Power and voltage levels of some commercial models of hybrid and electric vehicles.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6316",leadTitle:null,fullTitle:"Peat",title:"Peat",subtitle:null,reviewType:"peer-reviewed",abstract:"Peatlands are formed in limited areas and have significant effects on our planet. As a result of their use peatlands are continually shrinking on a daily basis. This edited book, Peat, is intended to provide an overview of different perspectives of peat material in relevant disciplines. We hope that this book will contribute to the expectations and needs of all relevant disciplines that share their findings for future research.",isbn:"978-1-78923-747-4",printIsbn:"978-1-78923-746-7",pdfIsbn:"978-1-83881-395-6",doi:"10.5772/intechopen.69565",price:119,priceEur:129,priceUsd:155,slug:"peat",numberOfPages:174,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"6f47ea9e0e0a431c0bd28420154a4727",bookSignature:"Bülent Topcuoğlu and Metin Turan",publishedDate:"September 19th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6316.jpg",numberOfDownloads:9743,numberOfWosCitations:9,numberOfCrossrefCitations:17,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:26,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:52,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 19th 2017",dateEndSecondStepPublish:"July 10th 2017",dateEndThirdStepPublish:"October 6th 2017",dateEndFourthStepPublish:"January 4th 2018",dateEndFifthStepPublish:"March 5th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"194133",title:"Prof.",name:"Bülent",middleName:null,surname:"Topcuoğlu",slug:"bulent-topcuoglu",fullName:"Bülent Topcuoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/194133/images/4868_n.jpg",biography:"Bülent TOPCUOĞLU was born in Turkey, 1966; he obtained his PhD degree in 1993 at the Ankara University, Turkey in Soil Science and Plant Nutrition department. He is currently working as a Professor on Soil Science and Plant Nutrition, Soil Pollution and Environmental Sciences topics, at the Akdeniz University Vocational school of Technical Sciences, Antalya TURKEY. Author has published over hundred research publications. Prof. Topcuoğlu is a scientific member of many organizations and chaired of many conferences in Istanbul and Antalya, TURKEY.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Akdeniz University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"140612",title:"Prof.",name:"Metin",middleName:null,surname:"Turan",slug:"metin-turan",fullName:"Metin Turan",profilePictureURL:"https://mts.intechopen.com/storage/users/140612/images/system/140612.jpg",biography:"Metin Turan was born in Turkey, 1972, and obtained a Ph.D. in 2002 from Atatürk University, Turkey, in Soil Science and Plant Nutrition. Prof. Turan is a guest lecturer at Cornell University (State University of New York) and the National Chung Hsing University, Department of Soil and Environmental Science, Taichung, Taiwan, ROC. He is currently working as a professor of Soil Ecology and Biological fertilizer in the application of biotechnology in plant breeding topics at the Yeditepe University Engineering Faculty, Genetic and Bioengineering at Istanbul, Turkey. Professor Turan has published more than one hundred research publications. Professor Turan is a scientific member of many organizations and has chaired many conferences in Turkey and Europe.",institutionString:"Yeditepe University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Yeditepe University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"880",title:"Ecosystem",slug:"environmental-sciences-soil-science-ecosystem"}],chapters:[{id:"62866",title:"Introductory Chapter: Introduction to Peat",doi:"10.5772/intechopen.79418",slug:"introductory-chapter-introduction-to-peat",totalDownloads:1021,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Bülent Topcuoğlu and Metin Turan",downloadPdfUrl:"/chapter/pdf-download/62866",previewPdfUrl:"/chapter/pdf-preview/62866",authors:[{id:"194133",title:"Prof.",name:"Bülent",surname:"Topcuoğlu",slug:"bulent-topcuoglu",fullName:"Bülent Topcuoğlu"}],corrections:null},{id:"59349",title:"Salt Marsh Peat Dispersal: Habitat for Fishes, Decapod Crustaceans, and