostrom"},{id:"85274",title:"Prof.",name:"Cheryl",surname:"Wilhelmsen",slug:"cheryl-wilhelmsen",fullName:"Cheryl Wilhelmsen"}],corrections:null},{id:"19541",title:"Novel Digital Magnetometer for Atmospheric and Space Studies (DIMAGORAS)",doi:"10.5772/17326",slug:"novel-digital-magnetometer-for-atmospheric-and-space-studies-dimagoras-",totalDownloads:3199,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"George Dekoulis",downloadPdfUrl:"/chapter/pdf-download/19541",previewPdfUrl:"/chapter/pdf-preview/19541",authors:[{id:"9833",title:"Prof.",name:"George",surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],corrections:null},{id:"19542",title:"Aeronautical Data Networks",doi:"10.5772/19119",slug:"aeronautical-data-networks",totalDownloads:2910,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Mustafa Cenk Erturk, Wilfrido Moreno, Jamal Haque and Huseyin Arslan",downloadPdfUrl:"/chapter/pdf-download/19542",previewPdfUrl:"/chapter/pdf-preview/19542",authors:[{id:"33703",title:"MSc",name:"Mustafa Cenk",surname:"Erturk",slug:"mustafa-cenk-erturk",fullName:"Mustafa Cenk Erturk"},{id:"45737",title:"MSc.",name:"Jamal",surname:"Haque",slug:"jamal-haque",fullName:"Jamal Haque"},{id:"83108",title:"Prof.",name:"Huseyin",surname:"Arslan",slug:"huseyin-arslan",fullName:"Huseyin Arslan"}],corrections:null},{id:"19543",title:"Air Traffic Control Decision Support for Integrated Community Noise Management",doi:"10.5772/25215",slug:"air-traffic-control-decision-support-for-integrated-community-noise-management",totalDownloads:2268,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Sander J. Hebly and Hendrikus G. Visser",downloadPdfUrl:"/chapter/pdf-download/19543",previewPdfUrl:"/chapter/pdf-preview/19543",authors:[{id:"62534",title:"Dr.",name:"Hendrikus",surname:"Visser",slug:"hendrikus-visser",fullName:"Hendrikus Visser"}],corrections:null},{id:"19544",title:"A Conceptual Framework and a Review of Conflict Sensing, Detection, Awareness and Escape Maneuvering Methods for UAVs",doi:"10.5772/26567",slug:"a-conceptual-framework-and-a-review-of-conflict-sensing-detection-awareness-and-escape-maneuvering-m",totalDownloads:3419,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"B. M. Albaker and N. A. Rahim",downloadPdfUrl:"/chapter/pdf-download/19544",previewPdfUrl:"/chapter/pdf-preview/19544",authors:[{id:"28485",title:"Prof.",name:"Nasrudin",surname:"Abd. Rahim",slug:"nasrudin-abd.-rahim",fullName:"Nasrudin Abd. Rahim"},{id:"67107",title:"Dr.",name:"Baraa",surname:"Albaker",slug:"baraa-albaker",fullName:"Baraa Albaker"}],corrections:null},{id:"19545",title:"Collision Probabilities, Aircraft Separation and Airways Safety",doi:"10.5772/21468",slug:"collision-probabilities-aircraft-separation-and-airways-safety",totalDownloads:2754,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Luís Campos and Joaquim Marques",downloadPdfUrl:"/chapter/pdf-download/19545",previewPdfUrl:"/chapter/pdf-preview/19545",authors:[{id:"43185",title:"Prof.",name:"Luís",surname:"Campos",slug:"luis-campos",fullName:"Luís Campos"},{id:"61341",title:"Prof.",name:"Joaquim",surname:"Marques",slug:"joaquim-marques",fullName:"Joaquim Marques"}],corrections:null},{id:"19546",title:"Development of an Aircraft Routing System for an Air Taxi Operator",doi:"10.5772/25655",slug:"development-of-an-aircraft-routing-system-for-an-air-taxi-operator",totalDownloads:3733,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:1,abstract:null,signatures:"F.M. van der Zwan, K. Wils and S.S.A. Ghijs",downloadPdfUrl:"/chapter/pdf-download/19546",previewPdfUrl:"/chapter/pdf-preview/19546",authors:[{id:"64523",title:"Prof.",name:"Ricky",surname:"Curran",slug:"ricky-curran",fullName:"Ricky Curran"},{id:"64035",title:"Dr.",name:"Frank",surname:"Van Der Zwan",slug:"frank-van-der-zwan",fullName:"Frank Van Der Zwan"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3657",title:"Air Traffic Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"air-traffic-control",bookSignature:"Max Mulder",coverURL:"https://cdn.intechopen.com/books/images_new/3657.jpg",editedByType:"Edited by",editors:[{id:"10586",title:"Prof.",name:"Max",surname:"Mulder",slug:"max-mulder",fullName:"Max Mulder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1992",title:"Recent Advances in Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"67fa903d68a094013f66d01b38882107",slug:"recent-advances-in-aircraft-technology",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/1992.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"623",title:"Global Navigation Satellite Systems",subtitle:"Signal, Theory and Applications",isOpenForSubmission:!1,hash:"cf4b30bc55fec41acdfe8c1203e1de62",slug:"global-navigation-satellite-systems-signal-theory-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/623.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"54",title:"Advances in Flight Control Systems",subtitle:null,isOpenForSubmission:!1,hash:"186a12a4766d19cae77a730fa648982a",slug:"advances-in-flight-control-systems",bookSignature:"Agneta Balint",coverURL:"https://cdn.intechopen.com/books/images_new/54.jpg",editedByType:"Edited by",editors:[{id:"18768",title:"Dr.",name:"Maria Agneta",surname:"Balint",slug:"maria-agneta-balint",fullName:"Maria Agneta Balint"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1704",title:"Future Aeronautical Communications",subtitle:null,isOpenForSubmission:!1,hash:"0b8e37964820587b229361f22d299b29",slug:"future-aeronautical-communications",bookSignature:"Simon Plass",coverURL:"https://cdn.intechopen.com/books/images_new/1704.jpg",editedByType:"Edited by",editors:[{id:"72892",title:"Dr.",name:"Simon",surname:"Plass",slug:"simon-plass",fullName:"Simon Plass"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"614",title:"Automatic Flight Control Systems",subtitle:"Latest Developments",isOpenForSubmission:!1,hash:"7e37ca326991ca149dd8f812475df8de",slug:"automatic-flight-control-systems-latest-developments",bookSignature:"Thomas Lombaerts",coverURL:"https://cdn.intechopen.com/books/images_new/614.jpg",editedByType:"Edited by",editors:[{id:"19892",title:"Dr.",name:"Thomas",surname:"Lombaerts",slug:"thomas-lombaerts",fullName:"Thomas Lombaerts"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4476",title:"Satellite Positioning",subtitle:"Methods, Models and Applications",isOpenForSubmission:!1,hash:"0f1cb6a7a18e2391d2308b6ac1d423b0",slug:"satellite-positioning-methods-models-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/4476.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"315",title:"Advances in Satellite Communications",subtitle:null,isOpenForSubmission:!1,hash:"97497fa8021416773088969c2c9219cb",slug:"advances-in-satellite-communications",bookSignature:"Masoumeh Karimi and Yuri Labrador",coverURL:"https://cdn.intechopen.com/books/images_new/315.jpg",editedByType:"Edited by",editors:[{id:"13481",title:"Dr.",name:"Masoumeh",surname:"Karimi",slug:"masoumeh-karimi",fullName:"Masoumeh Karimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1994",title:"Advances in Spacecraft Systems and Orbit Determination",subtitle:null,isOpenForSubmission:!1,hash:"005b6f7fa0ad6e582e7b37bee4ce88be",slug:"advances-in-spacecraft-systems-and-orbit-determination",bookSignature:"Rushi Ghadawala",coverURL:"https://cdn.intechopen.com/books/images_new/1994.jpg",editedByType:"Edited by",editors:[{id:"103175",title:"Dr.",name:"Rushi",surname:"Ghadawala",slug:"rushi-ghadawala",fullName:"Rushi Ghadawala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6150",title:"Flight Physics",subtitle:"Models, Techniques and Technologies",isOpenForSubmission:!1,hash:"fa5828a4ee518adf719c68c1e533f3b7",slug:"flight-physics-models-techniques-and-technologies",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6150.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"10665",leadTitle:null,title:"Updates on Veterinary Anatomy and Physiology",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tKnowledge of veterinary anatomy and physiology is essential for veterinary students, professionals and researchers. In addition animal owners take an increasing interest in gaining greater levels of understanding. This book will reflect the diverse and dynamic research being undertaken in a variety of different species throughout the world. Whether the animals have roles in food security, agriculture, or as companion, wild, or working animals, the lessons we learn impact on many areas of the profession. From the cardiovascular and musculoskeletal systems through to pathology and infections and immunity, this books looks at laboratory research through to clinical trials and epidemiological data. From developmental stages and early life through to ageing, both healthy and pathological states, the importance of cellular mechanisms through to the entire animal are all explored. This is the second book in the series ‘Veterinary Anatomy and Physiology’.
