Provenance of HMAC component materials.
-Preparation and fabrications of nanolayers with different methods.\n
-Description of recent achievements related to very important III-V heterostructures.\n
-Descriptions of mechanical, thermal, optoelectronic, photocatalytic, and tribological properties of nanolayered structures.\n
Some environmentally friendly applications are also treated in this book.\nThe presented book provides a description of specific and original results obtained by authors. We hope that the volume will be of interest for a wide range of readers working in the field of material science.",isbn:"978-953-51-3144-1",printIsbn:"978-953-51-3143-4",pdfIsbn:"978-953-51-4829-6",doi:"10.5772/65465",price:119,priceEur:129,priceUsd:155,slug:"nanoscaled-films-and-layers",numberOfPages:298,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f43ea8f3894ee0c3e44b2351bf3447d5",bookSignature:"Laszlo Nanai",publishedDate:"May 24th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5789.jpg",numberOfDownloads:19070,numberOfWosCitations:13,numberOfCrossrefCitations:15,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:31,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:59,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 26th 2016",dateEndSecondStepPublish:"October 17th 2016",dateEndThirdStepPublish:"January 13th 2017",dateEndFourthStepPublish:"April 13th 2017",dateEndFifthStepPublish:"June 12th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"61978",title:"Prof.",name:"Laszlo",middleName:null,surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai",profilePictureURL:"https://mts.intechopen.com/storage/users/61978/images/system/61978.png",biography:"Prof. Nanai was born on April 19, 1948, in Csopak (Hungary). He studied physics (MSc) at Saint Petersburg State University (RU), and his PhD degree and habilitation in the field of quantum electronics were obtained at Lebedev Physical Institute, Moscow (RU), and Szeged University (H). \r\n\r\nHe is a specialist in the fields of solid-state physics, laser-matter interaction fabrication and characterization of nanostructures. He has written over 170 scientific publications including about 10 books and chapters in books and conference proceedings.",institutionString:"University of Szeged",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Szeged",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics"}],chapters:[{id:"54288",title:"Formation of Nanolayer on Surface of EPD Coatings Based on Poly-Ether-Ether-Ketone",doi:"10.5772/67570",slug:"formation-of-nanolayer-on-surface-of-epd-coatings-based-on-poly-ether-ether-ketone",totalDownloads:1416,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Poly-ether-ether-ketone (PEEK) is a high performance polymer with many intrinsic properties. When it is used in the form of coating, an improvement of some of its functional properties was achieved by forming a surface nanolayer. In this chapter, it will be described how it was possible to obtain this result. Firstly, three kinds of PEEK composite coatings were deposited by electrophoretic deposition, adding alumina particles, polytetrafluoroethylene (PTFE) and lignin to PEEK. Then, the composite coatings were thermal treated in a furnace. Therefore, surface nanostructure and chemical composition of these PEEK composite coatings were modified with respect to bulk coatings, due to interaction between PEEK chain and secondary phase, emphasised by the thermal treatment conditions. Experimental evidence of the formation of surface nanolayer was provided by SEM, TEM, GIXRD, ATR-FTIR and XPS characterisations. Functional characterisations demonstrated that wear resistance—in the presence of alumina particles—hydrophobicity—in the presence of PTFE—and corrosion resistance—in the presence of Lignin—were increased with respect to pure PEEK.",signatures:"Maria Federica De Riccardis",downloadPdfUrl:"/chapter/pdf-download/54288",previewPdfUrl:"/chapter/pdf-preview/54288",authors:[{id:"77857",title:"Dr.",name:"M. Federica",surname:"De Riccardis",slug:"m.-federica-de-riccardis",fullName:"M. Federica De Riccardis"}],corrections:null},{id:"54678",title:"Electroless Deposition of Nanolayered Metallic Coatings",doi:"10.5772/intechopen.68220",slug:"electroless-deposition-of-nanolayered-metallic-coatings",totalDownloads:3414,totalCrossrefCites:5,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Electroless metallic coating is referred as the deposition of a substrate material by the process of chemical or autocatalytic reduction of aqueous metal ions deposited to a substrate material without any external supply of power. Electroless nickel alloys are generally considered synonymous to the word “electroless coating” as ~90% of productions in industries are of this alloy coating. Rest of the electroless metallic coatings includes gold, copper, palladium, cobalt, silver, etc. These electroless metallic coatings (other than electroless nickel coatings) are also one of the vibrant areas in the field of materials properties and surface engineering research. From the year 2000 to till date, nearly 1000 SCI indexed research papers were published on this topic. However, no comprehensive studies about the recent progress on this topic were reported elsewhere so far. In this context, the present chapter aims to give a complete overview on various aspects of the rest of the electroless metallic nanocoatings/layer as a whole. More importance will be on the recent developments of the nanocharacteristics and future scopes.",signatures:"Jothi Sudagar, Rajendraprasad Tamilarasan, Udaykumar Sanjith, Raj\nRajendran and Ravi Kumar",downloadPdfUrl:"/chapter/pdf-download/54678",previewPdfUrl:"/chapter/pdf-preview/54678",authors:[{id:"202302",title:"Dr.",name:"Jothi",surname:"Sudagar",slug:"jothi-sudagar",fullName:"Jothi Sudagar"},{id:"203599",title:"Dr.",name:"Tamilarasan",surname:"Tr",slug:"tamilarasan-tr",fullName:"Tamilarasan Tr"},{id:"203600",title:"MSc.",name:"Sanjith",surname:"U",slug:"sanjith-u",fullName:"Sanjith U"},{id:"203601",title:"Prof.",name:"Rajendran",surname:"R",slug:"rajendran-r",fullName:"Rajendran R"},{id:"203602",title:"Prof.",name:"Ravi Kumar",surname:"Nv",slug:"ravi-kumar-nv",fullName:"Ravi Kumar Nv"}],corrections:null},{id:"54328",title:"Laser Prepared Thin Films for Optoelectronic Applications",doi:"10.5772/67659",slug:"laser-prepared-thin-films-for-optoelectronic-applications",totalDownloads:1490,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Laser techniques such as pulsed laser deposition, combinatorial pulsed laser deposition, and matrix-assisted pulsed laser evaporation were used to deposit thin films for optoelectronic applications. High-quality transparent conductor oxide films ITO, AZO, and IZO were deposited on polyethylene terephthalate by PLD, an important experimental parameter being the target-substrate distance. The TCO films present a high transparency (>95%) and a reduced electrical resistivity (5 × 10−4 Ωcm) characteristics very useful for their integration in the flexible electronics. InxZn1−xO films with a compositional library were obtained by CPLD. These films are featured by a high optical transmission (>95%), the lowest resistivity (8.6 × 10−4 Ωcm) being observed for an indium content of about 44–49 at.%. Organic heterostructures based on arylenevinylene oligomers (P78 and P13) or arylene polymers (AMC16 and AMC22) were obtained by MAPLE. In the case of ITO/P78/Alq3/Al heterostructures, a higher current value is obtained when the film thickness increases. Also, a photovoltaic effect was observed for heterostructures based on AMC16 or AMC22 deposited on ITO covered by a thin layer of PEDOT:PSS. Due to their optical and electrical properties, such organic heterostructures can be interesting for the organic photovoltaic cells (OPV) applications.",signatures:"Marcela Socol, Gabriel Socol, Nicoleta Preda, Anca Stanculescu and\nFlorin Stanculescu",downloadPdfUrl:"/chapter/pdf-download/54328",previewPdfUrl:"/chapter/pdf-preview/54328",authors:[{id:"21373",title:"Dr.",name:"Anca",surname:"Stanculescu",slug:"anca-stanculescu",fullName:"Anca Stanculescu"},{id:"21611",title:"Dr.",name:"Florin",surname:"Stanculescu",slug:"florin-stanculescu",fullName:"Florin Stanculescu"},{id:"178419",title:"Dr.",name:"Gabriel",surname:"Socol",slug:"gabriel-socol",fullName:"Gabriel Socol"},{id:"184343",title:"Dr.",name:"Nicoleta",surname:"Preda",slug:"nicoleta-preda",fullName:"Nicoleta Preda"},{id:"198589",title:"Dr.",name:"Marcela",surname:"Socol",slug:"marcela-socol",fullName:"Marcela Socol"}],corrections:null},{id:"54765",title:"Heteroepitaxy of III–V Zinc Blende Semiconductors on Nanopatterned Substrates",doi:"10.5772/67572",slug:"heteroepitaxy-of-iii-v-zinc-blende-semiconductors-on-nanopatterned-substrates",totalDownloads:1532,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"In the last decade, zinc blende structure III–V semiconductors have been increasingly utilized for the realization of high‐performance optoelectronic applications because of their tunable bandgaps, high carrier mobility and the absence of piezoelectric fields. However, the integration of III–V devices on the Si platform commonly used for CMOS electronic circuits still poses a challenge, due to the large densities of mismatch‐related defects in heteroepitaxial III–V layers grown on planar Si substrates. A promising method to obtain thin III–V layers of high crystalline quality is the growth on nanopatterned substrates. In this approach, defects can be effectively eliminated by elastic lattice relaxation in three dimensions or confined close to the substrate interface by using aspect‐ratio trapping masks. As a result, an etch pit density as low as 3.3 × 105 cm−2 and a flat surface of submicron GaAs layers have been accomplished by growth onto a SiO2 nanohole film patterned Si(001) substrate, where the threading defects are trapped at the SiO2 mask sidewalls. An open issue that remains to be resolved is to gain a better understanding of the interplay between mask shape, growth conditions and formation of coalescence defects during mask overgrowth in order to achieve thin device quality III–V layers.",signatures:"Thomas Riedl and Jörg K.N. Lindner",downloadPdfUrl:"/chapter/pdf-download/54765",previewPdfUrl:"/chapter/pdf-preview/54765",authors:[{id:"196852",title:"Dr.",name:"Thomas",surname:"Riedl",slug:"thomas-riedl",fullName:"Thomas Riedl"},{id:"197870",title:"Prof.",name:"Jörg K.N.",surname:"Lindner",slug:"jorg-k.n.-lindner",fullName:"Jörg K.N. Lindner"}],corrections:null},{id:"54687",title:"Surface Modification of III-V Compounds Substrates for Processing Technology",doi:"10.5772/67916",slug:"surface-modification-of-iii-v-compounds-substrates-for-processing-technology",totalDownloads:1953,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Semiconductor materials became a part of nowadays life due to useful applications caused by characteristic properties as variable conductivity and sensitivity to light or heat. Electrical properties of a semiconductor can be modified by doping or by the application of electric fields or light; and from this view, devices made from semiconductors can be used for amplification or energy conversion. The compound semiconductor materials from III-V class experienced a qualitative leap from promising potential to nowadays technologic environment. The III-V semiconductor compounds are the material bases for electronic and optoelectronic devices such as high-electron-mobility transistors (HEMT), bipolar heterostructure transistors, IR light-emitting diodes, heterostructure lasers, Gunn diodes, Schottky devices, photodetectors, and heterostructure solar cells for terrestrial and spatial operating conditions. Among III-V semiconductor compounds, gallium arsenide (GaAs) and gallium antimonide (GaSb) are of special interest as a substrate material due to the lattice parameter match to solid solutions (ternary and quaternary) whose band gaps cover a wide spectral range from 0.8 to 4.3 μm in the case of GaSb. The solid/solid interfaces could play a key part in the development of microelectronic device technology. In most of the cases, the initial surface of III-V compounds exposed to laboratory conditions is covered usually with native oxide layers. Various techniques for performing the surface cleaning process are used, e.g., controlled chemical etching, in situ ion sputtering, coupled with controlled annealing in vacuum and often these classic techniques are combined in order to prepare an eligible semiconductor surface to be exposed to a technological device chain. The evolution of surface native oxides in different cleaning procedures and the characteristics of as-prepared semiconductor surface were investigated by modern surface investigation techniques, i.e., X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) combined with electrical characterization. Surface preparation of semiconductors in particular for III-V compounds is a necessary requirement in device technology due to the existence of surface impurities and the presence of native oxides. The impurities can affect the adherence of ohmic and Schottky contacts and due to thermal decomposition of native oxides (e.g., GaSb) it also affect the interface metal/semiconductor. The practical experience reveals that the simple preparation of a surface is a nonrealistic expectation, i.e., surface preparation is a result of combined treatments, namely chemical etching and thermal treatment, ion beam sputtering and thermal reconstruction procedure.",signatures:"Rodica V. Ghita, Constantin Logofatu, Constantin-Catalin Negrila,\nLucian Trupina and Costel Cotirlan-Simioniuc",downloadPdfUrl:"/chapter/pdf-download/54687",previewPdfUrl:"/chapter/pdf-preview/54687",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"197743",title:"Dr.",name:"Lucian",surname:"Trupina",slug:"lucian-trupina",fullName:"Lucian Trupina"},{id:"198134",title:"Dr.",name:"Constantin",surname:"Logofatu",slug:"constantin-logofatu",fullName:"Constantin Logofatu"},{id:"198135",title:"Dr.",name:"Constantin-Catalin",surname:"Negrila",slug:"constantin-catalin-negrila",fullName:"Constantin-Catalin Negrila"},{id:"198140",title:"Dr.",name:"Costel",surname:"Cotirlan-Simioniuc",slug:"costel-cotirlan-simioniuc",fullName:"Costel Cotirlan-Simioniuc"}],corrections:null},{id:"54581",title:"Nanoscaled Fluorescent Films and Layers for Detection of Environmental Pollutants",doi:"10.5772/67869",slug:"nanoscaled-fluorescent-films-and-layers-for-detection-of-environmental-pollutants",totalDownloads:1786,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Hazardous gas and ion pollutants are the most serious environmental problems around the world. It is of great importance to develop devices for easy detection of these hazardous substances. Fluorescence technology with high resolution and operational simplicity has attracted a lot of attention in recent years. Organic fluorescent dyes absorb/emit lights within a broad wavelength range, which is suitable for various demands. Chromophores, such as perylene, cyanine dyes, spiropyran, and so on, are widely studied as fluorescent probes for gases and ions. The dyes could respond to external stimuli through structural changes of the conjugated chromophore itself