Bivalves",doi:"10.5772/intechopen.74087",slug:"salt-marsh-peat-dispersal-habitat-for-fishes-decapod-crustaceans-and-bivalves",totalDownloads:892,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Salt marshes, especially those of Spartina alterniflora, are among the most productive habitats on Earth. The peat that is formed and accumulates there, as below-ground biomass, can be dispersed in a number of ways, through calving off the marsh edge along bays, in creeks, and other locations as occurs in the Mullica River – Great Bay estuary in southern New Jersey. Based on a variety of sampling approaches, including those collected by sidescan sonar and direct collection, we provide new insights into the ecological role of dispersed peat. Some of this is ice rafted on the marsh surface during storms. Elsewhere, and most commonly, it falls into the intertidal channels or flats where it may continue to support the growth of Spartina, and associated invertebrates such as Geukensia demissa. If it is deposited subtidally these may not be as likely, but in these situations the peat provides structured habitat for other animals such as fishes, crabs, shrimps, and bivalves.",signatures:"Kenneth W. Able, Christina J. Welsh and Ryan Larum",downloadPdfUrl:"/chapter/pdf-download/59349",previewPdfUrl:"/chapter/pdf-preview/59349",authors:[{id:"212685",title:"Dr.",name:"Kenneth",surname:"Able",slug:"kenneth-able",fullName:"Kenneth Able"},{id:"237905",title:"Ms.",name:"Christina",surname:"Welsh",slug:"christina-welsh",fullName:"Christina Welsh"},{id:"237906",title:"Mr.",name:"Ryan",surname:"Larum",slug:"ryan-larum",fullName:"Ryan Larum"}],corrections:null},{id:"58542",title:"Peat Soils of the Everglades of Florida, USA",doi:"10.5772/intechopen.72925",slug:"peat-soils-of-the-everglades-of-florida-usa",totalDownloads:1047,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"In this chapter, we briefly discuss the development of the Everglades over the past 5 million years, the modifications made to the Everglades over the past century and a half and the quantification of the changes that have occurred to the peat soils of the Everglades due to natural and anthropogenic causes during this most recent period. Using Geographic Information Systems and historical data sets, we have been able to calculate the original peat volumes, the remaining peat volumes and thus, the amount lost over the past approximately 150 years. From these volume calculations and peat physical and chemical characterizations by the USEPA over a large area of the Everglades, we have estimated the mass of peat and carbon lost, 900 million metric tons and 300 million metric tons, respectively. The amount of peat lost has implications for hydrological, ecological and landscape restoration and habitat recovery for the Everglades.",signatures:"Thomas W. Dreschel, Susan Hohner, Sumanjit Aich and Christopher\nW. McVoy",downloadPdfUrl:"/chapter/pdf-download/58542",previewPdfUrl:"/chapter/pdf-preview/58542",authors:[{id:"211719",title:"Dr.",name:"Thomas",surname:"Dreschel",slug:"thomas-dreschel",fullName:"Thomas Dreschel"},{id:"211721",title:"Dr.",name:"Christopher",surname:"McVoy",slug:"christopher-mcvoy",fullName:"Christopher McVoy"},{id:"211723",title:"Mr.",name:"Sumanjit",surname:"Aich",slug:"sumanjit-aich",fullName:"Sumanjit Aich"},{id:"211724",title:"Mrs.",name:"Susan",surname:"Hohner",slug:"susan-hohner",fullName:"Susan Hohner"}],corrections:null},{id:"59383",title:"The Status of Pachiterric Histosol Properties as Influenced by Different Land Use",doi:"10.5772/intechopen.74151",slug:"the-status-of-pachiterric-histosol-properties-as-influenced-by-different-land-use",totalDownloads:1315,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Soil drainage as well as soil cultivation and fertilization has considerable influence on the organic matter mineralization rate and changes in the profile structure. Our research suggested that quantitative and qualitative characteristics of peat soil are changing in response to the renaturalization processes and different management. The study set out to estimate chemical and physical properties of Pachiterric Histosol, qualitative and quantitative changes in carbon resulting from