Ground-plane dimensions of antennas (unit: mm)
\r\n\tDiagnosis and management of complications while on ECMO therapy and weaning to recovery or advanced therapies will be also discussed.
\r\n\r\n\tChapters focusing on specific patient populations, such as cardiogenic shock, thoracic organ transplantation, trauma, and neonates, Covid-19 syndrome, will provide insight into the particular challenges in dealing with the unusual problems of these very diverse groups.
\r\n\r\n\tThe goal of this book is to provide, thanks to the thorough contributions by known experts in the field, a framework for successful program development. Hopefully, this text will also inspire others to further advance this delicate field.
",isbn:"978-1-80356-549-1",printIsbn:"978-1-80356-548-4",pdfIsbn:"978-1-80356-550-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"254c18981115aeda50bdf71829902141",bookSignature:"Dr. Antonio Loforte",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11718.jpg",keywords:"Heart Failure, Cardiogenic Shock, Respiratory Failure, Circulatory Failure, End-Organ Dysfunction, VA-ECMO, VV ECMO, Central ECMO, ECMO Running, Weaning off ECMO, Adverse Events While on ECMO, Survival on ECMO",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 10th 2022",dateEndSecondStepPublish:"April 7th 2022",dateEndThirdStepPublish:"June 6th 2022",dateEndFourthStepPublish:"August 25th 2022",dateEndFifthStepPublish:"October 24th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Loforte is a dedicated and pioneering researcher in the surgical treatment of advanced heart failure in terms of LVAD, BVAD, ECLS, and TAH adoption in different clinical scenarios. He is a member of several professional organizations including the prestigious STS, ISHLT, ASAIO, EACTS, RHICS, SICCH, SITO, ELSO, and ESOT among others. His bibliography lists over 150 peer-reviewed original articles, 250 abstracts (communications) for international meetings, 20 book chapters, and 8 manuals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"42172",title:"Dr.",name:"Antonio",middleName:null,surname:"Loforte",slug:"antonio-loforte",fullName:"Antonio Loforte",profilePictureURL:"https://mts.intechopen.com/storage/users/42172/images/system/42172.jpg",biography:"Dr. Loforte is currently staff surgeon and chair of the Mechanical Circulatory Support (MCS) program at the Department of Cardiothoracic, Transplantation and Vascular Surgery, S. Orsola Hospital, ALMA Mater Studiorum University of Bologna, IRCCS Bologna, Italy. He completed his cardiothoracic surgery recidency at the University of Bologna, S. Orsola Hospital (Italy), at St. Antonius Ziekenhuis, Nieuwegein (the Netherlands) and the Deutsches Herzzentrum Berlin (Germany). He additionally joined the Michael E. DeBakey Department of Surgery, Division of Transplant and Assist Devices, in Houston, Texas, USA.\nDr. Loforte is a member of several professional organizations including the prestigious STS, ISHLT, ASAIO, EACTS, RHICS, SICCH, SITO, ELSO, ESOT among others. His bibliography lists over 150 peer-reviewed original articles, 250 abstracts (communications) for international meetings, 20 book chapters, and 8 manuals. He serves as a reviewer for 25 international journals and is part of the editorial board in 10 of them. He received a ‘European Ph.D. label’ in Organ Transplantation and ten international awards in Europe and USA.",institutionString:"Division of Cardiac Surgery, S. Orsola University Hospital, IRCCS Bologna",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6558",title:"Heart Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"fa6adc2ed66fd8de1500ed382fd80f7a",slug:"heart-transplantation",bookSignature:"Antonio Loforte, Andrea Montalto and Cristiano Amarelli",coverURL:"https://cdn.intechopen.com/books/images_new/6558.jpg",editedByType:"Edited by",editors:[{id:"42172",title:"Dr.",name:"Antonio",surname:"Loforte",slug:"antonio-loforte",fullName:"Antonio Loforte"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39707",title:"Cable Effects on Measuring Small Planar UWB Monopole Antennas",doi:"10.5772/46080",slug:"cable-effects-on-measuring-small-planar-uwb-monopole-antennas",body:'Since the US-FCC assigned the ultrawide band (UWB) for unlicensed use in 2002, UWB technology has attracted much attention in both the commercial and academic domains. The characteristics of ultrawide bandwidth from 3.1 to 10.6 GHz and low power emission of -41.3 dBm/MHz make it a promising candidate for different applications such as high speed communications and radar imaging systems. However, the requirements for impedance matching, constant gain, constant radiation patterns and high radiation efficiency over such a wide bandwidth for the UWB antenna become great challenges to antenna designers.
With the increasing demand for smaller wireless devices, planar antenna, with the advantages of compact size, low profile, low cost, ease of fabrication and ease of integration with RF circuits, appears to be more preferable for UWB applications. Among different planar antennas, monopole antenna has the simplest structure, compact size and omnidirectional radiation pattern and so is one of the best candidates. For a planar monopole antenna to work properly, the ground plane is required to be electrically large enough to approximate an infinite-ground plane and so occupies a large portion of the overall antenna size. Thus to design a compact UWB monopole antenna, the ground plane is usually the one to be minimized. Designing a planar monopole antenna with a small ground plane to cover the UWB is not a difficult task and can be achieved through different techniques [1-7]. The design is usually done using computer simulation. In carrying out the design in simulation, the antenna is fed directly with a signal source without using a feeding cable. However, when the final design is completed and prototyped for measurements, a feeding cable is normally used to connect the antenna to the measurement system. The small ground plane cannot approximate an infinite ground plane well and causes the currents to flow back to the outer surface of the feeding cable, resulting in secondary radiation. This leads to discrepancies between the simulated and measured performances of the antenna and creates uncertainties to the design of the antenna.
To resolve the problem, a sleeve balun can be placed at the end of the cable to prevent currents from flowing back to the feeding cable [8,9]. A sleeve balun is a metal tube with a length of quarter-wavelength to provide an open circuit for the signal. Although sleeve baluns can be designed to possess good choking characteristics, they are narrowband devices and so are not suitable for UWB antennas. For wideband and high-frequency operation, the feeding cable can be covered with an EMI suppressant material to absorb unwanted EM radiation [10]. By using this method, the shape of the measured and simulated radiation patterns of the antenna will be similar, but the measured efficiency and gain will be lower due to the energy absorbed by the EMI suppressant material. The discrepancies again produce uncertainties to the design of the antenna.
In this chapter, the effects of ground-plane size and feeding cable on the measurements of small UWB monopole antennas are investigated. A group of nine planar UWB monopoles with an identical elliptical radiators but different ground-plane sizes are designed using computer simulation where no feeding cable is used. These antennas are also prototyped and measured using the antenna measurement system, Satimo Starlab, where a feeding cable is used [11]. The simulated and measured performances show large discrepancies at low frequencies. To investigate the discrepancies, two different types of feeding cables, a high-frequency coaxial cable and a high-frequency coaxial cable with EMI suppressant tubing, are studied. The simulation models for the two cables are developed and used in computer simulation. With the application of the two cable models, the simulated and measured performances show good agreements. The results show that the feeding cable without EMI suppressant tubing causes many ripples on the 3D-radiation patterns of the antenna.
Dipole antenna, often called dipole, is one of the simplest but most widely used types of antennas. The typical structure of a dipole consists of two thin-wire conductors normally having equal length
A thin-wire monopole has a simple structure, but a very narrow bandwidth, making it unsuitable for UWB applications. To broaden the impedance bandwidth, the thin-wire conductor can be made flat to become a planar element and then laid parallel to the ground plane to form a low-profile planar monopole. The planar element can take on different shapes as shown in Figure 2 [13].
a) Center-fed dipole and (b) vertical monopole above infinite ground
Planar monopoles using different radiator shapes [
With the increasing demand for smaller wireless devices, planar monopole antennas with small ground planes have attract much attention. However, in the design of such an antenna, very often, after the antenna performance in terms of gain, efficiency and return loss has been optimized using computer simulation, the measured performance of the prototyped antenna does not agree with the simulated performance. Large discrepancies usually occur at lower frequencies. This creates uncertainties and doubts in the design of the antenna. As will be shown in the following sections, the discrepancies at low frequencies are mainly caused by the feeding cable used to connect the antenna to the measurement system.
Nowadays, the design of antennas is usually done by using computer simulation. In simulation, normally the antenna is directly fed from a signal source and no feeding cable is used. However, when the antenna is fabricated and measured in a practical situation, a feeding cable is always used to connect the antenna to the measurement system and the signal is fed through the feeding cable to the antenna. In such arrangement, the cable could affect the measured results in two possible ways [14] as illustrated in Figure 3.
Since the feeding cable is quite near to the radiator and so is in the near field region of the antenna, the radiated EM fields incident on the cable will be scattered and reflected as shown in Figure 3(a). The feeding cable becomes a parasitic element [15]. Due to the small size of the cable, this cable effect on the measurement results is relatively small.