or the attached functional groups, leading to detectable spectral changes. Organic dyes are incorporated into nanoscaled films and layers, which are portable and durable for effective sensing in complex environments. In this chapter, preparation and application of fluorescent films and layers (FFL) for gaseous/ionic detection are reviewed. We discuss the response mechanism of fluorescent dyes, the fabrication of nanoscaled FFL, and some examples of FFL for the detection of gas and ion pollutants.",signatures:"Meizhen Yin and Chendong Ji",downloadPdfUrl:"/chapter/pdf-download/54581",previewPdfUrl:"/chapter/pdf-preview/54581",authors:[{id:"197509",title:"Prof.",name:"Meizhen",surname:"Yin",slug:"meizhen-yin",fullName:"Meizhen Yin"},{id:"200372",title:"Mr.",name:"Chendong",surname:"Ji",slug:"chendong-ji",fullName:"Chendong Ji"}],corrections:null},{id:"54290",title:"Mechanical Nanoprocessing and Nanoviscoelasticity of Surface- Modified Polycarbonate",doi:"10.5772/67512",slug:"mechanical-nanoprocessing-and-nanoviscoelasticity-of-surface-modified-polycarbonate",totalDownloads:1260,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"To clarify their potential as atomic force microscope (AFM) memory media, the nanometer‐scale mechanical processing properties of untreated and fluorocarbon plasma‐treated polycarbonate samples were determined via the sliding of an AFM tip. The surface energy of the polycarbonate was reduced by the fluorocarbon plasma treatment, as well as the force necessary for processing. Nanometer‐scale precise processing of the polycarbonate was realized after the fluorocarbon plasma treatment, and the interval pitch in the formation of lines, spaces, and nanometer‐scale fine dots was minimized to 60 nm with these samples. The viscoelastic properties of the fluorinated polycarbonate were evaluated using an AFM in force modulation mode. The fluorocarbon plasma treatment reduced the friction force of the polycarbonate sample and improved its wear resistance, which caused the friction durability corresponding to the reliability of data reproduction to be markedly improved. These results show that high‐density recording can be realized by nanometer‐scale processing of fluorocarbon plasma‐treated polycarbonate samples.",signatures:"Shojiro Miyake and Mei Wang",downloadPdfUrl:"/chapter/pdf-download/54290",previewPdfUrl:"/chapter/pdf-preview/54290",authors:[{id:"22097",title:"Dr.",name:"Mei",surname:"Wang",slug:"mei-wang",fullName:"Mei Wang"}],corrections:null},{id:"54966",title:"Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) Current Developments and Future Trends",doi:"10.5772/intechopen.68434",slug:"green-intelligent-nanomaterials-by-design-using-nanoparticulate-2d-materials-building-blocks-current",totalDownloads:1491,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Feasibility of designing and synthesizing ‘smart’ and ‘intelligent’ materials using nanostructured building blocks has been examined here based on the current status of the progress made in this context. The added advantages of using 2D layered/nonlayered materials along with phytosomal species derived from natural plants are highlighted with special reference to their better programmability along with minimum toxicity in biomedical applications. The current developments taking place in their upscaled productions are also included while assessing their upcoming industrial usages in diverse fields.",signatures:"Dinesh Kumar and Shamim Ahmad",downloadPdfUrl:"/chapter/pdf-download/54966",previewPdfUrl:"/chapter/pdf-preview/54966",authors:[{id:"196523",title:"Dr.",name:"Shamim",surname:"Ahmad",slug:"shamim-ahmad",fullName:"Shamim Ahmad"},{id:"205981",title:"Prof.",name:"Dinesh",surname:"Kumar",slug:"dinesh-kumar",fullName:"Dinesh Kumar"}],corrections:null},{id:"54751",title:"Molybdenum Disulfide-Based Photocatalysis:Bulk-to-Single Layer Structure and Related Photomechansim for Environmental Applications",doi:"10.5772/67825",slug:"molybdenum-disulfide-based-photocatalysis-bulk-to-single-layer-structure-and-related-photomechansim-",totalDownloads:1991,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Bulk-to-single layer molybdenum disulfide (MoS2) is widely used as a robust candidate for photodegradation of organic pollutants, hydrogen production, and CO2 reduction. This material features active edge sites and narrow band gap features, which are useful for generating reactive species in aqueous suspensions. However, the high-charge carrier recombination, photocorrosion, unstable sulfide state, and formation of Mo-S-O links during photocatalytic reactions limit its applicability. Thus, research has focused on improving the performance of MoS2 by tailoring its bulk-to-single layer structure and combining it with other semiconductor materials to improve the photocatalytic performance. Different strategies have been successfully applied to enhance the photocatalytic activity of MoS2, including tailoring of the surface morphology, formation of heterojunctions with other semiconductors, doping, and modification with excess sulfur or carbon nanostructures. This review describes the influence of starting precursors, sulfur sources, and synthetic methods to obtain heterostructured morphologies and study their impact on the photocatalytic efficiency. Finally, the relevance of crystal facets and defects in photocatalysis is outlined. Future applications of MoS2 with tailoring and tuning physicochemical properties are highlighted.",signatures:"Surya Veerendra Prabhakar Vattikuti and Chan Byon",downloadPdfUrl:"/chapter/pdf-download/54751",previewPdfUrl:"/chapter/pdf-preview/54751",authors:[{id:"196995",title:"Prof.",name:"S V Prabhakar",surname:"Vattikuti",slug:"s-v-prabhakar-vattikuti",fullName:"S V Prabhakar Vattikuti"},{id:"199682",title:"Prof.",name:"Chan",surname:"Byon",slug:"chan-byon",fullName:"Chan Byon"}],corrections:null},{id:"54449",title:"Advance in Tribology Study of Polyelectrolyte Multilayers",doi:"10.5772/67571",slug:"advance-in-tribology-study-of-polyelectrolyte-multilayers",totalDownloads:1380,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This review introduced the preparation and structural characterization of polyelectrolyte multilayers in recent years and also summarized the tribology research progress of the polyelectrolyte multilayers, including tribological properties, surface adhesion characteristics, and wear resistance properties. Statistics analysis indicated that nanoparticles‐doped polyelectrolyte multilayers present better friction and wear performance than pristine polyelectrolyte multilayers. Furthermore, the in situ growth method resulted in improved structural order of nanoparticles composite molecular deposition film. In situ nanoparticles not only reduced the molecular deposition film surface adhesion force and friction force but also significantly improved the life of wear resistance. That was due to the nanoparticles that possessed a good load‐carrying capacity and reduced the mobility of the polymer‐chain segments, which can undergo reversible shear deformation. Based on this, further research direction of in situ nanoparticles molecular deposition film was proposed.",signatures:"Yanbao Guo and Deguo Wang",downloadPdfUrl:"/chapter/pdf-download/54449",previewPdfUrl:"/chapter/pdf-preview/54449",authors:[{id:"196649",title:"Dr.",name:"Yanbao",surname:"Guo",slug:"yanbao-guo",fullName:"Yanbao Guo"},{id:"197584",title:"Prof.",name:"Deguo",surname:"Wang",slug:"deguo-wang",fullName:"Deguo Wang"}],corrections:null},{id:"54123",title:"Thermal Radiative Wavelength Selectivity of Nanostructured Layered Media",doi:"10.5772/67395",slug:"thermal-radiative-wavelength-selectivity-of-nanostructured-layered-media",totalDownloads:1357,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Thermal radiative transport yields unique thermal characteristics of microscopic thin films—wavelength selectivity. This chapter focuses on a methodology about adjusting the wavelength selectivity of thin films embedded with nanoparticles in the far‐field and near‐field regimes. For nanostructured layered media doped with nanoparticles, Maxwell‐Garnett‐Mie theory is applied to determine the effective dielectric function for the calculation of radiative thermal transport. The thermal radiative wavelength selectivity can be affected by volume fraction and/or the size of the embedded nanoparticles in thin films. To characterize wavelength selectivity and optical property of nanostructured materials, both real and imaginary parts of effective refractive index need to be analyzed. It has been shown that the nanoparticles made of polar or metallic materials have different influence on thermal radiative wavelength selectivity of microscopic thin films.",signatures:"Yi Zheng",downloadPdfUrl:"/chapter/pdf-download/54123",previewPdfUrl:"/chapter/pdf-preview/54123",authors:[{id:"197058",title:"Prof.",name:"Yi",surname:"Zheng",slug:"yi-zheng",fullName:"Yi Zheng"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7194",title:"Methods for Film Synthesis and Coating Procedures",subtitle:null,isOpenForSubmission:!1,hash:"0278e5a9a9d429a23692d1ce9bae2c2c",slug:"methods-for-film-synthesis-and-coating-procedures",bookSignature:"László Nánai, Aneeya Samantara, László Fábián and Satyajit Ratha",coverURL:"https://cdn.intechopen.com/books/images_new/7194.jpg",editedByType:"Edited by",editors:[{id:"61978",title:"Prof.",name:"Laszlo",surname:"Nanai",slug:"laszlo-nanai",fullName:"Laszlo Nanai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"397",title:"Nanofibers",subtitle:"Production, Properties and Functional Applications",isOpenForSubmission:!1,hash:"934fe33b73b2ecba961c67d5a90021ec",slug:"nanofibers-production-properties-and-functional-applications",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/397.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3200",title:"Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"97487143b896780afaf08cfd67cd1eec",slug:"nanofibers",bookSignature:"Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/3200.jpg",editedByType:"Edited by",editors:[{id:"7718",title:"Professor",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3077",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",subtitle:null,isOpenForSubmission:!1,hash:"38dd4fb088a27b2552bf3d371e8c2872",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",bookSignature:"Satoru Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3077.jpg",editedByType:"Edited by",editors:[{id:"30519",title:"Dr.",name:"Satoru",surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3156",title:"Nanowires",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"1916d90306aa50f0cae870c88e7550fa",slug:"nanowires-science-and-technology",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3156.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3558",title:"Advances in Graphene Science",subtitle:null,isOpenForSubmission:!1,hash:"f3a2158260a79c0fc8a4298864aa7dcd",slug:"advances-in-graphene-science",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3558.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"861",title:"Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"f32b97a9aa541939cb212373d471d477",slug:"nanomaterials",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/861.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81168",slug:"corrigendum-to-effects-of-therapeutic-and-toxic-agents-on-erythrocytes-of-different-species-of-anima",title:"Corrigendum to: Effects of Therapeutic and Toxic Agents on Erythrocytes of Different Species of Animals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81168.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/81168",previewPdfUrl:"/chapter/pdf-preview/81168",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81168",risUrl:"/chapter/ris/81168",chapter:{id:"67156",slug:"effects-of-therapeutic-and-toxic-agents-on-erythrocytes-of-different-species-of-animals",signatures:"Saganuwan Alhaji Saganuwan",dateSubmitted:"February 18th 2019",dateReviewed:"March 15th 2019",datePrePublished:"July 8th 2019",datePublished:"October 23rd 2019",book:{id:"7181",title:"Erythrocyte",subtitle:null,fullTitle:"Erythrocyte",slug:"erythrocyte",publishedDate:"October 23rd 2019",bookSignature:"Anil Tombak",coverURL:"https://cdn.intechopen.com/books/images_new/7181.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"202814",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Tombak",slug:"anil-tombak",fullName:"Anil Tombak"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"266889",title:"Prof.",name:"Saganuwan",middleName:null,surname:"Alhaji Saganuwan",fullName:"Saganuwan Alhaji Saganuwan",slug:"saganuwan-alhaji-saganuwan",email:"pharn_saga2006@yahoo.com",position:null,institution:null}]}},chapter:{id:"67156",slug:"effects-of-therapeutic-and-toxic-agents-on-erythrocytes-of-different-species-of-animals",signatures:"Saganuwan Alhaji Saganuwan",dateSubmitted:"February 18th 2019",dateReviewed:"March 15th 2019",datePrePublished:"July 8th 2019",datePublished:"October 23rd 2019",book:{id:"7181",title:"Erythrocyte",subtitle:null,fullTitle:"Erythrocyte",slug:"erythrocyte",publishedDate:"October 23rd 2019",bookSignature:"Anil Tombak",coverURL:"https://cdn.intechopen.com/books/images_new/7181.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"202814",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Tombak",slug:"anil-tombak",fullName:"Anil Tombak"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"266889",title:"Prof.",name:"Saganuwan",middleName:null,surname:"Alhaji Saganuwan",fullName:"Saganuwan Alhaji Saganuwan",slug:"saganuwan-alhaji-saganuwan",email:"pharn_saga2006@yahoo.com",position:null,institution:null}]},book:{id:"7181",title:"Erythrocyte",subtitle:null,fullTitle:"Erythrocyte",slug:"erythrocyte",publishedDate:"October 23rd 2019",bookSignature:"Anil Tombak",coverURL:"https://cdn.intechopen.com/books/images_new/7181.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"202814",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Tombak",slug:"anil-tombak",fullName:"Anil Tombak"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11690",leadTitle:null,title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tCOVID-19 is a rampant worldwide problem. It is caused by the SARS-CoV-2 virus and has manifested into different variants. Previously, the delta variant has compromised existing therapeutic and preventive options for this disease. Now, the omicron variant is beginning to replace the others. In this respect, strategies to treat and cure COVID-19 should be devised. In the light of pharmaceutical biotechnology, three different approaches could be catered to resolve this issue. First, Computer-Aided Drug Design (CADD) approach. Second, rational drug design in the wet lab approach. Third, is the advanced drug delivery system. These approaches are influenced heavily by advances in life sciences such as the inception of structural bioinformatics as an independent study, the establishment of nanobiotechnology as a standard approach in drug design, and high advancement in structural biology such as the development of the CryoEM method. This book will focus on providing possible solutions toward this ongoing COVID-19 pandemic, in the light of those advancements in life sciences.