different management and renaturalization processes. Wetland and peatland soils are among the largest organic carbon stocks, and their use contributes to carbon emissions or accumulation processes. The focus of our work is research into the peculiarities of organic carbon accumulation and transformation as influenced by different land use of peat soil. Results on the chemical properties of Pachiterric Histosol showed the influence of management and renaturalization on mobile and by pyrophosphate solution extractable humic and fulvic acids and humification degree. We are also exploring the specificities of organic carbon variation in the context of peat renaturalization and are seeking to answer the question as how to optimize the use of peat soils and how to match up this with the renaturalization processes in order to reduce greenhouse gas emissions and contribute to organic carbon accumulation and conservation in the soil.",signatures:"Alvyra Slepetiene, Kristina Amaleviciute-Volunge, Jonas Slepetys,\nInga Liaudanskiene and Jonas Volungevicius",downloadPdfUrl:"/chapter/pdf-download/59383",previewPdfUrl:"/chapter/pdf-preview/59383",authors:[{id:"211107",title:"Dr.",name:"Alvyra",surname:"Slepetiene",slug:"alvyra-slepetiene",fullName:"Alvyra Slepetiene"},{id:"211216",title:"Dr.",name:"Kristina",surname:"Amaleviciute",slug:"kristina-amaleviciute",fullName:"Kristina Amaleviciute"},{id:"211217",title:"Dr.",name:"Jonas",surname:"Slepetys",slug:"jonas-slepetys",fullName:"Jonas Slepetys"},{id:"211219",title:"Dr.",name:"Inga",surname:"Liaudanskiene",slug:"inga-liaudanskiene",fullName:"Inga Liaudanskiene"},{id:"211221",title:"Dr.",name:"Jonas",surname:"Volungevicius",slug:"jonas-volungevicius",fullName:"Jonas Volungevicius"}],corrections:null},{id:"62735",title:"Peat Use in Horticulture",doi:"10.5772/intechopen.79171",slug:"peat-use-in-horticulture",totalDownloads:1557,totalCrossrefCites:6,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Peat is a spongy substance which is an effect of incomplete decomposition of plant residues in different stages of decomposition. Between the several organic matters which are used as substrate for horticultural plants cultivation in soilless conditions, peat is the unabandonable ingredient for mixtures for commercial production of plants. Peat is used in horticulture as a component of garden plant substrates, in agriculture for the production of garden soil and as an organic fertilizer, and in balneology as a material for baths and wraps. The use of peat for agriculture and horticulture is determined by the following quality parameters: the degree of decomposition, ash content, pH, the presence of carbonates, the density of the solid phase, bulk density, and porosity. As an organic material, the peat forms in the acidic, waterlogged, and sterile conditions of fens and bogs. The conditions seem like the development of mosses. The plants do not compose as they die. Instead of this, the organic matter is laid down and accumulates in a slow time as peat due to the oxygen deficiency in the bog. This makes peat a highly productive growing medium. In the present novel review, we discuss the peat use in horticulture.",signatures:"Nurgul Kitir, Ertan Yildirim, Üstün Şahin, Metin Turan, Melek Ekinci,\nSelda Ors, Raziye Kul, Hüsnü Ünlü and Halime Ünlü",downloadPdfUrl:"/chapter/pdf-download/62735",previewPdfUrl:"/chapter/pdf-preview/62735",authors:[{id:"140612",title:"Prof.",name:"Metin",surname:"Turan",slug:"metin-turan",fullName:"Metin Turan"},{id:"186637",title:"Dr.",name:"Nurgül",surname:"Kıtır",slug:"nurgul-kitir",fullName:"Nurgül Kıtır"},{id:"186639",title:"Prof.",name:"Ertan",surname:"Yildirim",slug:"ertan-yildirim",fullName:"Ertan Yildirim"},{id:"247120",title:"Prof.",name:"Melek",surname:"Ekinci",slug:"melek-ekinci",fullName:"Melek Ekinci"},{id:"247121",title:"Prof.",name:"Selda",surname:"Ors",slug:"selda-ors",fullName:"Selda Ors"},{id:"247122",title:"MSc.",name:"Raziye",surname:"Kul",slug:"raziye-kul",fullName:"Raziye Kul"},{id:"247123",title:"Prof.",name:"Ustun",surname:"Sahin",slug:"ustun-sahin",fullName:"Ustun Sahin"},{id:"260571",title:"Prof.",name:"Hüsnü",surname:"Ünlü",slug:"husnu-unlu",fullName:"Hüsnü