",isbn:"978-1-83969-530-8",printIsbn:"978-1-83969-529-2",pdfIsbn:"978-1-83969-531-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"639a0b9be32348e863437a425cf18a4a",bookSignature:"Dr. Catrin Rutland and Prof. Samir El-Gendy",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",keywords:"Anatomy, Pathology, Histology, Physiology, Embryology, Body Systems, Mechanisms, Organs, Veterinary, Pharmaceuticals, Diagnostic Techniques, Imaging",numberOfDownloads:1816,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 16th 2021",dateEndSecondStepPublish:"April 27th 2021",dateEndThirdStepPublish:"June 26th 2021",dateEndFourthStepPublish:"September 14th 2021",dateEndFifthStepPublish:"November 13th 2021",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"A leading researcher in cardiovascular and oncology biology and genetics. Incorporating histology, molecular biology, imaging, diagnostics, and therapeutics.",coeditorOneBiosketch:"An internationally renowned professor of veterinary anatomy and embryology.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],coeditorOne:{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:[{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:108,totalCrossrefCites:0,authors:[null]},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:169,totalCrossrefCites:0,authors:[null]},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:380,totalCrossrefCites:0,authors:[null]},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:300,totalCrossrefCites:0,authors:[null]},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:166,totalCrossrefCites:0,authors:[null]},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:137,totalCrossrefCites:0,authors:[null]},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:130,totalCrossrefCites:0,authors:[null]},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:187,totalCrossrefCites:0,authors:[null]},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:240,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9081",title:"Equine Science",subtitle:null,isOpenForSubmission:!1,hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",slug:"equine-science",bookSignature:"Catrin Rutland and Albert Rizvanov",coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,isOpenForSubmission:!1,hash:"b91512e31ce34032e560362e6cbccc1c",slug:"canine-genetics-health-and-medicine",bookSignature:"Catrin Rutland",coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56768",title:"Hydrothermal Precipitation of β-FeOOH Nanoparticles in Mixed Water/Alcohol Solvent",doi:"10.5772/intechopen.70503",slug:"hydrothermal-precipitation-of-feooh-nanoparticles-in-mixed-water-alcohol-solvent",body:'\nAkaganeite, β-FeOOH, a type of iron oxy hydroxide has been studied intensively not only because of its great technological and scientific interest but also for many applications [1]. β-FeOOH is a promising electrode material that has potential in rechargeable batteries due to its hollandite-like crystal structure with tunnel-like cavities [2]. β-FeOOH has also found applications in hydroprocessing of coal, removal of arsenate/arsenite [3] and phosphate from water [4]. Due to these intriguing applications, numerous works have investigated the methods of akaganeite synthesis [2]. Surface tension of solvent plays an important role in the formation of 1D β-FeOOH nanorods. A low surface tension of solvent can promote the growth of β-FeOOH nanorods [5]. Addition of medium that can lower the surface tension of precursor solution can alter the thermodynamic properties of the reaction system and subsequently affect the nucleation kinetics, which would result in various morphology and particle sizes. The application of alcohol/water mixture during the synthesis of different metal oxide nanoparticles can be found in the literature. Submicrometer ZrO2 nanomaterial was synthesised by Hu and Chen [6] using alcohol/water mixture. Fang and Chen [7] used a mixed solvent of water/n-propanol to synthesise titania powders. ZrO2(Y2O3) nanoparticles were synthesised by Li and Gao [8] using ethanol/water mixture. So far, the effect of mixed solvent properties on the growth of 1D β-FeOOH nanorods were not evaluated despite of its numerical industrial and scientific applications. In our previous work, we have demonstrated that alcohol played an important role in controlling nucleation rate and particle size of 1D β-FeOOH nanoparticles [9, 10]. Previously reported work in the literature considered the dielectric constant,
The application of mixed solvent is a new approach in the synthesis and processing of materials [12]. However, the role of surface tension is neglected when relating particle growth with solvent properties. Tuning the surface tension of the water/alcohol can affect the colloidal interaction between solid particles. Most of the literature reported on the use of alcohol/water mixture on the precipitation of submicro meter-sized TiO2, ZrO2, SiO2 and CeO2 particles. Published literature provides evidence that the formation of nanoparticles strongly related to the solution pH, precursor salt concentration, time and temperature, etc. However, very few attempts have been made in the literature to describe the interaction between the process parameters from statistically designed experiments. Moreover, only one work was done to describe the effect of process variables on particle size [13]. However, the empirical correlation reported can only predict spherical shape particles and the experiments were not designed statistically to evaluate the actual relationship between process variables.
\nDevelopment of mathematical relationship that combines fundamental properties and empirical quantities derived from statistical analysis can be very useful in understanding the actual effect of process interactions on the particle growth. In a previous work [9], mathematical relation between solvent surface tension and particle growth was reported. However, the effect of various process parameters on the particle growth was not accounted in that model. Hence, in this chapter, an evaluation of the fundamental relationship between solvent surface tension, precursor concentration, time and β-FeOOH nanorod growth is presented via statistically designed experiments.
\nAccording to classical electrostatic model, the chemical potential of two phases are equal in equilibrium and can be written as [11, 12]:
\nwhere
where
where
Analytical-grade FeCl3·6H2O and NH4OH (B & M Scientific, Cape Town, R.S.A) were used as they are without any further purification. Deionised water and alcohol (methanol, ethanol and propanol) were mixed together with different ratios to vary the surface tension of solvent. Ammonium hydroxide, NH4OH, was added drop wise until the mixture pH reached a value of 10. A certain amount of FeCl3·6H2O was added to the solution to make up 0.05 M solution (unless stated otherwise), and the solution was stirred until the iron salt was dissolved. The pH of the final solution (prior to heating) was recorded. The pH was always kept constant at ~2 to isolate the effect of pH on the particle growth in each case. The solution was replaced in a teflon-lined pressure autoclave. The temperature was 100°C. A reaction time of 2 h was used to synthesise the particles.
\nThree different alcohols (methanol, ethanol and propanol) were used to tune the surface tension of the solvent. If the hypothesis conceived earlier is true, then there will be a qualitative relationship between particle size,
where
Correlation between particle size and solvent surface tension.
Statistically designed experiments are effective optimising tools where the process is influenced by various external factors. In this chapter, a two level three factor factorial design was used to evaluate the effect of interaction of various parameters that have been manipulated during the synthesis of β-FeOOH particles. Previous work [9, 10] has shown that the particle phase is very sensitive to reaction temperatures and pH. Hence, reaction temperature and pH were omitted from the factorial trial for simplicity sake. Furthermore, butanol was used as solvent to synthesise β-FeOOH particles to validate the relations between particle growth and solvent surface tension. Table 1 presents the real amount of each parameters that have been used at low and high levels, which is assigned by a positive (+) and negative (−) sign, respectively.
\nFactors | \nLow level (−) | \nHigh level (+) | \n
---|---|---|
A: FeCl3 concentration [M] | \n0.05 | \n0.5 | \n
B: % solvent to water ratio | \n30 | \n90 | \n
C: Time (h) | \n2 | \n12 | \n
Real amount of each factor used in the factorial trial experiments.
Table 2 presents the obtained equivalent diameter at different experimental conditions according to the two level three factor factorial design. A Pareto chart is presented in Figure 2 to assess the interaction between process parameters and obtained equivalent diameter of the particles. The factorial design can cover the main and interaction effects of the parameters within the whole range of selected parameters. Evaluation of the effect of principal factors revealed that these parameters have positive effects on the obtained equivalent diameters of the particles.
\nSamples | \nFeCl3 concentration [M] | \n% alcohol to water ratio used as solvent | \nTime (h) | \n|
---|---|---|---|---|
1 | \n0.5 | \n90 | \n2 | \n17 | \n
2 | \n0.05 | \n30 | \n12 | \n17 | \n
3 | \n0.5 | \n30 | \n12 | \n90 | \n
4 | \n0.05 | \n30 | \n2 | \n16 | \n
5 | \n0.5 | \n90 | \n12 | \n43 | \n
6 | \n0.05 | \n90 | \n12 | \n16 | \n
7 | \n0.05 | \n90 | \n2 | \n15 | \n
8 | \n0.50 | \n90 | \n2 | \n7 | \n
Results obtained for a two level factorial design.