If the antenna is a planar monopole with a small ground plane, some EM fields will not be reflected as in the case of having an infinite ground plane shown in Figure 1(b). Instead, the EM fields arriving at the edges of the small ground plane will be diffracted. This induces surface currents to flow back on the outer surface of the feeding cable, resulting in secondary radiation as shown in Figure 3(b). This effect on measurements could be quite significant, depending on the electrical size of the ground plane. Computer simulation is carried out to study the effects of using large and small ground planes of a thin-wire monopole antenna fed by a coaxial cable on the Electric fields (E-fields). The large and small ground planes have a circular shape with the radii of 2.06λ and 0.41λ, respectively, and a thickness of 0.0008λ, where λ is the wavelength at the resonant frequency. The length of feeding cable is 1.64λ. Figure 4(a) shows a snap-shot of the E-fields radiated from the monopole antenna using the small ground plane. It can be seen that the E-fields arriving at the edges of the ground plane are quite strong. The ground-plane edges diffract the strong incident E-fields in all directions [16, 17]. After diffraction, some of the E-fields go to the upper free space and others go to the lower free space with respect to the ground plane. A significant portion of the E-fields diffracts onto the bottom surface of the ground plane, which will induce surface currents. The surface currents will flow towards the feeding cable at the center of the ground plane and onto the outer conductor-surface of the cable. Figure 4(a) shows that a standing wave is formed on the feeding cable and this will result in “secondary radiation” and affect the measured results. When the large ground plane with a radius of 2.06λ is used, Figure 4(b) shows a snap-shot of the E-fields radiating from the monopole antenna. It can be seen that the E-fields arriving at the edge of the ground plane are quite weak. As a result, the induced currents on the bottom surface of the ground plane and hence the currents flowing back onto the outer conductor-surface of the feeding cable are very weak. In this case, secondary radiation is much less.
The simulated 3D-radiation patterns for the two cases are shown in Figures 4(c) and (d). It can be seen that both radiation patterns have peak-radiation at elevation from the horizontal ground plane, typical for monopoles with finite ground planes. For the antenna with the large ground, peak-radiation is stronger and at a smaller elevation angle than those for the antenna with the small ground plane. Peak-radiation in the lower hemisphere of the radiation pattern is much weaker for the antenna with the large ground than for the antenna with the small ground plane. For the antenna with the small ground plane, Figure 4(c) shows that ripples occur in both the upper and lower hemispheres of the pattern. However, for the antenna with the large ground plane, Figures 4(d) shows no ripple in the upper hemisphere of the pattern, but many ripples with much smaller magnitudes in the lower hemisphere.
Illustration of two possible ways affecting measured results of antenna: (a) reflections of EM fields from antenna and (b) currents flowing back to feeding cable
Ripples on a 3D-radiation pattern are the results of EM fields with different phases adding together constructively and destructively in different spatial directions. To study the causes of these ripples on the 3D-radiation patterns of Figures 4(c) and (d), computer simulation is carried out on the same antenna with the same large and small ground planes but without using the feeding cable. Results at resonant frequency are shown in Figure 5. For the antenna with the small ground plane, Figure 5(a) shows that the ripples disappear. Thus the ripples in Figure 4(c) are mainly caused by the feeding cable. In fact, this agrees with Figure 4(a) which shows that, at the resonant frequency, a standing wave is developed on the feeding cable which gives out EM radiation. The EM fields are added together constructively and destructively in different spatial directions, producing ripples in the 3D-radiation pattern in Figure 4(c). For the antenna with the large ground plane and without using the feeding cable, Figure 5(b) shows that the 3D-radiation pattern is about the same as that in Figure 4(d) using the feeding cable. This agrees with Figure 4(b) which shows no standing wave developed on the feeding cable and so no radiation from the cable. Thus the feeding cable has no effect on the radiation pattern. However, Figure 5(b) shows that the ripples still occur in the lower hemisphere of the pattern. This indicates that the ripples are mainly caused by diffraction of EM fields at the edges of the ground plane. The reason can be explained as follows. The EM fields radiated from the monopole are diffracted at the edge of the ground plane into free space below the ground plane. Since the ground plane has a diameter of 4.12
E-field radiation of thin-wire monopole antenna fed using coaxial cable for (a) small ground plane and (b) large ground plane, and corresponding radiation patterns (c) and (d).
Radiation patterns of thin-wire monopole antenna without using feeding cable (a) small ground plane, and (b) large ground plane
To investigate the effects of ground-plane size on measurements of small UWB monopole antennas, a group of nine antennas, Ants 1, 2, …, 9, are used. These antennas have an identical elliptical-shaped radiator printed on one side of the substrate but a ground plane with different sizes on the other side of the substrate [18]. They are designed on the Rogers substrate, RO4350, with a relative dielectric constant of 3.48, a thickness of 0.762 mm and a loss tangent of 0.0037, as shown in Figure 6.
Structure of UWB antennas: (a) top view and (b) side view
The tapered microstrip feed line and the gap between the radiator and the ground plane are important factors for impedance matching and so are optimized for maximum impedance bandwidth using computer simulation. The optimized dimensions of these nine antennas are listed in Table 1.
Ground-plane dimensions of antennas (unit: mm)
Prototypes of nine planar monopole antennas with different ground-plane sizes: (a) top view and (b) bottom view.
The performances of the nine antennas, in terms of S11 and efficiency, are studied by computer simulation. In simulation, no feeding cable is used and the antennas are fed directly by the signal source. Using the optimized dimensions in Table 1, the nine antennas are also prototyped using the Rogers substrate, RO4350, as shown in Figure 7, and measured using the antenna measurement system, Satimo Starlab, shown in Figure 8. In measurements, of course, a feeding cable with an SMA connector (provided by Satimo) is used to connect the antennas to the Starlab system. The cable is enclosed by an EMI suppressant tube to absorb EM radiation. The simulated and measured S11 and efficiencies of the antennas are shown in Figure 9. It can be seen that the simulated and measured impedance bandwidths (S11<-10 dB) for all antennas show good agreements. However, for efficiency, the measured results are always lower than the simulated results. The discrepancies are more obvious for antennas with smaller ground planes and at lower frequencies.
To examine the effects of ground-plane size on the discrepancy of efficiency, we divide the whole frequency band from 2 to 12 GHz into three sub-bands, i.e. 2-4 GHz, 4-6 GHz, and 6-12 GHz, and compute the average discrepancy in the whole band and in each of the sub-bands. Results are listed in Table 2, where each row has the same ground-plane width and increasing length and each column has the same ground-plane length and increasing width. From Figure 9 and Table 2, we can observe the following phenomena:
The lower cut-off frequency reduces with increasing ground-plane length (gl).
In Figures 9(a), (b) and (c), the ground planes have the same length of 15 mm but different widths. The lower cut-off frequencies (S11=-10 dB) of the antennas are all at about 2.8 GHz. This phenomenon is also observed in Figures 9(d), (e) and (f), and in Figures 9(g), (h) and (i).
In Figures 9(a), (d) and (g), the ground planes have the same width. As the ground-plane length increases from 15 to 30 and 50 mm, the lower cut-off frequency decreases from 2.76 to 2.38 to 2.21, respectively. This phenomenon is also observed in Figures 9(b), (e) and (h), and Figures 9(c), (f) and (i). Thus the lower cut-off frequency reduces with increasing ground-plane length (
For dipole antenna, the lower cut-off frequency is inversely proportional to the length of the radiator. The results in Figure 9 show that the monopole antennas with small ground planes behave like asymmetric dipole antennas [19] and the lower cut-off frequency is inversely proportional to the length of the ground plane.
Discrepancy reduces with increasing frequency
Figure 9 shows that the discrepancy is larger at lower frequencies and smaller at higher frequencies. This phenomenon can also be observed in Table 2 which shows the discrepancy is always smallest in the higher sub-band and largest in the lower sub-band. This is because at higher frequencies, the ground plane becomes electrically larger.
Discrepancy reduces with increasing ground-plane width and ground-plane length.
Table 2 shows the discrepancy reduces with increasing ground-plane width and ground-plane length.
The width of ground plane has more effect on the efficiency than the length.
Each row in Table 2 represents the ground planes of the same widths but different lengths. Table 2 shows the average discrepancy through 2-12 GHz decreases significantly with increasing ground-plane length. Each column in Table 2 represents the ground planes of the same length but different widths and the results show the discrepancy does not change much. This can also be seen in Figure 9 by comparing the simulated and measured efficiencies of the corresponding antennas. These results show that increasing the ground-plane width has more effect on reducing the discrepancy than increasing the ground-plane length. This is because a small ground plane serves as a radiator and the width of the radiator improves the impedance bandwidth.
Antenna in Starlab system for measurement
Simulated and measured S11 and efficiencies of nine antennas with different ground-plane sizes
0.110 | 0.074 | 0.040 | |||||||
0.244 | 0.121 | 0.060 | 0.172 | 0.026 | 0.055 | 0.050 | 0.051 | 0.034 | |
0.102 | 0.081 | 0.049 | |||||||
0.225 | 0.114 | 0.055 | 0.180 | 0.056 | 0.054 | 0.050 | 0.052 | 0.038 | |
0.151 | 0.072 | 0.061 | |||||||
0.186 | 0.116 | 0.058 | 0.130 | 0.057 | 0.056 | 0.069 | 0.058 | 0.061 |
Average discrepancy of efficiency between simulated and measured results (GP: Ground plane)
As explained before, the feeding cable used in measurements will scatter, reflect and radiate EM fields, causing interference to the measured results of antennas. Here the effects of the feeding cable are investigated by using simulation and measurement. In the antenna measurement system, Starlab, the feeding cable is enclosed by an EMI suppressant material which is highly lossy. The EM fields incident on it and radiated from it will be absorbed. This significantly reduces unwanted interference to the measured radiation patterns. However, absorbing the EM radiation leads to reduced efficiency. That is why the measured radiation efficiencies are always lower than the simulated results.