Ünlü"},{id:"260572",title:"Dr.",name:"Halime",surname:"Ünlü",slug:"halime-unlu",fullName:"Halime Ünlü"}],corrections:null},{id:"59378",title:"Physical and Geotechnical Properties of Tropical Peat and Its Stabilization",doi:"10.5772/intechopen.74173",slug:"physical-and-geotechnical-properties-of-tropical-peat-and-its-stabilization",totalDownloads:1363,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The chapter presents the physical and engineering properties of tropical peat treated with various types of stabilizers. Quick lime (QL), fly ash (FA), and ordinary Portland cement (OPC) were used as stabilizers. The amounts of QL, FA, and OPC added with the peat samples are in the range of 2–8, 5–20, and 5–20%, respectively. Various physical or index and engineering tests have been conducted to characterize the peat samples. Unconfined compressive strength (UCS) tests were conducted on original and treated peat samples cured for 7, 14, and 28 days. The results show that the UCS value increases with the increase of all stabilizers used and with curing period. The UCS tests were also conducted on the peat samples with the combination of QL and FA to study the combined effects of the stabilizers. The present study established different correlations between physical and engineering properties of original peat and UCS results on treated peat samples with different types of stabilizers. Geotechnical engineers can refer to these correlations to determine the bearing capacity of treated peat. In addition, scanning electron microscope (SEM) studies were conducted on original and treated peat samples to investigate the microstructure of the samples.",signatures:"Prabir K. Kolay and Siti Noor Linda Taib",downloadPdfUrl:"/chapter/pdf-download/59378",previewPdfUrl:"/chapter/pdf-preview/59378",authors:[{id:"210953",title:"Dr.",name:"Prabir",surname:"Kolay",slug:"prabir-kolay",fullName:"Prabir Kolay"},{id:"212036",title:"Dr.",name:"Siti Noor Linda Bt.",surname:"Taib",slug:"siti-noor-linda-bt.-taib",fullName:"Siti Noor Linda Bt. Taib"}],corrections:null},{id:"59545",title:"Mass Stabilization as a Ground Improvement Method for Soft Peaty",doi:"10.5772/intechopen.74144",slug:"mass-stabilization-as-a-ground-improvement-method-for-soft-peaty",totalDownloads:1697,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Construction of road embankments or other infrastructures on soft peat is a challenge. The main problems are high compressibility and rather low undrained shear strength of peat. Mass stabilization provides a solution to improve the properties of a peaty subgrade. Mass stabilization is a ground improvement method, where hardened soil mass is created by adding binder into soil and by controlled in situ mixing. Mass stabilization poses an alternative solution for conventional mass replacement or other techniques, which leave peat in place. The chapter deals with mass stabilization of soft peat soil. Specific attention is paid to design, research and construction considerations, and experience obtained during last three decades. Peat properties before and after stabilization, design methods including pre-testing, stabilization technique and machinery, quality control methods and practices, binder technology, long-term performance of mass stabilized peat, environmental effects, feasibility, applications, and limitations are all presented and discussed in this chapter. The long-term observations (during the last 25 years) have shown that the strength of stabilized peat has continued to increase in average 1.6 times from the strength of 30 days. Therefore, mass stabilization has proven to be a flexible ground improvement method for peat layers with maximum thickness of 8 m.",signatures:"Forsman Juha, Korkiala-Tanttu Leena and Piispanen Pyry",downloadPdfUrl:"/chapter/pdf-download/59545",previewPdfUrl:"/chapter/pdf-preview/59545",authors:[{id:"212610",title:"M.Sc.",name:"Juha",surname:"Forsman",slug:"juha-forsman",fullName:"Juha Forsman"},{id:"212611",title:"Prof.",name:"Leena",surname:"Korkiala-Tanttu",slug:"leena-korkiala-tanttu",fullName:"Leena Korkiala-Tanttu"},{id:"212612",title:"MSc.",name:"Pyry",surname:"Piispanen",slug:"pyry-piispanen",fullName:"Pyry Piispanen"}],corrections:null},{id:"62205",title:"Hydrological