\r\n\tAs the subject of adhesives is in constant development, this book's purpose is to get together information about adhesives science and technology, recent advances, and applications that use adhesive technology. Also, to make these contents available to engineering students, engineers, researchers, and the people interested in this topic. The book is expected to present works that aim to contribute to the development of new technologies and the use of non-traditional materials in engineering.
",isbn:"978-1-83880-670-5",printIsbn:"978-1-83880-669-9",pdfIsbn:"978-1-83880-671-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c58b7d4c17e2a202af1dc4b906b7becb",bookSignature:"Prof. António Bastos Pereira and Dr. Alexandre Luiz Pereira",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11819.jpg",keywords:"The Technology of the Adhesives, Recent Advances, New Perspectives, Structural Adhesives Bonding, Durability of Structural Adhesives, New Applications, Repair of Composites, Bonding of Composites, Experimental Mechanics Tests, Thermal Analysis, Finite Element Method, Numerical Analysis.",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 15th 2022",dateEndSecondStepPublish:"June 22nd 2022",dateEndThirdStepPublish:"August 21st 2022",dateEndFourthStepPublish:"November 9th 2022",dateEndFifthStepPublish:"January 8th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"15 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. António Pereira is a professor and researcher, who graduated from the University of Porto, and gained experience as an engineer working at Renault, with an h-index of 23, and more than 1500 citations for 70 papers published in SCI journals.",coeditorOneBiosketch:"An active researcher in Solid Mechanics, Dr. Alexandre Luiz Pereira holds a degree in Mathematics from the State University of Rio de Janeiro, and a degree in Mechanical Engineering from the Fluminense Federal University in Brazil.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/211131/images/system/211131.png",biography:"Founding shareholder and Director of Martifer Group (ca. 3500 employees) (1990-1999) - was responsible for the planning and production of about 500 steel structures and industrial equipment with a total amount exceeding 100 million euros.\nAssistant Professor at the Department of Mechanical Engineering, University of Aveiro, since 2000. Board Member and Member of the Executive Committee at the Department of Mechanical Engineering, University of Aveiro (2011 – 2015), currently Director of TEMA - Centre for Mechanical Technology and Automation.\nHis main research area has been mechanics of composite materials, with particular emphasis on delamination fracture mechanics. He has published 44 papers in SCI journals and has delivered 30 presentations at international conferences. His h-index at scopus is 16 with more than 770 citations.",institutionString:"University of Aveiro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:{id:"452095",title:"Dr.",name:"Alexandre Luiz",middleName:null,surname:"Pereira",slug:"alexandre-luiz-pereira",fullName:"Alexandre Luiz Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003LeECuQAN/Profile_Picture_1642158596909",biography:"Alexandre Luiz Pereira is Ph.D. in Mechanical Engineering and Materials Technology. During the period of the Ph.D., he did a Postgraduate Internship at the Department of Mechanical Engineering at the University of Aveiro/Portugal (UA). Since 2014 he has been a professor and researcher at the Federal Center of Technological Education in Rio de Janeiro (CEFET/RJ). He is currently the coordinator of the Mechanical Engineering course at the CEFET/RJ Campus Angra dos Reis. His main research areas focus on the study of materials technology, from structural and hybrid composites, hyperelastic materials, and adhesives joints.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editedByType:"Edited by",editors:[{id:"211131",title:"Prof.",name:"António",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8417",title:"Recent Advances in Boron-Containing Materials",subtitle:null,isOpenForSubmission:!1,hash:"3737be3f785ef9d8b318571ab474f407",slug:"recent-advances-in-boron-containing-materials",bookSignature:"Metin Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/8417.jpg",editedByType:"Edited by",editors:[{id:"27070",title:"Prof.",name:"Metin",surname:"Aydin",slug:"metin-aydin",fullName:"Metin Aydin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8812",title:"Contemporary Topics about Phosphorus in Biology and Materials",subtitle:null,isOpenForSubmission:!1,hash:"86c427901f631db034a54b22dd765d6a",slug:"contemporary-topics-about-phosphorus-in-biology-and-materials",bookSignature:"David G. Churchill, Maja Dutour Sikirić, Božana Čolović and Helga Füredi Milhofer",coverURL:"https://cdn.intechopen.com/books/images_new/8812.jpg",editedByType:"Edited by",editors:[{id:"219335",title:"Dr.",name:"David",surname:"Churchill",slug:"david-churchill",fullName:"David Churchill"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"76843",title:"Fullerenes and Nanodiamonds for Medical Drug Delivery",doi:"10.5772/intechopen.97867",slug:"fullerenes-and-nanodiamonds-for-medical-drug-delivery",body:'Since ancient times, materials are the most interesting thing for human. In fact, human deals with different materials to meet life’s requirements. Invention of new technologies requires new materials, materials with new physical, mechanical and chemical properties. Therefore, material scientists and engineers made their efforts to produce these required materials by changing their composition, structure via synthesis process [1].
In general, materials development is continuous from ancient time. So, we can notice that each period of times known by specific material’s name such as: Stone Age, Bronze Age, Gold Age and Iron Age. So, due to the widespread use of nanomaterials in different industrial as well as biological fields, our current age could know by Nanotechnology Age [1].
Nanocrystalline material is one of the most interesting material with a grain size in the realm of nanometers (1–100) nm. It is not new, it is produced and used in different fields for hundreds of years. For example silver and gold nanoparticle was found in ancient paintings of glasses which gave it the ruby red color, also carbon black which is a nanostructured material was discovered in 1900 s and used in tyres technology. These materials are bigger than single atom and smaller than a microcrystalline grain. Due to their unique structure, it exhibits unique and unprecedented mechanical, physical and chemical properties that differ from those of single atom or microcrystalline grain, these materials can be synthesized from ceramics, metals, polymers and composites [2].
At nanoscales, materials undergoing to changing in their structure, physical and chemical behaviors, these changes were driven from the several effects such as; increasing their surface area, increasing atoms concentration at grain boundaries, increasing the area of grain boundaries and decreasing the percentage of dislocations within material’s structure [1, 2, 3].
On the other hand, nanotechnology was presented for the first time in 1959 at the scientific annual meeting of the American Physical Society by Nobel laureate Richard P. Feynman in the famous and classic lecture that titled “There is plenty of room at the bottom”. Nanotechnology can be imagined as umbrella for all different fields and areas dealing with nanomaterials and nano objects. Furthermore, it is worth mentioning that there are several observations related to the behavior of natural nanomaterials became as inspiring and promising ideas for several applications. For example: nanofluids which has been used in different applications was inspired from blood and milk (natural nanofliud) with high dispersion stability for long periods of time [1, 2, 3, 4, 5].
Although nanomaterials had been known and used for many years ago, but this science gained its greatest importance after the discoveries of fullerene molecules in 1985 by Kroto’s and Smalley’s team [3, 6], carbon nanotubes CNTs in 1991 by Saumio Lijima [3, 7] and graphene in 2004 by Andre Geim and Kostya Novoselov [3, 8]. This fact is associated to the nanochemistry of these carbon allotropes, these nanomaterials show stability did not found in any other nanomaterials due to their high activation energy barriers. Hence they attracted a great attention of researchers to employing them in a wide variety of applications even in their non-functionalized state [4].
Nanomedicine-based drug delivery system has a great influence on the targeted therapy field. Via this sector of nanotechnology, the therapeutic drugs can be incorporated into a variety of bio- nanocarriers, hence, their pharmacological behavior were enhanced and leading to high treating efficiency. Nowadays, the most attracted materials in this field is the carbon- based nanomaterials [9, 10].
Carbon, denoted by letter C, is the most interested element in nature due to its abundant in universe. It is 15th most common element on earth’s crust [11]. In nature, carbon’s ores can be exist in different forms, as carbonates [11], wood charcoal [11], briquette and others. In human body, it is the second abundant element by mass after oxygen. Also, carbon atoms exist in all organic materials. So, it is regarded as the basic building unit for all life [11].
In periodic table, carbon atom exist in group 14, therefore it is a tetravalent. Carbon has fifteen different isotopes, two of them are stable known as 12C and 13C that comprise 98.89% and 1.11% of the carbon on earth respectively. Other isotopes known as a radio-active isotopes, among them 14C is the more stable one [12, 13].
In general, the term of electronic configuration refers to the electronic structure of an atom, with its levels, sub-levels and electrons number that occupying its orbitals. The electronic configuration of carbon atom is: 1s2 2s2 2p2. Excited configuration is the basis of the hybrid orbital. 1s2 2s1 2px12py1 2pz1, hence with four unpaired electrons, four L- shell can be hybridize then and forming sp3 orbital which directed in the tetrahedral direction at angles of 109.5°. This electronic structure found in diamond. When 2 s and two of 2p orbitals hybridize together, three of the sp2 orbital was formed and directed in the trigonal direction at angles of 120° from each in a plane. This electronic structure found in graphite. While in sp. hybridization type, there is only one of 2p orbital is used which led to diagonal bonds with 180° apart. This electronic structure found in carbyne. Also it is good to mention that the unused 2p orbital in each sp2 and sp. hybridization types forming π bonds [14, 15]. See Figure 1.
Representation of carbon structures hybridization states.
Carbon atoms have the ability to form long chain with its own atoms via feature called “catenation”. There are three basic covalent bonds between carbon- carbon atoms, single bond (sigma bond) is the most common bond between carbon–carbon atoms, and it is consisting of one electron from each carbon atom and is thus a two-electron bond such as the bond in ethane. A double bonds is another type that is exist between two carbon atoms, generating the alkene group, also called olefins. These hydrocarbons are exclusively composed of carbon and hydrogen. The third type of bonding between tow carbon atoms is the triple-bond which is existing in compounds called alkynes. Due to the flexible chemistry of carbon atom and the strength of the covalent bond, carbon has the ability to create endless chains, sheets and three dimensional structures with different properties [14, 16].
The most prominent allotropes of carbon are graphite, diamond and lonsdaleite. Each one has its specific properties which very varying from that of another one [16].
Graphite was named by German mineralogist and chemist A.G. Wenner in 1789 [11]. It is a naturally occurring material found in a metamorphic rocks. Its structure made by holding many layers via weak forces. Each layer consisting carbon atoms arranged themselves in a honeycomb lattice [16]. Graphite is characterized by its dark opaque appearance with soft texture and well electrical conduction property. Within its structure, three electrons of each carbon atom shearing with another neighbor by single bonds while the fourth electron become delocalized overall the whole sheet of atoms in each layer. The delocalized electrons are not fixed to a specific carbon atom and can be move freely on the sheet’s surface leading to induce a temporary dipoles which induced an opposite dipoles above and below each sheet that leads to hold the overall sheets of graphite structure [17].
Diamond was derived its name from the Greek word “adams”. Diamond is the cubic high pressure phase of elemental carbon [18]. It is occurred naturally and it’s the hardest known material [18], with a transparent appearance [11] or can be exist in different colors depending on the presence of specific elements or some structural defects with a very low electrical conduction [18]. In diamond, carbon atoms forming 3-D lattice structure in which each carbon atom shears its four electrons with another carbon atom by four single bonds [11].
Lonsdaleite, the hexagonal diamond [11], it is named in honor of Kathleen Lonsdale. It is found naturally in a graphite containing meteorites that struck earth. It is a transparent material with hardness much higher than that of diamond [11, 16].
Amorphous carbon [19], is an interested allotrope, in which carbon atoms can be exist with a wide variety of hybridization states. The most familiar form of amorphous carbon is diamond-like carbon (DLC) due to its structure which is amorphous with many fraction of sp3 bonding so it exhibit some important characteristics of diamond without the necessary for complicated synthesis techniques [20]. It is characterize by its high hardness, low friction property [20] and chemical inertness [20].
Furthermore, there are several allotropes of carbon atom exist in nano- scale featured by their unique structures that led to a great explosion in materials science and technology. Here we will give a summarize description about the structure of some of these materials [21].
Graphene, attractive nano- scale allotrope, is an atomic thick sheet made up of carbon atoms arranged themselves in a honeycomb lattice. So, it is a 2-D allotropic form within carbon family. It is represents the structure of other allotropes of carbon due to its structure flexibility. By rolling its structure, carbon nanotubes is obtained and by warping up a fullerene allotrope is obtained while the stacking of several sheets leads to produce graphite structure. So it is called a mother of all other carbon allotropes, see Figure 2. Due to its attractive properties it is candidates for many critical applications in industrial [4] and health care fields [22].
Representation of carbon allotropes.
Carbon nanotubes is a cylindrical structure nano allotrope of carbon with a diameter of several nanometers and micro- scaled length, consisting of rolled graphene sheets. Its structure can be vary by its diameter or, its length or its layers number.
There are two main types of CNTs, single walled SWCNTs and multi walled MWCNTs. Several studies had been clarified that SWCNTs have about (1–3) nm diameter and few micrometers in their length, while MWCNTs have about (5–40) nm diameter with length around 10 micrometers. This type of carbon allotropes have unprecedented aspect ratio property due to their unique structure together with high thermal and electrical conductivity compared to other conductive materials [4, 23].
Fullerene and nanodiamond another allotropes of carbon atom, have unique and novel properties due to their unique nanostructure. These two carbon nanomaterials will be discussed later.
The recent materials discoveries at nano scale open new horizons in all science and engineering fields. One of the most important point of view reported in several literatures is depending on classify carbon materials according to their hybridization characteristics [24, 25].
The electron hybridization determines the ability of carbon atoms to arrange themselves in a wide variety of structures with linear, planar and tetrahedral symmetry forming different allotropes, such as carbyne/carbyte, graphene/graphite and diamond. So, depending on hybridization type carbon structures can be classified from sub-molecular to macroscopic scales into three general families: carbyne- general family (sp1 family), this family includes carbon atoms with sp1 hybridization state from its nanostructured like carbyne or cyclo-carbon to its macrostructural crystalline form [26]. The second class called graphene general family (sp2 family), this family includes carbon atoms with sp2 hybridization state in their nano as well as macro-crystal structures with hexagonal and rhombohedral structures like graphene and graphite. The third class called diamond general family (sp3 family), the carbon within this family existing sp3 hybridization state like diamond structure in its nano and macro scales [27].