Estimated effects of factors on particle aspect ratio using factorial design.
Based on the significance of effects from Figure 2, a generalised empirical correlation that takes solvent surface tension, precursor concentration and time into account is proposed:
\nwhere
Linear regression can be used to obtain corresponding values of
Typical comparison between experimental data and predicted value using different
Interaction between solvent surface tension and various process parameters on the synthesis of different β-FeOOH morphology has been evaluated for the first time assuming the presence of low Coulombic interaction. A linear relationship was found between particle size and surface tension of the solvent. Statistically designed experiments were performed to evaluate the interaction between particle growth and process parameters. A generic correlation has been developed to predict particle growth. The correlation can be extended further to predict particle size of other type of materials. The results obtained in this work clearly indicate that the application of only dielectric constant to relate particle nucleation and growth is not adequate. A combination of surface tension and dielectric constant together will be appropriate.
\nThe author would like to thank National Research Foundation of South Africa (Grant no: 88220) for financial support.
\nThe author declares no conflicts of interest.
Nitrogen is the most abundant (78%) of the atmosphere in gaseous form as an N2 molecule. But it is not directly available to the plants for their growth and development [1]. It is the foremost important major essential nutrient element involved in the physiological processes in plants. Globally, nitrogen deficiency is a crucial growth-limiting factor for plants, especially under abiotic stresses. The nitrogen use efficiency (NUE) is defined as the output of any crop plant per unit of nitrogen applied under a specific set of soil and climatic conditions [2]. Agronomist usually considers the amount of rough rice produced per unit of nitrogen applied as the efficiency of nitrogen, but physiologist defined it as the amount of rough rice produced per unit of nitrogen absorbed [3, 4]. The latter is also termed as N utilization efficiency. Apparent N recovery is based on N uptake measurement in the above-ground plant parts and assumes that fertilized and control crops absorb the same amount of soil N. On the other hand, physiological and agronomic efficiencies are based on grain yield rather than total dry matter production. However, the enhancement of NUE under an abiotic stressful environment has paramount importance to the future rice breeder.
Rice (
Another one among the most important abiotic stresses is drought. Despite the importance of drought as a major factor in yield reduction in rainfed ecosystems, few efforts have been made to develop high-yielding drought-tolerant rice variety. Impending rice production will experience a range of drought stress. The root architectural plasticity is taken into accounts as a very important characteristic to confer tolerance to drought stress [13]. Deciphering the genetic and molecular mechanisms controlling root phenotypic plasticity is important for effective screening, selection and rice breeding efforts. Despite the likely genetic complexity behind the regulation of trait expression in line with environmental conditions, phenotypic plasticity is heritable and selectable. The QTLs have been identified incur for plasticity in aerenchyma development and lateral root growth in response to drought stress in rice [14]. These QTLs can be used in advanced breeding for the development of a drought-tolerant rice variety. Due to global climate change, rice crops will face diverse stresses, including prolonged drought stress, poor soil fertility, and unpredictable rainfall. Rice establishment, either by transplanting or direct seeding, depends upon the rainfall pattern. Therefore, the identification of root phenotypic plasticity traits suitable for adaptation to the particular range of conditions faced by rice crops, as well as the genetic regions responsible for those plasticity traits, may facilitate selection for wide adaptation of rice genotypes to variable conditions to confer sustainable yield. Quantification of root architectural plasticity possesses significant value to detect which root traits may play the pivotal roles in rice adaptability to drought. It is reported that the most plastic genotypes in root traits may show the most yield stability under various dynamics of drought stress [11]. In this regard, many drought-tolerant cultivars, like N22 and Moroberekan, have been selected from rainfed ecosystems through traditional processes. These cultivars harbor genes for tolerance to abiotic stresses, including a wide range of drought [15]. But due to their low yield potential and poor grain quality, farmers and consumers are reluctant to prefer these cultivars. This provides a unique opportunity for rice breeders to develop high-yielding drought-tolerant varieties.
Salinity is another major abiotic stress that is globally distributed in both irrigated and non-irrigated areas [16, 17]. On a global basis, salinity stress ranked second after the drought [18]. Salt stress affects many aspects of rice growth and development, especially during seed germination and seedling growth [19]. It is one of the most prevalent environmental threats to global agricultural productivity, especially in arid and semi-arid climates, where population growth, water shortage and land degradation are major concerns [1, 20]. Salt-affected soils are identified by high electrical conductivity (EC), sodium adsorption ratio (SAR) and pH, calcareousness, poor organic matter, less biological activity and imbalance in physical soil conditions. Salinity causes toxicities of ions like Na+ and Cl−, osmotic stress and ionic imbalance to the root zone or in the soil body, including soil impermeability [21], resulting in nutrient uptake problems in rice plant. Salt stress is the osmotic stress expressed on seedling to the reproductive stage when they are growing under high saline conditions. The N is the essential element for the synthesis of chlorophyll, amino acids, nucleic acids, and proteins. Reduction in plant dry matter is sometimes observed under severe NaCl salt stress and N deficiency. This phenomenon possibly happens because of the decrease in sugar or starch accumulation [1, 22]. The NUE of nitrogenous fertilizers in saline soil depends upon its mineralization pattern, soil salinity levels, soil texture, temperature, freshwater irrigation and soil pH [23]. As NUE for rice plants under salt-affected soils is relatively lower than those on normal soils, the judicious use of nitrogenous fertilizer application in saline soil is needed. Breeders involved in salinity tolerant rice, it is groundbreaking news that the over-expression of PHYTOCHROME-INTERACTING FACTOR-LIKE14 (
Crop establishment under abiotic stress is crucial for farmers, even though farmers are coping with this stress condition. There are many more abiotic stresses; out of those, we will discuss only flooding, drought and salinity stress.
Proper rice establishment is significantly important in flood-prone areas because of its sensitivity to flooding during germination (Figure 1) and early seedling stage relative to other growth stages [24, 25]. In most areas of Asia, irrigated rice is established by transplanting of seedlings into puddle soil [26, 27], after which the fields are flooded for a prolonged time and recession of water is done before harvesting. Puddling gives some advantages such as it reduces water loss by percolation, assists weed control through destroying weeds, burying weed seeds and maintaining anaerobic conditions that impede weed germination, and makes the soil soft for transplanting [28, 29]. In many rainfed areas of Bangladesh and the eastern part of India, water deposits in the field to around 30 cm or more within a few days after the onset of the rainy season, making the farmers to transplant taller and older seedlings being their only viable option in their hand [30]. Many variations in direct-seeding are being practiced depending on water availability and field conditions [29]. Due to increasing labor scarcity and cost, however, the need to shift a more suitable establishment method with much lower labor requirement than manual transplanting is conducted. This can be achieved by changing to mechanical transplanting or direct-seeding, which also enable timelier planting/seeding and improved crop stand [31]. Researchers in China [32], South Asia [33], and Australia [34] reported that rice could be successfully grown using dry-seeding. Dry-seeding rice has been developed as an alternative establishment method of rice that alters labor requirements and other inputs while increasing or maintaining economic productivity and alleviating soil degradation problems in cropping systems [35, 36].
Crop establishment methods and seed management options under early flooding stress using anaerobic germination (AG) potential rice genotypes in direct-seeded rice (DSR) system under field condition.
The three basic methods of direct seeding are water seeding (broadcasting seed into standing water), dry-seeding and wet-seeding [31]. In wet seeded rice (WSR), the pre-germinated seeds are broadcasted or sown in rows on the saturated soil surface, typically after puddling. Dry-seeding involves broadcasting or preferably drilling the seed into non-puddled soil, usually after dry tillage [31]. Water seeding involves pre-germinated rice seeds broadcast in standing water and is practiced in some cooler areas like in California, Central Asia and Australia [30]. The main advantage of this method is that the standing water suppresses the majority of weed species. This is common in temperate irrigated areas, but could potentially be adapted in flood-prone rainfed lowlands in the tropical area where farmers can practice early sowing without waiting for a complete recession of floodwater, to minimize the risk of delayed maturity and late-season drought [26]. Once the rice crop has been established in direct-seeded systems and based on water availability, the field is flooded to suppress weed growth and water depth is then maintained at 5–10 cm through most of the season, later water is gradually drained prior to harvest [30]. The type and degree of adoption of alternative rice crop establishment methods to puddling and manual transplanting vary across Asia. In some parts of South East Asia (Philippines, Malaysia, and Vietnam) and Sri Lanka, transplanting has been replaced in large areas by wet-seeding on puddled soil [2, 26]. In the more developed East Asian countries, like Japan and South Korea, transplanting in puddled soil using specialized machinery has been a common practice for many years, and there is now emerging interest in mechanical transplanting into either puddle or non-puddle/dry tilled soil in parts of India. In parts of South Asia, especially in the rice-wheat systems of north-west India, dry-seeding of rice is at the early stages of adoption. The same seed drill can also be used for sowing other crops; thus, dry-seeding may be more conducive to the mechanization of rice establishment than the use of a single purpose mechanical transplanters in regions where farmers also grow non-rice crops [37].