",isbn:"978-1-80356-990-1",printIsbn:"978-1-80356-989-5",pdfIsbn:"978-1-80356-991-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"f8092a491f68ca0b63cc6d40936a010a",bookSignature:"Dr. Arli Aditya Parikesit",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",keywords:"Molecular Docking, Molecular Dynamics, Biomolecular Modeling, Homology Modeling, In Vitro Drug Testing, In Vivo Drug Testing, Structural Biology, Nano Delivery, Prodrug, Smart Drug, Liposome, Wet Lab",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2022",dateEndSecondStepPublish:"June 22nd 2022",dateEndThirdStepPublish:"August 21st 2022",dateEndFourthStepPublish:"November 9th 2022",dateEndFifthStepPublish:"January 8th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A researcher in transcriptomics, immunoinformatics, and structural bioinformatics, ISBB and APBIONET member, currently involved in COVID-19 Drug and Vaccine design. Dr. Parikesit was awarded his Ph.D. from the University of Leipzig, was previously affiliated with the University of Indonesia, and acted as a reviewer for the American Journal of applied sciences, American Journal of molecular biology, and Indonesian Journal of Biotechnology.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",biography:"Dr. rer. nat. Arli Aditya Parikesit is the Vice Rector of Research and Innovation at Indonesia International Institute for Life Sciences (I3L). He finished both his bachelor’s and master’s degrees in chemistry at the Faculty of Mathematics and Natural Sciences, University of Indonesia. In order to pursue a degree in Bioinformatics, he accepted an offer from DAAD (German Academic Exchange Service) to conduct doctorate research at the Bioinformatics Group, Faculty of Informatics and Mathematics, University of Leipzig, Germany. His doctoral research is focused on the utilization of modern protein domain annotation techniques to the three domains of life. In addition, Dr. Arli is also an expert on immunoinformatics, bioinformatics algorithm, structural bioinformatics, in silico drug design, and in silico transcriptomics. Currently, Dr. Arli is devising a pipeline to apply his expertise to COVID-19 drug and vaccine designs.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"19",title:"Pharmacology, Toxicology and Pharmaceutical Science",slug:"pharmacology-toxicology-and-pharmaceutical-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6636",title:"Molecular Insight of Drug Design",subtitle:null,isOpenForSubmission:!1,hash:"6dd106b3bc6a30ae0147ead58f9a8830",slug:"molecular-insight-of-drug-design",bookSignature:"Arli Aditya",coverURL:"https://cdn.intechopen.com/books/images_new/6636.jpg",editedByType:"Edited by",editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9831",title:"Drug Design",subtitle:"Novel Advances in the Omics Field and Applications",isOpenForSubmission:!1,hash:"38a66ca979ccd932cbcfbaea9d57ad2f",slug:"drug-design-novel-advances-in-the-omics-field-and-applications",bookSignature:"Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/9831.jpg",editedByType:"Edited by",editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46126",title:"Long-Lasting Mental Fatigue After Traumatic Brain Injury – A Major Problem Most Often Neglected Diagnostic Criteria, Assessment, Relation to Emotional and Cognitive Problems, Cellular Background, and Aspects on Treatment",doi:"10.5772/57311",slug:"long-lasting-mental-fatigue-after-traumatic-brain-injury-a-major-problem-most-often-neglected-diagno",body:'Fatigue after traumatic brain injury (TBI) is common, but often overlooked. But for people fighting their fatigue after brain injury day after day, fatigue is a major problem. This post-injury mental fatigue is characterized by limited energy reserves to accomplish ordinary daily activities. Persons who have not experienced this extreme exhaustion which may appear suddenly, and without previous warning during mental activity, do not understand the problem. This is especially difficult to understand as the fatigue may appear even after seemingly trivial mental activities which, for uninjured persons, are regarded as relaxing and pleasant, as reading a book or having a conversation with friends. A normal, well-functioning, brain performs mental activities simultaneously throughout the day, but after a brain injury, it takes greater energy levels to deal with cognitive and emotional situations.
In this chapter, we highlight mental fatigue after TBI. In the case of long-lasting mental fatigue, it could be the only factor that keeps people from returning to the full range of activities that they pursued prior to their injury with work, studies and social activities. We describe mental fatigue and suggest diagnostic criteria and we also give a theoretical explanation for this. At the end of the chapter, we discuss treatment strategies and give some examples of possible therapeutic alternatives which may alleviate the mental fatigue.
Normally, the brain works in an energy-efficient manner and prominent energy reserves are present. This is due to well-functioning ion channel and amino acid transport systems and other effective physiological processes. After brain injury, some of these systems are down-regulated, and when mental energy requirements are high the physiological processes do not function to their full capacity; these cease to function efficiently with a resultant energy loss. This may be an explanation as to why the mental fatigue appears.
Annually, about 100-300/100 000 individuals sustain a TBI, and most of the injuries are mild in severity [1]. A majority of patients recover within one to three months following mild TBI [2, 3].
Fatigue is one of the most important long-lasting symptoms following TBI, and is most severe immediately after head injury. However it is difficult to arrive at any clear figure as to how common fatigue or, in particular, mental fatigue is. The reason for this is that different results have been obtained, and these are attributable to differences in definitions and differences in the methodology in the various studies. In follow-up studies, the frequency of prolonged fatigue varies from 16 up to 73 % [4-6]. There is no correlation between persistent fatigue and severity of the primary injury, age of the person at injury or time since injury [7, 8]. For those suffering from fatigue 3 months after the accident the fatigue remained relatively stable during longer periods [9]. In particular, for those subjects who were suffering from the syndrome one year after the accident improvement in the fatigue was limited [10].
In the above reports, fatigue is discussed in terms of a single construct, i.e. not differentiated between the physical or mental aspects. In this chapter, we consider mental fatigue as a separate construct and we discuss its relationship to cognitive and emotional symptoms.
Mental fatigue is not an illness, rather it represents a mental sequel, probably due to a disturbance of higher brain functions, either physical or psychological in origin. It is included in, and defined within the diagnoses Mild cognitive impairment (F06.7), Neurasthenia (F48.0) and Posttraumatic brain syndrome (F07.2) [11].
A typical characteristic of pathological mental fatigue after TBI is that the mental exhaustion becomes pronounced during sensory stimulation or when cognitive tasks are performed for extended periods without breaks. There is a drain of mental energy upon mental activity in situations in which there is an invasion of the senses with an overload of impressions, and in noisy and hectic environments. The person feels that their brain is overloaded after a tiny load. Another typical feature is a disproportionally long recovery time needed to restore the mental energy levels after being mentally exhausted. The mental fatigue is also dependent on the total activity level as well as the nature of the demands of daily activities. Fatigue often fluctuates during the day depending on the activities carried out. Thus, this fatigue is a dynamic process with variations in the mental energy level. The fatigue can appear very rapidly and, when it does, it is not possible for the affected person to continue the ongoing activity. Common associated symptoms include: impaired memory and concentration capacity, slowness of thinking, irritability, tearfulness, sound and light sensitivity, sensitivity to stress, sleep problems, lack of initiative and headache [12].
For many persons, this mental fatigue is the dominating factor which limits the person’s ability to lead a normal life with work and social activities. For most people, fatigue subsides after a period of time while, for others, this pathological fatigue persists for several months or years even after the brain injury has healed. Interestingly, however is that as many as 30% of family or friends interpreted fatigue as laziness [9].
Theories as to the mechanisms accounting for mental fatigue including our own theory, suggest that cognitive activities require more resources and are more energy-demanding after brain injury than usual [13, 14]. Thus, more extensive neural circuits are used in TBI victims compared to controls during a given mental activity [15]. This indicates an increased cerebral effort after brain injury.
Schematic representation of recovery of mental energy after TBI. The green line represents a full recovery while the blue and red lines represent impaired recovery in terms of the mental energy levels. Persons whose recovery follows the blue line recover partially. On their return to work and daily activities, they are not able to manage and they become exhausted. Persons whose recovery follows the red line do not recover and are not able to return to work and daily activities.
Therapist Luann Jacobs describes mild TBI and the lack of energy and lack of endurance that many can experience. As they are able to do what is normal and what appears normal, they run the risk that their symptoms will be misunderstood [16].
The cause of this extreme fatigue is not known. However, there are speculations that the symptom may be caused by dysfunction of the astrocytes, the most common supporting cells in the brain [17, 18]. As a consequence, nerve cell communications do not function properly.
Schematic drawing of a synapse with glutamate as the transmitter and an astrocyte with processes surrounding the synaptic terminal. After being released from the presynaptic terminal (pre-syn; this is shown in red in the figure), glutamate interacts with glutamate recognizing receptors on the postsynaptic membrane (post-syn; shown in green in the figure). After stimulation of the postsynaptic neuron, glutamate is taken up by glutamate transporting systems on the astrocyte processes. Glutamate is converted to glutamine in the astrocyte and transported back to the presynaptic terminal where glutamine is converted back to glutamate. During this process, and with decreasing ATP levels as the signal, glucose is taken up from the blood to supply neurons and astrocytes with energy.
Following TBI there is a neuroinflammation with down-regulation of astroglial glutamate transport systems. If this state is not restored completely, there will be an impaired extracellular glutamate clearing with slightly increased extracellular glutamate levels, slight astrocyte swelling and impaired glucose uptake. Neuronal activity, if long-lasting, may result in energy crisis.
Following TBI there is a low-grade neuroinflammation with down-regulation of astrocyte glutamate transporters and Na+/K+ ATPase activity [19, 20]. If these physiological systems are not restored completely there will be a dysfunctional support of the glutamate transmission. Glutamate signaling is essential for information processing, including learning and memory formation. Low levels and fine-tuning of extracellular glutamate are necessary to maintain high precision in information processing, and thereby high efficiency in the information handling within the CNS. Our hypothesis implies that such dysfunction could underlie the mental fatigue at the cellular level. From experimental data, the astroglial cells are considered the most important cells for clearing the extracellular space from glutamate during glutamate transmission. In addition, it is well-accepted from the experimental data that this clearing capacity is attenuated by substances or conditions associated with brain dysfunction or pathology (see [17]).
If the capacities of these processes are not fully restored, neuronal function is impaired in at least two ways: 1) extracellular glutamate levels increase upon neuronal activity leading to unspecific signaling and 2) lack of energy. In the event of a high mental load with high neuronal activity, these factors may lead to a metabolic collapse of neuronal circuits – we have previously called this a “dead-lock” situation, which may take a long time to restore.
We consider this metabolic failure as one probable explanation for the prominent and abrupt exhaustion that the TBI victims with mental fatigue can experience. The long restoring time at a cellular level corresponds to the long time it takes for the TBI victims to restore mental activity.
One way to restore this dysfunction is to stimulate Na+/K+-ATPase along the dopaminergic circuits which regulate attention and executive functions. Possible candidates are methylphenidate and the dopaminergic stabilizer OSU6162 (see below under the heading, ‘Treatment’).
There is an abundance of scales for assessing fatigue in general and several of these scales are designed for use in different diseases [21, 22]. The scales include questions relating to feelings of fatigue, perceived impact on activities, affective feelings and mental or cognitive effects. Many of the scales are self-reported on a Likert or an ordered scale, with the following response alternatives: Never, Sometimes, Regularly, Often or Always.