For more complexation, carbon atoms can be exist with other hybridization states called intermediate hybridizations with different degrees. The degree of hybridization in this case caused by the curvature of the sp2 hybridized structure, leading to produce strained C–C bonds. Usually carbon atoms with pure sp2 hybridization state shows an ideal flat structure. While in the case of atoms with curved structure, their hybridization degree should be >2 as in the case of fullerene carbon [14, 27].
On the other side, usually carbon atoms in sp2 hybridization state arrange themselves in hexagonal rings as well as in a various other polygonal rings. The non-hexagonal rings can leads to curving the flat sheet or keeping its flatness if the polygon arrangement fulfils certain symmetry rules [14].
The pentagon rings induce a positive curvature while heptagon or octagon rings induce a negative curvature. Therefore, carbon materials with sp2 hybridization state can be exist into three types: positive curved fullerene-type, which includes carbon atoms with hexagonal and pentagonal rings and negative curved schwarzite-type, this type includes carbon atoms with hexagonal and either heptagonal or octagonal rings and the last one called zero-curvature graphene-type which includes carbon atoms with hexagonal rings only [14]. This procedure of classification carbon based- nanomaterials had been presented by a triangular carbon allotropes phase diagram, see Figure 3. In which, hypothetical carbon allotropes located at the corner of the diagram, and allotropes with intermediate hybridization states located at the edge of the diagram while carbon existing mixed hybridization states located inside the triangular diagram [14].
The ternary carbon allotropy phase diagram based on hybridization type (reuse with permission Elsevier [
The recent discoveries of the nano-sized carbon materials leads to expand the list of carbon allotropes. In association with the ability of carbon atoms to form wide range of structures, carbon based- nanomaterials become widespread in the fields of nanoscience and nanotechnology [28].
Generally, Carbon-based nanomaterials possess effective physicochemical properties make them as a powerful tool in medicine. For example, graphene possess many promising properties due to its high surface area and high functionalization ability that make it suitable for drug delivery treatment, along with its high mechanical properties, graphene had been recommended for tissue engineering field. Carbon nano tubes CNTs had been suggested for different in vivo applications due to its strong optical absorption in the specific wave length and as an active tool for bi0 imaging and drug delivery applications. Recently, fullerene and nanodiamond had been investigated and received much attention to use as a drug delivery carriers [29].
In spite of the promising benefits of using carbon based- nanomaterial as medical tools for the treating of difficult to treat diseases, several challenges are involved within this technology such as, their toxicity, diffusion and distribution abilities throughout the body which may leading to unpredictable effects. So, in-depth and carefully studies around their nature and behavior in human body regarded the most important factors in this field. One of the great promises of nanotechnology in medicine is the local or targeted delivery of drugs. Efficient targeting would allow for a reduced systemic dosage meaning also a reduced toxicity while resulting in relatively higher or more efficient dosage at the desired target site [29].
Several ideas, suggestions and observations in addition to physical and chemical experiments of clustered molecules were led to the way for discovery of C60 in 1985.
In 1966, David Jones discussed the possibility of creating balloons made up from carbon atoms. Then in 1970, this idea was progressed by Eiji Osawa when he revealed the possibility of preparing molecule made up of 60 carbon atoms knowm as C60 molecule in a condensed icosahedron structure [30]. After that in 1971, Eiji Osawa and Zensho Yoshida enumerated the possible aromatic properties of the structured C60 molecule. Later, Bochva and co-worker studied the electronic structure of this molecule. Then in 1980, Davidson characterize the closed- hollow structure of this molecule using different theoretical techniques. Subsequently, in 1985, Kroto and Smalley and their team obtained carbon cluster through scientific experiment to study the suitable conditions at which carbon atoms nucleates in the atmosphere of the red gait star. The mass spectrometer analysis of the obtained clusters indicates that most of them had 60 carbon atoms and some of them had 70 ones [31].
This carbon allotrope become the heart of nanotechnology and attracted significant attention of scientists. For that, in 1996, Kroto, Curl and Smalley were rewarded by Nobel Prize in chemistry for their discovery of fullerene [31].
Fullerene derived its name in the honor of the geodesic domes designer the artchitect Buckminster Fuller. Fullerene family usually represented by a formula of Cn, where n refers to the existing carbon atoms in the cage structure which can be up to several hundred atoms, the number of the carbon atoms existing within fullerene structure has a great influence on its structural geometry and its properties. C60 is the most dominant molecules within fullerene family [31].
The structure of C60 has truncated icosahedrons made up of 20 hexagonal rings located at the center of the icosahedral faces and a 12 pentagons located around the apexes. It is the most symmetric molecule. It has 2.fold, 3.fold and 5.fold rotational symmetry. The first one is through the edge center of 2- hexagons, the second one is from the center of 2-hexagons which facing each other, while the last one is through two pentagons centers which facing each other [30, 31].
Furthermore, fullerene molecules can be exist as a spherical, ellipsoid, tubular shapes consisting hexagonal, pentagonal and sometimes heptagonal rings. C60belongs to the spherical fullerene class which looks like a soccer ball, while C70 belongs to the ellipsoidal class which looks like rugby ball. In addition, several efforts have been reported to produce fullerene with high yields, in 1990, a method was discovered for producing macroscopic amounts of this distinctive material and this breakthrough allowed scientists to understand its chemistry and explore its properties [31].
Generally, fullerene can be classified into classical fullerene and non-classical fullerene. The first one containing 12 pentagons and any number of hexagons, while the second fullerene class can have heptagons, octagons, and an additional number of pentagons or squares [30, 31]. Due to the unique structure and properties of C60, scientists showed high interesting in synthesis both larger and smaller fullerenes. Therefore, the family of fullerenes has been expanded involving fullerene molecules with a wide range of carbon atoms number. Larger fullerenes that have an icosahedral- symmetry also can be constructed. While, the carbon cages structure smaller than C60 consist of adjacent pentagons. These smallest fullerenes are predicted to have unusual physical as well as mechanical properties due to the high curvature of their molecular surface. The smallest fullerene molecules is a dodecahedron consisting of 20 carbon atoms with only pentagon rings. The fundamental understanding of the size dependence of the closed carbon cage structures is important for tailoring these systems for possible nanotechnology applications [31].
Due to the electronegative nature of fullerene, fullerene can form different compounds with different structures. One of the most important fullerene species is derived from the cage- like structure in which there is an ability of trapping metal atom inside the cage and forming specific endohedral fullerene known as metallofullerene. Exohedral fullerene is another type of fullerene with enhanced solubility property, obtained due to the chemical reaction with chemical groups. On the other side, when one or more carbon atoms within cage structure are substituted by specific hetero atom a hetrofullerene is produced [31].
Synthesis of graphenic materials like fullerene have been studied and reported in many literatures. Different techniques have been adopted for fullerene synthesis, such as arc discharge technique [32], vapor deposition of carbon atoms technique [33] and laser technique using graphite [34]. The cage- like structure of fullerene was identified for the first time by Kroto and Smalley in 1985, their experiment depending on applying an intense pulsed laser on a rotating graphitic disk to vaporize carbon atoms in the presence of helium atmosphere, then the condensed material had been collected, some of these routes are shown in Figure 4 [35].
Some synthesis routes of Fullerene.
In 1990, another method was used to prepare fullerene reported by Ajie and co-workers, this method depending on the principle of the resistive heating of carbonic rods in a partial helium atmosphere which leads to evaporating carbonic atoms and then condensing it into fullerene structure [36].
Another method was discussed in U.S Patent in 1991, using electric arc technique, through this process an electric arc is generated between graphitic rods in inert atmosphere leading to produce soot- like product in which fullerene molecules extracted from the soot using suitable solvents [37].
The previous methods were associated with producing fullerene with low yields and there is no temperature controlling zone which is required for graphitization step. To overcome these two limitations, in 1994, Smalley discussed a laser vaporization technique to prepare fullerene from graphite materials using a focused laser beam. This technique involving evaporating carbon atoms and retained it in a temperature- controlled- zone for sufficient time in order to complete the growth and annealing process of the produced structure [38].
Furthermore, another method was reported by Boorm and co-workers in 2001 called the direct method. This method depending on using polycyclic aromatic hydrocarbons with fullerene- like- framework. Through this method fullerene was synthesized directly due to rolling- up of the hydrocarbons structure into fullerene structure via laser irradiation process under flash vacuum pyrolysis conditions [30]. Whereas, in 1993, fullerene has been synthesized in high yields via ablation technique of graphite rod with solar irradiation using solar- furnace. Through this technique graphite was vaporized under the action of direct exposure to high- flux- solar- irradiation. Then, the carbonic vapor was entrained by helium flow and cooled into dark- water- zone to form fullerene structure [39].
Since the discovery of fullerene as an important carbonic allotrope, tremendous development have been made in nanoscience and nanotechnology in order to fill the urgent need for this materials in a wide variety of applications. But, the formation mechanism of the cage- like structure still as a mystery and not well known [36].
One attempt to explain fullerene formation mechanism was reported by Paul and co-workers in 2012. Through their experiment, they depending on the principle of the bottom- up technique to explain the growth mechanism of fullerene by integration with carbon atoms and C2 using laser irradiation technique. A carbonic target made up from graphite or 13C amorphous carbon with fullerene content exposed to a single laser strike that leads to vaporizing carbonic target into atomic carbon and C2while fullerene molecules desorbed into carbonic vapor zone under the action of helium flow. Then an interaction takes place between C60 fullerene (98.9% 12C and 1.1% 13C) and enriched 13C carbonic vapor which involves the exchanging of the original 12C atom of fullerene structure with 13C atom of carbonic vapor [40]. Each ingesting of 13C atom into fullerene structure occurs parallel with ejecting 12C atom from its structure and this interaction will spurring bond rearrangement with fullerene structure. Then, the produced species leaves clustering zone and undergo to a supersonic expansion step. Hence, different fullerene isomer such as C70 can be formed and the ejected 12C atoms may be ingested or exchanged with another fullerene structure [36].
Furthermore, the growth mechanism of fullerene via different techniques that rely on the interaction between carbon atom and C2 affected by several parameters such as the density of carbonic vaper, exposure time, the flow rate of inert gas, therefore, there is a possibility of controlling the growth mechanism by these parameters [36].
Recently, nanodiamond ND with its novel structure opened a new path in the creating and developing materials field. Nanodiamond is a new member of carbon- base- nanomaterials consisting nano tetrahedral network [37]. Naturally, nanoparticles of diamond have been found in meteorites as well as they have been found as inclusions in the old crust fragment of the earth [38].
The history of nanodiamond discovery starts since the second half of the last century via several successful and unsuccessful attempts in the synthesis and analysis of nanodiamond ND or ultra-dispersion diamond UDD begins in 1956 by Yu. Ryabinin using dynamic synthesis approach [39]. In 1961, diamond have been detected in a preserved shock compressed graphite in a plane ampoule by P.J.De Carli and co-workers. Then, in 1962, diamond was produced via shock compression using carbon black and graphite as starting material in cylindrical and spherical storage ampoule with up to 2% yields. Later, diamond was synthesized in explosion chamber using graphite, through this process graphite was placed directly into cylindrical charge containing of a troty- hexogen mixture and the charge was enveloped in a water jacket in order to inhibit graphitization process.
During 1963–1965, the effect of explosion conditions on the produced UDD was studied and indicate that the DP cooling as a result of conversion of the potential energy of diamond particles into kinetic energy of the envelope surrounding the charge plays a decisive role in the UDD synthesis [29]. Then, in 1976, Dupon co. used a cylindrical ampoules to produced diamond micropowder in commercial production rates by compressing a mixture made up from graphite and copper with charge. After that several scientific experiment were carried out to produce UDD with high yields using large mass charges. Another attempts were carried out in 1994 by V.V.Danilenko and co-workers to sintering UDD under static conditions [39].
Furthermore, a wide variety of techniques have been reported and employed to prepare micro and nano diamond particles. But on the other hand, the main drawback of most of these techniques are their requirement for high temperature and high pressure conditions, also, it was found that the produced material is a mixture made up from diamond and nan-diamond phases and some procedures leads to precipitate a amorphous carbon films at the grain boundaries of the produced nanodiamond [40]. After that, several techniques were suggested to produce nanodiamond at lower temperature and pressure conditions [41].
In this area, many researchers compete to synthesis ND with higher yields using advanced techniques in order to use it for a wide range of applications such as in drug delivery, biotechnology and tissue engineering fields [42].
ND have unique properties, for this reason it is attracted the desire and interest of scientists and researchers in the physics and chemistry of nano- materials. It is believed that the structure of ND consisting of single or more diamond crystal surrounding by a shell containing graphenic carbons sp2C, amorphous diamond sp3C in addition to surface- state- carbons. The latter made up from chains of trans- polyacetylene TPA and graphene/fullerene fragments. In addition, different functional groups have been found, see Figure 5 [43].
Representation of ND structure.
However, some of the existing sp2carbon and amorphous diamond can be discarded by specific techniques such as thermal oxidation technique [44], while some graphene/fullerene fragments of the shell are an intrinsic components formed through the re-arrangement of the diamond surface. So, it is believed that the collected information about the structure is necessary in order to understand the nature of interaction between ND particles on one side and with other compounds on another side [43]. It is worth mentioning that the shell’s constituents will have a great influence on the properties of ND particles with smaller sizes [45].
In the last decades, it was supposed that the shape of ND particles were quasi- spherical, but the modern microscope confirmed they are a polyhedral with distinct faceting shape and about half of the presented carbon atoms in ND are located at their surfaces. Hence, ND particles have bonding ability with different functional groups that effecting on its stability [46]. ND particles were required for a wide variety of applications, in lubricant industry, composites, medical therapy and others, this is due to the nature of their surface chemistry which depending on the chemical history of the material and the synthetic process [47]. For example, oxygen- rich- functional groups like hydroxyl, lactone and carboxyl have been found on the ND particle’s surface produced via detonation technique [48]. Several efforts were reported about the surface modification process by functionalization with different groups which regarded as an effective strategy for reducing the size of ND aggregations. For example, functionalization with long chains of alkyl leads to reducing their aggregation size and enhancing their dispersion ability in organic solvents. Similar effects have been achieved via functionalization with boran. Furthermore, functionalization with Lysine molecules showed better water dispersion ability comparing carboxylic- ND [48].