Here, we describe the simulation models for two types of feeding cables, denoted here as cables A and B as shown in Figures 10(a) and (b), respectively [20], and use the models in our simulation to study their effects on the measurements of the antenna performances. Cable A is just an ordinary coaxial cable, having a center conductor with a radius of 0.45 mm, and an outer conductor with inner and outer radii of 1.5 and 1.8 mm, respectively. Both cables have a length of about 250 mm. Figure 11(a) shows the cross section of cable A. The space between the center and outer conductors is filled with a dielectric Teflon having a permittivity of 2.08. For cable B shown in Figure 10(b), it is a coaxial cable provided by Satimo for use with the antenna measurement system, Starlab. The cross section of the cable is shown in Figure 11(b) which is identical to cable A, except that the cable has an EMI suppressant tube with a thickness of 1.25 mm on the surface. The property of the tubing material is quite complicated and hard to express precisely. Simulation results show that, by setting both the permittivity and the permeability to 5, and the electric and magnetic loss tangents to 0.004 and 0.5, respectively, the discrepancies between the simulated and measured S11 and efficiency are much reduced, thus these parameters are used in our simulation model for cable B.
Two types of feeding cables used for studies.
Cross sections of cables used for studies
Three of the nine UWB antennas, Ants 4, 5 and 9 with ground-plane sizes (
Simulation models of antenna connected to (a) cable A, and (b) cable B
With the use of cable A as the feeding cable, the simulated and measured S11 and efficiencies of the three antennas are shown in Figure 13. For comparison, the simulation results without a feeding cable are also shown in the same figure. It can be seen in Figure 13 that at high frequencies the simulated efficiencies of the antenna with and without using the cable model are about the same. This is because at high frequencies the ground planes are electrically large, leading to little cable effects on measurements. As the frequency reduces, the ground planes become smaller and discrepancies occur. For impedance bandwidth (S11 = -10 dB), all results agree well. This seems to indicate that the cable does not have much effect on the measurements, which as shown later is not true. In fact, at low frequencies, the current flows back from the small ground plane to the surface of the feeding cable, as described previously, giving rise to EM radiation, and then get measured by the system. The measured and simulated results on 3D-radiation patterns reveal that the feeding cable has serious effects on measurements.
The simulated and measured 3D-radiation patterns of the antenna with the ground-plane size of 30 × 30 mm2 at the frequencies of 3, 7 and 11 GHz, are shown in Figure 14. Without using the feeding cable, the simulated result in Figure 14(a) shows that the antenna has an “apple-shape” radiation pattern at the frequency of 3 GHz which is typical for monopole antennas. At higher frequencies of 7 and 11 GHz, the radiation patterns become slightly directional due to operating in the higher modes. However, when cable A is used, the simulated radiation patterns in Figure 14(b) show many ripples, particularly serious at the lower frequency of 3 GHz. This is because, at 3 GHz, the ground-plane size of 30 × 30 mm2 (only about half wavelength) is too small to serve as an infinite ground for the monopole. As showed previously, with a small ground plane, the EM fields radiated from antenna are diffracted at the edges and induce currents to flow back to the feeding cable. This can be seen in Figure 15(a) which shows a snap-shot of the simulated surface-current on the feeding cable at 3 GHz. A standing wave is developed along the feeding cable. This produces secondary EM radiation and causes the ripples on the 3D-radiation patterns of Figure 14(b). At 11 GHz, the ground plane is electrically larger and so the 3D-radiation pattern becomes very similar to the corresponding radiation pattern in Figure 14(a) without using the cable. This can also be seen in Figure 15(b) which shows the simulated surface-current on the feeding cable at 11 GHz. The standing wave on the feeding cable becomes insignificant. The measured 3D-radiation patterns using cable A at 3, 7 and 11 GHz are shown in Figure 14(c), indicating very good agreements with the corresponding simulated radiation patterns in Figure 14(a). These results verify the validity of our simulation mode for the cable.
Simulated and measured S11 and efficiencies using cable A with different ground-plane sizes.
radiation patterns at 3, 7 and 11 GHz. (a) Simulation without cable, (b) simulation using cable A, and (c) measurement using cable A. Ground-plane size: 30 × 30 mm2.
Surface current distributions of antenna using cable A at (a) 3 GHz, and (b) 11 GHz
Figure 16 shows the simulated and measured results for using cable B. It can be seen that, with the use of the simulation model for cable B, the measured and simulated S11 and efficiencies have very good agreements for the three antennas even at lower frequencies. These results confirm the accuracy of our simulation model for the feeding cable used in the antenna measurement system. The simulated results without using the feeding cable are also shown in the same figure for comparison. It can be seen that the simulated efficiency without using the feeding cable at low frequencies is much higher than the simulated or measured efficiencies using the feeding cable. This is because at low frequencies, the current flows back to the feeding cable and causes secondary radiation which is mostly absorbed by the EMI suppressant tube enclosing the cable.
The 3D-radiation patterns of the antenna with a ground-plane size of 30 × 30 mm2 at the frequencies of 3, 7 and 11 GHz are shown in Figure 17. With the use of cable B, Figures 17(b) and (c) show no ripple on the 3D-radiation patterns. The simulated 3D-radiation patterns with and without using cable B agree quite well, indicating the effectiveness of using EMI suppressant tubing for the feeding cable. The measured 3D-radiation patterns in Figure 17(c) are similar to the corresponding simulated radiation patterns shown in Figure 17(b). Figure 18 shows the simulated current distributions on the outer surface of the feeding cable at 3 and 7 GHz. Compared with those in Figure 15, it can be seen that the surface current is very small even at 3 GHz because of the EMI suppressant material. It should be noted that, at low frequencies, since the EM fields radiated from the feeding cable are mostly absorbed by EMI suppressant tubing, the efficiency and hence the gain are much reduced.
Simulated and measured S11 and efficiencies using cable B with different ground-plane sizes
radiation patterns at 3, 7 and 11 GHz. (a) Simulation without cable, (b) simulation using cable B, and (c) measurement using cable B. Ground-plane size: 30 × 30 mm2.
Surface current distribution of antenna using cable B at (a) 3 GHz and (b) 11 GHz
The effects of small ground-plane sizes of planar UWB monopole antennas and feeding cable on measurements have been described and studied using computer simulation and measurement. A group of nine UWB antennas with the same radiator but different ground-plane sizes have been used for studies. Results have shown that the widths of the ground planes have more effects on the measured efficiencies. There are large discrepancies between the simulation and measured performances of these antennas at low frequencies.
The models of two practical feeding cables have been developed for studying the cable effects using computer simulation. Measurement results have verified the accuracies the two simulation models. Both the simulation and measured results have shown the feeding cable without EMI suppressant tubing has significant effects on measurements.
The environment is defined as the ecosystem, habitat and/or living place of any organism. It is the totality of the surroundings and all the content of the surroundings in which an organism lives including the natural forces and other species of livings things that create interdependency relationships for the organism’s development and growth. The environments of an organism thus have or should be made to have inherent capacity to shield and protect it from the danger of injury, health-hazard, damage and/or death from unnatural causes. Man over the ages have artificially harnessed and made habitable for himself environments that were initially considered unfavorable for human habitation by the use of technology. One such example is the marine environment, sea and/or offshore locations which were natural habitats for aquatic organism and other marine species. The exploration and exploitation of the resources of the marine environment over the years has led to the development of ships and marine structures of many kinds that support human adaptation and living in the marine environment in the course of his occupation. The same can be said for the urban and city centers of today which were initially natural forests turned built cities and urban centers by the entrepreneurial activities of humans. Thus we view the concept of the built environment as a concept that encompasses artificially made structures, platforms, buildings; urban, suburban and rural settlements and the relative facilities that accommodate humans to live, work and carry-out diverse socio-economic, political and all forms of human activities that are necessary for and support collective human existence [1]. It therefore behooves on human operators to ensure that the built environment have capacity to maximize the protection of humans inhabitants from the danger of injury, health hazards, damage, and death from unnatural causes. This may be achieved by employing various means and strategies, but mostly the planned management approach which ensures that outcomes remain in line with behavioral objectives. According to Roof and Oleru [2], the concept of built environment is not limited to urban and suburban housing settlements that provide shelter for times spent indoor, it equally encompasses shelter for times spent at work related environment as more than 5% of average North American’s workers time is spend in car.
In the Nigeria maritime industry for example, navigators and seamen live in ships and offshore structures for as long as 3 months before the next change of crew while dock workers and terminal operators spend consecutive 8 h work period each day in the seaports and terminal infrastructures in Nigeria. Thus ships, the seaport infrastructures, the terminals, the offshore structures etc. form the built environment of the maritime transport and ports industry in Nigeria whose capacity to provide protection to the inhabitants and users, cum shore-based stakeholders and/or contribute to programmes and schemes aimed at eliminating and curtailing the spread of life threatening infections, like the current Covid-19 pandemic must be enhanced.