We have developed and used the Mental Fatigue Scale (MFS) during the last five years. We decided to construct this scale since we were not able to find an assessment scale adapted to mental fatigue. The MFS is a multidimensional questionnaire containing 15 questions. It incorporates affective, cognitive and sensory symptoms, duration of sleep and daytime variation in symptom severity. The questions concern the following: fatigue in general, lack of initiative, mental fatigue, mental recovery, concentration difficulties, memory problems, slowness of thinking, sensitivity to stress, increased tendency to become emotional, irritability, sensitivity to light and noise, decreased or increased sleep as well as 24-hour symptom variations. The questions in the scale are based on common activities and we have related the estimation to exemplified alternatives. It is also possible to provide estimations in-between two alternatives. The intention was to make the scale more consistent between individuals and also between ratings for the same individual. The exemplified alternatives can help the person to respond in a similar way despite the present state of fatigue or emotional state. The MFS is designed in a similar way as The Comprehensive Psychopathological Rating Scale (CPRS). The CPRS also includes exemplified alternatives and it is used to record changes in psychopathology over a comparatively short period [23]. The questions included in the MFS are based on symptoms described following longitudinal studies of patients with TBI, brain tumours, infections or inflammations in the nervous system, vascular brain diseases, and other brain disorders, which indicates that an acquired brain injury or disorder can result in similar symptoms [24-26]. The scale is free to use and can be downloaded at www.mf.gu.se (both in Swedish and English). We have transcribed one of the questions in the MFS, below:
Does your brain become fatigued quickly when you have to think hard? Do you become mentally fatigued from things such as reading, watching TV or taking part in a conversation with several people? Do you have to take breaks or change to another activity?
0 | \n\t\t\tI can manage in the same way as usual. My ability for sustained mental effort is not reduced. | \n\t\t
0.5 | \n\t\t\t\n\t\t |
1 | \n\t\t\tI become fatigued quickly but am still able to make the same mental effort as before. | \n\t\t
1.5 | \n\t\t\t\n\t\t |
2 | \n\t\t\tI become fatigued quickly and have to take a break or do something else more often than before. | \n\t\t
2.5 | \n\t\t\t\n\t\t |
3 | \n\t\t\tI become fatigued so quickly that I can do nothing or have to abandon everything after a short period (approx. five minutes). | \n\t\t
Figure 4 shows how healthy controls and subjects suffering from mild TBI, TBI and stroke have rated separate questions on the MFS. The brain injury victims were divided into different groups according to their total rating on MFS. When a person rates low on one question, the total rating on most of the separate questions will also be low, while persons rating high on one question on the MFS, will also rate most of the questions on a high level.
Rating on separate items on the Mental Fatigue Scale for controls and brain injured subjects. Brain injured subjects are divided into groups according to their total rating on MFS.
The rating on MFS by healthy controls and people who suffered mild TBI or TBI did not reveal any significant differences between females and males, and there was no correlation between the results on MFS and age or education of the TBI victims (figure 5). Furthermore, we did not find any correlation for the TBI participants concerning time since injury and their rating on MFS. We have, in our studies worked with participants with mental fatigue lasting for six months or periods greater than six months. At this stage, we do not have any data relating to ratings early after TBI or mild TBI. This accounts for the fact that the rating may lack correlation to time since injury.
The control group rated MFS significantly lower than mild TBI and TBI victims. The participants included for the analysis were healthy controls and participants who had suffered mild TBI or TBI without major depression. The participants were between 20-67 years of age.
We recommend a cutoff score on the MFS at 10.5. A score of 10.5 on the MFS was found to deviate significantly from the control sample and is also above the 99th percentile for the control group. A score above 10.5 implies a problem for the person, although a serious problem is not always the case. However, such a score implies the need for the person to consider the current situation with their work and/or social life. The MFS had a high internal consistency and all separate items were rated significantly higher among brain injured subjects compared with healthy controls (see also figure 5).
Correlation with age and rating on MFS for healthy controls and subjects with long-lasting mental fatigue after brain injury.
It has been proposed that subjective mental fatigue after TBI or mild TBI correlates to poor performance in attention tests and reduced processing speed [13, 27, 29-34]. We also found that information processing speed, attention and working memory were significantly reduced for the brain injury victims (both mild TBI and TBI) compared to controls. Furthermore, the tests correlated significantly to the results on the MFS (figure 6). Among the cognitive functions, processing speed was found to be a significant predictor for the rating on MFS [27].
Correlation between Mental Fatigue Scale and information processing speed (Digit Symbol-Coding).
In the population of TBI victims, depression is elevated although there is a wide variation in frequency, depending on methodological differences [35-37]. In our studies, we have included participants who complained of mental fatigue after TBI and we excluded subjects affected by major depression, as it was our intention to explore the mental fatigue component. Despite this, we found, with the use of the CPRS/MADRS, that there was an elevation in the rating of depression items for TBI subjects compared to controls. The CPRS scale includes both a depression and an anxiety scale [23, 38]. The CPRS depression scale is also called the Montgomery-Åsberg Depression Rating Scale (MADRS) [39].
However, there are overlapping items in the MFS and CPRS. The overlapping items include the following: lack of initiative, concentration difficulties, irritability and decreased sleep. With a factor analysis, the items were separated into a mental fatigue component and a depression and anxiety component. Irritability was placed in the depression-anxiety component and the other three items in the mental fatigue component. With an analysis using the new components, we found that by adjusting the mental fatigue component this removed the difference observed between the brain injured subjects and controls in the depression-anxiety component. However, by removing the depression-anxiety component this did not have an effect on the difference observed between the brain injured subjects and controls in the mental fatigue component.
In this subject sample, we were able to demonstrate that a significant effect on the difference observed between the brain injured subjects and controls in the scores for depression can result in an overestimation if the effect of the mental fatigue component is not taken into consideration. This indicates that mental fatigue and depression must be treated as separate constructs and it is also important to make this distinction for the purposes of therapeutic strategies.
The diagnostic criteria for posttraumatic brain syndrome include most of the symptoms that are often present along with mental fatigue. However, we suggest mental fatigue to be a central symptom after a brain injury reflecting an inefficient support to the neuronal networks.
Mental fatigue is a lack of mental energy with impaired cognitive, emotional and sensory functioning. Mental fatigue is characterized by an unusual feeling of fatigue or malaise. There is a drain on the person’s mental energy upon mental activity. The result is a diminished attention and concentration capacity. Situations which involve high levels of external cues and an overload of impressions are strenuous. Failing energy levels and excessively long recovery times are the result of over-exertion. The condition impairs the person’s ability to function in their work, studies and gatherings with family and friends.
The mental fatigue has persisted for at least 1 month;
The sum of scores from the MFS is 10.5 points or above.
Typical symptoms include:
An unusually rapid drain of mental energy upon mental activity;
Impaired attention and concentration capacity over time;
Following over-exertion, a long recovery time disproportionate to the exertion level;
Diurnal variation of the fatigue symptom with the fatigue often being better in the mornings and worse in the afternoons and evenings; variations from one day to the next;
Usually one or several associated symptoms (see below):
The following additional or associated symptoms are common:
Mood swings, irritability and stress intolerance;
Trouble with memory;
Sleep problems;
Sensitivity to, or intolerance of light and loud noise;
Headaches following over-exertion.
Sleep problems most often occur in the following way: either a shorter duration of sleep with interrupted wake-ups or sleeping more than usual. If the person becomes more mentally fatigued, the sleep will most often become worse, and if the person rests for some days the sleep can become improved again. The emotional load may increase the severity of the fatigue, but if mental fatigue exists, it will remain even once the emotional components, as depression or anxiety have been treated. However, it is important to treat the emotional problems. In this way, the mental fatigue may, to some extent be relieved.
A total and almost paralyzing fatigue;
Longer periods of rest may be needed, often over several days;
A worsening of symptoms over time;
Situations in which there is an invasion of the senses with an overload of impressions, and noisy and hectic environments such as crowded events, also the hustle and bustle of shopping centers, and travelling by bus, etc.;
Reading books and newspapers;
Conversations with people – this becomes more of a struggle when more people are involved;
Unexpected events.
The figure illustrates mental fatigue. Characteristic symptoms are seen on the blue circle and associated symptoms on the green circle. (The figure in the middle is illustrated by Kristina Edgren Nyborg).
There is currently no effective treatment for mental fatigue. For many people, there is an increased risk of doing too much and becoming even more fatigued. Today, the most important recommendations are to adapt to the energy available by doing one thing at a time, resting regularly and not overdoing things.
When mental fatigue is present, it is important to adapt work as well as daily activities to levels that the brain can manage. However, this is challenging for most people and it may take a long time, even years, to adapt to a sustainable level. It may also be difficult for the person to learn by himself/herself and it can take several years of considerable struggle, frustration, despair and depression, to find the right balance between rest and activity. Professional support is required but this can be hard or impossible to find especially when mental fatigue continues for many years.
The figure illustrates levels and fluctuations in mental fatigue measured with the MFS after TBI and variations over time. Most mild TBI victims recover completely (green field) and do not exceed 10 points on the MFS. People within the blue, yellow or red fields suffer from metal fatigue to varying extents. It is also shown that treatment strategies decrease the mental fatigue, while over-exertion leads to increased rates on the MFS.
Take regular breaks;
Encourage rest before becoming over-tired;
Try to work at a steady pace, taking one task at a time with short working periods, and prioritize the tasks;
Plan the days’ activities or the activities for the week in a diary or journal. Avoid over-exertion.
The use of strategies is important. By resting the brain as much as possible the mental energy will be alleviated. However, the brain and the individual also need positive experiences and stimulation to ensure wellbeing. It is difficult to achieve this balance between rest and stimulation.
When mental fatigue becomes a prolonged problem, it is essential to be able to alleviate the symptoms. We have reported on significantly reduced mental fatigue after treatment using the mindfulness-based stress reduction (MBSR) program [40, 41]. We have also reported on possible therapeutic strategies to reduce mental fatigue by means of pharmacological treatments, using neurostimulant substances as methylphenidate [42] which affects dopamine and norepinephrine signaling. We have also reported on a new substance not currently available on the market, (-)-OSU6162, which is a dopamine and serotonin stabilizer [43].
The MBSR program was tested on TBI and stroke victims suffering from long-term mental fatigue [40]. MBSR is a clinically-effective
method for a wide range of conditions as stress, depression, pain, and fatigue after cancer, with the potential to help individuals to cope with their difficulties [44-47]. MBSR is also suggested to be linked to improvements in attention and cognitive flexibility [48] and also to changes in brain neuronal connectivity [49].
MBSR includes a range of both formal and informal practices. The intervention is based on Kabat Zinn’s MBSR program [50]. The formal practices in MBSR are described by M. Cullen 2011 [51] and these include gentle Hatha yoga with an emphasis on mindful awareness of the body, a body scan designed to systematically, region by region, cultivate an awareness of the body without the tensing and relaxing of muscle groups associated with progressive relaxation, and sitting meditation with an awareness of the breath as well as a systematic widening of the field of awareness to include all four foundations of mindfulness: awareness of the body, feeling tone, mental states and mental contents. As such, the intention of MBSR is much greater than simple stress reduction. The program consists of eight weekly group sessions which are each approximately 2.5 hours long, one day-long silent-led retreat between sessions six and seven and home practice of about 45 minutes, six days a week. The participants receive guided instructions and CDs for home practice.
We found a significantly reduced mental fatigue after the MBSR program and participants improved their processing speed significantly compared to control on waitlist [40]. Improvement was independent of gender, time since injury and age. Another recent study with MBSR for mild TBI patients showed a similar result with significant improvement in quality of life, perceived self-efficacy, working memory and attention [52]. Furthermore, a small-scale study of 10 mild TBI subjects included in the MBSR program over a 12-week period also showed a significantly improved quality of life and decreased depression rating [53]. The effects were maintained one year later among the seven contactable participants. They also noted an improvement in reported energy levels at the follow-up [54]. However, after TBI, a short MBSR program over a 4-week period did not result in any cognitive or emotional changes [55].
The results demonstrate that mindfulness practice may be a therapeutic method well-suited to subjects suffering from mental fatigue after brain injury. One reason why MBSR was effective may be that this treatment offers strategies to better handle stressful situations appropriately and economize with mental energy. Despite the problem of ensuring that participants stay awake, which is one of the fundamental aspects of meditation, it was possible to adjust mindfulness to suit the needs of mental fatigue subjects and to improve their wakefulness as well as reducing their mental fatigue levels.
Methylphenidate inhibits dopamine and noradrenalin reuptake resulting in increased extracellular concentration of dopamine and noradrenalin [56]. Methylphenidate has been used for many years in the treatment of ADHD in children, in the first instance to increase wakefulness, attention and concentration capacity. Methylphenidate has also been tested on TBI victims with positive effects on information processing speed and, to some extent on working memory and attention [57-63]. Guidelines for use of methylphenidate for deficits of attention and processing speed after TBI have been suggested [64], while no such guidelines exist for fatigue following TBI.