Another type of ND is called hydrogenated ND, in which the surface of nanoparticles were wholly hydrogenated, hydrogenation process involves of linking a hydrogen atom with carbonic specie, then hydrogen atom will take its active role in etching of ND particles such as graphenic/fullerene carbon sp2 C or amorphous carbon, discarding oxygen-rich-groups as well as forming C-H bonds at ND surface [47, 49]. In fact all these benefits make this type more attracted for the most critical applications.
Graphite is the most stable carbon allotrope at ambient conditions of temperature and pressure. While, diamond formation requires more severe conditions. For example, the conditions for naturally formed diamond are (>1000°C) temperature and (4.5–6) Gpa pressure. After diamond formation, the reverse transition to graphite structure will not occur due to the high- energy- barrier for phase transition. Although, graphite is the favored allotrope from thermodynamic point of view, but about 0.4 eV energy barrier must be overcome to transfrom sp2 C structure to sp3 C structure and this fact makes diamond as a metastable allotrope. But the transition kinetic to graphitic structure is not allowed [50].
Nowadays, a wide variety synthetic techniques for ND are available. In the following a brief description of the main techniques.
Detonation technique.
Chemical Vapor technique.
Laser technique.
In detonation technique an explosives with a negative- oxygen- balance and a source for carbon atoms (graphite or molecules driven from the used explosive materials) were placed inside the detonation chamber which is a closed metallic chamber. The driving force for diamond formation obtained from the explosion energy. During detonation, carbon atoms released and then condensed and transform into nanoclusters of crystals. In association with the generated high pressure and temperature, a crystallization of nanoclusters will occur and ND particles will form and grow into aggregations with size about (4–5) nm. The used coolant agent can exist as gas (dry detonation) or as water (wet detonation) [38, 39, 49].
The final produced soot-like material is usually consisting of diamond core with sp3 C surrounded by sp2C. The main advantages of this technique is its ability to produce ND with wide range of particle size, structure and surface- functional- groups these features makes this technique useful for a wide variety of applications as polymer filler for nanocomposites, polishing and coating purposes and others. While on the other side, the main associated disadvantage is the contamination of the produced ND with fragments from chamber wall [49]. So in order to eliminate the unwanted sp2C, to discard metal contamination and to breakup ND aggregations, a post- treatment step will be an essential to produce pure, de- aggregated ND with sp3C [39, 49].
Formation mechanism of detonation ND has been proposed by Danilenko. He suggested that the required temperature to form liquid carbon from its nano scale is lower than that from its bulk scale. So, he is suggested that the liquid carbon region is shifted to low- temperature region while the stability region of ND is shifted to high- pressure. This situation leads to a homogeneous nucleation of ND in carbon supersaturated vapor region followed by crystallization of the produced carbonic liquid [50].
Till this day, CVD technique is widely used in the preparation of ND as powder or thin film with a wide range of sizes. The required carbon atoms for ND formation is derived from the decomposition of gaseous phases (usually methane in hydrogen excess) and a carbon-rich species. During decomposition process, the released carbon atoms were deposited on a silicon substrate covered with a detonation nanodiamond DND acting as a seeding sites for nucleation of ND [51].
For further illustration, several sources of energy can be used to activate the gas phase such as hot filament [52], plasma and flames [53]. Due to decomposition of gas phase, radicals will forms and then each two adjacent carbon atoms located at the surface of the used diamond-coat are left with the dangling bonds after hydrogen abstraction by H• radical. After that these bonds will be full with CH3 radicals then the adjacent carbon atoms will bond together and locked within diamond lattice [54, 55].
The main advantage of this technique is its ability to produce ND particle or ND thin film with a wide range of size (10–200) nm, in addition, to the possibility of controlling on the structure and morphology characteristics of ND. Also there is possibility to produce ND doped with different species that can inserted within diamond structure through growth process. In fact these possibilities enabled this technique to produce ND with modified electrical and optical properties required for many applications [54, 56].
This technique is one of the most attractive used technique for synthesis ND in liquid [38]. This technique including directing an intense laser beam on the graphite target immersed in a liquid medium, usually water. The directed laser beam with high energy induces target surface melting and turning it into superheated liquid. Due to the highly increased temperatures, a phase explosion will takes place and nanodroplets will be forms [57]. At these conditions, the emission of plasma plume with ablation will occur and an extremely high pressure and temperature conditions are created. Then through cooling of the ablation plume with the liquid medium a rapid quenching will takes place. In fact this situation of rapid and sudden decreasing in temperature creates the appropriate conditions for carbonic nanodroplets formation within few nanoseconds [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].
This technique presents good benefits such as the ability to produce ND with high purity, while the main drawback is the high cost with low production rates [39]. On the other hand, several attempts have been reported to overcome such undesired features one of these attempts is called (Light Hydro- Dynamic Effect) LHDE. This technique used laser beam with higher power cross a fluid with a specific refractive index. The direction of laser beam produces white light flash and generates acoustic waves which leads to form high- power- hydro- shock [39].
This technique produced ND with high yields in association with good controlling on its size and surface functional groups. Moreover, it is found that the produced material possess outstanding thermal property make it suitable for nanocomposites applications require heat dissipation property [58].
Nano-sized diamond have been synthesized via different techniques as previously discussed. In spite of the expected stability of the produced material, high- temperature and high- pressure are the main requirements for these techniques. In addition, the produced material is usually consisting sp3 and sp2 carbon and some of these techniques leads to produce ND with contaminates which requires additional purification steps and hence the overall cost will be increase. Therefore, several studies have been reported to prepare ND at ambient conditions [60, 61]. Proceeding from the chemical principles, the chemical reaction depending on the energy- materials interaction degree and require specific energy to proceed. Some of these studies suggested the possibility of using ultrasonic irradiation technique as a source for the required energy [60].
So, ultrasonic irradiation technique has been candidate to prepare ND. This technique improves the chemical reaction in solution via production of hole-constituent micro-bubbles [60]. During this process, a liquid media is irradiated with ultrasound and bubbles will be creates and oscillates under the action of the alternating compressive and expansive acoustic waves. Then, these bubbles will grow to a critical size and collapse leading to release an intense- localize energy about (5000 K and 1000 bar) within a very short period of time which is enough for synthesis of nanodiamond particles [61, 62].
The features of this technique were taken by researchers to produce micro and nano diamonds. In 2008, Khachatry and co-workers used graphite organic liquid suspension to synthesis microcrystalline diamond with degree of purity, cubic- structure and size range about (6–9) μm via ultrasound- cavitation process [63].
In 2019, researchers used a suitable method to synthesis nanocrystalline diamond via ultrasound waves. Through their experiment, graphene oxide was synthesized by modified Hummer’s method then the prepared GO dispersion is activated by ultrasound waves which impacts its morphology and chemistry leads to produce graphene sheets. On the other hand, the generated shear forces leads to convert some of the produced graphene sheets into graphenic nanoscrolls with Mn2O7 had been inserted within its cavity. After decomposition of the unstable Mn2O7 a localized damage at the nanoscroll structure takes place which then undergoing to self-healing and as a result, ND seeds was formed and warped into nanoclusters of diamond, see Figures 6 and 7 [62].
SEM images of nanodiamond at its cauliflower stage.
(a-b) SEM image of Nanodiamond ND.
Other studies have been shown that the nucleation of ND is preferred inside the structure of carbon nanotubes under the action of surface tension property as a result of the carbon nanostructured curvature [64]. In association of founding some carbonates such as Li2CO3, Na2CO3 and K2CO3 as inclusions in natural diamond. Kamali and co-workers made their study in 2015 to produce nanocrystalline diamond from lithium- carbonate containing nanostructured carbon by simple heat treatment and at atmospheric pressure. In this study, CNTs produced by electro- chemical process in lithium chlorite melt using graphite material. Through the experiment, lithium ions discharge on the cathode and inserted between the layers of graphene of the graphite structure under the influence of the cathodic which led to initiated enough stress to pulling graphene sheets from graphite structure into the melt and then these sheets will rolling up into CNTs. And after simple oxidation of the produced CNTs at temperatures range (420–550) °C and at atmospheric pressure, ND was formed, see Figure 8 [64].
SEM images of the micro and nano sized diamond particles after heating CNTs to 550°C in air (reuse with permission Royal Society of Chemistry [
Another methodology was reported by Maia and co-workers in 2015. Their strategy depending on using dynamic compression as a tool for carbon structured transformation process under the action of accumulation of ultra- short laser pulses assisted by the formation of onion-like carbon structure as intermediate phase. Basically, the accumulation of free-electrons with high densities at the grain boundaries of graphite absorbed the applied energy which leads to creation a super ex cited region and then an ablation takes place followed by the propagation of non- thermal shockwave. After that, heating and thermal equilibrium takes place. In fact, these sequences of effects happened at each strike of laser which leading to destroy the lattice in continuous manner and causes more carbonic order to form. The formation of latter structure considered as intermediate phase with lower energy barrier to allotrope transition while the degree of crystallinity increases at each strike of shockwave [65, 66].
Nanotechnology is the nano-sized materials science, involves materials manipulation at atomic and molecular scale in order to produce materials, systems and devices with unprecedented features. Recently, nanotechnology become the most promising technology in a wide variety of fields, one of these fields is medicine field. In fact, the employment of nanotechnology in medicine field is called nanomedicine which regarded as a tool enabled doctors to reach the human body at the molecular and cellular levels and treat the damaged tissues [67].
It is believed that this technology will have a great impact on the health care field via its effect on the sickness diagnosing and treating [67, 68]. There are several features of using nanotechnology in medical field, for example, when it is used for drug delivery, this technology will protect drug from degradation within human body before reaching the target also, it is improving drugs absorption into the diseased cells and at the same time it give assurance that there is no any interactions between drugs and the healthy cells [67, 68].
Therefore, nanomedicine is one division of nanotechnology and nanoscience has the ability of treating the diseased and damaged cells or organs within human body at the cellular and molecular levels via nano-devices and nano-structured materials [68]. There are three main sectors within nanomedicine: Nano- diagnosis, which involving detection and analysis of the diseased cell using different devices such as imaging devices. Nano- therapy, this sector involving the direct transfer or delivery of drugs to the diseased cells with the least possible of side effects. And the last one is renovated medicine, which involving fixation and replacement the deteriorated parts within human body using different nano-devices and nanomaterials [67].
In the following we will discuss the role of carbon based- nanomaterials (fullerene and nanodiamond) as a drug delivery systems.
Generally, the suitable choice of nano- drug delivery systems aids to overcome many health issues usually associated with using traditional treatment strategies. For example, in the case of cancer chemotherapy, the traditional strategies leads to several undesired side effects such as suppression of bone marrow, hair loss, gastric and renal damage and other toxicity effects [67].
On the other side, there are many features and reasons related to the nature and structure of nanomaterials make it as an attractive subject for intense bio-studies from one side and as an attractive materials for drug delivery systems from a other side [69, 70]. The most significant features are: their quantum property, their sizes which determine their in vivo and in vitro behavior, their structure and aggregation ability as well as their surface atoms or molecules. In fact, all these features determine their ability for binding, carrying and adsorbing other compounds or in other words these features determine their pharmacology behavior [70, 71, 72].
Furthermore, the main characteristics that nanomaterials should have to be use in drug delivery systems are high- solubility, bio- compatibility, bio- availability, bio- distribution and targeting ability, drug incorporation and release ability, their shelf- time, anti- clotting property and bio- degradability [71].
Some of the most interesting characteristics of fullerene are their size, electronic configuration, hollow and cage structure, their inertness and surface modification ability that offer the utilization of using fullerene in biological and medical chemistry fields and open new horizons in nanomedicine [73]. The main problems facing the previous possibilities are the insoluble nature in aqueous media with high aggregation tendency [73]. But on the other side, there are several attempts have been done to overcome these problems. One of these attempts involving encapsulation in specific carriers such as calixarenes, micelles and liposomes. Other attempts used chemical functionalization methods with carboxylic acid, polyhydroxyl and amphiphilic polymers to increase the hydrophilicity property of these structures [73]. Furthermore, fullerene shows a nontoxic behavior which tend to decreasing with increasing surface functional groups, while the circulation and biodistribution property depending on the composition of the existing derivative groups. In addition, the presence of functional groups acts as a flexible interfaces for tuning the required drug delivery and its action besides the size of fullerenes even with their derivatives are still smaller than other types of nanoparticles [73, 74].
Both exohedral fullerene which have additional atoms, ions, or clusters attached its outer spheres structure and endohedral fullerene which have additional atoms, ions, or clusters enclosed within its inner spheres structure, have been employed in nanomedicine field as drug carriers. Endohedral fullerene and its derivatives can used to deliver atoms or ions in biological systems, for example, metallofullerene can be serve as drug delivery depending on the composition and properties of the trapped metal within its structure [75]. Depending on the type of functional groups, exohedral fullerene can be exist in three main forms. The first one is called surface- derivative fullerene, the biological action of this type is driven from the inherent properties of its structure such as: their size, reactive property and photochemistry property. The candidate application for this type is as antioxidants systems due to its electronegative nature in association with its reaction ability with different radicals. So, this type work as antioxidants radicals’ scavenger. Furthermore, surface- derivative fullerene can be used to generate a reactive- oxygen species by light irradiation, so this type is useful as photodynamic therapy for killing cancer cells and other undesired cells [75].
The second type of exohedral fullerene is known as covalently fullerene. In this type, the derivative surface of fullerene is directly connected to the pharmaceutical activated compounds via covalent bonds. This fullerene molecule has unique bio- functions with biological body such as drug release with selective targeting at the same time. For example, C60- paclitaxel fullerene used in lung cancer treatment [76], here the paclitaxel has been conjugated to C60 derivative via hydrolysable- ester- group linker used for slow release of drug to the diseased cells [76]. Furthermore, this type of fullerene has high tendency to attach covalently with different biological relevant like sugar, cholesterol, carbohydrates and others [76].
The third type of exohedral fullerene is called non- covalently fullerene. Here, fullerene and its derivatives tend to form a complex species via a wide variety of interactions. These interactions could be exist as pi-pi interaction, van der Waals interaction, electrostatic interaction, hydrophobic interaction and it could be exist as a hydrogen bonding. An example of using this type of fullerene in nanomedicine is the protease inhabitation of Human Immunodeficiency Virus (HIV) [77] by C60 fullerene of this type. The active catalytic sites of HIV protease enzyme is as a hydrophobic bag with a 1 nm diameter which is very close to the size of C60 molecule. Hence, this fullerene will bind with the active sites and virus inhabitation process will takes place [75].