The establishment methods involving puddling have several disadvantages, including higher tillage costs, adverse effects on soil structure for upland crops grown in rotation with rice, and high water requirement for crop establishment. Irrigation cost for crop establishment can be reduced by avoiding puddling, with or without a change in the crop establishment method. For example, both mechanical transplanting and wet-seeding can be done in non-puddled soil after saturating the soil (after dry tillage or no-tillage) [38]. Dry-seeding into dry or moist soil, can further reduce the water requirement for crop establishment, with or without prior dry tillage as for transplanted and wet seeded rice. Nevertheless, direct-seeded rice in the field for 2–3 weeks is longer than transplanted rice, increasing the length of the irrigation season. It has been observed that the extraction of water is more uniform across depths with direct-seeded rice because of better root growth than with transplanted rice [39]. At the early stage of crop growth, up to 60 days after sowing (DAS) growth rate is relatively higher in DSR and WSR than transplanted rice, having more plant density per unit area compared to transplanting [40].
Drought is an environmental occurrence imposed by the synergistic effect of hydrological, climatic, and natural forces that result in insouciant precipitation for agricultural production over a long period [41]. Globally drought severity is one of the serious concerns because of its immense impacts [42]. The frequency and severity of global drought remain omnipresent and the incidence or extremity of drought has been increasing globally, such as in the Mediterranean region [43], Central China [44], and Africa [45]. Drought is a major constraint to rice production worldwide, as it can occur for varying lengths of time and intensity at any stage of rice growth and development. With the increasing human population and depleting water resources, the development of drought-tolerant rice is of supreme importance to minimizing rice yield losses from drought stress [46]. The major obstacle of rain-fed rice production is drought [47]. Irrigated conditions induce shallow root systems to uptake the resources from the top layer of the soil, whereas rain-fed conditions favor a deep and robust root system, needed to extract the water and nutrients from a wider volume of soil [48]. Three common types of drought can be found for rice production: early water scarcity that causes a delay in seedling establishment through transplanting, mild sporadic stress having cumulative effects, and late stress affecting long duration varieties [49].
Drought stress induces different physiological and biochemical changes in rice at various developmental stages [50]. It is reported that the plant acclimatized to drought stress through modification of its roots into thicker and longer to uptake nutrient and water from a relatively higher depth of soil and it is found that assimilates are translocated to roots instead of shoots in response to drought stress [51]. In contrast, some researchers opined that root growth in rice decreases under drought stress [52]. These findings show that the response of roots to water stress is highly dependent on the rice genotype, period and intensity of stress [53]. The impact of drought stress on rice yield also depends on the growth stages, with the seedling, tillering, flowering, but if rice plant faces severe drought at the panicle initiation stage might be the most sensitive stage resulting huge loss in yield [54].
As roots uptake water and nutrients from the soil; hence, the morphological and physiological characteristics of roots play a vital role in determining shoot growth, successive development and ultimate crop production [55]. The access of water to a plant is measured by its root system, root properties, root structure, and distribution of root and rootlets, so improving root traits to expedite the uptake of soil moisture and uphold the productivity under drought stress is of paramount interest [56, 57]. Herbaceous plants like rice have a root system comprised of coarse roots, which include the primary roots that originate from the taproot system and the nodal/seminal roots of fibrous root systems, easily distinguishable from the finer lateral roots [58]. Moisture deficiency can be recovered through modification of the root-shoot ratio and maintain leaf gourd cell-mediated process under drought stress [59]. The optimal dry matter partitioning theory proposes that a plant distributes the assimilates among its different parts for optimum growth and development [60]. It further suggests that the shoot ratio and some other signaling processes may change the ratio to balance the assimilates that alter plant growth even the plants produce certain root for adaptation [61]. Roots having a small diameter and a high specific root length expedite the surface area of roots in contact with soil water and also increase the influx of the xylem through the apoplastic pathway [62, 63]. Moreover, the decrease in root diameter also assists in enhancing water access and upraises the productivity of plants under drought stress [64].
Agronomic adjustments to root plasticity may occur when plant combat with multiple resources limitation [65]. Root architecture varying with rice seedling establishment methods; dry direct seeding prone to more edaphic stresses than irrigated transplanted methods [31]. Moreover, the adjustments in high yield potential among genotypes showing the highest degree of root plasticity may be due to genetic potentiality rather than functional adjustments. Undesirable traits to drought stress such as tall plant height and very early flowering have been reported previously, later in high-yielding, medium-duration drought-tolerant rice varieties developed [66, 67]. So the exact identification and fine-mapping of the QTLs governing the root plasticity traits identified [68]. The positive plasticity values noticed in response to stress indicate that the growth of that particular root trait was increased due to stress application. This response is distinct from an allometric response, in which larger root biomass is related to larger shoot size, because though root growth increased under drought stress but shoot growth down-regulated under stress [68]. The genotypes showing most root-plasticity have positive correlations for root architectural traits between and drought suggest that the most root-plastic genotypes would consistently show a plastic response in different drought environments either in transplanting or direct seeding or in other soil types [68]. The genotypes having the most root-plasticity under drought also would show a relatively greater degree of plasticity under low phosphorus content soil, depending on the soil depth [68]. Combinations of multiple root plasticity traits in response to drought and/or low-phosphorus have been related to genotypic variation for adaptation to various environments [69]. It is reported that no single functional parameter was strongly incurred to trends in root plasticity or yield [68]. In line with root architectural plasticity, traits such as root anatomy, water use efficiency, and phenology has been reported to be related to more stable plant establishment across versatile environments in various species [70, 71]. In the case of rice, phenological plasticity in response to drought may be difficult to assess because rice exhibited delayed flowering under drought, and this delay can be reduced by plasticity in root architectural traits, which improve moisture uptake. A set of QTLs has been identified related to root architectural plasticity traits and phenotypic plasticity traits in rice, resulting in getting a better understanding of rice establishment under drought stress [68].
Generally, rice plants are very sensitive to salinity stress during the early stages of seedling establishment, post-germination and reproductive stage and relatively less sensitive during tillering and grain filling stages [72, 73]. Under salinity altering in the shoot to root ratio as a consequence of root length reduction was supposed to be the avoidance mechanism of the seedlings from salt stress. Salinity accumulates the toxic ion in plants, causing a mineral imbalance. The essential ions are reduced and do not meet the demand resulting in hindrance in normal physiological activities of rice plants. High salt stress impedes the seed germination process, while low salt stress induces seed dormancy [74]. To cope with such stress conditions, seeds develop a mechanism of maintaining low water potential, other specific avoidance, escaping, or tolerance mechanisms to protect the damage by salt stress [75]. Salinity limits germination in a number of ways. From reducing the osmotic potential of soil, which makes a decline in water imbibitions by seed [74] to the creation of ionic toxicity, which alters enzymatic action involved in nucleic acid metabolism. Other effects of salt stress on seed germination include changes in the metabolic process of protein [76]. Seeds are usually more sensitive to salt stress due to close association to the surface of the soil. Accumulation of NaCl to a toxic level in soil, ionic stress decreases the rate of germination [77]. Seed could not absorb water properly because of lower water potential induced by salt stress resulting in toxic effects to the developing embryo and delay in the germination process [78]. The average time of seed germination depends on salinity severity and genotype’s inherent quality. There is a strong negative co-relationship between the strength of salinity stress and the rate of germination [79]. Salinity exhibits an immense effect on the germination index and seed size [80]. Small-sized seeds show a relatively higher germination index than large size seeds under salinity stress. Salinity has a negative effect on germination percentage, rate of germination and germination speed [81]. After germination, in successive growth of the seedling, salinity reduces shoot and root dry matter production in rice genotypes [82], and the magnitude of reduction increased with increasing salinity level (Table 1).