In an open randomized study, methylphenidate significantly improved mental fatigue dose-dependently as assessed with the MFS [42]. The item, pain was also studied and we found that this item was rated high by most of the subjects in our study as the participants were recruited on the basis of the items, TBI and pain. However, no significant alleviation of pain was reported as a result of methylphenidate treatment. However, it is important to note that pain can hide posttraumatic brain injury symptoms or mental fatigue which is not always connected to the actual pain. We also found that there was no interaction between the pain and the mental fatigue in those participants treated with methylphenidate. These findings indicate that, not only is it necessary to treat patients for the pain for which they are primarily referred to the clinic, but also for the mental fatigue, if present.
Methylphenidate was well-tolerated by TBI subjects. However, tolerance of methylphenidate differed between subjects and we therefore recommend starting treatment with an initial low dose.
The monoaminergic stabilizer OSU6162 interacts with both dopaminergic and serotonergic systems. It appears to act as an antagonist on a binding site of the D2 receptor. More recent research has demonstrated that OSU6162 also exerts a stabilizing effect on serotonergic neuronal circuits, acting as a partial 5-HT2A agonist [65, 66].
In two randomized, double-blind and placebo-controlled studies we found statistically significant alleviation of mental fatigue after a stroke or TBI by OSU6162 during 4 weeks’ treatment with active drug [43]. However, the numbers of patients in these studies were small (21 TBI and 19 stroke victims). Further studies are needed, with a larger number of patients and, in particular longer treatment periods as mental fatigue may be long-lasting. Adverse reactions were mild and could be avoided by dose adjustment. Several patients experiencing such adverse reactions expressed the wish to receive continued treatment with the drug.
Similar results were detected for methylphenidate and OSU6162. These drugs were shown to have the effect of both alleviating mental fatigue and increasing information processing speed.
Mental fatigue can become a prolonged and distressing problem after TBI having considerable effect on life and wellbeing. It is important to acknowledge and assess mental fatigue when discussing the options regarding therapeutic methods as the mental fatigue has been the result of a TBI.
After TBI, mental energy levels are failing, and the brain needs to rest. It is not possible to improve the mental energy with training in order to perform more mental activities. In fact, training with a view to resting the brain is what is important. Suitably-adapted and energy-saving strategies are important and most patients need support in order to achieve an enduring balance between activities and rest as this is difficult, it takes a long time and may be frustrating.
The treatment studies we reported on are aimed at helping the person to manage their life better. However, it is important to stress that there is a risk that the medication can compel the person to do more than is appropriate. The reason for this is that, most often they want to carry out activities in a similar way as before the injury and have been longing for the chance to be able to do this. The problem is that, for most persons suffering from long-term mental fatigue after TBI, the activity levels are close to the threshold of what they are able to sustain. This makes them susceptible if they increase their activity levels too much. With mindfulness most participants reported on more energy, but they also became more pleased and happy with life. Mindfulness also gave them a tool to use and they could take command over their own lives; how it is here and now, not longing for a better life or ruminating over what has been. This also saves energy! A combination with neurostimulants and mindfulness may be a good therapeutic strategy.
In the future, research is warranted for early treatment with the intention to reduce the development of long-term mental fatigue. We also need to better elucidate and carry out an in-depth analysis of mental fatigue.
Industries annually generate millions of metric tons of solid by-products, and most of these materials have been landfilled at considerable cost since. Modern society has been developing beneficial reuse of industrial by-products in a variety of applications [1, 2, 3]. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases [4, 5]. The transportation, construction and environmental industries have the greatest potential for reuse because they use vast quantities of earthen materials annually. Replacement of natural soils, aggregates and cements with solid industrial by-products is highly desirable [1, 2].
The steel industry produces a myriad of metal components for industrial chains such as the automobile industry, which in turn generates mineral discarded sand moulds (waste foundry sand/WFS) that end up occupying large volumes in landfills [6]. The major portion of the WFS is considered as non-hazardous waste and is currently deposited in a special WFS landfill that is remote from areas of settlement [7, 8, 9, 10].
The metal casting industry annually discards about 10% of foundry sand for production, i.e. approximately an estimated 9–10 million tons of WFS each year, in the USA [5, 10, 11]. Generally speaking, approximately 1 ton of foundry sand is needed to produce 1 ton of metal casting [8, 12]. WFS can be used as an alternative material (fine aggregate in asphalt mixtures) in highway constructions allowing the increasing of the lifespan of landfills [13].
This work analyses the physical and mechanical behaviour of asphalt mixtures, using the WFS as a mineral filler in asphalt concrete, in 5% (in mass) of maximum replacement to conventional Portland cement (CP). The waste was obtained from an industry located in the free-trade zone of Manaus city, Amazon State, Brazil. The results showed that the addition of industrial WFS in asphalt mixture resulted in adequate performance of the mixtures.
Waste foundry sand is generated by industries that use sands, binders and additives to form moulds and cores for castings. Sands are chosen for several reasons; they are readily available everywhere, inexpensive, highly refractory and readily bonded by clays or other inorganic and organic materials [8, 9, 14]. The mould forms the outside of the castings; the core forms the internal shape. When the part to be made has deep recesses or hollow portions, sand cores must be provided in the mould [3]. The material to be used to form moulds and cores in a foundry should have cohesiveness and porosity properties at the same time. Adding binder (bentonite, resins, cement, sodium silicate and oils) will improve the cohesiveness of the sand grains but will tend to reduce porosity. Additives are those materials which are added to the bonded sands to improve properties, either during the moulding process or during the casting process or both [8]. The moulding processes which involve sand are (1) green sand moulding (or clay-bonded sand, [12]), (2) chemically bonded process and (3) shell moulding process [3, 5, 8, 9]. The most commonly used process is green sand moulding [15]. Green sand is composed of four major materials. Sand comprises 85–95% of the green sand mixture. Most often the sand is inert silica, but olivine and zircon sand are also used [8, 15, 16, 17]. Approximately, 4–10% of the mixture is made of some form of clay, e.g. bentonite. The clay acts as a binder for the green sand and provides strength and plasticity. Combustible additives like sea coal, cereal, fuel oil and wood flour typically make up from 2 to 10% of the green sand mixture. The final additive of green sand is water which is usually added in small percentages (2–5% by weight) [5, 8]. Chemically bonded sands are those that use furan, phenolic urethane and acid cured no-bake systems, as well as alkyd and phenolic urethane cold box processes. Shell moulding uses a mixture of sand and thermosetting resin (usually phenol formaldehyde) to form the mould [8, 17].
The physical, chemical and mechanical characteristics of virgin sand make it a popular material for construction engineering, but after several reuses in moulds and cores, it becomes WFS [7]. The grain size distribution of WFS is quite uniform, with a majority of the sizes (85–95%) falling within a narrow range between 0.6 and 0.15 mm, and 5–12% is smaller than 0.075 mm [5, 8, 10] or between 1 and 16.5% [14]. According to Tikalsky et al. [17], more than 80% of the particles by mass are concentrated by size between 0.15 and 0.70 mm, compared to 0.30–4.75 mm for conventional fine aggregate. Most of the WFS materials reported are found to be medium to fine sand. WFS have been found to be too fine to satisfy the specifications for general fine aggregate [8, 10, 12]. WFS has uniform equidimensional subangular to rounded grains, and a few has rounded grains [8, 10, 17, 18].
For density and unit weight, the values found for the WFS were very close to conventional aggregate [13]. The bulk specific gravities reported in the literature on WFS ranged from 1.985 to 2.722 [8, 17]. In most of the cases WFS have been reported to be almost dry. The moisture content as received for WFS were reported to be in the range of 0.0–4.85% [8, 17, 18]. Concerning absorption, the values are relatively higher than those obtained for the natural aggregate, due to the presence of organic matter [6, 8]. The percentage absorption values on WFS samples have been reported to vary between 0.3 and 6.2% [3, 8, 17].
Over the past three decades, there have been several studies around the world on the use of WFS in engineering works, in different areas: base and subbase layers of highway construction [19, 20, 21], embankments [22, 23], hydraulic barriers [24], asphalt mixtures [3, 7, 16, 25, 26], etc.
Highway subbase layers using WFS have been shown to resist winter conditions (freeze–thaw cycles) better than specimens of reference materials [5, 17, 19]. If a subbase layer stabilised with WFS is compacted in field at dry of optimum content then it will have an increase in its strength [19, 20, 27].
It has been mentioned in the literature that the fines of WFS affect the properties of asphalt concrete negatively [7, 28]. The amount of WFS used in an asphalt mixture depends largely on the amount of fines in the WFS [5, 12, 14, 29]. Studies have recommended that WFS should replace successfully as much as 15% (in mass) of the conventional sand (fine) content in asphalt concrete [3, 9]; 8–10, 10–20 and 10%, respectively, in engineering practice in Pennsylvania, Michigan and Tennessee States [5]; 35% [30]; 15% [26]; 10% [7, 13]; 15% [10, 31]; 35% [27, 32]; and 15–30% [14].
Concerning physical characteristics, the densities of the mixtures decreased as the percentage of WFS in the asphalt concrete increased [7, 9, 10, 12, 13, 17, 32]. Percentage of air voids and voids in the mineral aggregate (VMA) were found to increase with blending of increased quantities of WFS [8, 9]. The optimum asphalt content (4.9–6.8%) for HMA mixtures containing various amounts of foundry sand is comparable to the content of mixes not containing foundry sand [14, 17]. The OAC increases with increase in the WFS percentage [13], although Miller et al. [14] found lower values for mixtures containing WFS, in relation to control ones. According to this author, the mixtures obtain the higher percentage of OAC with the WFS with the higher amount of particles passing the #200 sieve. This happens due to the fineness properties of material and increase of surface area [10, 32].
Regarding the mechanical characteristics, the Marshall stability of the asphalt concrete samples containing WFS decreases as the quantity of WFS is increased [3, 6, 7, 8, 10, 12, 29, 32]. The flow values of mixtures decreased with increasing percentage of WFS in the asphalt concrete mixtures [7, 8, 9, 10, 13]. The indirect tensile strengths of the asphalt cement mixtures decreased as the percentage of WFS material was increased [7, 8, 9, 10, 12, 13, 32]. However, Abdulsattar and Mohammed [25] found that all the WFS mixtures that they analysed showed higher tensile strength than the control mixture. According to Tikalsky et al. [17], the level of air voids and saturation greatly influenced the indirect tension values.
In relation to moisture susceptibility, WFS has little effect on top-down fatigue cracking resistance and moisture susceptibility of the mixtures [32]. When WFS replacement is higher than 15%, asphalt mix may become more sensitive to moisture damage (i.e. stripping) due to the presence of silica [10, 27]. WFS, on average, decreases the unconditioned tensile strength and thus the durability of asphalt mixtures; on the other hand, WFS do not necessarily increase or decrease a mixture’s rutting potential but do improve fatigue performance [17].
The experimental procedure of this research contemplates the dosage and physical and mechanical tests on five hot-mixed asphalt concrete (HMAC) mixtures using the conventional Portland cement filler (as reference) and four other mixtures using WFS, replacing the cement gradually in proportions of 25%. This residue was produced by the foundry industrial process of a company located in free-trade zone of Manaus city, Amazon State, Brazil, which produces clutch assembly lines (pressure and friction plates, discs, outer housing, etc.) for the motorcycle industry. Figure 1a shows one of the several kinds of pieces that are produced in that industry, while Figure 1b presents the WFS studied. The annual production of WFS in that industry was about 1500 tons in 2014 (SUFRAMA, 2016). The coarse aggregate (natural pebble) came from the “Japurá” River (an Amazon River affluent) riverbeds and was extracted by dredging, but it was acquired in the local market. The fine aggregate (clean sand) came from mining extraction in the vicinity of the city (about 30–50 km), but it was acquired in the local market as well. The mineral filler used was Portland cement II-Z-32 type. Finally, asphalt cement (AC) 50/70 grading was used, produced by the oil refinery of Manaus (REMAN). The materials used in this research and their respective origins are listed in Table 1.
(a) A piece (to be deburred) produced at the trade zone of Manaus city industry. (b) WFS to be tested.
Material | Origin |
---|---|
Sand | Market of Manaus |
Pebble | Market of Manaus |
Portland cement (PC) II-Z-32 (mineral filler) | Market of Manaus |
Asphalt cement (AC) (50/70 grading) | Oil refinery of Manaus (REMAN) |
Waste foundry sand (WFS) | Industry of free-trade zone of Manaus |
Provenance of HMAC component materials.
All mineral aggregates used in the asphalt mixtures were tested according to the standards described in Table 2, mainly by the Brazilian highway standards, which are most similar to known international standards. In relation to the asphalt cement (AC—50/70 penetrating grading), it was submitted to complete characterisation according to standards shown in Table 3.