Nanodiamonds are one of the most interesting material in nanomedicine have the ability to conjugate with different drug molecules [48]. This fact is born out of their unique structure and properties. High surface flexibility, small size, high surface area and functionalization ability with different molecules besides their biocompatibility which is more than that of other carbon based- nanomaterials like fullerene and carbon nanotubes. All these features make ND as an attractive tool for both in vivo and in vitro applications [38, 50, 78, 79]. Conversely, there are many concerns and challenges related to their structure and nature toward their interactions with the living cells. Therefore, this situation requires many in- depth studies about the interaction nature between ND particles and the living cells. For example, some types of ND have a strong tendency to aggregate in specific medium which hindering and limiting their applications [48]. In fact, this aggregation tendency is related upon some synthesis techniques leads to produce ND particles with high dangling bonds on their surface such as detonation technique [48]. Hence the free electrons of the surfaces tend to form many functional groups and then these functional groups tend to form covalent bonds with the primary particle forming core- aggregates [48]. On the other side, the existing of sp2C around ND leads to bond these particles together into core aggregate [48].
Several methodologies have been carried for disintegration process, the most attractive one is the beads assisted sonication method which involving the double actions of shear force (induced by using zirconia beads) and cavitation effect (induced by ultrasound waves). The results shows colloid stability for one year after sonication for one hour [80]. While surface functionalization process has been recommended as an active way to reduce the aggregation size of ND. In fact there are several surface functionalization techniques, one of them involving generating specific surface radicals which then will act as a substrate used for synthesis of ND with carboxylic acid and dicarboxylic acid functionalization [48].
From a biocompatibility point of view, several studies have been demonstrated that ND toxicity can be varied and it is affected by surface chemistry of ND, cell- line type and the composition of treatment medium. In this field, the mitochondrial activity and the inflammatory activity of the cell have been used as toxicity indicator. So depending on these keys and the results of many clinical experiments, it was found that there is no manifestation of toxicity with ND dose (100 μg/ml concentration) after 24 hour of incubation period [81]. In addition, ND with high loading capacity, payload with high concentrations is allowed via using less delivery agents in association with the ability of releasing the cargo from the carrier in controlled manner, these two important features of ND developing the bio- applications of them either for small molecules delivery or for bio- technology product delivery [48].
In 2007, the suitability of ND particles as a delivery agent of doxorubicin hydrochloride (DOX) was studied by H. Huang et al. [81]. The study was based on the rationale that the surface carboxylic and hydroxylic groups of ND can interacts with the amine groups of DOX via ionic- forces when dispersing them in aqueous medium. The surface loading of DOX on ND particles was increased from 0.5 to 10 wt% via addition of 1% solution of sodium chloride to their aqueous dispersion, and the removal of salt favored the release of DOX. ND particles loaded with DOX were recommended to assemble in the form of loose- clusters, such that a certain amount of DOX adsorbed on the ND particle’s surface resides within the cavity of the cluster [81].
This methodology of drug- entrapment in loose aggregates of ND particles could provide a feature by minimizing the systemic adverse effects of the naked- DOX. Thus, ND-based delivery systems could overcome the problem to the use of high concentrations of chemotherapeutic drugs in cancer treatments. In addition, the lower levels of cytotoxicity of the ND-DOX composites in mouse macrophages and human colorectal cancer cells compared with bare DOX in a 48-hour period could be beneficial in sustained drug release [81]. The potential of using ND particles as a targeted protein-delivery- vehicle was investigated in a pH-dependent system. By means of the physical- adsorption, ND particles achieved a considerable high surface loadings of bovine insulin about80% in pH-neutral water with a weight ratio of 1:4 of insulin:ND. Also, the aggregation properties of the insulin improved after interacting with ND particles. This propose that ND particles have the ability to facilitate the formation of a uniform-sized complex. Further, the release of insulin from the ND particle’s surface was about 20- times higher when at a pH of about 10.5 than when in a neutral pH medium. Another advantage of using ND particles is the viability of cells, this effect had been observed with sodium hydroxide treated ND-insulin higher than what observed in neutral pH treated ND-insulin. Hence, the inherent and enhanced characteristics of ND particles make them as an active tool in drug delivery systems [48].
In summary, fullerene and nanodiamonds have been studied for drug delivery applications. Fullerenes and nanodiamonds are attractive allotropes in the carbon nanomaterials family. They can be synthesized with attractive properties in higher purity, higher surface homogeneity, and different surface functionalization and in controlled sizes that make them essential in nanomedicine fields. Utilization of fullerenes and nanodiamonds in drug delivery systems show higher advantages with enhanced targeted delivery and controlled drug release ability than other traditional strategies. But on the other side, further in-depth research about toxicity concerns are necessary in order to achieve the full advantages of utilization these nanomaterials in human body.
Wide utilization of microwave thermotherapy can be observed in the countries of the European Union, the United States, Russia, China, Japan, and many others, including the Czech Republic. Interactions of the electromagnetic (EM) field with the human body have been utilized in medicine (e.g., cardiology, oncology, physiotherapy, and urology) since the late seventieth of the twentieth century. A very important role in this process plays scientific societies, e.g., the European Society for Hyperthermia Oncology (ESHO), which cooperates with STM (Society for Thermal Medicine), and ASHO (Asian Society of Hyperthermia Oncology).
Currently, EM fields are frequently used in a few well-established medical procedures already. Good examples in the area of medical diagnostics are, e.g., computer tomography (CT) and magnetic resonance imaging (MRI). In the area of therapy, we can mention, e.g., electrosurgery and radiofrequency (RF) heating in physiotherapy. Then microwave (MW) hyperthermia and RF + MW ablation in clinical therapy are being used for the treatment of cancer and other diseases.
According to the purpose of how microwaves are used, we can divide the medical applications of microwaves into the following three main groups [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]:
Therapy (mostly so-called thermal effects are being used; so-called nonthermal effects are still under discussion).
Diagnostics (based on permittivity measurements, very prospective can be, e.g., an MW differential tomography, UWB radar technology, and MW radiometers).
MW is only a part of the medical system (e.g., microwave technology as the basis of the linear accelerator).
As told above, treatment applications of MW are represented mainly by those based on thermal effects. Thus, we can speak about the MW thermotherapy, which can be generally divided into several basic modalities with respect to the goal temperature level or interval:
Diathermia: which means mild heating up to 41°C at maximum (clinically can be used, e.g., in physiotherapy).
Hyperthermia: this means increasing the temperature in the tumor area up to the interval of 41–45°C (clinically mostly used in oncology).
Thermoablation: this means to increase the temperature over 45°C (clinically can be used, e.g., in urology for BPH treatment and in cardiology for treatments of fibrillation and/or arrhythmia).
For the abovementioned methods of thermotherapy treatments, frequency interval from 1 up to 5600 MHz is mostly used.
As for diagnostics based on the EM field—significant importance for the near future can be identified for the following methods mainly:
MRI and CT (both these diagnostics methods have been largely used since the 80th of the last century already; they both represent the highest possible level of medical diagnostics).
Microwave differential tomography (very prospective as a diagnostics method for the near future, to be used mainly as diagnostics of cancer or for noninvasive temperature measurements).
Microwave UWB diagnostic radar (can be used for the same purposes as microwave differential tomography, but as well for other purposes, such as monitoring of breathing).
Microwave radiometry (can be used for the same purposes as microwave differential tomography, but it works on different physical principles).
As for the frequency spectrum of the EM field (Figure 1), then it is possible to see that MRI is working in the frequency band from 64 to 299 MHz (i.e., the upper part of the RF band); instead, CT then is working in hard X-ray band. The MW frequency band is frequencies from 300 MHz to 300 GHz. The lower part of this frequency band, from 300 MHz to 6 GHz, is very prospective for MW medical imaging. Frequency band above approx. 100 GHz is very prospective for imaging with Terahertz waves. In Figure 1, there is a picture of the frequency spectrum of the EM field.
Frequency spectrum of EM fields.
In this chapter, we will not describe the MRI and CT technology, as it is a well-known and broadly used application of the EM field in medical diagnostics. We will describe and discuss here other methods based on microwave technology mentioned above. The idea of MWs for medical diagnostics is a relatively new area but rapidly developing. The main advantages of MW technology with respect to CT and/or MRI are as follows:
MWs belong to EM nonionizing radiation (such as MRI); instead, CT works in the ionizing part of the EM frequency spectrum.
The system for MW diagnostics is very small and lightweight in comparison with MRI and CT (its dimension and weight are comparable to a notebook, so it will be possible to have it in an ambulance).
MW diagnostic systems have the potential to be at least one order less expensive than either MRI or CT (since the MW technology is being massively used in mobile telecommunications).
And it is important to underline that for MW diagnostics, low power levels (1–20 mW) are used only.
The first four of the following list of thermotherapeutical applications are just largely used in many countries around the world; the last three instead are at this moment in the phase of very promising projects:
Oncology (cancer treatment)
Biological principle utilizes the fact that certain tumor cells are very sensitive to a temperature higher than 41°C, while normal cells generally survive elevated temperatures up to 45°C. And so heating of the tumor region at temperatures of 41–45°C can selectively destroy tumor cells.
Physiotherapy (treatment of rheumatic and skeletal diseases)
Like in hyperthermia, therapeutic effect is caused by the principle of heating biological tissue, but to lower temperatures—usually only up to 41°C. It is used for treating pain in certain rheumatic and degenerative diseases and the treatment of chronic inflammations resistant to antibiotics, often used in rehabilitation and physical therapy.
Urology (BPH treatment)
Microwave thermocoagulation—heating up to temperatures much higher than 45°C, usually around 70°C. An example can be given the microwave treatment of Benign Prostate Hyperplasia, which can replace a complicated surgery.
Cardiology (arrhythmia and fibrillation treatment, microwave angioplasties)
Cardiac catheter thermal ablation is now the standard of care for various cardiac arrhythmia types (irregular heartbeat rhythm). The method uses a catheter terminated with a microwave antenna, which is introduced into either heart of the patient or into partially or totally blocked blood vessels. Heat gained by microwave energy either safely removes the cells inside the human heart causing arrhythmia and/or fibrillation or removes sclerotic plaques deposited on the walls of blood vessels.
Surgery (microwave scalpel, growing implants)
Ophthalmology (retina corrections)
Neurology (stroke identification, brain stimulation)
For here mentioned thermotherapy treatments, it is important to mention that frequencies from the frequency band started approximately at 1 MHz and going up to 10 GHz are mostly used. This frequency range is given by the optimal depth of penetration of EM waves into biological tissue. Thus, this frequency band can achieve the needed depth of effective treatment.
In Prague, the clinical applications of microwave hyperthermia for cancer treatment started in 1981, in cooperation with the Medical Faculty (the Charles University in Prague), the Radiotherapy Institute in Prague, and the Dept. of EM Field (the Czech Technical University in Prague). Since then, microwave hyperthermia has been clinically applied to more than 1000 cancer patients. Mostly added to radiotherapy (RT), a clinical study has been approved as a significantly positive contribution to RT treatment. Recently, a combination of hyperthermia added to proton therapy has been clinically applied in Prague.
Treatment of malignant tumors comprises several techniques usually. In some cases, tumors can be resected by surgery. Radiotherapy and/or chemotherapy can be applied when surgery is not possible or as part of a multidisciplinary approach. A less widely known treatment modality is hyperthermia. It is a therapeutic application of heat in which tumor temperatures are elevated in the range of 41–45°C. The heating of tumor tissue has a cell killing (cytotoxic) effect. However, the cytotoxic effect is small at temperatures below 45°C. Therefore, hyperthermia is always clinically combined with either radiotherapy or chemotherapy. The application of hyperthermia has been proven to increase the therapeutic effect of both radiotherapy and chemotherapy.
The effect of hyperthermia is strongly dependent on the achieved tumor temperatures and heating time. Preclinical research has shown that the cell-killing effect doubles every centigrade, e.g., 1 hour at 42°C is equivalent to half an hour at 43°C. Hypoxic tumors, i.e., tumors with a low level of oxygen, are more resistant to ionizing radiation than well-oxygenated tumors, while hyperthermia is particularly effective in hypoxic tumors.
Large solid tumors often contain hypoxic areas due to heterogeneous vascularization, making hyperthermia a useful addition to radiotherapy. The complementary effect of hyperthermia and radiotherapy is also because cells in the S-phase of the cell cycle are more sensitive to hyperthermia than the G1-phase, whereas cells are more resistant to radiotherapy in the S-phase.
Repair of DNA damage caused by radiotherapy is inhibited by hyperthermia. Hyperthermia also induces radiosensitization and chemosensitization. Furthermore, blood flow increases during hyperthermia improving tumor oxygenation and probably enhancing radiosensitivity. The increased blood flow also improves the uptake of cytostatics in tumor cells. Thus, the increased blood flow during hyperthermia is favorable for improving radiotherapy and chemotherapy effectiveness.
In clinical practice, we need to increase the temperature in a more or less circumscribed body region with tumor load. Treated volume ranges from a few cubic centimeters in case of thermoablation in lesions up to heating the whole body. Because of this, we need different types of applicators for each of the below-mentioned special cases. Thus, we can speak about different clinical modes of microwave hyperthermia.
First of all, we would like to offer an overview of the technical equipment needed for clinical applications of microwave thermotherapy in this chapter. Further, the main basic principles of EM field behavior inside the living biological system, selected from the point of view of physics related to microwave thermotherapy, will be mentioned. Moreover, we will provide the reader with references in literature, where detailed information on both physical and technical aspects of microwave thermotherapy (especially microwave hyperthermia) can be found.
According to ESHO guidelines following classification of different clinical modes of microwave hyperthermia (or thermotherapy in general) can be made:
Local hyperthermia – Medical indications for local hyperthermia include chest wall recurrences, superficial malignant melanoma lesions, and lymph node metastases of head and neck tumors—all of which are validated in prospective randomized studies. The basic physical and technical descriptions will be given in the following text.