Function of a Midlatitude Headwater Peatland",doi:"10.5772/intechopen.77240",slug:"hydrological-function-of-a-midlatitude-headwater-peatland",totalDownloads:856,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Peatland represents quite significant phenomenon in the headstream areas of Czech rivers. Considering the fact that these areas are crucial for streamflow generation process, it is very important to study the mechanism of runoff formation in a peatland and its hydrological function. Natural runoff process is affected by man already by its birth, thus in headwaters where numerous procedures related to runoff retardation and water retention increase in headstream areas could be realized. To understand and clarify the runoff generation process and the effect of various physicogeographic factors on its dynamics, the detailed analyses were carried out in the Vltava River headwaters (sw. Czechia) in recent years. It was necessary to consider the evaluation of peatland retention capacity, its hydraulic communication with draining watercourses and of runoff regime variability during various hydroclimatic conditions. The big attention was focused on findings of a runoff dynamics dependence on the groundwater table in the peatland and of the runoff chemistry and balance using isotopic hydrology methods. Natural tracers were applied at sprinkling plots to identify preferential flow and runoff formation at two opposite hillslopes in this peaty mountain headwater.",signatures:"Jan Kocum, Bohumír Janský, Lukáš Vlček and Tomáš Doležal",downloadPdfUrl:"/chapter/pdf-download/62205",previewPdfUrl:"/chapter/pdf-preview/62205",authors:[{id:"214503",title:"Ph.D.",name:"Jan",surname:"Kocum",slug:"jan-kocum",fullName:"Jan Kocum"},{id:"216854",title:"Prof.",name:"Bohumír",surname:"Janský",slug:"bohumir-jansky",fullName:"Bohumír Janský"},{id:"216855",title:"Dr.",name:"Lukáš",surname:"Vlček",slug:"lukas-vlcek",fullName:"Lukáš Vlček"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5358",title:"Soil Contamination",subtitle:"Current Consequences and Further Solutions",isOpenForSubmission:!1,hash:"e4d136df9f1658ae17f3ba7b3c992460",slug:"soil-contamination-current-consequences-and-further-solutions",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5358.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68989",slug:"erratum-public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-inter",title:"Erratum - Public Perceptions of Values Associated with Wildfire Protection at the Wildland-Urban Interface: A Synthesis of National Findings",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68989.pdf",downloadPdfUrl:"/chapter/pdf-download/68989",previewPdfUrl:"/chapter/pdf-preview/68989",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68989",risUrl:"/chapter/ris/68989",chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9894",leadTitle:null,title:"Advanced Ceramic Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"This book examines exciting advancements in the field of ceramics, including nanotechnology, clean energy, and tribology as well as fundamental concepts like defects and structure. It is a comprehensive discussion on how today’s ceramics are processed and used in many of today’s critical technologies. It discusses current techniques for synthesizing durable and cost-effective ceramic components with biocompatibility, complexity, and high precision. This book is a comprehensive reference for researchers, engineers, dental clinicians, biologists, academics, and students interested in ceramics.",isbn:"978-1-83881-212-6",printIsbn:"978-1-83881-204-1",pdfIsbn:"978-1-83881-213-3",doi:"10.5772/intechopen.87703",price:119,priceEur:129,priceUsd:155,slug:"advanced-ceramic-materials",numberOfPages:296,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"9adbe58d10d5ca2b61e9ff2b6b138f40",bookSignature:"Mohsen Mhadhbi",publishedDate:"May 5th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9894.jpg",keywords:null,numberOfDownloads:6035,numberOfWosCitations:0,numberOfCrossrefCitations:9,numberOfDimensionsCitations:11,numberOfTotalCitations:20,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 29th 2020",dateEndSecondStepPublish:"August 5th 2020",dateEndThirdStepPublish:"October 4th 2020",dateEndFourthStepPublish:"December 23rd 2020",dateEndFifthStepPublish:"February 21st 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Dr. Mohsen Mhadhbi is a reviewer and editorial board member of different scientific publishers and congresses, as well as a member of a number of international associations, to name a few: American Association for Science and Technology, International Association of Advanced Materials (IAAM).