Material | Brazilian standard | Title | Acceptance parameters (Brazilian standard) | Similar international standard |
---|---|---|---|---|
Pebble | NBR NM 53/2009 | Coarse aggregate—determination of the bulk specific gravity, apparent specific gravity and water absorption | Greater than 0.88 and 2.00 g/cm3; less than 18%, respectively | ASTM-T-85 |
Pebble | NBR NM 51/2001 | Coarse aggregate—test method for resistance to degradation by Los Angeles machine | Less than 50% | AASHTO-T-96 |
Pebble, Sand, Fillers | NBR NM 248/2003 | Aggregates—sieve analysis of fine and coarse aggregates | Within granulometric range | ASTM-C136/C136M-14 |
Pebble | NBR 12583/1992 | Coarse aggregate—coating to bituminous binder | Qualitative test (visual analysis) | — |
Sand | NBR NM 52/2009 | Fine aggregate—determination of the bulk specific gravity and apparent specific gravity | Greater than 1.60 and 2.60 g/cm3, respectively | ASTM-C128–01 |
Fillers | NBR NM 23/2001 | Portland cement and other powdered materials—determination of density | Greater than 3.00 g/cm3 | ASTM-C188–09 |
WFS | NBR 16137/2010 | Non-destructive testing—material identification by spot test, X-ray fluorescence spectrometry and optical emission spectrometry | — | ASTM-C114–15 |
WFS | — | Wavelength dispersive X-ray fluorescence spectrometry | — | ASTM-C1365 |
Aggregate characterisation tests.
Brazilian standard | Test | Unity | Similar international standard | AC 50/75 |
---|---|---|---|---|
NBR 14756 | Apparent specific gravity, 25°C | g/cm3 | AASHTO T 228 | 1.010 |
NBR 6576 | Penetration, 25°C, 100 g, 5 s | 0.1 mm | AASHTO T 49 | 58 |
NBR 14950 | SSF viscosity, 135°C | s | AASHTO T 72 | 160 |
NBR 15184 | Brookfield viscosity, 135°C, sp21, rpm 20 | cP | AASHTO T 316 | 286 |
NBR 6560 | Softening point | °C | AASHTO T 53 | 53 |
NBR 6293 | Ductility, 25°C | cm | AASHTO T 51 | >120 |
Properties of asphalt cement (AC—50/70 penetrating grading) used in the mixtures.
In order to avoid the presence of impurities, the residue was washed in sieves Nos. 200, 300 and 400, before subjected to characterisation tests and used in asphalt mixtures. The WFS filler was subjected to chemical analysis (XRF) made by an X-Ray spectrometer equipment (720 energy dispersive, Shimadzu), through drying and subsequently pressing the sample in a disc form. The equipment can perform analyses from sodium to uranium, has a rhodium tube and is cooling by liquid nitrogen. Besides that, the WFS filler was also submitted to the X-Ray diffraction (XRD) in order to be characterised its crystalline phases. The equipment used in the analysis was the D8 Focus-Bruker diffractometer, with monochromatic cuprum radiation (CuKα, λ = 1.5418 Å), operating at 35 kV and 40 mA. A laser particle size analyser was used to determine with precision the particle size of both mineral fillers (PC and WFS).
Since the tests were performed 10 years ago, asphalt concrete studies were developed through the traditional Marshall method and not by current Superior Performing Asphalt Pavements (Superpave) methodology. After the characterisation of all components of asphalt concrete, the materials were classified in the “C” granulometric range limits of Brazilian highway specifications following the Marshall dosage method, as shown in Figure 2. The curves obtained fitted in the area defined by the two curve limits of the “C” range, minimum and maximum. After fixing the particle size distribution of aggregates of the mixture, the probable optimum asphalt content (OAC) was estimated by the expression derived from the work of Duriez (1950) based on the specific surface of the aggregates:
XRD analysis for WFS filler.
where S is the specific surface area of aggregate (m2/kg), G is the percentage retained on sieve 9.5 mm, g is the percentage passing on sieve #9.5 mm e retained on sieve 4.8 mm, A is the percentage passing on sieve #4.8 mm e retained on sieve 0.3 mm, a is the percentage passing on sieve #0.3 mm e retained on sieve 0.074 mm and f is the percentage passing on sieve 0.074 mm.
Then, the probable OAC was calculated, using the following expression:
where
If the mean bulk specific gravity of the total aggregate is less than 2.60 or greater than 2.70, then the content obtained in the previous item should be corrected by the following expression:
where T′
Finally, the OAC is calculated in relation to the entire mixture:
where Pca is the final value of OAC in relation to the total mixture (%).
From that OAC value were adopted two points below it (each 0.5%) and two points above it (each 0.5%).
Five HMAC mixtures were analysed whose grain size proportions are shown inTable 4. The mixture 1 was used as reference, for 100% of Portland cement as mineral filler. The other mixtures used WFS as mineral filler, replacing Portland cement in gradual proportions each 25%. At the end, the results were compared between the mixtures with and without WFS according to the physical and mechanical tests performed.
Oxide | SiO2 | Al2O3 | SO3 | Fe2O3 |
---|---|---|---|---|
Content (%) | 93.68 | 3.97 | 1.66 | 0.41 |
Composition of oxides present in WFS filler.
The experimental procedures were defined as follows, for each mixture [33]: (i) determination of the AC working temperatures from Saybolt-Furol viscosity test in the range of 85 ± 10 and 140 ± 15 SSF for mixing and compaction, respectively; (ii) the components (aggregates + AC) were mixed at a temperature of 146°C for approximately 2 min; (iii) the mix was placed in the Marshall mould and compacted mechanically with 75 blows on each side of the specimen; (iv) the specimen were left at rest for 24 h at room temperature; (v) after that, the specimens were left in a water bath at 60°C for 2 h; (vi) finally, they were placed in the compression mould and submitted to compression in order to determine the rupture load and flow value. Thus, all physical and mechanical parameters of HMAC mixtures were determined by the Marshall method.
From Eq. 4, an initial OAC value of 6.15% for mixture 1 was adopted, with m = 3.75. Nevertheless, the mixture showed excessive fluid, with AC in excess. Hence, OAC = 4.5% was considered. It is noteworthy that three specimens were cast for each AC content to find the final OAC of each the mixture (mixtures 1–5), whose range varied from 3.5 to 5.5%, at each interval of 0.5%. Figure 3a presents the results of OAC for each mixture.
Marshall physical and mechanical characteristics of studied mixtures: (a) optimum asphalt content, (b) bulk specific gravity, (c) air void volume, (d) asphalt-void ratio, (e) Marshall stability and (f) flow value.
After the tests, the Marshall parameters of the mixtures were determined: bulk specific gravity (BSG), theoretical maximum specific gravity (TMG), air void volume (AVV), voids in the mineral aggregate (VMA), voids filled with asphalt (VFA), asphalt-void ratio (AVR), Marshall stability (STA) and flow value (FLV). The optimum contents of AC adopted were those with an AVV value of 4%.
Three samples with cylindrical forms were moulded for the determination of the static indirect tensile strength (ITS) by diametrical compression for each type of mixture, at each OAC. The ITS individual value was obtained through the expression
where σt is the individual static ITS (kPa), T is the static rupture load (kN),
Three samples were moulded for determining the resilient modulus (RM) of each mixture. This mixture was then placed in the mould and compacted mechanically with 75 blows on each side of the sample. Then, the specimen were submitted to a repeatedly vertical compression load F at a maximum stress level less than or equal to 20% of the ITS. The RM adopted was the arithmetical mean value determined at 300, 400 and 500 load application F.
Hence, the value of the RM was determined by the expression [33]
where RM is the individual resilient modulus (MPa), F is the cyclic vertical load diametrically applied on specimen (N), δ is the elastic strain recorded for 200, 400 and 500 load applications (mm), h is the sample height (mm) and μ is Poisson’s ratio.
The fatigue test was performed to define the number of loading repetitions as a function of controlled stresses in diametrical compression samples with the load applied at a frequency of 1 Hz, with 0.10 s of repeated loading duration through the same resilient modulus equipment, increasing in tensile strain until the specimen is completely disrupted at a constant temperature of 25°C. The fatigue curve was determined in seven stress levels (7.5, 10, 15, 20, 25, 30 and 40% of the static ITS) with two specimens per level. The fatigue resistance was evaluated according to the fatigue curves generated by testing, which introduces the relationship between fatigue strength and fatigue life. The fatigue equation in this study was calculated using the formula given in the following equation [34]:
where Nf is the fatigue life (in cycles) and σf is the fatigue stress (MPa), i.e. the tension stress applied during the test. The equation provides a linear relationship between them using a bilogarithmic scale, in which “n” is the gradient and “k” is the intercept.
The study of permanent deformation was made using the static creep test applying a static and continuous compression load on a specimen moulded according to the Marshall methodology. The specimen was placed in the axial position and then was subjected to an applied tension of 0.1 MPa, distributed over the entire contact surface of the specimen for a period of 60 min at a temperature of 40°C. The permanent deformations were measured continuously along that time, and then the specimen was discharged, waiting for 15 min for the stabilisation of the viscous deformations, which were measured continuously too. The total strain (Dt) after the recovery period can be obtained as:
where Δh75 is the specimen height change after the final recovery period, i.e. 75 min after the start of the test load (mm), and ho is the specimen initial height taken in the axial direction of loading (mm). Table 5 shows the mechanical tests performed on HMAC mixtures, while Figure 4 presents all tests carried out on components and mixtures.
Brazilian standard | Title | Acceptance parameter (Brazilian standard) | Similar international standard |
---|---|---|---|
DNER-ME 043/1995 | Asphalt mixtures—Marshall test | OAC ≥ 6% STA ≥ 5 kN 3% < AVV < 5% | ASTM D5581-07a |
NBR 16018/2011 | Asphalt mixture—stiffness determination by repeated load indirect tension test | — | ASTM D4123–82 |
NBR 15087/2012 | Asphalt mixtures—determination of tensile strength by diametrical compression | ≥0.65 MPa | ASTM D 6931–17 |
DNER-ME (provisional standard)/2017 | Hot-mixed asphalt concrete—fatigue under repeated loading, constant tension, using the indirect tension test | — | FHWA-Protocol P07/2001 |
— | Standard test methods for tensile, compressive and flexural creep and creep rupture of plastics | Dt ≤ 0.02 mm/mm in 75 min | ASTM D 2990–09 |
Mechanical characterisation tests carried out on HMAC mixtures.
Flowchart of the laboratory tests.
Figure 2 indicates the result of XRD analysis for WFS filler. As shown in the figure, WFS is essentially formed by quartz mineral, as expected. Table 4 shows the composition of the main oxides present in the WFS filler obtained by XRF analysis. The high percentage of silica confirms the XRD analysis of the material [8, 16, 17].Table 6 indicates the physical characteristics of the aggregates. WFS aggregate apparent specific gravity of WFS is very close to conventional aggregates (pebble and sand) [7, 9, 10, 13] each other except for PC. Pebble had a Los Angeles abrasion loss below the maximum allowed by the Brazilian standard, which is 50%. The WFS had 76.25% of its particle sizes passing at #200 sieve and are slightly larger than that of Portland cement, i.e. it is too fine to replace part of the fine aggregate of the asphalt mixes [8, 10, 12], thus demonstrating that the residue could only replace part or total filler fraction.
Aggregate | Apparent specific gravity (g/cm3) | Absorption (%) | Los Angeles abrasion loss (%) | d90 (mm) | d50 (mm) | d10 (mm) |
---|---|---|---|---|---|---|
Pebble | 2.66 | 1.92 | 40.0 | 12.0 | 7.0 | 2.5 |
Sand | 2.63 | — | — | 1.5 | 0.35 | 0.12 |
Filler (PC) | 3.03 | — | — | 0.063 | 0.020 | 0.004 |
Filler (WFS) | 2.65 | — | — | 0.133 | 0.040 | 0.004 |
Physical characteristics of aggregates.
Notes: d90, d50 and d10 are the particle size for which 90, 50 and 10% of the all particles, in mass, are finer than it.
Table 7 shows the resulting granulometric composition of the mineral aggregates with and without the addition of WFS. It is observed that all the mixtures were composed with the same amount of aggregates, varying only the proportion between the two types of the filler fraction. Conventional mixture 1 used PC exclusively, while mixture 2 used WFS as filler exclusively. The other mixtures had variations between permutations of PC and WFS proportions. The grain size distribution of the mineral aggregates, the “C” range maximum and minimum limits of the Brazilian highway specification and the resulting aggregates of mixtures 1 and 2 are shown in Figure 5.
Aggregate | Mixture designation | ||||
---|---|---|---|---|---|
1 (%) | 2 (%) | 3 (%) | 4 (%) | 5 (%) | |
Pebble | 62.0 | 62.0 | 62.0 | 62.0 | 62.0 |
Sand | 33.0 | 33.0 | 33.0 | 33.0 | 33.0 |
Filler (cement) | 5.0 | 0.0 | 3.75 | 2.5 | 1.25 |
Filler (WFS) | 0.0 | 5.0 | 1.250 | 2.5 | 3.75 |
% Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Granulometric composition of mineral aggregate mixtures with and without WFS addition.
Grain size distribution and limit curves of mineral aggregates.
Figure 3 shows the main physical parameters of the mixtures, obtained through the Marshall methodology. OAC values of the mixtures containing WFS are comparable to the control in mixture 1 [14, 17]. Mixture 1 obtained the lowest OAC (4.5%), whereas mixtures with WFS had little bit higher OAC values, whose contents increased as WFS proportions were increased too [13]. This reason probably is due to the absorption characteristics of this residue, and not due to the grain size [10, 32], since CP has larger particle size and therefore smaller surface area and thus should consume less AC, at the same proportion of WFS.