Regional hyperthermia – Medical indications for regional hyperthermia include locally advanced and/or recurrent pelvis tumors, i.e., rectal carcinoma, cervical carcinoma, bladder carcinoma, prostate carcinoma, or soft tissue sarcoma. Some of these indications were validated in prospective studies. Basic physical and technical descriptions will be given in the following text.
Part-body hyperthermia – Heated volume of a body region such as the whole pelvis, the whole abdomen, or (if clinically desirable) the upper abdomen or lower thorax or others. Basic physical and technical descriptions will be given in the following text.
Whole-body hyperthermia (WBHT) –means to heat the whole body either up to 42°C for 60 minutes (so-called “Extreme WBHT”) or only 39.5–41°C for a longer time, e.g., 3 hours (so-called “Moderate WBHT” or “Fever-like WBHT”).
Thermoablation – is performed with thin laser applicators or radiofrequency electrodes of a few millimeters. It is a minimally invasive procedure in every case, i.e., the applicators must be implanted in the lesions under CT or MR guidance. Achieved temperatures are high (up to 90°C), but the thermal gradients are pretty steep, and the effective range is 1–2 cm (i.e., lesions with diameters of 3–4 cm are the limit using standard techniques). Liver metastases (numbers up to 4) are the most frequent indication. The procedures are typically performed under MR control.
Interstitial hyperthermia – an array of interstitial antennas or electrodes is implanted in inaccessible tumors, which might be located in deep or superficial tissues. The distance between the antennas must not exceed 1–2 cm, and therefore, lesions with diameters below 5 cm are suitable (in order to limit the number of puncturing tracks). From a physical point of view, we mostly want to create the best possible approximation through outward propagating spherical EM waves irradiated from each applicator. Thus, we can get the best approximation of the tumor dimensions and shape by dimensions and shape of the SAR distribution and thus, the best approximation of temperature distribution. Interstitial hyperthermia is an invasive procedure. Temperature measurements must be performed at the antennas and between them. In most systems, every single antenna is controlled by its generator. Dedicated systems have two or more segments per antenna or electrode controlled in phase and/or amplitude. Clinically interstitial hyperthermia has been applied for prostate carcinoma, recurrent breast cancer, and malignant brain tumors.
Endoluminal hyperthermia – uses natural orifices to position various kinds of endocavitary applicators (microwave, radiowave, ultrasound, etc.) in direct contact with a tumor. From the physical point of view, we mostly want to create the best possible approximation with the aid of an outward propagating cylindrical EM wave irradiated from the applicator. For physical reasons, the penetration depth around those endoluminal applicators is limited and of the order of the applicator’s diameter (in the centimeter range). Accessible tumors include esophageal carcinoma, prostate carcinoma, rectal and cervical carcinoma.
The term “Local hyperthermia” means superficial treatment, and typically the clinical range is up to 3–4 cm. It can be performed with so-called superficial applicators, e.g., based on EM waves in the lower part of the microwave frequency band (usually 434, 915, and 2450 MHz), ultrasound, and IR power. The technological base of EM wave applicators can be of different kinds: waveguides (water filled or with evanescent mode), microwave planar technology (e.g., patches and spirals), and according to results of this habilitation thesis, MTM applicators are very perspective as well.
From a physical point of view, we mostly want the superficial applicators to create the best possible approximation of a plane EM wave, which is the case of the deepest penetration of EM power into the area to be treated (at a given working frequency) and the best homogeneity of SAR distribution and thus, the best homogeneity of temperature distribution as well.
A system for local hyperthermia consists of a microwave (MW) power generator, an MW applicator for transfer of EM power into the treated area, see eq. (7) (tumor), a multichannel thermometer with several probes for temperature measurements in the tumor and its surroundings, and the main computer. See the schematics in Figure 2.
MW hyperthermia system schematics.
Invasive sensors then measure temperature, and according to it, MW power is being controlled in order to keep the temperature on a predetermined level.
The applicator is positioned upon the area to be treated and coupled to the tissue by a water bolus. The temperature and pressure of the water in the water bolus are possible to control, so it is possible to modify the temperature profile in the area to be treated.
In our discussion, it is essential to distinguish the following two important terms: “Depth of EM wave penetration” and “Depth of efficient treatment.” The second one can have different definitions for different clinical applications of thermotherapy treatments (i.e., hyperthermia, physiotherapy, and ablations). Here, we will work with the definition for hyperthermia only.
For the initial estimation of EM wave penetration into biological tissue, we can take a model for the behavior of amplitude of the plane wave in a lossy media.
where E is electrical field intensity, E0 is its value at the surface of biological tissue, z is the depth under the surface, and α means the attenuation constant of EM wave in lossy media.
The depth of the EM wave penetration
It can be seen that
In the case of microwave hyperthermia, the depth of the efficient treatment is given by the distribution of temperature in the treated area—it is formulated as a 25% decrease of the SAR value with respect to the maximum value of SAR inside the treated area. That guarantees quick and quality heating of the treated area from 37°C to at least 41°C. Suppose the maximum temperature in the tumor will be at the level of 45°C, then the depth of the efficient treatment depends on the following factors:
Depth of EM wave penetration – At a given working frequency and a given type of biological tissue.
EM field distribution in the aperture of the applicator – Usually, we are trying to create in the aperture of the applicator the distribution of EM field very similar to plane wave—thus, it is possible to accomplish the deepest penetration depth for the particular frequency and aperture dimensions.
Aperture size of the applicator – Bigger aperture size helps to approach better the EM field distribution inside the applicator aperture to the case of a plane wave. Very good results are expected if the aperture dimension size is comparable or bigger than a half wavelength at the operating frequency.
3D configuration of biological tissues in front of applicator aperture – Biological tissues can roughly be sorted into two categories: high or low water content. Tissues with high water content have higher attenuation than tissues with low water content. So, e.g., in the fat layer, there is EM wave less attenuated than in muscle tissue, and thus it penetrates deeper in fat than into muscle tissue.
Temperature of water in water bolus – This water can cool the surface of the area to be treated and thus improve the temperature profile inside this area.
There is a general rule for hyperthermia applicators optimization if we need to reach the maximal depth of efficient treatment and the best possible homogeneity of the temperature distribution inside the treated area. At least in the central part of their aperture, the distribution of the EM field should be very similar to plane wave; thus, it is possible to accomplish the deepest penetration depth for the particular frequency and aperture dimensions.
The term “Regional hyperthermia” means treating deep-seated tumors of the pelvis or lower extremities, etc. The so-called regional applicators can perform treatment, i.e., usually, an array of phase-controlled radiating elements typically working in the frequency range of 50–150 MHz. As radiating elements again, waveguides or dipoles are mostly being used. They surround the whole circumference; all possible directions are employed to deliver EM energy into the treated volume. The higher number of antennas and higher the frequency have the potential to control the heating 3D pattern. Several rings of antennas directed to the patient axis can be used to enable flexibility with respect to the anatomical structures for optimization.
A system for regional hyperthermia consists of a microwave (MW) or radiofrequency (RF) multichannel power generator (multiple power generators), an array of MW applicators for focusing EM power into the area to be treated (tumor), a multichannel thermometer with several probes for measurements of temperature in the tumor and its surroundings, and the main computer; see the schematics in Figure 3.
Schematics of microwave system for regional or part-body hyperthermia.
Applicators are positioned upon the area to be treated and coupled to the tissue by a water bolus. The water temperature in the water bolus is possible to control, so it is possible to modify the temperature profile in the area to be treated, like in the case of local hyperthermia. In the case of regional hyperthermia, the water temperature in the water bolus is usually below 10°C.
From a physical point of view, we mostly want to create the best possible approximation of a cylindrical or spherical EM wave irradiated from several (typically from 4 up to 12) single applicators situated around the patient. Superposition of the waves from these single applicators then creates inward propagating cylindrical or spherical waves, enabling the focus EM power in the area to be treated. Thus we can get the best approximation of the tumor dimensions and shape by dimensions and shape of the SAR distribution and thus, the best approximation of temperature distribution.
In discussed case, when we have a cylindrical phantom surrounded by several above mentioned applicators, then for the thermotherapy, the most important component of the EM field will be longitudinal component Ez, which in the discussed case can be expressed by equation.
where
As cylindrical agar phantom is mimicking muscle tissue, i.e., lossy medium, then the argument of Hankel function is a complex number. In Figure 3, there are three basic cases of temperature distribution inside an area treated by regional hyperthermia, which follows from the behavior of the Hankel function (see the narrow colored strips signed by letters
If the frequency is very low (from 27 to 80 MHz) and thus the depth of the penetration at this frequency is comparable to or bigger than the radius of the phantom
If the frequency is increased to 100 MHz or higher (i.e., attenuation constant is increasing), then we expect to approach the shape of the temperature distribution given by case
Case
Given examples of frequency bands are valid either for the human body of average dimensions or for agar phantom with similar dimensions and dielectric parameters with values near to values valid for muscle tissue.
Part-body hyperthermia is a technique derived from the regional approach and developed to heat a selected anatomical region in an extended manner up to 41–42°C under careful MR monitoring. From a physical point of view, we want mostly to create the best possible approximation of a spherical EM wave irradiated from several (typically from 12 up to 24) single applicators situated around the patient.
Superposition of the waves from these single applicators then creates inward propagating spherical waves enabling the focus EM power in the area to be treated. Thus, we can get the best approximation of the tumor dimensions and shape by dimensions and shape of the SAR distribution and thus, the best approximation of temperature distribution.
Due to safety reasons, the use of MR monitoring (to measure online temperature and perfusion) and a planning system is required at these higher power levels. Systems for part-body hyperthermia are called “hybrid systems” because they are based on the MR-compatible integration of a multiantenna applicator into an MR tomograph.
The most important effect from the point of view of microwave thermotherapy is the propagation of EM waves through the biological tissue to be treated. It can be classified as lossy dielectrics. So the power (energy) of propagating EM wave will be changed into thermal power (energy). For more details, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
EM energy turns to heat, particularly due to the following mechanism: When the alternate field takes effect, vibrating electric particles lag behind the exciting intensity of the electric field; the current is not entirely in phase with electric field intensity. It is possible to describe this phase mathematically in a way that we virtually split up the movement of electrons into:
Component that follows electric field intensity.
Component that is in phase with the difference of potentials on electrodes.
The first component mentioned above determines the real part of permittivity
When the electromagnetic energy goes through the biological tissue, it is absorbed and turned into heat, resulting in a temperature increase of biological tissue within the irradiated area. Spatial distribution of temperature induced the way mentioned above (with respect to depth of EM wave penetration and depth of efficient treatment) depends on various factors.
The interaction of the EM field with biological tissue studied from a physical point of view is well described in several references, e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], so we do not need to go into the details here. When studying these interactions to be used in clinical applications of thermotherapy, then usually it is necessary to determine by calculations or measurements following 3D or 4D distributions:
The 3D spatial distribution of the values of the EM field main quantities (e.g., vector of electric field strength
The 3D spatial distribution of power
The 3D spatial distribution of specific absorption rate—the SAR [W/kg] indicates the EM energy absorbed in the biological tissue and, as shown by the unit, it is the power absorbed per 1 kg of tissue
where
Which can be further modified as
where
The 4D—i.e., spatial and time-dependent distribution of temperature
High-frequency electromagnetic fields can penetrate the human body and propagate through. During the propagation of EM waves through biological tissues, their energy is gradually absorbed and converted into heat, thereby increasing the temperature of the irradiated area. To such a wave, biological tissues behave as a lossy dielectric. In such a case, permittivity and permeability become to be complex numbers. The spatial distribution of temperature depends on many factors, the most important of which are:
The type of the EM wave (i.e., whether it is planar, cylindrical, or spherical).
Operating frequency determines the EM wavelength (i.e., penetration depth).
Spatial distribution of the biological tissue in the irradiated volume.
Dielectric and thermal characteristics of each tissue type in a certain area.
Blood flowing into the treated area.
The term treatment planning for clinical application of the thermotherapy means mathematical and experimental modeling of the effective treatment timing to determine the four-dimensional (4D) distribution of temperature (i.e., 3D in space + temperature behavior with respect to time) during the scheduled treatment (both within the treatment area and in its surroundings).
When preparing a particular type of clinical application, it is necessary to perform a series of experiments and model calculations to create a specific idea about the actual distribution of temperature (with respect to SAR) in the treated area. It is a highly complex problem that is not yet fully resolved. This is due to several factors, of which the most important may be considered:
highly inhomogeneous nature of the biological object—i.e., mainly irregular and complex definable spatial distribution of different types of biological tissues in the human body,
in practice, the usually unavailable precise description of the topology of the bloodstream, and particularly its response to external stimuli—i.e., mainly at an increasing temperature in the treatment area,
very “complicated” nature called near electromagnetic field emitted from the aperture thermotherapy applicators.
In the case of treatment planning, first, we need to do the calculation of SAR 3D distribution and after to do the calculation of the temperature 3D distribution. This distribution inside the treated area (heated by microwave energy
where
The possibilities of an analytical solution to this equation are limited to a few cases—e.g., the “one-dimensional” case of plane wave penetrating homogeneous phantom. Therefore, computers are to be used to solve this equation to obtain the temperature
In general, it is necessary to solve the time dependence of the temperature
The versatile option is to apply numerical methods using very powerful computers. The numerical solution then typically uses differential methods or finite element methods. The biggest problem then acts precisely, defining and modeling the bloodstream and its responses to cool or heat certain areas of the human body. The situation is further complicated dramatically by the topology of the heated area. The topology can be a good guess for subsurface treatment in clinical applications. However, the more complicated is the situation for deep regional heating when mapping the treated area requires a CT and/or MRI.
Noninvasive temperature monitoring of hyperthermia cancer treatment is one of the crucial points for its successful clinical applications. MRI is often discussed to be a prospective solution to this problem. However, it is a costly way (commercially available hyperthermia system controlled by MRI has a price above 1 million EUR). Because of that, cheaper solutions-based on, e.g., microwave or ultrasound technology, could be a convenient alternative to MRI temperature monitoring. Till now, microwave radiometers have been discussed for this purpose. Radiometers can measure the absolute value of temperature, but their spatial resolution is not sufficient. They integrate thermal noise from certain volumes, and thus, they indicate approximately average temperature inside this volume, so it may happen that the microwave radiometer will not identify existing hot spots or cold spots.