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"228366",title:"Dr.",name:"Mohsen",middleName:null,surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi",profilePictureURL:"https://mts.intechopen.com/storage/users/228366/images/system/228366.png",biography:"Dr. Mohsen Mhadhbi obtained his Ph.D. degree from the Faculty of Sciences of Sfax, Tunisia. He is currently Assistant Professor of Chemistry in National Institute of Research and Physical-chemical Analysis, Tunisia. His research interests include material engineering, modelling, powder technology, and nanomaterials for mechanical and biomedical applications. Her published works in national and international impacted journals and books. He is a teacher in Chemistry. Hence, he supervised several researchers in materials science and nanometerials. He is a member of various scientific journals and associations and has been serving as an editorial board member of repute.",institutionString:"Tunis El Manar University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Tunis El Manar University",institutionURL:null,country:{name:"Tunisia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"155",title:"Ceramics",slug:"ceramics"}],chapters:[{id:"75967",title:"Recent Advances in Ceramic Materials for Dentistry",slug:"recent-advances-in-ceramic-materials-for-dentistry",totalDownloads:739,totalCrossrefCites:0,authors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"},{id:"324375",title:"Dr.",name:"Faïçal",surname:"Khlissa",slug:"faical-khlissa",fullName:"Faïçal Khlissa"},{id:"324535",title:"Dr.",name:"Chaker",surname:"Bouzidi",slug:"chaker-bouzidi",fullName:"Chaker Bouzidi"}]},{id:"74215",title:"Ferroelectric Glass-Ceramic Systems for Energy Storage Applications",slug:"ferroelectric-glass-ceramic-systems-for-energy-storage-applications",totalDownloads:506,totalCrossrefCites:0,authors:[{id:"323331",title:"Dr.",name:"Abdulkarim",surname:"Khalf",slug:"abdulkarim-khalf",fullName:"Abdulkarim Khalf"}]},{id:"74064",title:"From the Laser Plume to the Laser Ceramics",slug:"from-the-laser-plume-to-the-laser-ceramics",totalDownloads:580,totalCrossrefCites:0,authors:[{id:"97328",title:"Prof.",name:"Vladimir",surname:"Solomonov",slug:"vladimir-solomonov",fullName:"Vladimir Solomonov"},{id:"328400",title:"Prof.",name:"Vladimir",surname:"Osipov",slug:"vladimir-osipov",fullName:"Vladimir Osipov"},{id:"329374",title:"Dr.",name:"Vecheslav",surname:"Platonov",slug:"vecheslav-platonov",fullName:"Vecheslav Platonov"},{id:"329375",title:"MSc.",name:"Vladislav",surname:"Shitov",slug:"vladislav-shitov",fullName:"Vladislav Shitov"}]},{id:"73127",title:"The Investigation on the Fabrication and Characterization of the Multicomponent Ceramics Based on PZT and the Relaxor PZN-PMnN Ferroelectric Materials",slug:"the-investigation-on-the-fabrication-and-characterization-of-the-multicomponent-ceramics-based-on-pz",totalDownloads:472,totalCrossrefCites:1,authors:[{id:"241214",title:"Dr.",name:"Le",surname:"Dai Vuong",slug:"le-dai-vuong",fullName:"Le Dai Vuong"},{id:"326085",title:"Prof.",name:"Vo",surname:"Thanh Tung",slug:"vo-thanh-tung",fullName:"Vo Thanh Tung"}]},{id:"73186",title:"Self-Healing of Concrete through Ceramic Nanocontainers Loaded with Corrosion Inhibitors and Microorganisms",slug:"self-healing-of-concrete-through-ceramic-nanocontainers-loaded-with-corrosion-inhibitors-and-microor",totalDownloads:394,totalCrossrefCites:1,authors:[{id:"306484",title:"Emeritus Prof.",name:"George",surname:"Kordas",slug:"george-kordas",fullName:"George Kordas"}]},{id:"73538",title:"New Bismuth Sodium Titanate Based Ceramics and Their Applications",slug:"new-bismuth-sodium-titanate-based-ceramics-and-their-applications",totalDownloads:524,totalCrossrefCites:0,authors:[{id:"324929",title:"Dr.",name:"Hengchang",surname:"Nie",slug:"hengchang-nie",fullName:"Hengchang