The environment of maritime transport and port logistics sector is therefore, viewed as the totality of the maritime ecosystem including the sea, the coastal water zones, the inland water transport (IWT) zones, upon and/or in which the cargo ships, offshore floating and fixed productions, storage and offloading (FPSO) systems, fishing vessels, cruise ships, barges, river crafts, dredgers, seaports and Inland River ports, marine terminals, shipyards and docks, etc. as built maritime transport and ocean exploitation support structures, that accommodate maritime workers; that harness the ships and watercrafts for waterborne transport and other related operations. For purposes of developing models to enable the maritime sub-sector successful manage the fight against the spread of the Covid-19 pandemic; we summarized the built environment of maritime transport system that must be involved in the successful management of the exposure to and spread of the Covid-19 pandemic as shown in Figure 1.
Summary of the built environment of maritime transport showing the hierarchy of relationships. Source: Prepared by Nwokedi [
Figure 1 presents the built environment of the maritime transport system, indicating the various ships, port infrastructure and shore based maritime structures accommodating human activity types in the maritime industry while also interacting with, affecting and impacting on activities, operations, process and life in the various urban, suburban and rural land based settlements. They protection of the inhabitants of the above environment of maritime transport and the urban, suburban and rural land based settlements is the motivation for harnessing the maritime and port logistics industry against the spread of the Covid-19 pandemic [4]. Any management model or strategy that did not holistically involve the identified components of the environment of maritime transport, may not succeed, as the un-captured/uninvolved component or sub-system may end up re-infecting the entire maritime transport system, and subsequently, the land based urban and suburban settlements.
The China Country office of the World Health Organization [5] in Wuhan City was the first to identify in humans and report a novel type of corona virus disease in December 2019 which was afterwards officially referred to as the Covid-19. The Covid-19 disease spread geometrically with large numbers of confirmed cases in many parts of World within a very short time causing it to be characterized as a global pandemic. Since the Covid-19 disease is currently determined not to be an airborne disease, humans are determined to be the commonest direct agent of its spread among human populations and objects in the built environments and human settlements. By implication, transports infrastructures (maritime transport, air transport, road, rail, etc.) remains the major means of the transmission of the disease across international borders and among local populations. Consequently, the built environment of the maritime transport and shipping sector like other transport modes constitute potential and real major agents of spread of the virus; following which entire built environments of maritime transport must develop proactive instruments and strategies for managing the environment as identified above to curtail the spread the spread of the Covid-19 pandemic. Nallon [6] notes the importance of quarantining ships for 14 days before enter the destination port following the first confirmed case of coid-19 disease onboard a container ship Gjertrud Maersk. The report notes that quarantining vessels will impact global seaborne trade negatively, that however is in line with management guidelines needed to ensure most importantly that the transmission and spread of the disease through the entire maritime industry to land based settlements environments is prevented and/or curtailed. Developing Covid-19 transmission and infection likelihood/risk model based on empirical evidences of the spread of the disease for seaports in Nigeria and ships calling to the ports as well as a framework and action plan for the entire maritime transport environment for the management and prevention of the spread of Covid-19 in Nigeria constitute the central aim of the study.
The Nigerian center for infectious disease control [7, 8] identified two major modes of transmission of Covid-19 disease to include:
Direct transmission: This involves human-to-human direct transmission which results when infected person comes in contact within about 6 feet with other people, respiratory droplets from the nose produced by sneezing, droplets from the mouth during speech, may drop on objects or be inhaled into the lungs by unprotected close-by persons leading to infection [7, 8]. The Bangladesh Maritime Authority gave a pictograph summary of direct human-human transmission as shown in Figure 2.
Indirect Transmission: This involves objects-to-human transmission. Indirect transmission or object-to-human transmission occurs when humans come in contact with infected objects. Infected objects in this case are objects contaminated by droplets from noses and mouth of infected individuals in the course of sneezing and talking (Figure 3).
Direct (person-to-person) transmission of Covid-19. Source: Bangladesh Maritime Authority [
Indirect (object-to-person) transmission of Covid-19. Source: Adapted from Bangladesh Maritime Authority [
The implication of this in the management of Covid-19 in the maritime environment is that the mode specific transmission mean/routes must be identified and barriers/shields built against it these transmission means and routes of transmission. The transmission barriers and/or shields takes the forms of regulatory instruments aimed at regulating the behavior of operators and manners of operations and use of equipment to yield expected outcomes. The expected outcomes being to break the transmission curve and achieve a Covid-19 free maritime environment and society. Implementing the use of personal protective equipment (PPE) and developing policies that limit risky behavior is also important. While the practice of 14 days quarantining cum isolation and treated of confirm cases in line WHO [5] guidelines will apply to human agents (seafarers and maritime workers), massive disinfection of non-human agents (cargo, ship surfaces, superstructures, equipment, etc.) is applied in management and treatment of such non-human agent. But since it is impossible to determine which non-human agents are already contaminated with the virus, risk assessment based on ship exposure to ports in regions with confirmed cases becomes necessary such that all such objects and ships identified as having visited a high risk region is mandatorily quarantined and disinfected before being allowed access to seaports. Based on the very nature of ship movements and the structure of the maritime industry operations, we identified Covid-19 transmission routes in the maritime industry for purposes of developing transmission barriers as a management strategy as follows;
External transmission routes: This is the transmission and infection of healthy ship and/or the occupant seafarers and objects onboard by parties external to the ship at any given point in time. It equally denotes a situation where an infected ships or crew transmits and infects healthy ports, settlements and other healthy ships with which it had contact. See Figure 4 for a pictograph example of external route/channel Covid-19 transmission routes in the maritime industry.
Major types of external Covid-19 transmission routes in the maritime industry include:
Ship-to-shore (port)-transmission (inclusive of direct or indirect transmission)
Port (shore)-ship-transmission (inclusive of direct or indirect transmission)
Ship-to-ship-transmission (inclusive of direct indirect transmission)
Direct and indirect Urban and suburban human settlements-port-transmission (city and sub-city settlements-to-port-transmission).
Internal transmission routes: This is the internal transmission and infection of healthy persons and objects within the same vessel or ports by individuals who are already carriers of the viral disease. For example, within a given seaport, an infected dockworker in the customs base may spread and infect the entire seaport community as shown in Figure 1, within a custom base, an infected officer will transmit and infects healthy colleagues which may lead to a situation of community infection, etc. see Figure 5:
Pictograph showing external Covid-19 transmission routes/channels in the maritime industry. Source: Nwokedi [
Source: Nwokedi [
Major types of internal Covid-19 transmission routes in the maritime industry include:
Internal ship-based-person-to-person-transmission onboard,
Internal ship-based object-to-human-transmission (within the same ship)
Internal Port-based human-to-human-transmission within the seaport and all the shipping companies, trucking units, etc. within the seaport.
Internal shore-based object-to-human transmission.
Identifying clearly the transmission routes in the maritime industry enables route specific Covid-19 transmission and exposure risk analysis to be carried-out and the likelihood/probability of transmission of and exposure to Covid-19 determined for both external and internal routes. All routes may thus be presented in term of the hierarchy of the probability transmission and exposure risks to guide operations and operators in the industry. For indirect transmission, disinfection by use of approved sanitizing agents in line with WHO guideline can be carried prioritizing high risk routes. Quarantining seafarers and other industry personnel from high risk areas for 14 day and isolation of confirmed cased followed by treatment in line with WHO guidelines is adopted in managing direct human to human transmissions. As can be seen both the external and internal routes of Covid-19 transmission and infection spread in the maritime industry revolve around object transmission and human transmission. This suggests that among other things, high risk transmission and infection routes should prioritized in the serious implementation of the guidelines for the management of both direct and indirect transmission in the maritime transport sub-sector in Nigeria. The development of a framework for the management and control of the spread of the Covid-19 pandemic in the Nigerian environment of maritime transport will considered in the subsequent sections of the chapter.
The identified external and internal routes/channels of transmission among the built environment of the maritime transport and shipping sector further suggests a transmission-route specific approaches can be developed involving holistically all the components of the built environment of maritime transport including seaports, ships, shipyards, shipping companies and all the components earlier identified. This should commence with Covid-19 infection risk assessment in which a proximity based model may be used to assess risk of exposure of each port facility, ship, company facility, etc. to risk of Covid-19 infection. Higher level of caution and preventive strategies in line with WHO guidelines will thus be adopted by ships when calling to a port facility with higher risk of infection while ships with higher risk of infection determined by their proximity and duration and frequency of call to high risk ports are quarantined in line with available regulations as they call to healthy ports. To effectively curtail the transmission and spread of Covid-19 disease within the maritime sub-sector and between the maritime environment and residential settlements beyond the maritime environment, there is serious need for each component of the built environment in the maritime sector representing a node and/or point of transmission and infection development node specific strategies in line with general guidelines. This will equally be useful in determining the risk of exposure and infection at each specific node and other interacting nodes. See Figure 6:
Built environment of maritime transport and non-work residential settlements interaction model depicting Covid-19 transmission and infection nodes as it affects the maritime industry. Source: Nwokedi [
Based on the above interaction model above, proactive management approach should be adopted where: At Node-A Seaport authority should:
Port Covid-19 exposure risk assessment (PCRA)
Develop a port Covid-19 prevention plan (PCPP) encompassing action plans to be carried out by all agencies, companies, operators and stakeholders in the port including interaction principles and procedures with residential settlements (individual accessing the ports from residential settlements daily). The plan should be in line with WHO and NCDC general guidelines for control of the spread including but not limited to quarantining, isolation of confirmed cases, social distancing rules, use of face masks, etc.