Our theoretical and experimental research work is focused now on microwave differential tomography (MDT). The Department of Biomedical Technology (the Czech Technical University in Prague) developed its own MDT system (see photo in Figure 4) in cooperation with Prof. Andrea Massa from Eledia Research Center (Trento, Italy). It seems realistic that the MDT methods can be used for 3D noninvasive temperature monitoring of the treated volume during thermotherapy in oncology. Existing suitable reconstruction algorithms, which allow quasi-real-time monitoring of changes of dielectric properties due to changes of temperature, were implemented. Reconstruction algorithms were tested on different 2D and 3D models. The obtained results using the Distorted Born Algorithm (DBA) and Born Algorithm (BA) were compared in terms of the algorithms’ ability to reconstruct the shape and position of the target and flatness of the obtained object function in regions without change in dielectric properties.
Photograph of an experimental system for research of MDT.
Our research work is oriented toward studies and developments of local external applicators working at 27, 70, 434, and 2450 MHz (see Figure 2). These applicators were used to treat deep-seated and/or superficial tumors (treatment depth from 2 up to 8 cm).
Now, following new trends in this field, we continue our research in the important directions of regional applicators (see Figure 3). Moreover, we are trying to implement new microwave technologies in the design of new hyperthermia applicators, e.g., applicators based on metamaterial technology. Our BioEM team with Prof. Paul Stauffer from Thomas Jefferson University Hospital in Philadelphia has developed such applicators. Research of MW thermotherapy systems and MW medical diagnostics is in Prague done in cooperation with Dept. of EM Field (Faculty of Electrical Engineering) and Dept. of Biomedical Technique (Faculty of Biomedical Engineering), both are part of the Czech Technical University in Prague. The most important technical activities in this field can be specified as:
Design of the applicators based on new MW technologies, i.e., development of new type applicators for more effective local, intracavitary, and regional treatment;
Development of treatment planning, i.e., mathematical and experimental modeling of the effective treatment;
Feasibility study of noninvasive temperature monitoring, e.g., microwave differential tomography or UWB radar technology;
MW medical diagnostics (e.g., MW differential tomography).
In Figure 5, there is an example of the calculated distribution temperature obtained by a matrix of a 3x2 MTM elements array. The highest temperature level is displayed here in red color, and the yellow color denotes the threshold therapeutic temperature of 41°C.
Calculation of the temperature distribution at 3.5 cm depth under the 3 × 2 MTM elements array. The yellow color denotes the threshold of the treated area.
In actual clinics, we need the treatment planning to create so-called phantoms of the patient body or at least phantoms of the area to be treated, see Figure 6a and b. In Figure 6a, there is an example of a homogeneous phantom; in Figure 6b then, there is an example of the anatomical phantom. The first one is suitable for verifying the fundamental behavior of the applicator; the second one then is needed for the 3D SAR and 3D temperature distribution during the treatment of the actual patient.
Example of a homogeneous (a) and the anatomical phantom (b).
In Figure 7, an example of SAR distribution is calculated for the case of the anatomical phantom. A very strong focus of MW power on a big tumor can be observed here.
Example of SAR distribution calculated for the case of anatomical phantom given in
As mentioned above, recently, there have been strong trends in research to apply microwave technology in medical diagnostics. Significant importance for the future can be identified for above all the following methods: microwave differential tomography, microwave diagnostic UWB radar, and microwave radiometry.
In Prague, the MDT is developed by a research group from the Dept. of Biomedical Technology in cooperation with Prof. Andrea Massa and his group from ELEDIA Research Center (University of Trento, Italy). Theoretical works are focused on a theory of differential microwave imaging (DMI) in quasi-real-time. Existing suitable reconstruction algorithms, namely Distorted Born Algorithm (DBA) and Born Algorithm (BA), which allow quasi-real-time monitoring of changes of dielectric properties due to changes of temperature, were implemented. They were applied and tested both numerically and experimentally within the feasibility studies.
These reconstruction algorithms were tested on numerical data from numerical 2D and 3D simulations; see Figure 8.
Numerical models for testing of reconstruction algorithms.
The below described results based on DBA and BA were compared in terms of the ability to reconstruct the shape and position of the target and flatness of the obtained object function in regions without change in dielectric properties. Influences of varying TSVD threshold values, number of voxels, calibration, and normalization were tested. BA with a low TSVD-threshold value leads to clear pictures of the difference in relative permittivity, but we lose information about the difference in conductivity. The described algorithms were tested with a sphere that was virtually homogeneously heated. The resulting pictures were not of the clear boundary of the so-called objective function: the predicted changes of object function are smooth, see Figures 9 and 10. Even if the implemented algorithms show several deficits, they represent state of the art and are therefore a suitable starting point in developing the combined MW system. Here described, the principle of noninvasive temperature monitoring, once it is commercially available, would mean a very significant improvement in quality assurance for hyperthermia treatment of oncological patients in actual clinics and for the comfort of their treatment as well.
Results of reconstruction on a 2D model.
Results of reconstruction on a 3D model.
In Figure 4, there is a photograph of the laboratory MDT system built at the Dept. of Biomedical Technique. In this case, it consists of eight bow-tie antennas, but we can go up to 24 antennas in total. Necessary MATLAB scripts for measurements automatization, data acquisition, and image reconstruction were implemented by us. We created numerical models for solving the forward problem, which is necessary for the reconstruction algorithms. A preliminary evaluation of the system based on measurement results was performed at the same time. It seems realistic that the DMI methods can be used for 3D noninvasive temperature monitoring of the treated volume during thermotherapy in oncology.
Currently, we study (by means of numerical simulations) the suitability of different types of antennas, e.g., their EM principle, dimensions, number, and geometrical configuration. We know that the main resolution limit of the described system is a low number of radiating elements. We plan to extend the system to the maximum possible number of antenna elements (i.e., up to 24). We believe there will be considerable improvement in the resolution.
Another prospective possibility of using the principle and technology of DMI is the rapid detection, identification, and classification of strokes (SDI), which would be essential for the quick, qualified decision of what kind of treatment is necessary to give to the stroke patient already in the ambulance when he/she is being transferred to the hospital. The Pioneer research group in this area is a team of Prof. Mikael Persson from Chalmers University in Goeteborg, Sweden.
Dr. Marko Helbig and Dr. Juergen Sachs from TU Ilmenau in Germany came up with the idea to use microwave UWB radar technology for noninvasive microwave imaging and/or noninvasive temperature monitoring. In Prague, they are followed by people from the Dept. of EM Field.
The detection of temperature change via UWB radar signal is based on the fact that the complex permittivity changes with temperature. We have shown that it is possible to detect these changes by UWB microwave radar. In our case, the antenna array comprises eight dipole antennas (21 x 11 mm). These antennas are excited by the UWB pulse in the frequency band 1–8 GHz. The values of relative permittivity and specific conductivity of all considered tissue temperatures (at starting temperature of 37°C) can be taken, e.g., from the IT’IS Foundation database.
We worked with an experimental antenna setup for UWB temperature change detection to be used in microwave hyperthermia treatment. Our numerical and laboratory models with implemented frequency and temperature dispersive parameters of biological tissues were used for a series of simulation purposes. The results from our numerical simulations show that it is possible to identify even very low changes in tumor permittivity caused by temperature change.
Our experiments with the homogeneous and nonhomogeneous phantoms have shown that we can detect even different temperature layers. From the reconstructed image, we can partially reconstruct the shape and position of the simulated inhomogeneity. The way to improve the chance for more accurate differential temperature reconstruction is in the higher number of antennas closer to the heated area utilization and in the attenuation correction improvement.
Research studies on the interactions between the EM field and biological systems have been the subject of high interest during the last decades. Here, we would like to give more details about such kind of research and obtained technical and biological results (i.e., basic description of implemented exposure systems). Two of our recent projects were oriented on the research of thermal effects of EM field (using either waveguide or array applicators). And the third one then on the research of nonthermal effects. Whole-body exposure chamber, operating at 900 MHz, was developed for small animals in the frame of this research project. The setup was designed with respect to homogeneity of induced EM field, elimination of external radiation, and exact determination of absorbed power. Further sufficient space for mice movement was taken into account. The whole-body exposure chamber with an anatomical mouse model was simulated by two different numerical methods, e.g., finite-difference-time-domain method (FDTD) and finite integration technique (FIT), and compared computed SAR values and its dosimetry results.
The major advantage of the system we will describe here is the capability of direct measurement of the whole-body averaged SAR, which is performed by analysis of measured scattering parameters. As the basic idea and principle of the discussed exposure chamber, a circular waveguide was chosen. The advantage of the waveguide structure is a perfect shielding of EM field generated either inside (in order to protect the operators) or generated outside the system (in order to eliminate interference caused by external EM fields). The circularly polarized wave TE11 is excited inside the exposure chamber with the aid of two monopoles that have mutually orthogonal orientations, and the distance between them is equal to one-fourth of the wavelength. Such circularly polarized wave provides relatively constant field coupling to each mouse regardless of its position, posture, or movement. The discussed exposure chamber is displayed in Figure 11.
Waveguide-type exposure chamber for animal experiments.
EM field distribution and impedance matching of the discussed exposure chamber were optimized and verified by 3D EM field simulators SEMCAD X resp. Sim4Life. Dimensions of the exposure chamber were calculated to use the desired frequency of operation and the volume needed to expose mice. The exposure chamber is made of a copper cylinder with dimensions of 1650 mm in length and 240 mm in diameter. It is terminated by matched loads at both ends (conical shape, 500 mm long, and made of RF absorbers). The reflection loss of the matched load is more than −20 dB at 900 MHz.
The exposed mice are kept in a cylindrical box that is made of Styrofoam. Styrofoam has a dielectric constant of 1.03, i.e., very close to that of air, and thus, the disturbance of exposure and measurements is negligible. The box provides space for two separated mice. Punctured slit-like holes are set on the cover and side of the box for air ventilation. In the study, the mice were held in the chamber only during RF exposures, and therefore, no food or drinking water was necessary.
For the survival of experimental animals inside the exposure chamber, it is important to create efficient ventilation, which will maintain a constant temperature and good air quality in the chamber. The air comes toward mice through the ventilation hole placed below the styrofoam box and flows toward the second opposite ventilation hole placed above the box.
To be able to evaluate the results of experiments with small animals (mice in our case), we need to specify appropriate dosimetry. It is the quantification of the magnitude and distribution of absorbed EM energy within biological objects that are exposed to EM fields. In the case of radiofrequency and microwave frequency bands, there is the dosimetric quantity, which is called SAR (i.e., specific absorption rate). It is defined as the rate at which energy is absorbed per unit mass. The SAR is determined and influenced not only by the incident EM waves but also by the electrical and geometric characteristics of the irradiated subject and objects nearby it. It is strongly related to the internal electric field strength E as well as to the electric conductivity σ and the density of tissues ρ as discussed above and as can be seen, reminded by the following equation.
Therefore, SAR is a suitable dosimetric parameter, even when a studied mechanism is determined to be “athermal.” SAR distributions are usually determined from measurements in animal tissues or from numerical calculations. It generally is difficult to measure the SAR directly in a living biological body, and therefore, dosimetry efforts are forced to rely on computer simulations mainly.
An anatomically based dielectric model of an experimental animal is essential for numerical dosimetry. It can be developed commonly from MRI or CT scans. In order to develop it, original gray-scale data must be interpreted into tissue types known as a process of segmentation. In our studies, the CT scans for mouse model development were obtained from the website: http://neuroimage.usc.edu/Digimouse_download.html. The mouse model has the resolution 0.1 mm, meaning voxel size 0.1 x 0.1 x 0.1 mm. Each voxel was assigned to one of 14 different tissue types, such as bone, muscle, brain, etc.
For dosimetry with the numerical voxel models, proper permittivity and conductivity values must be assigned to each tissue. The data from 10 MHz to 6 GHz, derived from 4-Cole-Cole extrapolation based on measurements for small animals, constitute the most widely accepted database for this information. The data are recommended by various international standardization organizations and can be accessed, e.g., from the website http://www.fcc.gov/fcc-bin/dielec.sh.
In order to verify and rely on numerical dosimetry results, the simulations of the exposure chamber were done in two different EM field simulators (based on two different numerical methods). Our choice was SEMCAD X, which uses the finite difference time domain (FDTD) method, and CST Microwave Studio, which uses the finite integration technique (FIT) method. We used these simulations to the determination of SAR distribution inside the mice during experiments.
Researchers from Medical Faculty in Pilsen, Charles University (Prof. František Vožeh, MD., Jan Barcal, MD.), did biological experiments with the aid of this exposure chamber. With the aim of whether EM exposure can increase the content of free radicals in the exposed tissue, a series of EM exposures to small animals (mice) was done. SAR level was at the level of 0.8 W/kg in the case of these experiments. Evaluation of preliminary results is displayed in Figure 12. It can be interpreted as a significantly increased content of free radicals being found.
Results of an animal experiment: in all four studied organ specimens (brain, heart, kidney, and liver), significantly increased content of free radicals was found.