Genotype | Salinity level (dS m−1) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 0 | 5 | 10 | 15 | |
Shoot dry weight (g/10 plants) | Root dry weight (g/10 plants) | |||||||
IR20 | 0.060 | 0.05 (17) | 0.028 (53) | 0.016 (73) | 0.068 | 0.048 (29) | 0.036 (47) | 0.016 (76) |
POKKALI | 0.134 | 0.116 (13) | 0.064 (52) | 0.044 (67) | 0.152 | 0.076 (50) | 0.026 (83) | 0.018 (88) |
IR29 | 0.140 | 0.07 (50) | 0.036 (74) | 0.014 (90) | 0.06 | 0.048 (20) | 0.022 (63) | 0.012 (80) |
NERICA 1 | 0.084 | 0.064 (24) | 0.024 (71) | 0.008 (90) | 0.054 | 0.038 (30) | 0.018 (67) | 0.01 (82) |
NERICA 5 | 0.076 | 0.054 (29) | 0.032 (58) | 0.02 (74) | 0.13 | 0.056 (57) | 0.016 (88) | 0.004 (97) |
NERICA 12 | 0.092 | 0.068 (26) | 0.046 (50) | 0.028 (70) | 0.062 | 0.04 (35) | 0.024 (61) | 0.01 (84) |
NERICA 19 | 0.054 | 0.038 (30) | 0.014 (74) | 0.004 (93) | 0.036 | 0.028 (22) | 0.002 (94) | 0.0 (100) |
IWAII | 0.090 | 0.068 (24) | 0.032 (64) | 0.02 (78) | 0.068 | 0.046 (32) | 0.028 (59) | 0.016 (76) |
Effect of salinity on shoot and root dry weight (g/10 plants) of different rice varieties [82].
Values in parenthesis indicate percent reduction to respective controls.
Higher amounts of salt in the soil cause a serious threat to various metabolic processes of plants, which results in a reduction of crop yield. Soil salinity limits the uptake of essential ions into the plants resulting in metabolic disorder leading to downstream in plant growth rate [83]. Excess salt concentration in the root zone of plants causes a change in plant water potential. Salinity causes a reduction in turgor pressure in plant cells due to less water uptake by the plants. Insufficient water limit cell division and regulation of stomatal aperture, which lead to low photosynthesis rate and in severe case causes plant tissues death [84]. Aside from this, reduction in turgor pressure causes stomatal closure, resulting reduction in gaseous exchange of transpiration [20]. Salinity causes other physiological disorders, like changes in membrane permeability, leading to misfolding of membrane proteins [85] and suppression of the photosynthesis [86]. Reduction in enzymatic activities and photopigments causes a lowering of photosynthesis rate [87]. Many plant physiological and biochemical processes, photosynthesis [88], water conductance through stomata [75, 89] are affected by salinity, resulting in an adverse effect on biological processes and crop yield reduction.
Rice adopts various strategies in response to salinity through their anatomical modification, which allows them to cope with the stress. Plants with growth in high salt concentration have more thickness of leaves [90], epidermis, cell walls and cuticles. The higher the salt concentrations, the higher the mesophyll cell layers and cell size up to some extend [91], due to more elasticity in the cell wall at high turgor pressure [92]. Salinity expedites the density of stomata at the lower side of leaves [93] with increased palisade tissues [94]; however, salinity downregulates the number of cells per leaf. Salinity reduces the number of stomata on the surface of the epidermis [95], vessels number [94]. However, salinity accelerates subrinization inside the roots resulting in hindrance in nutrient uptake from soil [96]. In rice, it is reported that stem diameter was reduced [97], while trichome and stomata density increased. Salt stress reduced cell size, the epidermal thickness of leaves, apical meristem, diameter of the cortex and central cylinder [98]. Salinity induced thickening of exodermis and endodermis [99] and assist in developing sclerenchymatous tissues [98]. Once the seed has germinated, the next goal for the plant is an establishment. Salinity causes a reduction in crop establishment by reducing shoot growth, sealing leaf development and expansion, reducing the growth of internodes and inducing abscission of leaf [91, 100]. Salinity causes some complexity to plants, like osmotic stress, ion toxicity and nutrient imbalance, which are detected as the most prominent reasons for a reduction in crop growth, resulting in crop failure in severe cases. Nonetheless, different developmental stages like germination, vegetative growth, flowering, spikelet’s setting and grain filling of rice behave differently with salinity. It is reported that salinity decreased biomass and leaf area in rice [101].
In soil, inorganic nitrogen is available for plants as nitrate (NO3−) in aerobic upland condition and ammonium (NH4+) in flooded wetland or acidic soils. Nitrogen use efficiency (NUE) is a complex trait that is controlled by multiple genes. Many genes and/QTLs associated with NUE have been identified in rice. Studying and understanding the mechanisms of N utilization at a molecular level may help to improve rice varieties for N deficiency tolerance under different abiotic stresses. Researchers [102] identified 14 putative QTLs for NUE components and 63 QTLs for 12 physiological and agronomic characteristics with six hotspot regions using 174 recombinant inbred lines derived from the IR64/Azucena cross at the vegetative phase in the hydroponic Yoshida solution with three different N concentrations: 1X (standard), 1/4X and 1/8X. In line with this, it is reported that eight QTLs for plant height in hydroponics with two N supply levels in the Yoshida culture solution and 13 QTLs for plant height in a soil mediated experiment with two N supply treatments [103]. Twelve QTLs were detected for root weight, 14 for shoot weight and 12 for biomass from 239 rice recombinant inbreed lines (RILs) derived from a cross between two
Five QTLs were identified on chromosomes 1, 2, 7 and 11 for grain yield (GY) using 127 RILs derived from the cross Zhanshan 97/Minghui 63 [107]. The phenotypic and genetic associations between grain NUE and GY are positive and highly significant; thus, QTLs for both NUE and GY could be used to trigger NUE and GY in a breeding program [108]. Seven QTLs for the glutamine synthetase (GS1) protein content and six QTLs for the NADH-GOGAT protein content were detected using backcross inbred lines between Nipponbare and Kasalath. Some of these QTLs were fined mapped to get a structural gene for GS1 from chromosome 2 and chromosome 1 [109]. A QTL on chromosome 2 activates cytosolic GS1 for protein synthesis in older leaves, resulting in more active tillers during the vegetative stage and a more panicle number and total panicle weight [110]. Using 166 RIL populations, 22 single QTLs and 58 pairs of epistatic QTLs associated with physiological NUE in rice have been identified [111]. With the same mapping population, 28 main effect QTLs and 23 pairs of epistatic QTLs were detected [112]. It is reported that [113], using 38 chromosome segment substitution lines derived from a cross between “Koshihikari,” a
A set of RILs grown in four different seasons in two locations with three nitrogen fertilization treatments was analyzed for QTL for grain yield components and two main effect QTLs were detected viz., grain yield per panicle on chromosome 4 and grain number per panicle on chromosome 12 under N zero level [114]. Four QTLs for trait differences of plant height and heading date between two N levels have been mapped on chromosomes 2 and 8 co-locating with reported QTLs for NUE [111]. In response to low nitrogen application for two years, 33 QTL have been identified in RIL population, out of which only ten QTLs were consistent under low N [115]. QTL mapping for NUE and nitrogen deficiency tolerance traits in RIL population for two years resulted in four common QTL on chromosomes 1, 3, 4 and 7 [116].
From a recombinant inbred population, 20 single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were detected for the nitrogen concentration of grain, nitrogen concentration of straw, the nitrogen content of shoot, harvest index, grain yield, straw yield and physiological nitrogen use efficiency (PNUE) [117]. Researchers [118] identified seven chromosomal regions using 40 introgression lines (ILs) derived from a cross between “Ilpumbyeo,” a temperate
Recently, a group of scientists reported [119] about a main effect QTL
QTLs/genes | Special traits | Chr. No | Reference |
---|---|---|---|
High-yield under N limiting condition | 8 | [108] | |
Root elongation under deficient and sufficient NH4+ condition | 6 | [113] | |
Enhance root traits and yield potential | 6 | [118] | |
Confers tolerance to N deficiency | 6 | [119] | |
Increases grain yield under low N | 7 | [106] | |
Increases grain yield per plant under low N | 4 | [114] | |
Increases grain number per panicle under low N | 12 | [114] |
Major QTLs/genes associated with nitrogen use efficiency under abiotic stresses.
Holistic breeding approach for multiple abiotic stress tolerance in rice. F = flooding, D = drought, S = salinity, QTLs = quantitative trait loci.