Appoint port Covid-19 officers and or prevention and management committee with the responsibility of ensuring the implementation of port Covid-19 prevention and management plan. Such officers must work in unison with the port health department.
Determine which components or sections of the seaport pose high risk of transmission and infection of the entire seaport so that appropriate controls are deployed.
Determine what equipment is necessary for the prevention of the spread and provide all such equipment including PPE.
Regulate the implementation of port Covid-19 prevention plan (PCPP) by all stakeholders and ships calling to the port.
Carry-out performance appraisal routinely to ascertain the capacity of the current PCPP in curtailing the spread of the disease within the environment and improve if need be; among others functions.
At Node-B, Port users and other interest groups (e.g.: seafarers and their families, families of dockworkers and agencies personnel in ports, etc.) that interact with the built environment of the maritime transport from residential settlements represent potential transmission agents captured in node-B. To prevent transmission and infection from these groups requires that:
Port authorities, shipping companies, ships and other agencies in the maritime built environment as identified in that model of interaction develop access control programme for all such individual such that only those with serious business in the maritime environment are allowed access.
Provide PPE and implement compulsory use of such by all accessing the facilities from residential settlements.
Disinfect all objects entering the seaport facility and the component nodes of interaction from residential settlements.
Develop policy blueprint on compulsory expected behavoiur pattern (CEBP) for all employees in the maritime sector accessing the built environment of maritime industry (seaports, shipping companies, customs base, truck bays, ships, etc.) from residential settlements in lines with World Health Organization guidelines.
At Node-C, Ships of various kinds calling to seaports and the ship-owners takes responsible of the fight against the spread of the Covid-19 disease. It is expected that each ship must develop strategic action plans aimed at not only avoiding being infected in course of interaction with ports, settlements and other maritime industry stakeholders, but to ensure that the ship, the crew and the objects on board does not transmit and infects healthy ports and residential settlements with the disease. To ensure this, each ship should:
Carry out ship exposure to Covid-19 risk assessment using proximity based model in which the ship assesses its closeness and/or contact with infected port regions.
Develop a ship Covid-19 prevention plan (SCPP) in line with guidelines issued by the WHO and the local port of call including the 14 days quarantining, isolation and Covid-19 management principles.
Develop schedule for routine disinfection of onboard objects and other ship surfaces following visits to ports in high risk regions.
Appoint a ship-based Covid-19 prevention officer as the responsible authority for enforcing the SCPP.
Implement the port specific regulations for ships for the prevention of Covid-19 transmission and infection.
Determine ship equipment requirement including PPE and acquire such.
Determine rules for engagement of external parties to avoid the spread of the disease.
Cary-out routine performance appraisal to evaluate how the SCPP was able to curtail the transmission to and infection of the ship and crew and recommend improvement.
At node-D, shipping companies, custom bases, multimodal transport bays, terminal operators and other stakeholders in the maritime industry have responsible to manage and prevent the spread of the Covid-19 disease by implementing the port authority regulations designed for each group of operators as well as company specific prevention rules, in line with the guidelines of the WHO. Each company and agency in this category should:
Carry-out company Covid-19 risk and exposure assessment (CCRA)
Develop company specific Covid-19 prevention plan (CCPP)
Appoint a company based Covid-19 prevention officer responsible for ensuring the implementation of the CCPP.
Achieve the implementation of the PCPP as it affects the company.
Carry-out routine performance appraisal to determine the viability or otherwise of the CCPP; among other duties.
It is important to note the similarity between the approach to Covid-19 prevention in the maritime industry and the international ship and port facility security (ISPS) code implementation approach which outlines the roles of all interacting stakeholders in the security architecture of the maritime industry [10]. Government may thus for an apex organization enforcing and supervising the overall implementation of the Covid-19 prevention rules across the maritime industry through the Nigeria Maritime Administration and Safety Agency (NIMASA), the port health (PH) and National center for disease control (NCDC).
The Nigeria center for disease control [7, 8] notes that the index case of Covid-19 disease in Nigeria was an Italian Citizen who arrived Lagos after being possibly infected the virus in his home Country, Italy. This evidences the roles of the overall transport industry inclusive of the aviation, road, water/maritime transportation, rail, etc. in the spread of the disease and thus formed the overall reason for the ban of international, regional and interstate travels as a combative measure against the spread of the Covid-19 pandemic. Since transport facilitates social political and economic interaction between and among diverse geographical locations, residential settlements and work/industrial zones, it has inherent potential to negate the social distancing rules if not deliberately strategized to ensure the observance of social distancing rules. As an industry with capacity to mobilize mass movement of people and goods across spatial locations, the build environment of the maritime transport sector is a major relevant stakeholder in the fight against the transmission and spread of the Covid-19 disease. As such, for the continued operation of this important sector, sector specific cum institution specific, policies, regulations, strategies and guidelines must be developed in line with the general guidelines and rules of the World Health Organization and the Nationals guidelines for the prevention of the spread of Covid-19. The maritime transport industry like the aviation and road transport sub-sectors, similar to the health institutions need to be viewed as front line sectors that are directly affected by the pandemic, directly involved in the spread of the disease from one region to another and to residential settlements. As such, the environment of transport (including maritime transport) is relevantly involved and must play frontline roles in the management of the transmission of Covid-19 in the society. As a core component of the work and/or industrial zone with interactive relations with diverse urban and sub-urban residential settlements, the built environment of maritime transport can significantly contribute in breaking the curve of transmission of the disease to the benefit of society. The relevance and importance of the environment of maritime transport in the fight against the spread of the Covid-19 pandemic is better understood by observing the overlapping nature of interaction between and among different forms of built environment consisting of the work/industrial environment, residential environment, social environment, and religious environment as shown in Figure 7. The tick blue areas indicate areas of intersections and union between and among the environments. Thus, it behooves on all environment types to be actively involved in the implementation of the measures aimed at preventing the spread of the virus. Otherwise, gain made in other environments by strict and active implementation of the guidelines may be eroded be interacting sections such that the overall built environment will be re-infected through one section of the system.
Spatial interaction model depicting the relevance and importance of the environment of maritime transport and other spatial settlements in the management of Covid-19. Source: Nwokedi [
The novel Covid-19 pandemic is seen to be currently ravaging all aspects of life in global communities; major economic institutions, organizations, industries and sectors. Global and local trend social, political and economic interaction was altered in favor of online and/or virtual interaction following the introduction of social distancing and ban on international and local interstate and regional travels in a build to break the curve of transmission and infection across built environments. In the economic sector for example, major anchors of business development and growth as has been negatively impacted following the lockdown policies of many countries which caused output losses occasioned by production time losses by many businesses. The global transport, logistics and supply chain inclusive of the maritime and shipping logistics sector seem to be worst hit by the pandemic following the lockdown order and ban on international flights and transportation as well as the mandatory closure of seaports by many economies to avert the possibility of infection by ships and shipping crew and airlines from major infected zones of the World. Following the inability of the global community so far to develop a vaccine for the cure, it has becomes imperative that the built environment, encompassing all aspects of the built environment including the environment of maritime transport and shipping must develop industry strategies, policies and regulations in line with the World Health organization (WHO) standard guidelines as preventive ways for managing and curtailing the spread of the Covid-19 disease. This is necessary to ensure that different regions of the global community does not run out of essential goods including drugs and medical equipment and food needed to sustain the fight against the pandemic and to ensure that factories involved in production of essential goods and services such as pharmaceutical companies employing imported raw materials does not shot down. The adverse effects in situation will be enormous. However, to ensure that the opening up of the seaports and the entire maritime sectors including the use of ships for operations, it must be ensured that the industry is regulated with regards to the implementation of developed Covid-19 preventive measures to guard against the infection and re-infection of settlements and society from maritime operations.
Many literatures have emerged in recent times on approaches to combating the spread of the disease in various settlement types including work places and the maritime industry. For example, the Occupational Safety and Health Academy [11], Oregon, developed a guide for protecting workplaces against Covid-19 infection. First OSHA [11] identified that the effect of Covid-19 infection in work environment such as maritime industry ranges from sickness, lockdown and exposure-fear induced absenteeism from work leading to output losses; change in patterns of commerce such as decline in consumer interest in certain goods and services as well as interrupted supply and delivery of shipments occasioned by lockdowns and cancelation of orders made from highly infected geographical regions. According to OSHA [11], workplaces must determine and different jobs with high risks of employee exposure to Covid-19 and classify each job according to the degree of exposure it holds for employing doing it. Jobs and operations should be classified as have high, medium or low risks of exposure to Covid-19 while recommendations on approaches to staying safe in each job risk category is provided to workers in line with standard guidelines. The development of an infectious disease preparedness plan is also a necessity for workplaces. Such a plan according to OSHA [11] may address adequately the need for:
Increased rates of worker absenteeism in high risk regions.