This research was funded by Ministry of Education, Youth and Sports of the Czech Republic under Grant LTC19031, and the Student Grant Competition of the CTU, grant number SQS20/203/OHK4/3T/17.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:8616},{group:"region",caption:"Middle and South America",value:2,count:7693},{group:"region",caption:"Africa",value:3,count:3005},{group:"region",caption:"Asia",value:4,count:15646},{group:"region",caption:"Australia and Oceania",value:5,count:1284},{group:"region",caption:"Europe",value:6,count:22554}],offset:12,limit:12,total:134466},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-F-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:14},{group:"topic",caption:"Materials Science",value:14,count:23},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:387},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4438},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"265",title:"Education",slug:"social-sciences-education",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:34,numberOfSeries:0,numberOfAuthorsAndEditors:649,numberOfWosCitations:196,numberOfCrossrefCitations:370,numberOfDimensionsCitations:586,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"265",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11004",title:"Medical Education for the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"f8863875cdefa578f26a438ea21bdc1e",slug:"medical-education-for-the-21st-century",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/11004.jpg",editedByType:"Edited by",editors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10495",title:"Insights Into Global Engineering Education After the Birth of Industry 5.0",subtitle:null,isOpenForSubmission:!1,hash:"e83ddb1aa8017926d0635bbe8a90feca",slug:"insights-into-global-engineering-education-after-the-birth-of-industry-5-0",bookSignature:"Montaha Bouezzeddine",coverURL:"https://cdn.intechopen.com/books/images_new/10495.jpg",editedByType:"Edited by",editors:[{id:"313464",title:"Dr.Ing.",name:"Montaha",middleName:null,surname:"Bouezzeddine",slug:"montaha-bouezzeddine",fullName:"Montaha Bouezzeddine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9558",title:"Active Learning",subtitle:"Theory and Practice",isOpenForSubmission:!1,hash:"c55b272766d51c3d563abc25c026b939",slug:"active-learning-theory-and-practice",bookSignature:"Olena Lutsenko and Gregory Lutsenko",coverURL:"https://cdn.intechopen.com/books/images_new/9558.jpg",editedByType:"Edited by",editors:[{id:"225667",title:"Mrs.",name:"Olena",middleName:null,surname:"Lutsenko",slug:"olena-lutsenko",fullName:"Olena Lutsenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9535",title:"Education in Childhood",subtitle:null,isOpenForSubmission:!1,hash:"edc0b902fe67ee1b6fab1df4992cb55d",slug:"education-in-childhood",bookSignature:"Olga María Alegre de la Rosa, Luis Miguel Villar Angulo and Carla Giambrone",coverURL:"https://cdn.intechopen.com/books/images_new/9535.jpg",editedByType:"Edited by",editors:[{id:"338767",title:"Prof.",name:"Olga María",middleName:null,surname:"Alegre de la Rosa",slug:"olga-maria-alegre-de-la-rosa",fullName:"Olga María Alegre de la Rosa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10807",title:"Teacher Education",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"3baeedd4e6dfcdbccca461891bd66a8d",slug:"teacher-education-new-perspectives",bookSignature:"Ulas Kayapinar",coverURL:"https://cdn.intechopen.com/books/images_new/10807.jpg",editedByType:"Edited by",editors:[{id:"232425",title:"Dr.",name:"Ulas",middleName:null,surname:"Kayapinar",slug:"ulas-kayapinar",fullName:"Ulas Kayapinar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10229",title:"Teacher Education in the 21st Century",subtitle:"Emerging Skills for a Changing World",isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",slug:"teacher-education-in-the-21st-century-emerging-skills-for-a-changing-world",bookSignature:"Maria Jose Hernández-Serrano",coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",editedByType:"Edited by",editors:[{id:"187893",title:"Dr.",name:"Maria Jose",middleName:null,surname:"Hernández-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"Maria Jose Hernández-Serrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10191",title:"Health and Academic Achievement",subtitle:"New Findings",isOpenForSubmission:!1,hash:"7ee3f57e3911318305ac5c2eef39f8ab",slug:"health-and-academic-achievement-new-findings",bookSignature:"Blandina Bernal-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/10191.jpg",editedByType:"Edited by",editors:[{id:"174721",title:"Dr.",name:"Blandina",middleName:null,surname:"Bernal-Morales",slug:"blandina-bernal-morales",fullName:"Blandina Bernal-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:34,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:2475,totalCrossrefCites:19,totalDimensionsCites:27,abstract:"The aim of this chapter is to review literature regarding using augmented reality (AR) in education articles published in between 2016 and 2017 years. The literature source was Web of Science and SSCI, SCI-EXPANDED, A&HCI, CPCI-S, CPCI-SSH, and ESCI indexes. Fifty-two articles were reviewed; however, 14 of them were not been included in the study. As a result, 38 articles were examined. Level of education, field of education, and material types of AR used in education and reported educational advantages of AR have been investigated. All articles are categorized according to target groups, which are early childhood education, primary education, secondary education, high school education, graduate education, and others. AR technology has been mostly carried out in primary and graduate education. “Science education” is the most explored field of education. Mobile applications and marker-based materials on paper have been mostly preferred. The major advantages indicated in the articles are “Learning/Academic Achievement,” “Motivation,” and “Attitude”.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"63639",doi:"10.5772/intechopen.81086",title:"Cooperative Learning: The Foundation for Active Learning",slug:"cooperative-learning-the-foundation-for-active-learning",totalDownloads:3427,totalCrossrefCites:17,totalDimensionsCites:24,abstract:"The role of instructors is evolving from the presenter of information to the designer of active learning processes, environments, and experiences that maximize student engagement. The more active a lesson, the more students tend to engage intellectually and emotionally in the learning activities. Cooperative learning is the foundation on which many of the active learning procedures are based. Cooperative learning is the instructional use of small groups so that students work together to maximize their own and each other’s learning. Most of the active learning procedures, such as problem-based learning, team-learning, collaborative learning, and PALS, require that students work cooperatively in small groups to achieve joint learning goals. Cooperative learning is based on two theories: Structure-Process-Outcome theory and Social Interdependence theory. Four types of cooperative learning have been derived: formal cooperative learning, informal cooperative learning, cooperative base groups, and constructive controversy. There is considerable research confirming the effectiveness of cooperative learning. To be cooperative, however, five basic elements must be structured into the situation: positive interdependence, individual accountability, promotive interaction, social skills, and group processing.",book:{id:"6929",slug:"active-learning-beyond-the-future",title:"Active Learning",fullTitle:"Active Learning - Beyond the Future"},signatures:"David W. Johnson and Roger T. Johnson",authors:[{id:"259976",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"263004",title:"Dr.",name:"Roger",middleName:null,surname:"Johnson",slug:"roger-johnson",fullName:"Roger Johnson"}]},{id:"59468",doi:"10.5772/intechopen.74344",title:"Virtual and Augmented Reality: New Frontiers for Clinical Psychology",slug:"virtual-and-augmented-reality-new-frontiers-for-clinical-psychology",totalDownloads:2339,totalCrossrefCites:13,totalDimensionsCites:21,abstract:"In the last decades, the applied approach for the use of virtual reality (VR) and augmented reality (AR) on clinical and health psychology has grown exponentially. These technologies have been used to treat several mental disorders, for example, phobias, stress-related disorders, depression, eating disorders, and chronic pain. The importance of VR/AR for the mental health field comes from three main concepts: (1) VR/AR as an imaginal technology, people can feel “as if they are” in a reality that does not exist in external world; (2) VR/AR as an embodied technology, the experience to feel user’s body inside the virtual environment; and (3) VR/AR as connectivity technology, the “end of geography’. In this chapter, we explore the opportunities provided by VR/AR as technologies to improve people’s quality of life and to discuss new frontiers for their application in mental health and psychological well-being promotion.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Sara Ventura, Rosa M. Baños and Cristina Botella",authors:[{id:"106036",title:"Dr.",name:"Rosa Maria",middleName:null,surname:"Baños",slug:"rosa-maria-banos",fullName:"Rosa Maria Baños"},{id:"227763",title:"Ph.D.",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"},{id:"229056",title:"Dr.",name:"Cristina",middleName:null,surname:"Botella",slug:"cristina-botella",fullName:"Cristina Botella"}]},{id:"58060",doi:"10.5772/intechopen.72341",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:8762,totalCrossrefCites:15,totalDimensionsCites:21,abstract:"In the twenty-first century, significant changes are occurring related to new scientific discoveries, informatization, globalization, the development of astronautics, robotics, and artificial intelligence. This century is called the age of digital technologies and knowledge. How is the school changing in the new century? How does learning theory change? Currently, you can hear a lot of criticism that the classroom has not changed significantly compared to the last century or even like two centuries ago. Do the teachers succeed in modern changes? The purpose of the chapter is to summarize the current changes in didactics for the use of innovative teaching methods and study the understanding of changes by teachers. In this chapter, we consider four areas: the expansion of the subject of pedagogy, environmental approach to teaching, the digital generation and the changes taking place, and innovation in teaching. The theory of education, figuratively speaking, has two levels. At the macro-level, in the “education-society” relationship, decentralization and diversification, internationalization of education, and the introduction of digital technologies occur. At the micro-level in the “teacher-learner” relationship, there is an active mix of traditional and innovative methods, combination of an activity approach with an energy-informational environment approach, cognition with constructivism and connectivism.",book:{id:"5980",slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"64583",doi:"10.5772/intechopen.81714",title:"Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice Kindergarten Teachers: A Case Study in Greece",slug:"evaluating-a-course-for-teaching-advanced-programming-concepts-with-scratch-to-preservice-kindergart",totalDownloads:1409,totalCrossrefCites:13,totalDimensionsCites:18,abstract:"Coding is a new literacy for the twenty-first century, and as a literacy, coding enables new ways of thinking and new ways of communicating and expressing ideas, as well as new ways of civic participation. A growing number of countries, in Europe and beyond, have established clear policies and frameworks for introducing computational thinking (CT) and computer programming to young children. In this chapter, we discuss a game-based approach to coding education for preservice kindergarten teachers using Scratch. The aim of using Scratch was to excite students’ interest and familiarize them with the basics of programming in an open-ended, project-based, and personally meaningful environment for a semester course in the Department of Preschool Education in the University of Crete. For 13 weeks, students were introduced to the main Scratch concepts and, afterward, were asked to prepare their projects. For the projects, they were required to design their own interactive stories to teach certain concepts about mathematics or physical science to preschool-age students. The results we obtained were more satisfactory than expected and, in some regards, encouraging if one considers the fact that the research participants had no prior experiences with computational thinking.",book:{id:"6936",slug:"early-childhood-education",title:"Early Childhood Education",fullTitle:"Early Childhood Education"},signatures:"Stamatios Papadakis and Michail Kalogiannakis",authors:null}],mostDownloadedChaptersLast30Days:[{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:8743,totalCrossrefCites:15,totalDimensionsCites:21,abstract:"In the twenty-first century, significant changes are occurring related to new scientific discoveries, informatization, globalization, the development of astronautics, robotics, and artificial intelligence. This century is called the age of digital technologies and knowledge. How is the school changing in the new century? How does learning theory change? Currently, you can hear a lot of criticism that the classroom has not changed significantly compared to the last century or even like two centuries ago. Do the teachers succeed in modern changes? The purpose of the chapter is to summarize the current changes in didactics for the use of innovative teaching methods and study the understanding of changes by teachers. In this chapter, we consider four areas: the expansion of the subject of pedagogy, environmental approach to teaching, the digital generation and the changes taking place, and innovation in teaching. The theory of education, figuratively speaking, has two levels. At the macro-level, in the “education-society” relationship, decentralization and diversification, internationalization of education, and the introduction of digital technologies occur. At the micro-level in the “teacher-learner” relationship, there is an active mix of traditional and innovative methods, combination of an activity approach with an energy-informational environment approach, cognition with constructivism and connectivism.",book:{id:"5980",slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"61746",title:"Facilitation of Teachers’ Professional Development through Principals’ Instructional Supervision and Teachers’ Knowledge- Management Behaviors",slug:"facilitation-of-teachers-professional-development-through-principals-instructional-supervision-and-t",totalDownloads:3349,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"With the rise of global competition and the focus on teacher quality, teacher professional development is becoming increasingly crucial, and the stress and challenges for principals are more severe than ever. Teachers can improve their professional abilities through principals’ instructional supervision and their own knowledge-management (KM) behaviors to benefit students. Thus, this chapter analyzes the relationship among principals’ instructional supervision, teachers’ KM, and teachers’ professional development. The author believes that principals’ instructional supervision and effective KM can facilitate the professional development of teachers. The author also believes the readers can know the relationships among them, and teachers’ professional development can be improved through principal’s instructional supervision and teachers’ KM behaviors.",book:{id:"6674",slug:"contemporary-pedagogies-in-teacher-education-and-development",title:"Contemporary Pedagogies in Teacher Education and Development",fullTitle:"Contemporary Pedagogies in Teacher Education and Development"},signatures:"Chien-Chin Chen",authors:[{id:"232569",title:"Ph.D.",name:"Chien Chih",middleName:null,surname:"Chen",slug:"chien-chih-chen",fullName:"Chien Chih Chen"}]},{id:"75908",title:"From the Classroom into Virtual Learning Environments: Essential Knowledge, Competences, Skills and Pedagogical Strategies for the 21st Century Teacher Education in Kenya",slug:"from-the-classroom-into-virtual-learning-environments-essential-knowledge-competences-skills-and-ped",totalDownloads:501,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"As teachers in Kenya begin to migrate from the classroom to virtual learning spaces following COVID 19 pandemic, there is pressing need to realign Teacher Education to requisite Knowledge, competences, skills, and attitudes that will support online teaching. This chapter explores these needs using a combination of lived experiences and literature review that captured a meta-analysis of research trends on e-learning. While trends in Teacher Education indicate progression towards adoption of technology, there are disparities between the theory and practice. Evidence from recent research and reports; and the recollected experiences confirmed knowledge, competence, skills and pedagogical gaps in the implementation of online learning, that have been exacerbated by COVID-19. The researcher recommends that teacher education should sensitize and train teacher trainees on how to access, analyze and use new knowledge emerging with technology; they also should be coached on how learners learn with technology and on fundamentals of the communication process. Particularly the course on educational technology, should focus on how to create and manage online courses. The 5-stage E-Moderator Model and Universal Design for Learning (UDL) are recommended as effective pedagogical scaffold for online teaching.",book:{id:"10229",slug:"teacher-education-in-the-21st-century-emerging-skills-for-a-changing-world",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century - Emerging Skills for a Changing World"},signatures:"Catherine Adhiambo Amimo",authors:[{id:"333482",title:"Dr.",name:"Catherine Adhiambo",middleName:null,surname:"Amimo",slug:"catherine-adhiambo-amimo",fullName:"Catherine Adhiambo Amimo"}]},{id:"75224",title:"Decoding the Digital Gap in Teacher Education: Three Perspectives across the Globe",slug:"decoding-the-digital-gap-in-teacher-education-three-perspectives-across-the-globe",totalDownloads:552,totalCrossrefCites:0,totalDimensionsCites:4,abstract:"Educational use of technology is regularly assessed, and results often show a gap between educational policies and what is actually practiced. This chapter will help clarify how teacher educators experience the changing educational contexts due to the digital revolution, how their meaning-making shifts, and how outside forces influence those processes. The results are based on comparative