Nie"},{id:"332042",title:"Dr.",name:"Genshui",surname:"Wang",slug:"genshui-wang",fullName:"Genshui Wang"},{id:"332043",title:"Dr.",name:"Xianlin",surname:"Dong",slug:"xianlin-dong",fullName:"Xianlin Dong"}]},{id:"74295",title:"Investigation of Structural, Magnetic and Electrical Properties of Chromium Substituted Nickel Ceramic Nanopowders",slug:"investigation-of-structural-magnetic-and-electrical-properties-of-chromium-substituted-nickel-cerami",totalDownloads:302,totalCrossrefCites:0,authors:[{id:"289636",title:"Prof.",name:"Ravinder",surname:"Dachepalli",slug:"ravinder-dachepalli",fullName:"Ravinder Dachepalli"},{id:"346605",title:"Dr.",name:"Nyathani",surname:"Maramu",slug:"nyathani-maramu",fullName:"Nyathani Maramu"},{id:"346606",title:"Dr.",name:"Sadhana",surname:"Katlakunta",slug:"sadhana-katlakunta",fullName:"Sadhana Katlakunta"}]},{id:"74406",title:"The Effect of Ceramic Wastes on Physical and Mechanical Properties of Eco-Friendly Flowable Sand Concrete",slug:"the-effect-of-ceramic-wastes-on-physical-and-mechanical-properties-of-eco-friendly-flowable-sand-con",totalDownloads:347,totalCrossrefCites:4,authors:[{id:"323550",title:"Dr.",name:"Mohamed",surname:"Guendouz",slug:"mohamed-guendouz",fullName:"Mohamed Guendouz"},{id:"326866",title:"Dr.",name:"Alexandra",surname:"Bourdot",slug:"alexandra-bourdot",fullName:"Alexandra Bourdot"},{id:"326867",title:"Dr.",name:"Djamila",surname:"Boukhelkhal",slug:"djamila-boukhelkhal",fullName:"Djamila Boukhelkhal"},{id:"338169",title:"Mr.",name:"Oussama",surname:"Babachikh",slug:"oussama-babachikh",fullName:"Oussama Babachikh"},{id:"338170",title:"Mr.",name:"Amine",surname:"Hamadouche",slug:"amine-hamadouche",fullName:"Amine Hamadouche"}]},{id:"73232",title:"Ceramics Coated Metallic Materials: Methods, Properties and Applications",slug:"ceramics-coated-metallic-materials-methods-properties-and-applications",totalDownloads:666,totalCrossrefCites:1,authors:[{id:"324466",title:"M.D.",name:"Xiaowei",surname:"Xun",slug:"xiaowei-xun",fullName:"Xiaowei Xun"},{id:"325574",title:"Dr.",name:"Dongmian",surname:"Zang",slug:"dongmian-zang",fullName:"Dongmian Zang"}]},{id:"73977",title:"Nanostructured Multilayer Composite Coatings for Cutting Tools",slug:"nanostructured-multilayer-composite-coatings-for-cutting-tools",totalDownloads:416,totalCrossrefCites:0,authors:[{id:"196459",title:"Dr.",name:"Alexey",surname:"Vereschaka",slug:"alexey-vereschaka",fullName:"Alexey Vereschaka"},{id:"207607",title:"Dr.",name:"Nikolay",surname:"Sitnikov",slug:"nikolay-sitnikov",fullName:"Nikolay Sitnikov"},{id:"264336",title:"Dr.",name:"Catherine",surname:"Sotova",slug:"catherine-sotova",fullName:"Catherine Sotova"},{id:"329434",title:"Prof.",name:"Sergey",surname:"Grigoriev",slug:"sergey-grigoriev",fullName:"Sergey Grigoriev"},{id:"329437",title:"Dr.",name:"Filipp",surname:"Milovich",slug:"filipp-milovich",fullName:"Filipp Milovich"},{id:"329438",title:"Dr.",name:"Nikolay",surname:"Andreev",slug:"nikolay-andreev",fullName:"Nikolay Andreev"},{id:"330235",title:"Dr.",name:"Marina",surname:"Volosova",slug:"marina-volosova",fullName:"Marina Volosova"}]},{id:"74485",title:"Three-Dimensionally Ordered Macroporous-Mesoporous Bioactive Glass Ceramics for Drug Delivery Capacity and Evaluation of Drug Release",slug:"three-dimensionally-ordered-macroporous-mesoporous-bioactive-glass-ceramics-for-drug-delivery-capaci",totalDownloads:400,totalCrossrefCites:0,authors:[{id:"328197",title:"Assistant Prof.",name:"Upsorn",surname:"Boonyang",slug:"upsorn-boonyang",fullName:"Upsorn Boonyang"},{id:"338371",title:"Dr.",name:"Namon",surname:"Hirun",slug:"namon-hirun",fullName:"Namon Hirun"},{id:"338373",title:"Mrs.",name:"Reedwan",surname:"Bin-Zafar Auniq",slug:"reedwan-bin-zafar-auniq",fullName:"Reedwan Bin-Zafar Auniq"}]},{id:"75213",title:"Challenges in Rietveld Refinement and Structure Visualization in Ceramics",slug:"challenges-in-rietveld-refinement-and-structure-visualization-in-ceramics",totalDownloads:690,totalCrossrefCites:2,authors:[{id:"325411",title:"Dr.",name:"Touseef",surname:"Para",slug:"touseef-para",fullName:"Touseef Para"},{id:"346209",title:"Dr.",name:"Shaibal