Social distancing, adopting work shift strategy where work is staggered for individual work groups to limit the number of persons working at a given period to standard number approved by authorities.
Adopting a remote work strategy where possible so that workers can work remotely from residential settlements.
These among other measures will help to prevent transmission of Covid-19 from work places to residential settlements and vice versa by reducing the risk of exposure to Covid-19.
OSHA [11] developed a hierarchy of control types based on their effectiveness for implementation in organization in the control of the spread of the Covid-19 pandemic (Table 1).
Engineering control | Administrative control and safe work practices | Personal protective equipment |
---|---|---|
Isolating workers from sources of Covid-19 infection by the use of technology:
| These include Covid-19 work plan and policy developed by the employers in each work place in line with approved government rules to guide employee behaviors towards Covid-19 prevention outcomes. They include:
| Correct use of personal protective equipment PPE involves the use of employee protective toolkits during work to reduce the risk of indirect infection from infected objects.
|
Hierarchy of control types for institutional control of the spread of Covid-19.
Source: Modified from OSHA [11].
In another development, the Government of the People’s Republic of Bangladesh [9] Department of shipping issued instructions to ports and ships on standard practices for managing and controlling the spread of the Covid-19 pandemic in the maritime and shipping sector in the country for the continued operation of ports and shipping companies. The guidelines require a ship calling to any port in Bangladesh to tender a Maritime Declaration of Health (MDH) at within 72 h before her arrival at the Port in line with the International Health regulations 2005 and FAL Conventions. The Master shall at the directive of the local Port port Health authorities provide specific information regarding health conditions such as temperature chart, crew and passenger list, current copy of ship sanitation certificate, last 10 ports call list, and list of all passengers and crew with temperatures above 37.5°C to Port Health office by email prior to the arrival of the vessel [9]. According the report, false of MDH’s that does not reflect the factual conditions of health of crew and passengers onboard a ship cause the master and/or the ship agents to be prosecuted as per applicable laws. See Tables 2 and 3 for sample of the content information in the MDH.
Name | Class or rating | Age | Sex | Nationality | Port and date joined vessel | Nature of illness | Date of onset of symptoms | Reported to a port medical officer? | Disposal of case* | Drugs, medication or other treatments | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|
S/no | Name | Nationality | Temperature | Remarks |
---|---|---|---|---|
The report emphasized the responsibility of ship masters to educate crew and passengers of the symptoms of Covid-19, which include; (i) fever with temperature above 37.5°C/99.5°F, (ii) runny nose (iii) dry cough (iv) shortness of breath. He should also take responsibility to check the crew and passengers temperature daily, isolate confirmed cases and disinfect common areas, rooms and cabins in the ship before arrival in Ports of Bangladesh. Ports should quarantine for 14 days ships arriving from ports in infected regions following guidelines provided [9].
Passenger and crew health declaration adopt the format of listing the names and national of passengers and crew and their temperature conditions as shown below:
The GPRB [9] recommended further steps to be followed in cleaning and disinfecting ships and surfaces in the seaport to curtail the spread of the Covid-19 disease while assigning specific roles to Port Health organization, port authorities, ship owners, terminal operators, chandlers, immigration and security agencies operating ports in the duty of control and managing the spread of the disease in the Bangladesh maritime sector.
The Nigerian Center for disease Control [7, 8] provided general guidelines for mandatory institutional quarantining of returnees to Nigeria following the outbreak of the Covid-19 pandemic. Though this guideline was not specific for maritime industry, it provided framework for the 14 days quarantining of ship crew members following change of crew in ports to ensure that both the old set of crew to disembark the ship for onward movement to their families in residential settlements and the replacing crew to embark the ship are all proved to be healthy and safe, and as such cannot transmit and infect the respective new locations in residential and work environments with the Covid-19 disease. NCDC [7, 8] notes that individuals will only interact with approved Covid-19 surveillance officers kitted in appropriate PPE routine monitoring duties intended to facilitate the early detection of ill health due to Covid-19 and break the curve of transmission and community infection.
Furthermore, the International Chamber of Shipping [12] took necessary steps to announce guidelines for ensuring safe shipboard interface between ship and shore-based personnel including shipyards. The hierarchy of control developed by the ICS [12] is summarized below:
Elimination of Covid-19 hazards onboard. Example is by automating tasks and working remotely. This is the most effective approach but where it is impossible, the method of reducing the risk of infection can be employed.
Reduce the risk of infection. This can be achieved by be achieved by reducing drastically the number of persons needed to carry-out the job onboard.
Communicate. In a situation where the number of persons to carry-pot the job cannot be reduced and many shore-based personnel and crew must come in contact, early communication to the job-based personnel is required to get them ready on the requirements and needs of the ship and for appropriate action to be taken to ensure the protection of all parties.
Personal Protective Equipment (PPE) both parties must ensure the correct and compulsory use of recommended PPE.
ICS [12] also provided steps necessary to followed by onboard crew to ensure that internal transmission and infection does not occur between and among members of crew.
Dietz et al. [13] also examined the influence of the built environment in reducing the transmission of the Covid-19 pandemic. The study harped on the risk direct and indirect spreading the virus through the built environment including the School, markets, malls hospital, recreation centers, religious worship centers etc. outlining necessary action plan for routine disinfection of objects and control of person-to-person transmission of the disease in the built environment.
Finally, the International Maritime Organization harped on the need for a common framework and protocols for joining ship from ordinary residence in one country via aircraft to ship ship in a seaport in another country as well as a common protocol for leaving a ship and repatriation from a seaport in one country via aircraft to a seafarer’s place of ordinary residence in another country. This was to address the challenges faced by ship-owners in changing crew following the outbreak of the Covid-19 pandemic. Further provisions were issued to coastal states, shipping companies and agents, allied organization by the IMO [14] noting the importance of granting seafarers movement pass and access to travel facilities as provider essential services by national governments.
From foregoing, literature gaps were identified which among other things include the fact many organizations such as the WHO, NCDC, Departments of shipping, ICS, IMO, national governments, etc. have issued rules, recommendations, protocols and guideline for curtailing the spread of the Covid-19 disease in the maritime industry without identifying clearly a responsible organization in the maritime industry with responsible to monitor implementation of the guidelines. A holistic approach has not being followed in developing most of the preventive frameworks suggestive for the maritime industry, for example, the IMO [14] preventive framework centered more on change of crew and the role of government and other organization without considering among other things the transmission and infection of ships by seaports and from interactions with residential settlements. The WHO [5] and NCDC [7, 8] prevention and 14 days quarantining measures were is for generality of all institutions and lacked the consideration of the peculiarity of the maritime industry, thus maritime industry specific measures need to be developed but in conformity with WHO and NCDC guidelines and recommendations. The routes and possible channels of transmission and infection of ships and residential settlements as it affects the maritime industry based in the interactive relationship among stakeholders in the maritime industry and residential settlements which holds potentials to transmit the virus and well possibility of infection need to be developed as basis for assessing the risk of exposure and transmission of the disease so that the various WHO, NCDC, IMO and other industry frameworks, protocols, rules and guidelines for preventive the spread of the Covid-19 disease can be effectively implemented along the routes/channels of transmission. It is the above identified literature and knowledge gaps that the chapter has tried bridge in the earlier sections.
It is pertinent to mentioned that it is important to harness and built the capacity of the entire built environment of maritime transport and other modes of transport to contribute to the fight against the transmission of the Covid-19 pandemic until an approved vaccine is developed for the disease. However, there exist a plethora of challenges to fast tracking of the processing and inputs towards improving the capacity of the maritime industry to actualized the dream of limiting the spread of the disease. Some of these challenges include:
Financing the implementation of the preventive measures poses a challenge. Financial limitations and challenges associated with accessing funds needed to overcome the cost implications of implementing the maritime industry general and company specific guidelines for the prevention of the spread of the disease in line with the WHO and NCDC guidelines. This is because the Covid-19 pandemic currently has negatively impacted the economies of most maritime companies and the allied organizations following series of lockdowns over the past months, leading to output losses. Since implementing these preventive guidelines (both general, industry specific and company specific guidelines) requires funds. For example, the cost of acquisition of sanitary wares and engineering designs as guides against the spread of the disease has increased over time. This is in the face of lockdown associated inactivity and output losses in many sectors of the economy. Therefore, financing the implementation of the preventive regulations and guidelines in the environment of maritime transport poses a major challenge particularly for smaller companies and new start ups.
Shift and/or change in work practices may affect productivity levels at least in the short run. So Covid-19 preventive guidelines adopted in managing its spread in the work environment such as the strategy of staggering work hours for different employees in a given firm and redesigning the work environment to conform Covid-19 preventive plans may lead to shift (decline) productivity at least, in the short run. Thus this will influence the decision of what guidelines to fully implement and to what extent by firms.