It was observed that all five mixtures met the Brazilian standards regarding the physical Marshall parameters (OAC, AVV, VMA and AVR). Mixture 1 had a higher GMB values than all other mixtures with WFS and was therefore the densest. The other mixtures maintained a slight decrease of this parameter, when the proportion of WFS in the mixture was increased [7, 9, 13]. Mixture 2 (100% WFS filler) had the highest amount of AVV and the second largest AVR among all mixtures. AVV values increased when WFS content were increased in the mixtures [8, 9, 10, 32].
High amounts of AVV and AVR tend to negatively influence STA and FLV values, given the viscous characteristic of AC. Thus, mixture 1 showed the best performance, with the highest STA and lowest FLV values. Among the mixtures using WFS, mixture 5 (one fourth WFS + three fourths PC) was the one that presented the highest value of GMB, thus being the densest, and also presented the highest value of STA; however, it had the highest FLV value too. The FLV values of the WFS blends were higher than the PC blends, which characterises a higher AC consumption of these blends. In summary, the use of WFS decreased the stability of blends [6, 8, 10, 12, 32] while increasing their fluency. This latter is in disagreement with that observed by the author cited previously. Even so, all mixtures showed STA values higher than the minimum required (>5 kN).
There was a certain tendency that static ITS values will decrease as WFS content increased [7, 9, 10, 13, 32]. Mixtures 3 and 5 presented higher values of this parameter than control mixture 1 [25]. All asphalt mixtures presented values above the minimum value of the Brazilian standard (>0.65 MPa). This is a good indication for durability of the mixtures since fatigue life is a function of ITS. There was not an apparent correlation between AVV and static ITS values (Figure 6).
Mechanical characteristics of studied mixtures: (a) static indirect tensile strength, (b) resilient modulus, (c) RM/ITS ratio and (d) total strain (static creep).
The use of WFS decreased the RM values. Mixture 1 presented the highest value, followed by mixture 2. In Brazil, the relationship between RM and static ITS (RM/ITS) has been used as an analysis parameter to evaluate the behaviour of asphalt mixtures related to fatigue life. As a rule, mixtures with RM/ITS ratio around 3000 exhibit good structural behaviour because they allow the use of thinner asphalt wearing layers for the same fatigue life; that is, they characterise mixtures that are not susceptible to early development of permanent deformations because they are not rigid enough. In this sense, mixture 3 was the only one that met this criterion. On the other hand, the conventional mixture 1 presented the highest value of this ratio, thus indicating a more rigid behaviour.
Figure 7 shows the comparison between asphalt mixtures in relation to the stress-controlled fatigue test. For the acquisition of fatigue curves, the average value of the RM and the static ITS of each mixture were used. Between Mixtures 1 and 4, the best-fitting straight lines were very close to each other, with a parallelism between the line slopes, and both mixtures can be considered to have practically the same fatigue life. Mixture 2 presented the shortest fatigue life, while mixture 5 presented the longest fatigue life, standing out among the others. For applied stress differences up to 0.4 MPa, Mixtures 1, 2 and 4 behave similarly.
Fatigue life for the mixtures with and without WFS content.
It should be noted that mixture 5 presented the second best ITS result and the second closest value of the RM/ITS ratio around 3000, thus justifying the use of this parameter as a quantitative indicator of fatigue life of asphalt mixtures. The fatigue life test on mixture 3 was not performed.
Regarding the permanent deformation, Mixtures 2 and 3 presented lower values than mixture 1, while mixture 5 presented the highest value among the others. There was no direct relationship with AVV, since, of all of them, mixture 5 presented the lowest value of voids. Mixture 3 presented the lowest value of permanent deformation, confirming again the good indicative of the RM/ITS ratio around 3000 in predicting the behaviour of asphalt mixtures for fatigue and permanent deformations. All mixtures presented permanent deformation values below the conventional criterion of 0.020 mm/mm and do not have the tendency to be susceptible to premature permanent deformations.
This work analysed five asphalt mixtures, one using 100% CP as a filler and the other four using WFS, with a maximum proportion of 5% (by weight) of the total aggregate. The WFS residue used consisted of almost 94% silica, without organic compounds, with apparent specific gravity similar to clean sand and slightly coarser than CP.
All mixtures with WFS residue presented physical and mechanical parameters within the Brazilian standards, following the Marshall methodology, although with lower STA and higher FLV values. The use of WFS increased static ITS values, while decreased MR values. The mixtures with WFS showed total permanent deformation values less than 2% after 75 min of the test. The RM/ITS ratio around 3000 proved to be a good indication of mixtures with better performance against fatigue life and permanent deformation.
Finally, the use of WFS as a mineral filer in asphalt mixtures proved to be adequate, meeting the criteria of Brazilian standards in physical and mechanical tests.
The authors would like to thank Prof. Dr. Laura Maria Goretti da Mota, from Pavement Laboratory of COPPE/Federal University of Rio de Janeiro (UFRJ), for some laboratorial tests carried out in that place. This work was supported by the CNPq [grant number 620244/2008-9]; FAPEAM [scholarship].
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11702",title:"Eye Diseases - Recent Advances, New Perspectives and Therapeutic Options",subtitle:null,isOpenForSubmission:!0,hash:"228ecdcbf2ffae4e8cfeedfc7e0fa922",slug:null,bookSignature:"Dr. Salvatore Di Lauro",coverURL:"https://cdn.intechopen.com/books/images_new/11702.jpg",editedByType:null,editors:[{id:"244950",title:"Dr.",name:"Salvatore",surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11881",title:"Ventricular Assist Devices - Advances and Applications in Heart Failure",subtitle:null,isOpenForSubmission:!0,hash:"4c5136113dda974a93f03ba12724b31b",slug:null,bookSignature:"Associate Prof. Enkhsaikhan Purevjav, Dr. Hugo R. Martinez, Dr. Mohammed Absi, Dr. Jeffrey Allen Towbin and Dr. Umar Boston",coverURL:"https://cdn.intechopen.com/books/images_new/11881.jpg",editedByType:null,editors:[{id:"231585",title:"Associate Prof.",name:"Enkhsaikhan",surname:"Purevjav",slug:"enkhsaikhan-purevjav",fullName:"Enkhsaikhan Purevjav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11732",title:"Multiple Pregnancy - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"70396c6f5f2928c422c1eaf6d33c6269",slug:null,bookSignature:"Prof. Hassan S Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/11732.jpg",editedByType:null,editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11682",title:"Rare Diseases - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"ad68db8a4109ae3acc0d3f001a2f4fde",slug:null,bookSignature:"Dr. John Kanayochukwu Nduka",coverURL:"https://cdn.intechopen.com/books/images_new/11682.jpg",editedByType:null,editors:[{id:"107866",title:"Dr.",name:"John Kanayochukwu",surname:"Nduka",slug:"john-kanayochukwu-nduka",fullName:"John Kanayochukwu Nduka"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11677",title:"New Insights in Mammalian Endocrinology",subtitle:null,isOpenForSubmission:!0,hash:"c59dd0f87bbf829ca091c485f4cc4e68",slug:null,bookSignature:"Prof. Muhammad Subhan Qureshi",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",editedByType:null,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11880",title:"Health Literacy - Advances and Trends",subtitle:null,isOpenForSubmission:!0,hash:"936246c4939223eb851ae4df22d15423",slug:null,bookSignature:"Dr. Carlos Miguel Rios-González",coverURL:"https://cdn.intechopen.com/books/images_new/11880.jpg",editedByType:null,editors:[{id:"196288",title:"Dr.",name:"Carlos",surname:"Rios-González",slug:"carlos-rios-gonzalez",fullName:"Carlos Rios-González"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11687",title:"Bariatric Surgery - Past and Present",subtitle:null,isOpenForSubmission:!0,hash:"c8ee32c7f77d3b4b190c87379af61b01",slug:null,bookSignature:"Associate Prof. Burhan Hakan Kanat and Dr. Nizamettin Kutluer",coverURL:"https://cdn.intechopen.com/books/images_new/11687.jpg",editedByType:null,editors:[{id:"183319",title:"Associate Prof.",name:"Burhan",surname:"Kanat",slug:"burhan-kanat",fullName:"Burhan Kanat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11721",title:"Hypothermia and Hyperthermia - Physiology Concepts and Clinical Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b0d0d929b72cece233f4b8cd014550c",slug:null,bookSignature:"Dr. Marinos Kosmopoulos",coverURL:"https://cdn.intechopen.com/books/images_new/11721.jpg",editedByType:null,editors:[{id:"442908",title:"Dr.",name:"Marinos",surname:"Kosmopoulos",slug:"marinos-kosmopoulos",fullName:"Marinos Kosmopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:129},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:155,numberOfSeries:0,numberOfAuthorsAndEditors:3640,numberOfWosCitations:4735,numberOfCrossrefCitations:2262,numberOfDimensionsCitations:4931,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"20",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10966",title:"Acoustic Emission",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"e4cbf5fe77dcf581393247bd9ac4277a",slug:"acoustic-emission-new-perspectives-and-applications",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10966.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:"Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics",isOpenForSubmission:!1,hash:"cfe87b713a8bee22c19361b86b03d506",slug:"nonlinear-optics-nonlinear-nanophotonics-and-novel-materials-for-nonlinear-optics",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris I.",middleName:"I.",surname:"Lembrikov",slug:"boris-i.-lembrikov",fullName:"Boris I. Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:"plasma-science-and-technology",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10209",title:"Quantum Computing and Communications",subtitle:null,isOpenForSubmission:!1,hash:"588d044631767881b7490cd9cb2c052b",slug:"quantum-computing-and-communications",bookSignature:"Yongli Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/10209.jpg",editedByType:"Edited by",editors:[{id:"199527",title:"Associate Prof.",name:"Yongli",middleName:null,surname:"Zhao",slug:"yongli-zhao",fullName:"Yongli Zhao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10168",title:"Electromagnetic and Acoustic Waves in Bioengineering Applications",subtitle:null,isOpenForSubmission:!1,hash:"fab55a6aa34e666274aabfdd3dc7f32d",slug:"electromagnetic-and-acoustic-waves-in-bioengineering-applications",bookSignature:"Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik",coverURL:"https://cdn.intechopen.com/books/images_new/10168.jpg",editedByType:"Authored by",editors:[{id:"314791",title:"Dr.",name:"Ivo",middleName:null,surname:"Čáp",slug:"ivo-cap",fullName:"Ivo Čáp"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:"Technology and Biology",isOpenForSubmission:!1,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:"bioluminescence-technology-and-biology",bookSignature:"Hirobumi Suzuki and Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!1,hash:"d7481712cff0157cd8f849cba865727d",slug:"topics-on-quantum-information-science",bookSignature:"Sergio Curilef and Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:"Edited by",editors:[{id:"125424",title:"Prof.",name:"Sergio",middleName:null,surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10205",title:"Quantum Chromodynamic",subtitle:null,isOpenForSubmission:!1,hash:"0d9403b5c874f6e63b0686cd7c432e00",slug:"quantum-chromodynamic",bookSignature:"Zbigniew Piotr Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/10205.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10481",title:"Practical Applications of Laser Ablation",subtitle:null,isOpenForSubmission:!1,hash:"e9f235e98a88813c08a9dba80525b195",slug:"practical-applications-of-laser-ablation",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/10481.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",middleName:null,surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10017",title:"Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"e20f25706d03f0c52ac852f7fa2375e7",slug:"optoelectronics",bookSignature:"Mike Haidar Shahine",coverURL:"https://cdn.intechopen.com/books/images_new/10017.jpg",editedByType:"Edited by",editors:[{id:"102474",title:"Dr.",name:"Mike Haidar",middleName:null,surname:"Shahine",slug:"mike-haidar-shahine",fullName:"Mike Haidar Shahine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7886",title:"Photodynamic Therapy",subtitle:"From Basic Science to Clinical Research",isOpenForSubmission:!1,hash:"d7ef096c2bcf9efbda76d7631ce1e3ac",slug:"photodynamic-therapy-from-basic-science-to-clinical-research",bookSignature:"Natalia Mayumi Inada, Hilde Harb Buzzá, Kate Cristina Blanco and Lucas Danilo Dias",coverURL:"https://cdn.intechopen.com/books/images_new/7886.jpg",editedByType:"Edited by",editors:[{id:"90788",title:"Dr.",name:"Natalia Mayumi",middleName:null,surname:"Inada",slug:"natalia-mayumi-inada",fullName:"Natalia Mayumi Inada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:155,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74766,totalCrossrefCites:37,totalDimensionsCites:85,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8726,totalCrossrefCites:37,totalDimensionsCites:83,abstract:"Sample preparations are essential in scanning electron microscopy. Flawed sample preparations can undermine the quality of results and lead to false conclusions. Thus, the aim of this chapter is to equip researchers, post graduate students and technicians with essential knowledge required to prepare samples for scanning electron microscopy (SEM) investigations in the life sciences.