international studies. Central for this study is practitioners’ professional digital competence, their attitudes towards digital technology and the use of digital technology in education. We found that the influence and contribution of digital practice is carried out quite differently across the globe. Our research questions were: How do practitioners experience teaching in a rapidly changing context? How do attitudes change due to top-down governing of education? and What motivates teacher educators to implement digital technology?",book:{id:"10229",slug:"teacher-education-in-the-21st-century-emerging-skills-for-a-changing-world",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century - Emerging Skills for a Changing World"},signatures:"Steinar Thorvaldsen and Siri Sollied Madsen",authors:[{id:"332624",title:"Associate Prof.",name:"Siri Sollied",middleName:null,surname:"Madsen",slug:"siri-sollied-madsen",fullName:"Siri Sollied Madsen"},{id:"332626",title:"Prof.",name:"Steinar",middleName:null,surname:"Thorvaldsen",slug:"steinar-thorvaldsen",fullName:"Steinar Thorvaldsen"}]},{id:"75416",title:"Self-Study Research: Challenges and Opportunities in Teacher Education",slug:"self-study-research-challenges-and-opportunities-in-teacher-education",totalDownloads:724,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This article aims to describe what self-study research is, why self-study can be a good approach to teacher educators’ professional development and improvements in practice and highlight some challenges and opportunities in this research approach. In addition, the article will shed light on some methodological aspects related to self-study. Self-study refers to teacher educators who in an intentionally and systematically way examine their practice to improve it, based on a deeper understanding of practice, as well as the context practice takes place. In the article, I argue that engaging in self-study is a learning and development process and an approach to developing personal professionalism, collective professionalism and improvements in practice.",book:{id:"10229",slug:"teacher-education-in-the-21st-century-emerging-skills-for-a-changing-world",title:"Teacher Education in the 21st Century",fullTitle:"Teacher Education in the 21st Century - Emerging Skills for a Changing World"},signatures:"Kåre Hauge",authors:[{id:"332053",title:"Associate Prof.",name:"Kåre",middleName:null,surname:"Hauge",slug:"kare-hauge",fullName:"Kåre Hauge"}]}],onlineFirstChaptersFilter:{topicId:"265",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81937",title:"Socialization Experiences among Undergraduate Students in Higher Learning Institutions (HLI)",slug:"socialization-experiences-among-undergraduate-students-in-higher-learning-institutions-hli-",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.99007",abstract:"This work portrays the problems of socialization among undergraduate students in higher learning institutions. The socialization processes in higher learning institution are significant for the successful navigation of students in the academic programs and university environment in preparing the next generation of professional practitioners and scholars. But the undergraduate student socialization experiences of students at university environment are overlooked. To navigate in the higher learning institutions, students should be socialized effectively to the normative contexts of the higher learning institutions. The normative contexts of the higher learning institutions are generally categorized into social and academic contexts, because these context academic and social context integration have been linked to student retention and success. Social integration involves interpersonal relationships, support, interactions with others, and a sense of belonging at a university, which stems from extracurricular activities, informal dealings with peer groups, and interactions with faculty and staff, whereas academic integration is described through grade performance and intellectual development that reflects an ability to meet the standards of the academic system; intellectual development involves a student valuing their education as a process of development in which they gain knowledge and ideas. Students’ background is also the contributing factor for students’ socialization in the University.",book:{id:"10911",title:"Higher Education - New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg"},signatures:"Mulusew Birhanu Ayalew"},{id:"80280",title:"Adoption of Online Learning during the Covid19 Pandemic Lockdown by Universities in Garowe",slug:"adoption-of-online-learning-during-the-covid19-pandemic-lockdown-by-universities-in-garowe",totalDownloads:89,totalDimensionsCites:0,doi:"10.5772/intechopen.99941",abstract:"In response to the Covid-19 outbreak the world closed and therefore countries like Somalia have not been exceptional. The government of Somalia and all higher education institutions adopted crisis intervention measures on implementation of blended learning approaches like online teaching and learning. In this chapter we explore the process and challenges of adopting online learning in response to the world wide lockdown due to the pandemic. Given that this was an abrupt requirement, the survey was interested in finding out whether universities adopted and adapted easily. Researchers compared findings from previous studies and theoretical inclinations on online learning. Results indicate that the adoption of online learning among universities in Garowe was as a matter of crisis management whereby administration, lecturers and students were all not ready and had no prior grounding in this pedagogical learning platform. Just like previous studies online learning implementers have continued to encounter several challenges like intermittent internet network, cost of gadgets and facilities, inadequate skills of both the instructors and students, aspects of communication and satisfaction from stakeholders. With the research survey in Garowe, results show that this is still pervading and therefore need for more rigorous contextualised research on this subject.",book:{id:"10911",title:"Higher Education - New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg"},signatures:"Tumwebaze Alicon Auf and Omer Abdi Hamdi"},{id:"78597",title:"Public-Private Participation in Funding University Education in Sub-Saharan Africa: A Nigerian Case-Study for Sustainable Development",slug:"public-private-participation-in-funding-university-education-in-sub-saharan-africa-a-nigerian-case-s",totalDownloads:136,totalDimensionsCites:0,doi:"10.5772/intechopen.99940",abstract:"The developing countries in Africa still cannot withstand the pressure of the highly competitive global education market. Together with the large numbers of people who make a living in various innovative companies, these countries have solved key contemporary issues affecting global education. For this reason, it is necessary to actively respond to current technological innovation and educational challenges and to eliminate new technology graduates who can effectively interact with students through the responsive expansion of education and training. Expansion of education can produce effective expansion that promotes educational development, but due to budget constraints, most African governments cannot successfully and sustainably implement such educational programs. This is difficult. However, public-private partnership efforts provide a way out of this financial dilemma. The Sub-Saharan Africa initiative has achieved important educational objectives, such as: ensuring relevance for quality; secure funding for sustainability and establish resource mobilization partnerships and connections; and promote international cooperation. This discussion is relevant to the basic conditions for a successful public-private partnership with educational institutions and extended education and sheds light on the impact, lessons, and challenges. The public is increasingly concerned about the importance of higher education in the 21st century. This chapter explores some of the key functions of an innovative education system that supports the development of education in Nigeria and enhances people’s ability to use information. Nigeria’s education system re-emphasizes the importance of public and private universities, but the country does not have a sustainable education system and well-equipped educational institutions to support people’s ability to use information, learning, education, and research activities.",book:{id:"10911",title:"Higher Education - New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg"},signatures:"Lawrence Jones-Esan"},{id:"79197",title:"University Teachers’ Conceptions of What University Is: Implications for the Future of Higher Education",slug:"university-teachers-conceptions-of-what-university-is-implications-for-the-future-of-higher-educatio",totalDownloads:107,totalDimensionsCites:0,doi:"10.5772/intechopen.100813",abstract:"This chapter presents the perception of university teachers about the university, the most recent changes and how they have influenced their activity. The phenomenographic study was conducted with 10 university teachers, nine females and one male with more than 15 years of professional activity. The perception of the university emerges, in the teachers’ voice, focused on the description of its mission, namely as a context for the production and diffusion of knowledge to society, as a space for creative and critical thinking about the world, as an interdisciplinary space and as a system focused on teaching and research. It also includes characteristics related to its structure and functioning, such as the level of hierarchization, bureaucratization, competitiveness, dehumanization and bibliometrics overvaluation. Regarding the perceived changes, they are related to the structural reforms resulting from the Bologna Process, diverse student populations, research and internationalization, new technologies, institutional cooperation, bureaucratization and relationship with the community. Teachers also revealed some dissatisfaction in the way they are experiencing university life due to the overwork resulting from the multiple tasks required in the four activity strands (teaching, research, management and extension) with an impact on quality and innovation, but in line with what the institution demands.",book:{id:"10911",title:"Higher Education - New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg"},signatures:"Elisa Chaleta"},{id:"78595",title:"Globalization and Education: Trends towards Sustainability",slug:"globalization-and-education-trends-towards-sustainability",totalDownloads:58,totalDimensionsCites:0,doi:"10.5772/intechopen.99974",abstract:"Higher Education Institutions (IES) have a very relevant role in the path towards sustainability. The problem of the implementation of curricular sustainability is the disparity of solutions that can be adopted depending on the political and economic situation of each country. The study of a practical case in the south of Honduras allows the student to approach key decisions in a real scenario to bring improvements to a very disadvantaged population, lacking basic services, such as water and electricity, under the premise of sustainability, facing aspects as relevant such as sustainable mobility, water resources management, energy and construction models, in a context where globalization and technological innovation play a very important role. It is essential to know in depth the real context where structural changes will be applied to understand that there is no single reality, that actions are built adapting to specific situations and that the effectiveness of the measures that can be adopted to establish models that prioritize that part of sustainability that best weighs the balance between the environment, society and the economy for each case.",book:{id:"10911",title:"Higher Education - New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg"},signatures:"Maria Olga Bernaldo and Gonzalo Fernandez-Sanchez"},{id:"79255",title:"Higher Education Institutions (HEIs) in Africa Embracing the “New Normal” for Knowledge Production and Innovation: Barriers, Realities, and Possibilities",slug:"higher-education-institutions-heis-in-africa-embracing-the-new-normal-for-knowledge-production-and-i",totalDownloads:128,totalDimensionsCites:1,doi:"10.5772/intechopen.101063",abstract:"If Africa is to remain relevant and competitive in today’s knowledge-based economy, it has to rely on higher education institutions (HEIs) as centers of excellence for knowledge production. HEIs nurture and sustain the production of highly-skilled individuals to support Africa’s growing economies. Among all possible ways, this could be achievable through strategic curricula innovation driven by emerging mobile technologies. Consequently, Africa’s HEIs need to embrace the ‘New Normal’ by optimizing online teaching and learning in their pursuit to expand information and communications technology (ICT) literacy as a means to increase students’ opportunities in higher education (HE). However, Africa’s ability to embrace the ‘New Normal’ has been marred by inadequate ICT infrastructures, low connectivity, unreliable power supply, and national budget constraints that may undermine Africa’s HEIs’ potential to augment knowledge production and innovation.",book:{id:"10911",title:"Higher Education - New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg"},signatures:"Christopher B. Mugimu"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:15,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:156,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:360,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:14,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:303,paginationItems:[{id:"313921",title:"Dr.",name:"Hassan M.",middleName:null,surname:"Heshmati",slug:"hassan-m.-heshmati",fullName:"Hassan M. Heshmati",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313921/images/system/313921.jpg",biography:"Dr. Hassan Massoud Heshmati is an endocrinologist with 46 years of experience in clinical research in academia (university-affiliated hospitals, Paris, France; Mayo Foundation, Rochester, MN, USA) and pharmaceutical companies (Sanofi, Malvern, PA, USA; Essentialis, Carlsbad, CA, USA; Gelesis, Boston, MA, USA). His research activity focuses on pituitary tumors, hyperthyroidism, thyroid cancers, osteoporosis, diabetes, and obesity. He has extensive knowledge in the development of anti-obesity products. Dr. Heshmati is the author of 299 abstracts, chapters, and articles related to endocrinology and metabolism. He is currently a consultant at Endocrinology Metabolism Consulting, LLC, Anthem, AZ, USA.",institutionString:"Endocrinology Metabolism Consulting, LLC",institution:null},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. in Chemistry in July 2000, and his Ph.D. in Physical Chemistry in 2007 from the University of Khartoum, Sudan. In 2009 he joined the Dr. Ron Clarke research group at the School of Chemistry, Faculty of Science, University of Sydney, Australia as a postdoctoral fellow where he worked on the Interaction of ATP with the phosphoenzyme of the Na+, K+-ATPase, and Dual mechanisms of allosteric acceleration of the Na+, K+-ATPase by ATP. He then worked as Assistant Professor at the Department of Chemistry, University of Khartoum, and in 2014 was promoted to Associate Professor ranking. In 2011 he joined the staff of the Chemistry Department at Taif University, Saudi Arabia, where he is currently active as an Assistant Professor. His research interests include:\r\n(1) P-type ATPase Enzyme Kinetics and Mechanisms; (2) Kinetics and Mechanism of Redox Reactions; (3) Autocatalytic reactions; (4) Computational enzyme kinetics; (5) Allosteric acceleration of P-type ATPases by ATP; (6) Exploring of allosteric sites of ATPases and interaction of ATP with ATPases located in the cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, México. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 270 peer-reviewed papers, 32 book chapters, and 4 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:null,institution:null},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"428313",title:"Dr.",name:"Sambangi",middleName:null,surname:"Pratyusha",slug:"sambangi-pratyusha",fullName:"Sambangi Pratyusha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"CGIAR",country:{name:"France"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}}]}},subseries:{item:{id:"94",type:"subseries",title:"Climate Change and Environmental Sustainability",keywords:"Environmental protection, Socio-economic development, Resource exploitation, Environmental degradation, Climate change, Degraded ecosystems, Biodiversity loss",scope:"\r\n\tSustainable development focuses on linking economic development with environmental protection and social development to ensure future prosperity for people and the planet. To tackle global challenges of development and environment, the United Nations General Assembly in 2015 adopted the 17 Sustainable Development Goals. SDGs emphasize that environmental sustainability should be strongly linked to socio-economic development, which should be decoupled from escalating resource use and environmental degradation for the purpose of reducing environmental stress, enhancing human welfare, and improving regional equity. Moreover, sustainable development seeks a balance between human development and decrease in ecological/environmental marginal benefits. Under the increasing stress of climate change, many environmental problems have emerged causing severe impacts at both global and local scales, driving ecosystem service reduction and biodiversity loss. Humanity’s relationship with resource exploitation and environment protection is a major global concern, as new threats to human and environmental security emerge in the Anthropocene. Currently, the world is facing significant challenges in environmental sustainability to protect global environments and to restore degraded ecosystems, while maintaining human development with regional equality. Thus, environmental sustainability with healthy natural ecosystems is critical to maintaining human prosperity in our warming planet.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:null},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}}]},publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:{name:"University of Macau",institutionURL:null,country:{name:"Macau"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Alberto Masuelli",slug:"martin-alberto-masuelli",fullName:"Martin Alberto Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Biomedical Engineering",id:"7"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/140931",hash:"",query:{},params:{id:"140931"},fullPath:"/profiles/140931",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()