Implementing the Covid-19 preventive guidelines in the wide maritime industry is important. It will however imply a drastic behavioral change aimed at eliminating risky behavior. This will in turn influence and/or require in change in worker attitude towards and during work which cannot be instant. Thus training and retraining on the best alternatives action plans to prevent the spread of the disease in necessary and the absence of the capacity to train and retrain with the associated patience needed to get employees develop required work non-risky worker behavior is a challenge [15].
Finally, time constraint also poses a challenge since the rate of spread of the pandemic requires immediate action by relevant stakeholders in combating it. Time lag in implementation of for example, engineering designs as recommended by OSHA [11] may increase the spread of the disease within the industry and the interacting settlements and built environment types.
From the foregoing, it is obvious that the maritime industry does not constitute solely of ships, port authorities and shipping companies. Therefore frameworks for prevention of Covid-19 transmission solely from the perspectives of the trio cannot sustainably guarantee the safety of the industry and the allied sectors from the disease. All frameworks for the prevention of the transmission in the maritime industry must be holistic enough to encompass all the allied sectors, including but not limited to customs and other government agencies, freight forwarders and multimodal transport operators, ship chandlers, shipyards, and all stakeholders and sub-components of the maritime sub-sector.
All components and sub-components of the maritime industry and operators must commence by first identifying based on their specific model of interaction the likely internal and external routes/channels of spreading the Covid-19 disease within, to and by the organization. Specific company and/or industry regulations and guidelines cum the general standard guidelines can now be implemented following the identified likely channels of transmission in line with WHO and local center for disease control (CDC) guidelines.
Exposure risk assessment should form the first basic task to be carried by all industry stakeholders to determine the level of exposure while standard guidelines can now be subsequently applied.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11457",title:"Forest Degradation Under Global Change",subtitle:null,isOpenForSubmission:!0,hash:"8df7150b01ae754024c65d1a62f190d9",slug:null,bookSignature:"Dr. Pavel Samec",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",editedByType:null,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4420},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"822",title:"Production Engineering",slug:"mechanical-engineering-production-engineering",parent:{id:"121",title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:19,numberOfWosCitations:14,numberOfCrossrefCitations:15,numberOfDimensionsCitations:23,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"822",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5523",title:"Bearing Technology",subtitle:null,isOpenForSubmission:!1,hash:"011d29bbf5fbb67fd8fbdae85af61d2c",slug:"bearing-technology",bookSignature:"Pranav H. Darji",coverURL:"https://cdn.intechopen.com/books/images_new/5523.jpg",editedByType:"Edited by",editors:[{id:"141348",title:"Dr.",name:"Pranav H.",middleName:null,surname:"Darji",slug:"pranav-h.-darji",fullName:"Pranav H. Darji"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"53801",doi:"10.5772/67145",title:"Bearing Fault Detection in Induction Machine Using Squared Envelope Analysis of Stator Current",slug:"bearing-fault-detection-in-induction-machine-using-squared-envelope-analysis-of-stator-current",totalDownloads:2104,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"In this chapter, motor current signature analysis based on squared envelope spectrum is applied in order to identify and to estimate the severity of outer race bearing faults in induction machine. This methodology is based on conventional vibration analysis techniques, however, it is, non-invasive, low cost, and easier to implement. Bearing fault detection and identification in induction machines is of utmost importance in order to avoid unexpected breakdowns and even a catastrophic event. Thus, bearing fault characteristic components are extracted combining summation of phase currents, prewhitening, spectral kurtosis and squared envelope spectrum analysis. Experimental results with a 0.37 W, 60 Hz, and three-phase induction machine demonstrated the methodology effectiveness.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Valeria Cristina Maria Nascimento Leite, Jonas Guedes Borges da\nSilva, Germano Lambert Torres, Giscard Francimeire Cintra Veloso,\nLuiz Eduardo Borges da Silva, Erik Leandro Bonaldi and Levy Ely de\nLacerda de Oliveira",authors:[{id:"112971",title:"Prof.",name:"Germano",middleName:null,surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"},{id:"112977",title:"Prof.",name:"Luiz Eduardo",middleName:null,surname:"Borges Da Silva",slug:"luiz-eduardo-borges-da-silva",fullName:"Luiz Eduardo Borges Da Silva"},{id:"117413",title:"Dr.",name:"Erik",middleName:"Leandro",surname:"Bonaldi",slug:"erik-bonaldi",fullName:"Erik Bonaldi"},{id:"117672",title:"Dr.",name:"Levy Ely",middleName:null,surname:"Oliveira",slug:"levy-ely-oliveira",fullName:"Levy Ely Oliveira"},{id:"192256",title:"Dr.",name:"Valéria",middleName:"Cristina Maria Nasscimento",surname:"Leite",slug:"valeria-leite",fullName:"Valéria Leite"},{id:"192864",title:"Dr.",name:"Jonas",middleName:null,surname:"Guedes Borges Da Silva",slug:"jonas-guedes-borges-da-silva",fullName:"Jonas Guedes Borges Da Silva"},{id:"192909",title:"Prof.",name:"Giscard",middleName:null,surname:"Giscard Francimeire Cintra Veloso",slug:"giscard-giscard-francimeire-cintra-veloso",fullName:"Giscard Giscard Francimeire Cintra Veloso"}]},{id:"53926",doi:"10.5772/67143",title:"Condition Monitoring and Fault Diagnosis of Roller Element Bearing",slug:"condition-monitoring-and-fault-diagnosis-of-roller-element-bearing",totalDownloads:2659,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"Rolling element bearings play a crucial role in determining the overall health condition of a rotating machine. An effective condition-monitoring program on bearing operation can improve a machine’s operation efficiency, reduce the maintenance/replacement cost, and prolong the useful lifespan of a machine. This chapter presents a general overview of various condition-monitoring and fault diagnosis techniques for rolling element bearings in the current practice and discusses the pros and cons of each technique. The techniques introduced in the chapter include data acquisition techniques, major parameters used for bearing condition monitoring, signal analysis techniques, and bearing fault diagnosis techniques using either statistical features or artificial intelligent tools. Several case studies are also presented in the chapter to exemplify the application of these techniques in the data analysis as well as bearing fault diagnosis and pattern recognition.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Tian Ran Lin, Kun Yu and Jiwen Tan",authors:[{id:"192793",title:"Prof.",name:"Tian Ran",middleName:null,surname:"Lin",slug:"tian-ran-lin",fullName:"Tian Ran Lin"},{id:"195634",title:"MSc.",name:"Yu",middleName:null,surname:"Kun",slug:"yu-kun",fullName:"Yu Kun"},{id:"195635",title:"Prof.",name:"Jiwen",middleName:null,surname:"Tan",slug:"jiwen-tan",fullName:"Jiwen Tan"}]},{id:"53984",doi:"10.5772/67147",title:"Comparative Analysis of Bearings for Micro-GT: An Innovative Arrangement",slug:"comparative-analysis-of-bearings-for-micro-gt-an-innovative-arrangement",totalDownloads:2897,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"Microgas turbines are a widespread technology in cogenerative and propulsion applications. Bearings are a key factor in their design and development. The aim of the present research work is the development of the support system for a typical microturbine intended for power generation. To this goal, the present chapter defines the typical requirements of the machine and, afterward, describes the different technologies available to develop the support system of a reliable microturbine. Conventional (rolling element and oil-film) supports and cutting-edge (magnetic, aerodynamic, and aerostatic) bearings are reviewed. Particularly, their suitability to the operating conditions is compared by means of a literature review and elaboration of the relevant data. By analyzing all this information, a new concept for the design of a micro-GT support system is devised. Instead of using a single type of bearing as usual, the new system includes different types in order to take advantage of the best characteristics of each one and, simultaneously, to minimize the effects of the relevant flaws. The innovative support system requires a suitable bearing arrangement, which is compared with the conventional ones. The conceptual design of the innovation is completed by a discussion of its advantages, drawbacks, and prospective improvements.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Fabrizio Stefani, Andrea Perrone, Luca Ratto and Ramon\nFrancesconi",authors:[{id:"20899",title:"Dr.",name:"Fabrizio",middleName:null,surname:"Stefani",slug:"fabrizio-stefani",fullName:"Fabrizio Stefani"},{id:"194300",title:"Dr.",name:"Andrea",middleName:null,surname:"Perrone",slug:"andrea-perrone",fullName:"Andrea Perrone"},{id:"194301",title:"Dr.",name:"Luca",middleName:null,surname:"Ratto",slug:"luca-ratto",fullName:"Luca Ratto"},{id:"194302",title:"Dr.",name:"Ramon",middleName:null,surname:"Francesconi",slug:"ramon-francesconi",fullName:"Ramon Francesconi"}]},{id:"53968",doi:"10.5772/67227",title:"Electromagnetic Levitation System for Active Magnetic Bearing Wheels",slug:"electromagnetic-levitation-system-for-active-magnetic-bearing-wheels",totalDownloads:1604,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, the author presents an electromagnetic levitation system for active magnetic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. The author derives a meaningful electromagnetic force by using the singular value decomposition. The author develops a control system using the proportional‐integral‐derivative controller to control the position of the rotor and regulate the two gimbal angles of the rotor. The author gives the numerical simulation and experimental results on the control of the electromagnetic levitation system.