Adverse environmental conditions like abiotic factors, triggering abiotic stresses, run a key role in determining the productivity of rice yields. Biologically, abiotic stress is considered as a substantial deviation from the model environments in which plants are grown, inhibiting them from expressing their complete genetic potential regarding growth, development and reproduction [120]. Agriculture production in Bangladesh is dwindled mainly due to biotic and abiotic stresses. Abiotic stress ubiquitously affects the crop growth and development process worldwide. Hence, these are one of major areas of concern to fulfill the required food demand [121, 122]. The major abiotic stresses, drought, flooding, salinity are making the risks to food and nutritional security from tropics to temperate regions worldwide. Drought affects plants in numerous ways like it affects plant growth, yield, membrane integrity, pigment content, osmotic adjustments, water relations and photosynthetic activity [123]. Over the last three decades, the temperature of the country has increased significantly. It is estimated that by 2030, 2050 and 2100, the temperature may increase around 1, 1.4 and 2.4°C, respectively [124]. This is significant as an increased temperature reduces the yield of rice. Therefore, the country is in a risky situation in meeting future challenges concerning food security.
Bangladesh is facing salinity intrusion into the arable agricultural lands. The decline in rice yield under judiciously salt-affected soils is anticipated to be 68 percent [126]. Due to global warming, the rise in sea levels, surplus irrigation without appropriate drainage in the inland area under salt stress is growing. Flash flood and cold injury also cause rice production loss almost every year in Bangladesh. Rainfed conditions in Bangladesh are quite complex, where multiple stresses frequently prevail and even follow in quick succession within a single cropping season. Two or more abiotic stresses often coexist in many rainfed lowland and saline areas of Bangladesh. Most of the rainfed areas in Bangladesh are often occurred by multiple abiotic stresses such as flooding, drought and salinity even within the same cropping season near the coastal areas. Therefore, we need to breed new hybrid rice varieties that could tolerate more than one abiotic stress and yield high under normal favorable rainfed conditions as well.
Northern districts of Bangladesh are cold prone areas of the country. Usually, Boro (winter) rice is seriously affected by cold during the seedling and flowering stage. Seedling mortality sometimes goes up to 90%, especially in the northern part of the country. In recent years, more than 2.0 million hectares of rice crops in the cold prune area of Bangladesh have been seriously affected by extreme cold stress, causing partial to total yield loss, especially in the northern part of the country. In the haor areas of Bangladesh, early planted Boro rice has to face cold stress at the reproductive stages (Panicle initiation to flowering). If the mean temperature goes down below 20°C for more than 5-6 days during the reproductive stage of the hybrid rice plant associated with spikelet sterility, cause serious yield damage.
In particular, abiotic stresses significantly constrain rice production in Bangladesh and the frequency of these stresses is, unfortunately, likely to increase with climate change. Hybrid rice breeding programs around the world have preemptively responded by breeding stress-tolerant rice varieties. By manipulating the heritable variation present in the germplasm, we can develop abiotic stress-tolerant cultivars through breeding techniques, but it is a cumbersome and time-consuming process. The slow progress is due to the complexity of the problem involving environmental conditions and the genetic system. The development of stress-tolerant hybrid rice varieties has gained momentum among the breeders in the recent past. The development of hybrid rice with inbuilt stress tolerance is most desirable to increase the production capacity of rice under saline conditions.
Climate change has affected Bangladeshi agriculture a lot. The most pronounced effects of climate change are the heat stress, periodic drought conditions, and salinity intrusion in coastal belts due to sudden flood and flash flood in major rice-growing areas of Bangladesh. In the last couple of decades, the salinity affected area increased drastically in Bangladesh (Table 3). Due to periodic drought and saline water intrusion in the coastal belt, the already existing problem of high amounts of salts in the upper surface soil has intensified. In the future, efforts should be directed to develop climate-smart hybrid rice, which can perform stably under diverse environmental conditions. Nonetheless, China is now feeding 20 percent of the world’s population from only 10 percent of the world’s arable land where hybrid rice covers around 57 percent of the total cultivated rice area [125]. They have achieved this success by adopting research on region-based and stress-tolerant hybrid rice development. Their way of success was not so smooth, but eventually, they overcome all the obstacles. On the other hand, rice is called “the life of the people of Bangladesh.” No obvious alternative crop can replace rice presently. Initially, after the introduction of hybrid rice in Bangladesh in 1998, the area under hybrid rice cultivation significantly increased, but not up to the mark. Currently, only 7.48 percent of the total rice area is under hybrid rice cultivation in Bangladesh [126]. We have released hybrid rice for a favorable environment. It is now worldwide accepted that hybrid rice can give 15-20% more yield compared to inbred high yielding rice cultivars. Therefore, the development of abiotic stress tolerant hybrid rice is the demand of the time to sustain food security.
Years | Salinity class and salt affected area (000’ha) | Total (000’ha) | |||
---|---|---|---|---|---|
S1 (2.0–4.0 dS/m) | S2 (4.1.0–8.0 dS/m) | S3 + S4 (8.1–16.0 dS/m) | S5 (>16.0 dS/m) | ||
1973 | 287.37 | 426.43 | 79.75 | 39.9 | 833.45 |
2000 | 289.76 | 307.20 | 336.58 | 87.14 | 1020.75 |
2009 | 328.43 | 274.22 | 351.69 | 101.92 | 1056.26 |
Extent of soil salinity during the last four decades (1973–2009) in coastal areas of Bangladesh.
Source: Soil Resources Development Institute (2010).
Among the essential nutrient elements, nitrogen has a paramount importance for rice growth and development in natural ecosystems. To promote optimum N nutrition for the higher rice yield, it is important to explore the possible variability in NUE in rice genotypes. Understanding the molecular mechanisms of variable NUE in rice genotypes would help to develop NUE in the elite rice variety under abiotic stressful conditions using traditional and molecular plant breeding methods, including genome editing. Global climate change plunges world rice production toward various abiotic stress. Flooding, drought and salinity are correlated to cause problems in rice production. If rice seedlings experience flooding during the vegetative stage, they may suffer from terminal drought during the reproductive stage, depending on the ecosystems. Likewise, periodic drought conditions may upregulate the existing salinity stress through intensification of a high amount of salt layer on the upper surface soil. Therefore, there is a dire need to adopt a holistic approach to address the problems of abiotic stresses for future rice breeding. Genomics and post-genomics approaches have high potentials for dissecting underlying molecular mechanisms in differential NUE in rice genotypes. With the help of molecular mapping, fine-tuning of target QTLs, genome editing of a number of major and minor QTLs associated with abiotic stress tolerance in rice have been detected in recent years. Further enhanced research endeavors are now underway toward the development of more tolerant rice varieties to abiotic stresses. The identified QTLs are valuable resources for marker-assisted selection (MAS) to develop elite rice genotypes tolerant to flood, drought and salinity. Novel approaches are needed to apply for accelerating the mitigation of the problems of abiotic stresses in rice such as marker-assisted breeding (MAB), rapid generation advance (RGA), gene editing and transgenic technology. Attempts should be taken to develop abiotic stress-tolerant rice varieties, which can perform in a sustainable manner in a wide range of environmental conditions. Identified QTLs and rice germplasms tolerant to abiotic stresses could be explored to understand the molecular genetics of flooding, drought and salt tolerance in rice. New genes involved in abiotic stress tolerance are needed to be identified. There is a need for strategic research on molecular breeding and agronomic aspects to enhance the resilience of global rice production. To achieve these goals, capacity building of rice scientists, farmers and other stakeholders involved in developing abiotic stress-tolerant rice variety might help to increase the desired NUE in rice.