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"30963",doi:"10.5772/34176",title:"Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers",slug:"microstructural-and-mineralogical-characterization-of-clay-stabilized-using-calcium-based-stabilizer",totalDownloads:6789,totalCrossrefCites:29,totalDimensionsCites:48,abstract:null,book:{id:"1505",slug:"scanning-electron-microscopy",title:"Scanning Electron Microscopy",fullTitle:"Scanning Electron Microscopy"},signatures:"Pranshoo Solanki and Musharraf Zaman",authors:[{id:"20942",title:"Prof.",name:"Pranshoo",middleName:null,surname:"Solanki",slug:"pranshoo-solanki",fullName:"Pranshoo Solanki"},{id:"20945",title:"Prof.",name:"Musharraf",middleName:null,surname:"Zaman",slug:"musharraf-zaman",fullName:"Musharraf Zaman"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:4530,totalCrossrefCites:29,totalDimensionsCites:47,abstract:null,book:{id:"2018",slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]},{id:"49655",doi:"10.5772/61830",title:"Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition",slug:"electrical-discharge-in-water-treatment-technology-for-micropollutant-decomposition",totalDownloads:4985,totalCrossrefCites:31,totalDimensionsCites:44,abstract:"Hazardous micropollutants are increasingly detected worldwide in wastewater treatment plant effluent. As this indicates, their removal is insufficient by means of conventional modern water treatment techniques. In the search for a cost-effective solution, advanced oxidation processes have recently gained more attention since they are the most effective available techniques to decompose biorecalcitrant organics. As a main drawback, however, their energy costs are high up to now, preventing their implementation on large scale. For the specific case of water treatment by means of electrical discharge, further optimization is a complex task due to the wide variety in reactor design and materials, discharge types, and operational parameters. In this chapter, an extended overview is given on plasma reactor types, based on their design and materials. Influence of design and materials on energy efficiency is investigated, as well as the influence of operational parameters. The collected data can be used for the optimization of existing reactor types and for development of novel reactors.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Patrick Vanraes, Anton Y. Nikiforov and Christophe Leys",authors:[{id:"49112",title:"Prof.",name:"Christophe",middleName:null,surname:"Leys",slug:"christophe-leys",fullName:"Christophe Leys"},{id:"176861",title:"Dr.",name:"Anton",middleName:null,surname:"Nikiforov",slug:"anton-nikiforov",fullName:"Anton Nikiforov"},{id:"176862",title:"Mr.",name:"Patrick",middleName:null,surname:"Vanraes",slug:"patrick-vanraes",fullName:"Patrick Vanraes"}]}],mostDownloadedChaptersLast30Days:[{id:"49562",title:"Laser-Induced Plasma and its Applications",slug:"laser-induced-plasma-and-its-applications",totalDownloads:4709,totalCrossrefCites:12,totalDimensionsCites:26,abstract:"The laser irradiation have shown a range of applications from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution. Laser induced plasma has used for different diagnostic and technological applications as detection, thin film deposition, and elemental identification. The possible interferences of atomic or molecular species are used to specify organic, inorganic or biological materials which allows critical applications in defense (landmines, explosive, forensic (trace of explosive or organic materials), public health (toxic substances pharmaceutical products), or environment (organic wastes). Laser induced plasma for organic material potentially provide fast sensor systems for explosive trace and pathogen biological agent detection and analysis. The laser ablation process starts with electronic energy absorption (~fs) and ends at particle recondensation (~ms). Then, the ablation process can be governed by thermal, non-thermal processes or a combination of both. There are several types of models, i.e., thermal, mechanical, photophysical, photochemical and defect models, which describe the ablation process by one dominant mechanism only. Plasma ignition process includes bond breaking and plasma shielding during the laser pulse. Bond breaking mechanisms influence the quantity and form of energy (kinetic, ionization and excitation) that atoms and ions can acquire. Plasma expansion depends on the initial mass and energy in the plume. The process is governed by initial plasma properties (electron density, temperature, velocity) after the laser pulse and the expansion medium. During first microsecond after the laser pulse, plume expansion is adiabatic afterwards line radiation becomes the dominant mechanism of energy loss.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Kashif Chaudhary, Syed Zuhaib Haider Rizvi and Jalil Ali",authors:[{id:"176684",title:"Dr.",name:"Kashif Tufail",middleName:null,surname:"Chaudhary",slug:"kashif-tufail-chaudhary",fullName:"Kashif Tufail Chaudhary"},{id:"176867",title:"Dr.",name:"Syed Zuhaib",middleName:null,surname:"Haider Rizivi",slug:"syed-zuhaib-haider-rizivi",fullName:"Syed Zuhaib Haider Rizivi"},{id:"176868",title:"Prof.",name:"Jalil",middleName:null,surname:"Ali",slug:"jalil-ali",fullName:"Jalil Ali"}]},{id:"52164",title:"An Overview on Quantum Cascade Lasers: Origins and Development",slug:"an-overview-on-quantum-cascade-lasers-origins-and-development",totalDownloads:3232,totalCrossrefCites:2,totalDimensionsCites:11,abstract:"This chapter presents an introductory review on quantum cascade lasers (QCLs). An overview is prefaced, including a brief description of their beginnings and operating basics. Materials used, as well as growth methods, are also described. The possibility of developing GaN-based QCLs is also shown. Summarizing, the applications of these structures cover a broad range, including spectroscopy, free-space communication, as well as applications to near-space radar and chemical/biological detection. Furthermore, a number of state-of-the-art applications are described in different fields, and finally a brief assessment of the possibilities of volume production and the overall state of the art in QCLs research are elaborated.",book:{id:"5389",slug:"quantum-cascade-lasers",title:"Quantum Cascade Lasers",fullTitle:"Quantum Cascade Lasers"},signatures:"Raúl Pecharromán-Gallego",authors:[{id:"188866",title:"Dr.",name:"Raúl",middleName:null,surname:"Pecharromán-Gallego",slug:"raul-pecharroman-gallego",fullName:"Raúl Pecharromán-Gallego"}]},{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4299,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6073,totalCrossrefCites:10,totalDimensionsCites:34,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10111,totalCrossrefCites:10,totalDimensionsCites:31,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]}],onlineFirstChaptersFilter:{topicId:"20",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82123",title:"Microwave-Assisted Pyrolysis Process: From a Laboratory Scale to an Industrial Plant",slug:"microwave-assisted-pyrolysis-process-from-a-laboratory-scale-to-an-industrial-plant",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.104925",abstract:"One of the great challenges for the European Union (EU) is the “Circular Economy Package,” and to achieve this goal, materials at the end of their life cycle must be recycled using a sustainable process. In this way, as a thermochemical treatment, pyrolysis represents a significant opportunity so long it leads to the recovery of both energy and chemical content of mixed, contaminated, or deteriorated plastics. An excellent history of an academic-industrial adventure started in 2008 at the Department of Chemistry of the University of Florence demonstrates the possibility of employing microwaves to recycle plastics to preserve their energy and chemical content. After that, Techwave started industrialization of the process in 2019, realizing a small-scale prototype followed by a full-scale pilot plant using different plastic materials (e.g., polystyrene, acrylonitrile-butadiene-styrene (ABS), and polypropylene). Nowadays, the plant may process 90 kg/h of plastics with a low formation of char and gas and an interesting amount of liquid useful as a source of chemicals or fuel because it has an LHV of 35–43 kJ/kg. The Microwave-Assisted Pyrolysis (MAP) is an industrial novelty in plastic recycling, and it looks very promising for a much more modern and innovative plastic waste recovery system.",book:{id:"11145",title:"Recent Microwave Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11145.jpg"},signatures:"Marco Frediani, Piero Frediani, Gianni Innocenti, Irene Mellone, Roberto Simoni and Gianpaolo Oteri"},{id:"82420",title:"Applications of Microwaves in Medicine and Biology",slug:"applications-of-microwaves-in-medicine-and-biology",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105492",abstract:"This chapter deals with the description of recent research activities oriented on the perspective of microwave technologies in medicine and biology. It brings new ideas about the possibilities of using microwaves in thermotherapy—above all toward hyperthermia in cancer treatment. Development of new types of hyperthermia applicators (based, e.g., on technologies such as metamaterials, evanescent modes in waveguides, and other types of transmission structures) will be discussed here. Furthermore, we would like to underline in this chapter perspectives of microwaves in medical diagnostics. It is possible to expect that, e.g., microwave differential tomography, UWB radar, and microwave radiometers (all three can be used both for medical diagnostic and for noninvasive temperature measurement) will soon play an important role in it. Finally, experimental equipment necessary for research on the biological effects of EM fields is presented.",book:{id:"11145",title:"Recent Microwave Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11145.jpg"},signatures:"David Vrba, Jan Vrba, Ondrej Fiser, Jesus Cumana, Milan Babak and Jan Vrba Senior"},{id:"82228",title:"Nonlinear Intelligent Predictive Control for the Yaw System of Large-Scale Wind Turbines",slug:"nonlinear-intelligent-predictive-control-for-the-yaw-system-of-large-scale-wind-turbines",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.105484",abstract:"This chapter presents a nonlinear intelligent predictive control using multi-step prediction model for the electrical motor-based yaw system of an industrial wind turbine. The proposed method introduces a finite control set under constraints for the demanded yaw rate, predicts the multi-step yaw error using the control set element and the prediction wind directions, and employs an exhaustive search method to search the control output candidate giving the minimal value of the objective function. As the objective function is designed for a joint power and actuator usage optimization, the weighting factor in the objective function is optimally determined by the fuzzy regulator that is optimized by an intelligent algorithm. Finally, the proposed method is demonstrated by simulation tests using real wind direction data.",book:{id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg"},signatures:"Dongran Song, Ziqun Li, Jian Yang, Mi Dong, Xiaojiao Chen and Liansheng Huang"},{id:"82102",title:"Vortex Analysis and Fluid Transport in Time-Dependent Flows",slug:"vortex-analysis-and-fluid-transport-in-time-dependent-flows",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.105196",abstract:"In this contribution, we present a set of procedures developed to identify fluid flow structures and characterize their space-time evolution in time-dependent flows. In particular, we consider two different contests of importance in applied fluid mechanics: 1) large-scale almost 2D atmospheric and oceanic flows and 2) flow inside the left ventricle in the human blood circulation. For both cases, we designed an ad hoc experimental model to reproduce and deeply investigate the considered phenomena. We will focus on the post-processing of high-resolution velocity data sets obtained via laboratory experiments by measuring the flow field using a technique based on image analysis. We show how the proposed methodologies represent a valid tool suitable for extracting the main patterns and quantify fluid transport in complex flows from both Eulerian and Lagrangian perspectives.",book:{id:"10958",title:"Vortex Dynamics - From Physical to Mathematical Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/10958.jpg"},signatures:"Stefania Espa, Maria Grazia Badas and Simon Cabanes"},{id:"82222",title:"High-Lying Confined Subbands in Terahertz Quantum Cascade Lasers",slug:"high-lying-confined-subbands-in-terahertz-quantum-cascade-lasers",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105479",abstract:"In designing the terahertz quantum cascade lasers, electron injection manner indeed plays a significant role to achieve the population inversion. The resonant tunneling process is commonly employed for this injection process but waste more than 50% fraction of populations out of the active region owing to resonance alignment, and the injection efficiency is obviously degraded due to thermal incoherence. An alternative approach is to consider the phonon-assisted injection process that basically contributes to most of the populations to the upper lasing level. However, this manner is still not realized in experiments if a short-period design only containing two quantum wells is used. In this work, it is found in this design that the population inversion is indeed well improved; however, the optical gain is inherently low even at a low temperature. Those two opposite trends are ascribed to a strong parasitic absorption overlapping the gain. The magnitude of this overlap is closely related to the lasing frequency, where frequencies below 3 THz suffer from fewer effects.",book:{id:"11495",title:"Fundamentals and Application of Femtosecond Optics",coverURL:"https://cdn.intechopen.com/books/images_new/11495.jpg"},signatures:"Li Wang"},{id:"81917",title:"Fluidics for Reconfigurable Microwave Components",slug:"fluidics-for-reconfigurable-microwave-components",totalDownloads:11,totalDimensionsCites:0,doi:"10.5772/intechopen.104857",abstract:"Dielectric and conducting liquids with varying electromagnetic properties can offer novel alternatives for building tunable microwave passive components as well as antennas. Injecting these fluidics in or around microwave substrates alters their overall electrical characteristics, enabling circuit reconfigurability. Alternatively, changing the shapes and dimensions of conductors by using liquid metals can achieve similar reconfigurability. An overview of different liquids and their electromagnetic properties is first given. The principles behind the reconfigurability of the electrical characteristics of typical guiding structures based on mode shape variation in the presence of fluids are discussed. The realization of an N-bit programmable impedance tuner in 3D LTCC technology based on these principles is presented.",book:{id:"11145",title:"Recent Microwave Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11145.jpg"},signatures:"Dorra Bahloul, Ines Amor and Ammar Kouki"}],onlineFirstChaptersTotal:52},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",institutionString:"Kafkas University",institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/145353",hash:"",query:{},params:{id:"145353"},fullPath:"/profiles/145353",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()