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Yonmook Park",authors:[{id:"2861",title:"Dr.",name:"Yonmook",middleName:null,surname:"Park",slug:"yonmook-park",fullName:"Yonmook Park"}]},{id:"55312",doi:"10.5772/67144",title:"Design Aspects of the Bearing Supports",slug:"design-aspects-of-the-bearing-supports",totalDownloads:1650,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter examines different types of bearing supports. Technical parameters of different types of bearing supports are presented. The effectiveness of some types of bearings is determined. General approach for the calculation of bearing overall dimensions is considered.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Ismagilov Flur Rashitovich, Vavilov Vyacheslav Evgenievich and D.V.\nGusakov",authors:[{id:"192044",title:"Dr.",name:"Viacheslav",middleName:null,surname:"Vavilov",slug:"viacheslav-vavilov",fullName:"Viacheslav Vavilov"},{id:"192050",title:"Prof.",name:"Flur",middleName:null,surname:"Ismagilov",slug:"flur-ismagilov",fullName:"Flur Ismagilov"},{id:"197037",title:"Ph.D.",name:"Denis",middleName:null,surname:"Gusakov",slug:"denis-gusakov",fullName:"Denis Gusakov"}]}],mostDownloadedChaptersLast30Days:[{id:"53926",title:"Condition Monitoring and Fault Diagnosis of Roller Element Bearing",slug:"condition-monitoring-and-fault-diagnosis-of-roller-element-bearing",totalDownloads:2661,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"Rolling element bearings play a crucial role in determining the overall health condition of a rotating machine. An effective condition-monitoring program on bearing operation can improve a machine’s operation efficiency, reduce the maintenance/replacement cost, and prolong the useful lifespan of a machine. This chapter presents a general overview of various condition-monitoring and fault diagnosis techniques for rolling element bearings in the current practice and discusses the pros and cons of each technique. The techniques introduced in the chapter include data acquisition techniques, major parameters used for bearing condition monitoring, signal analysis techniques, and bearing fault diagnosis techniques using either statistical features or artificial intelligent tools. Several case studies are also presented in the chapter to exemplify the application of these techniques in the data analysis as well as bearing fault diagnosis and pattern recognition.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Tian Ran Lin, Kun Yu and Jiwen Tan",authors:[{id:"192793",title:"Prof.",name:"Tian Ran",middleName:null,surname:"Lin",slug:"tian-ran-lin",fullName:"Tian Ran Lin"},{id:"195634",title:"MSc.",name:"Yu",middleName:null,surname:"Kun",slug:"yu-kun",fullName:"Yu Kun"},{id:"195635",title:"Prof.",name:"Jiwen",middleName:null,surname:"Tan",slug:"jiwen-tan",fullName:"Jiwen Tan"}]},{id:"53801",title:"Bearing Fault Detection in Induction Machine Using Squared Envelope Analysis of Stator Current",slug:"bearing-fault-detection-in-induction-machine-using-squared-envelope-analysis-of-stator-current",totalDownloads:2104,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"In this chapter, motor current signature analysis based on squared envelope spectrum is applied in order to identify and to estimate the severity of outer race bearing faults in induction machine. This methodology is based on conventional vibration analysis techniques, however, it is, non-invasive, low cost, and easier to implement. Bearing fault detection and identification in induction machines is of utmost importance in order to avoid unexpected breakdowns and even a catastrophic event. Thus, bearing fault characteristic components are extracted combining summation of phase currents, prewhitening, spectral kurtosis and squared envelope spectrum analysis. Experimental results with a 0.37 W, 60 Hz, and three-phase induction machine demonstrated the methodology effectiveness.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Valeria Cristina Maria Nascimento Leite, Jonas Guedes Borges da\nSilva, Germano Lambert Torres, Giscard Francimeire Cintra Veloso,\nLuiz Eduardo Borges da Silva, Erik Leandro Bonaldi and Levy Ely de\nLacerda de Oliveira",authors:[{id:"112971",title:"Prof.",name:"Germano",middleName:null,surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"},{id:"112977",title:"Prof.",name:"Luiz Eduardo",middleName:null,surname:"Borges Da Silva",slug:"luiz-eduardo-borges-da-silva",fullName:"Luiz Eduardo Borges Da Silva"},{id:"117413",title:"Dr.",name:"Erik",middleName:"Leandro",surname:"Bonaldi",slug:"erik-bonaldi",fullName:"Erik Bonaldi"},{id:"117672",title:"Dr.",name:"Levy Ely",middleName:null,surname:"Oliveira",slug:"levy-ely-oliveira",fullName:"Levy Ely Oliveira"},{id:"192256",title:"Dr.",name:"Valéria",middleName:"Cristina Maria Nasscimento",surname:"Leite",slug:"valeria-leite",fullName:"Valéria Leite"},{id:"192864",title:"Dr.",name:"Jonas",middleName:null,surname:"Guedes Borges Da Silva",slug:"jonas-guedes-borges-da-silva",fullName:"Jonas Guedes Borges Da Silva"},{id:"192909",title:"Prof.",name:"Giscard",middleName:null,surname:"Giscard Francimeire Cintra Veloso",slug:"giscard-giscard-francimeire-cintra-veloso",fullName:"Giscard Giscard Francimeire Cintra Veloso"}]},{id:"53968",title:"Electromagnetic Levitation System for Active Magnetic Bearing Wheels",slug:"electromagnetic-levitation-system-for-active-magnetic-bearing-wheels",totalDownloads:1604,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, the author presents an electromagnetic levitation system for active magnetic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. The author derives a meaningful electromagnetic force by using the singular value decomposition. The author develops a control system using the proportional‐integral‐derivative controller to control the position of the rotor and regulate the two gimbal angles of the rotor. The author gives the numerical simulation and experimental results on the control of the electromagnetic levitation system.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Yonmook Park",authors:[{id:"2861",title:"Dr.",name:"Yonmook",middleName:null,surname:"Park",slug:"yonmook-park",fullName:"Yonmook Park"}]},{id:"55312",title:"Design Aspects of the Bearing Supports",slug:"design-aspects-of-the-bearing-supports",totalDownloads:1650,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter examines different types of bearing supports. Technical parameters of different types of bearing supports are presented. The effectiveness of some types of bearings is determined. General approach for the calculation of bearing overall dimensions is considered.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Ismagilov Flur Rashitovich, Vavilov Vyacheslav Evgenievich and D.V.\nGusakov",authors:[{id:"192044",title:"Dr.",name:"Viacheslav",middleName:null,surname:"Vavilov",slug:"viacheslav-vavilov",fullName:"Viacheslav Vavilov"},{id:"192050",title:"Prof.",name:"Flur",middleName:null,surname:"Ismagilov",slug:"flur-ismagilov",fullName:"Flur Ismagilov"},{id:"197037",title:"Ph.D.",name:"Denis",middleName:null,surname:"Gusakov",slug:"denis-gusakov",fullName:"Denis Gusakov"}]},{id:"53984",title:"Comparative Analysis of Bearings for Micro-GT: An Innovative Arrangement",slug:"comparative-analysis-of-bearings-for-micro-gt-an-innovative-arrangement",totalDownloads:2897,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"Microgas turbines are a widespread technology in cogenerative and propulsion applications. Bearings are a key factor in their design and development. The aim of the present research work is the development of the support system for a typical microturbine intended for power generation. To this goal, the present chapter defines the typical requirements of the machine and, afterward, describes the different technologies available to develop the support system of a reliable microturbine. Conventional (rolling element and oil-film) supports and cutting-edge (magnetic, aerodynamic, and aerostatic) bearings are reviewed. Particularly, their suitability to the operating conditions is compared by means of a literature review and elaboration of the relevant data. By analyzing all this information, a new concept for the design of a micro-GT support system is devised. Instead of using a single type of bearing as usual, the new system includes different types in order to take advantage of the best characteristics of each one and, simultaneously, to minimize the effects of the relevant flaws. The innovative support system requires a suitable bearing arrangement, which is compared with the conventional ones. The conceptual design of the innovation is completed by a discussion of its advantages, drawbacks, and prospective improvements.",book:{id:"5523",slug:"bearing-technology",title:"Bearing Technology",fullTitle:"Bearing Technology"},signatures:"Fabrizio Stefani, Andrea Perrone, Luca Ratto and Ramon\nFrancesconi",authors:[{id:"20899",title:"Dr.",name:"Fabrizio",middleName:null,surname:"Stefani",slug:"fabrizio-stefani",fullName:"Fabrizio Stefani"},{id:"194300",title:"Dr.",name:"Andrea",middleName:null,surname:"Perrone",slug:"andrea-perrone",fullName:"Andrea Perrone"},{id:"194301",title:"Dr.",name:"Luca",middleName:null,surname:"Ratto",slug:"luca-ratto",fullName:"Luca Ratto"},{id:"194302",title:"Dr.",name:"Ramon",middleName:null,surname:"Francesconi",slug:"ramon-francesconi",fullName:"Ramon Francesconi"}]}],onlineFirstChaptersFilter:{topicId:"822",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:315,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 24th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:699,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:315,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"