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11680",title:"Immune Checkpoint Inhibitors - New Insights and Recent Progress",subtitle:null,isOpenForSubmission:!0,hash:"65dc94eb0a8dd733522f67d95b2c2d48",slug:null,bookSignature:"Dr. Afsheen Raza",coverURL:"https://cdn.intechopen.com/books/images_new/11680.jpg",editedByType:null,editors:[{id:"339296",title:"Dr.",name:"Afsheen",surname:"Raza",slug:"afsheen-raza",fullName:"Afsheen Raza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11688",title:"Advances in Drug Delivery Methods",subtitle:null,isOpenForSubmission:!0,hash:"b237999737fb375b4f629ab01a498a9f",slug:null,bookSignature:"Prof. Bhupendra Gopalbhai Prajapati",coverURL:"https://cdn.intechopen.com/books/images_new/11688.jpg",editedByType:null,editors:[{id:"340226",title:"Prof.",name:"Bhupendra",surname:"Prajapati",slug:"bhupendra-prajapati",fullName:"Bhupendra Prajapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11812",title:"New Insights Into Pharmacodynamics",subtitle:null,isOpenForSubmission:!0,hash:"b889e24b3132aa437b6745db36fffe9b",slug:null,bookSignature:"Prof. Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/11812.jpg",editedByType:null,editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Prof.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12207",title:"Statins",subtitle:null,isOpenForSubmission:!0,hash:"245ddb277df310de302579b803b715b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12207.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin",subtitle:null,isOpenForSubmission:!0,hash:"6c00637f80ef05f5f46217dcbeaaa6e9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"f1277fdd717bc84d0437d483a1b78332",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12210",title:"Pharmacy Practice - Recent Advances in Therapeutic Approaches for Improved Health",subtitle:null,isOpenForSubmission:!0,hash:"faa98d6992643387af28c6ddf1b8df3e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12210.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:18},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"54",title:"Human Genetics",slug:"human-genetics",parent:{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:31,numberOfSeries:0,numberOfAuthorsAndEditors:1019,numberOfWosCitations:1080,numberOfCrossrefCitations:530,numberOfDimensionsCitations:1314,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"54",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8073",title:"Chromosomal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"6a9d3c58434edf5e65f9849a6858edfe",slug:"chromosomal-abnormalities",bookSignature:"Tülay Aşkın Çelik and Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/8073.jpg",editedByType:"Edited by",editors:[{id:"74041",title:"Dr.",name:"Tulay",middleName:null,surname:"Askin Celik",slug:"tulay-askin-celik",fullName:"Tulay Askin Celik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6920",title:"Cytogenetics",subtitle:"Past, Present and Further Perspectives",isOpenForSubmission:!1,hash:"d72001eed508dfa72d9a68e1de28bb4b",slug:"cytogenetics-past-present-and-further-perspectives",bookSignature:"Marcelo Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/6920.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6719",title:"Genetic Diversity and Disease Susceptibility",subtitle:null,isOpenForSubmission:!1,hash:"0c9919347cc7cb1dcbc245ce8684eee7",slug:"genetic-diversity-and-disease-susceptibility",bookSignature:"Yamin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/6719.jpg",editedByType:"Edited by",editors:[{id:"201887",title:"Dr.",name:"Yamin",middleName:null,surname:"Liu",slug:"yamin-liu",fullName:"Yamin Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7204",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription Toward the Establishment of Novel Therapeutics",isOpenForSubmission:!1,hash:"10030057b2e2dee7d800ff27658c3a69",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-toward-the-establishment-of-novel-therapeutics",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/7204.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5784",title:"Antibody Engineering",subtitle:null,isOpenForSubmission:!1,hash:"2c8c3e133140fbc7f563918285e7c3c2",slug:"antibody-engineering",bookSignature:"Thomas Böldicke",coverURL:"https://cdn.intechopen.com/books/images_new/5784.jpg",editedByType:"Edited by",editors:[{id:"176804",title:"Dr.",name:"Thomas",middleName:null,surname:"Böldicke",slug:"thomas-boldicke",fullName:"Thomas Böldicke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6435",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription From General Aspects",isOpenForSubmission:!1,hash:"8573c44c537def5c800a0f6d4ed844d6",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-from-general-aspects",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/6435.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5986",title:"The Role of Matrix Metalloproteinase in Human Body Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"ef3e8940d7f0b229028d6fb71b1e0927",slug:"the-role-of-matrix-metalloproteinase-in-human-body-pathologies",bookSignature:"Francesco Travascio",coverURL:"https://cdn.intechopen.com/books/images_new/5986.jpg",editedByType:"Edited by",editors:[{id:"172239",title:"Dr.",name:"Francesco",middleName:null,surname:"Travascio",slug:"francesco-travascio",fullName:"Francesco Travascio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5817",title:"Embryo Cleavage",subtitle:null,isOpenForSubmission:!1,hash:"11de486fcf8fe42d4359c65e71a8f1da",slug:"embryo-cleavage",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/5817.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4588",title:"New Discoveries in Embryology",subtitle:null,isOpenForSubmission:!1,hash:"2d40aace9724b9c451a8d8168acd0169",slug:"new-discoveries-in-embryology",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4588.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4594",title:"胚胎移植新进展",subtitle:"Advances in Embryo Transfer",isOpenForSubmission:!1,hash:"32b738c0d0cbce7a61a3ea63b5d43ed0",slug:"advances-in-embryo-transfer-translation-chinese",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4594.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1907",title:"Reviews on Selected Topics of Telomere Biology",subtitle:null,isOpenForSubmission:!1,hash:"5f4f25ba706645403bab2aa721a0809b",slug:"reviews-on-selected-topics-of-telomere-biology",bookSignature:"Bibo Li",coverURL:"https://cdn.intechopen.com/books/images_new/1907.jpg",editedByType:"Edited by",editors:[{id:"109879",title:"Dr.",name:"Bibo",middleName:null,surname:"Li",slug:"bibo-li",fullName:"Bibo Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2518",title:"Binding Protein",subtitle:null,isOpenForSubmission:!1,hash:"6e70c7a9b0007d8f78ae4f3effba9664",slug:"binding-protein",bookSignature:"Kotb Abdelmohsen",coverURL:"https://cdn.intechopen.com/books/images_new/2518.jpg",editedByType:"Edited by",editors:[{id:"144861",title:"Dr.",name:"Kotb",middleName:null,surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:31,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"38236",doi:"10.5772/50129",title:"Extrinsic and Intrinsic Apoptosis Signal Pathway Review",slug:"extrinsic-and-intrinsic-apoptosis-signal-pathway-review",totalDownloads:11160,totalCrossrefCites:41,totalDimensionsCites:79,abstract:null,book:{id:"3141",slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Zhao Hongmei",authors:[{id:"146795",title:"Dr.",name:"Zhao",middleName:null,surname:"Hongmei",slug:"zhao-hongmei",fullName:"Zhao Hongmei"}]},{id:"35489",doi:"10.5772/37107",title:"MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies",slug:"mm-gb-pb-sa-calculations-of-protein-ligand-binding-free-energies",totalDownloads:8562,totalCrossrefCites:11,totalDimensionsCites:60,abstract:null,book:{id:"2265",slug:"molecular-dynamics-studies-of-synthetic-and-biological-macromolecules",title:"Molecular Dynamics",fullTitle:"Molecular Dynamics - Studies of Synthetic and Biological Macromolecules"},signatures:"Joseph M. Hayes and Georgios Archontis",authors:[{id:"102666",title:"Dr.",name:"Joseph",middleName:"M.",surname:"Hayes",slug:"joseph-hayes",fullName:"Joseph Hayes"},{id:"111282",title:"Prof.",name:"Georgios",middleName:null,surname:"Archontis",slug:"georgios-archontis",fullName:"Georgios Archontis"}]},{id:"38806",doi:"10.5772/48277",title:"Bacterial Two-Component Systems: Structures and Signaling Mechanisms",slug:"bacterial-two-component-systems-structures-and-signaling-mechanisms",totalDownloads:5294,totalCrossrefCites:14,totalDimensionsCites:30,abstract:null,book:{id:"2569",slug:"protein-phosphorylation-in-human-health",title:"Protein Phosphorylation in Human Health",fullTitle:"Protein Phosphorylation in Human Health"},signatures:"Shuishu Wang",authors:[{id:"141519",title:"Dr.",name:"Shuishu",middleName:null,surname:"Wang",slug:"shuishu-wang",fullName:"Shuishu Wang"}]},{id:"30743",doi:"10.5772/35890",title:"Chromosomes as Tools for Discovering Biodiversity – The Case of Erythrinidae Fish Family",slug:"chromosomes-as-tools-for-discovering-biodiversity-the-case-of-erythrinidae-fish-family-",totalDownloads:2026,totalCrossrefCites:10,totalDimensionsCites:30,abstract:null,book:{id:"1721",slug:"recent-trends-in-cytogenetic-studies-methodologies-and-applications",title:"Recent Trends in Cytogenetic Studies",fullTitle:"Recent Trends in Cytogenetic Studies - Methodologies and Applications"},signatures:"Marcelo de Bello Cioffi, Wagner Franco Molina, Roberto Ferreira Artoni and Luiz Antonio Carlos Bertollo",authors:[{id:"92318",title:"Prof.",name:"Roberto",middleName:null,surname:"Artoni",slug:"roberto-artoni",fullName:"Roberto Artoni"},{id:"106252",title:"Dr.",name:"Luiz",middleName:"Antonio Carlos",surname:"Bertollo",slug:"luiz-bertollo",fullName:"Luiz Bertollo"},{id:"106412",title:"MSc.",name:"Marcelo",middleName:null,surname:"Cioffi",slug:"marcelo-cioffi",fullName:"Marcelo Cioffi"},{id:"134346",title:"Dr.",name:"Wagner",middleName:null,surname:"Molina",slug:"wagner-molina",fullName:"Wagner Molina"}]},{id:"16933",doi:"10.5772/24319",title:"Mutation Patterns Due to Converging Mitochondrial Replication and Transcription Increase Lifespan, and Cause Growth Rate-Longevity Tradeoffs",slug:"mutation-patterns-due-to-converging-mitochondrial-replication-and-transcription-increase-lifespan-an",totalDownloads:2411,totalCrossrefCites:11,totalDimensionsCites:28,abstract:null,book:{id:"267",slug:"dna-replication-current-advances",title:"DNA Replication",fullTitle:"DNA Replication - Current Advances"},signatures:"Hervé Seligmann",authors:[{id:"118814",title:"Dr.",name:"Herve",middleName:null,surname:"Seligmann",slug:"herve-seligmann",fullName:"Herve Seligmann"}]}],mostDownloadedChaptersLast30Days:[{id:"62578",title:"DNA Polymorphisms: DNA-Based Molecular Markers and Their Application in Medicine",slug:"dna-polymorphisms-dna-based-molecular-markers-and-their-application-in-medicine",totalDownloads:4440,totalCrossrefCites:6,totalDimensionsCites:11,abstract:"DNA polymorphisms are the different DNA sequences among individuals, groups, or populations. Polymorphism at the DNA level includes a wide range of variations from single base pair change, many base pairs, and repeated sequences. Genomic variability can be present in many forms, including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs, e.g., mini- and microsatellites), transposable elements (e.g., Alu repeats), structural alterations, and copy number variations. Different forms of DNA polymorphisms can be tracked using a variety of techniques; some of these techniques include restriction fragment length polymorphisms (RFLPs) with Southern blots, polymerase chain reactions (PCRs), hybridization techniques using DNA microarray chips, and genome sequencing. During the last years, the recent advance of molecular technologies revealed new discoveries of DNA polymorphisms. DNA polymorphisms are endless, and more discoveries continue at a rapid rate. Mapping the human genome requires a set of genetic markers. DNA polymorphism serves as a genetic marker for its own location in the chromosome; thus, they are convenient for analysis and are often used as in molecular genetic studies.",book:{id:"6719",slug:"genetic-diversity-and-disease-susceptibility",title:"Genetic Diversity and Disease Susceptibility",fullTitle:"Genetic Diversity and Disease Susceptibility"},signatures:"Salwa Teama",authors:[{id:"249329",title:"Dr.",name:"Salwa",middleName:null,surname:"Teama",slug:"salwa-teama",fullName:"Salwa Teama"}]},{id:"58467",title:"Generation of Antibody Diversity",slug:"generation-of-antibody-diversity",totalDownloads:3111,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Because of the huge diversity, the immunoglobulin repertoire cannot be encoded by static genes, which would explode the genomic capacity comprising about 20,000–25,000 human genes. The immunoglobulin repertoire is provided by the process of somatic germ line recombination, which is the only controlled alteration of the genomic DNA after meiosis. It takes place in mammalian B lymphocyte (B cells) precursors in the bone marrow. The genome germ line sequence of undeveloped B cells is organized in gene segments and compromise V (variable), D (diversity), and J (joining) gene segments constituting the variable domain of the heavy chain and only V and J genes for building up the variable domain of the light chain. The rearrangement of the variable region follows a strict order. The following processes that participate in the generation of antibody diversity were summarized—allelic, combinational, and junctional diversity, pairing of IgH and IgL, and receptor editing—which all together produce the primary antigen repertoire (pre-antigen stimulation). When a B cell encounters a foreign antigen, affinity maturation and class switch are induced. Thereby the antibody repertoire increases. The resulting secondary immunoglobulin repertoire reveals in humans at least 1011 specificities for different antigens.",book:{id:"5784",slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Oliver Backhaus",authors:[{id:"177685",title:"M.Sc.",name:"Oliver",middleName:null,surname:"Backhaus",slug:"oliver-backhaus",fullName:"Oliver Backhaus"}]},{id:"61204",title:"Polymorphisms",slug:"polymorphisms",totalDownloads:2005,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"Polymorphism or variation in DNA sequence can affect individual phenotypes such as color of skin or eyes, susceptible to diseases, and respond to drug, vaccine, chemical, and pathogen. It occurs more often than mutations (frequency ≥ 1%). The common polymorphism is single nucleotide polymorphism (SNP) which is a single base change in a DNA sequence that occurs most commonly in the human genome. SNPs have been used as molecular markers in a wide range of studies. Genome-wide association studies (GWAS) searches for SNPs that occur more frequently in person with a particular disease than in person without the disease and pinpoint genes or regions that may contribute to a risk of disease. This topic describes about polymorphisms, SNPs, GWAS, linkage disequilibrium (LD), minor allele frequency, haplotype, method for SNP genotyping, and application of SNPs and genome-wide association study in human diseases and drug development.",book:{id:"6719",slug:"genetic-diversity-and-disease-susceptibility",title:"Genetic Diversity and Disease Susceptibility",fullTitle:"Genetic Diversity and Disease Susceptibility"},signatures:"Wasana Sukhumsirichart",authors:[{id:"238537",title:"Associate Prof.",name:"Wasana",middleName:null,surname:"Sukhumsirichart",slug:"wasana-sukhumsirichart",fullName:"Wasana Sukhumsirichart"}]},{id:"21711",title:"Screening of Bacterial Recombinants: Strategies and Preventing False Positives",slug:"screening-of-bacterial-recombinants-strategies-and-preventing-false-positives",totalDownloads:28414,totalCrossrefCites:1,totalDimensionsCites:5,abstract:null,book:{id:"375",slug:"molecular-cloning-selected-applications-in-medicine-and-biology",title:"Molecular Cloning",fullTitle:"Molecular Cloning - Selected Applications in Medicine and Biology"},signatures:"Sriram Padmanabhan, Sampali Banerjee and Naganath Mandi",authors:[{id:"46458",title:"Dr.",name:"Sriram",middleName:null,surname:"Padmanabhan",slug:"sriram-padmanabhan",fullName:"Sriram Padmanabhan"},{id:"136523",title:"Prof.",name:"Sampali",middleName:null,surname:"Banerjee",slug:"sampali-banerjee",fullName:"Sampali Banerjee"},{id:"136524",title:"Prof.",name:"Naganath",middleName:null,surname:"Mandi",slug:"naganath-mandi",fullName:"Naganath Mandi"}]},{id:"49200",title:"Human Embryology",slug:"human-embryology",totalDownloads:3523,totalCrossrefCites:5,totalDimensionsCites:7,abstract:"The study of human embryology has a very long history. Modern embryology owes its initial development to the key embryo collections that began in the 19th century. The first large collection was that of Carnegie, and this was followed later by the major 7 collections. The second role of the Carnegie collection was for researchers to establish a defined set of Carnegie stages based on embryo morphological features. Today, embryos are imaged three-dimensionally (3D) by a range of imaging modalities including, magnetic resonance microscopy (MRM), episcopic fluorescence image capture (EFIC), phase-contrast X-ray computed tomography (pCT), and optical projection tomography (OPT). Historically, embryo serial images were reconstructed using wax-plate and model techniques. The above new 3D imaging techniques now allow 3D computer reconstructions, analysis, and even 3D printing. This chapter will describe how the classical embryology collections and techniques have developed into today’s imaging and analysis techniques, giving new insights to human embryonic development.",book:{id:"4588",slug:"new-discoveries-in-embryology",title:"New Discoveries in Embryology",fullTitle:"New Discoveries in Embryology"},signatures:"Shigehito Yamada, Mark Hill and Tetsuya Takakuwa",authors:[{id:"49486",title:"Prof.",name:"Shigehito",middleName:null,surname:"Yamada",slug:"shigehito-yamada",fullName:"Shigehito Yamada"},{id:"90205",title:"Prof.",name:"Tetsuya",middleName:null,surname:"Takakuwa",slug:"tetsuya-takakuwa",fullName:"Tetsuya Takakuwa"},{id:"175453",title:"Dr.",name:"Mark",middleName:null,surname:"Hill",slug:"mark-hill",fullName:"Mark Hill"}]}],onlineFirstChaptersFilter:{topicId:"54",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{},subseries:{},overviewPageOFChapters:[],overviewPagePublishedBooks:[],openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/154959",hash:"",query:{},params:{id:"154959"},fullPath:"/profiles/154959",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()