Kanti",surname:"Sarkar",slug:"shaibal-kanti-sarkar",fullName:"Shaibal Kanti Sarkar"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6084",title:"Recent Advances in Porous Ceramics",subtitle:null,isOpenForSubmission:!1,hash:"c6749abbf887821d1030727f7eee1d6f",slug:"recent-advances-in-porous-ceramics",bookSignature:"Uday M. Basheer Al-Naib",coverURL:"https://cdn.intechopen.com/books/images_new/6084.jpg",editedByType:"Edited by",editors:[{id:"182041",title:null,name:"Uday",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7519",title:"Sol-Gel Method",subtitle:"Design and Synthesis of New Materials with Interesting Physical, Chemical and Biological Properties",isOpenForSubmission:!1,hash:"cf094d22ebcb3083749e5f96e47f7769",slug:"sol-gel-method-design-and-synthesis-of-new-materials-with-interesting-physical-chemical-and-biological-properties",bookSignature:"Guadalupe Valverde Aguilar",coverURL:"https://cdn.intechopen.com/books/images_new/7519.jpg",editedByType:"Edited by",editors:[{id:"186652",title:"Dr.",name:"Guadalupe",surname:"Valverde Aguilar",slug:"guadalupe-valverde-aguilar",fullName:"Guadalupe Valverde Aguilar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8612",title:"Geopolymers and Other Geosynthetics",subtitle:null,isOpenForSubmission:!1,hash:"adfd9b7e361d6bb82c88220c7b28765a",slug:"geopolymers-and-other-geosynthetics",bookSignature:"Mazen Alshaaer and Han-Yong Jeon",coverURL:"https://cdn.intechopen.com/books/images_new/8612.jpg",editedByType:"Edited by",editors:[{id:"315119",title:"Dr.",name:"Mazen",surname:"Alshaaer",slug:"mazen-alshaaer",fullName:"Mazen Alshaaer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7449",title:"Ceramic Materials",subtitle:"Synthesis, Characterization, Applications and Recycling",isOpenForSubmission:!1,hash:"ec6a7353676eab0c75ad96e44512952f",slug:"ceramic-materials-synthesis-characterization-applications-and-recycling",bookSignature:"Dolores Eliche Quesada, Luis Perez Villarejo and Pedro Sánchez Soto",coverURL:"https://cdn.intechopen.com/books/images_new/7449.jpg",editedByType:"Edited by",editors:[{id:"225122",title:"Prof.",name:"Dolores",surname:"Eliche Quesada",slug:"dolores-eliche-quesada",fullName:"Dolores Eliche Quesada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrites",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:"ferrites-synthesis-and-applications",bookSignature:"Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52321",title:"Passenger Exposure to Magnetic Fields in Electric Vehicles",doi:"10.5772/64434",slug:"passenger-exposure-to-magnetic-fields-in-electric-vehicles",body:'\n
The traction drive of an electric car is an electrical system of considerable power, ranging from 40 to 120 kW. Even higher power levels are found in high‐end models or in other vehicles such as electric buses. These power levels are usually achieved with high currents rather than voltages. Specifically, most commercial vehicles nowadays work with voltage levels below 400 V, which implies currents of the order of hundreds of amperes. This means that these traction drives could generate magnetic fields of considerable strength when compared to other conventional sources.
\nAt the same time, distances between these magnetic field generators and the passengers are relatively short in most vehicles; for instance, it is usual to place the battery pack as far as possible from the bodywork to minimize the risk of battery damage and its consequences in case of crash; this implies positioning them just under or behind the passenger seats [1]. Consequently, there could be hundreds of amperes circulating some centimeters away from the passengers during strong accelerations or deep regenerative braking.
\nThe combination of high currents and short distances involves some risks due to the presence of strong magnetic fields. These fields can potentially have undesired effects on electric and electronics devices, but also on living beings inside the vehicle, or close to it. The first effects are known as electromagnetic interference (EMI) and are analyzed within the discipline of electromagnetic compatibility (EMC), whose main goal is to ensure proper operation of operational equipment in a common electromagnetic environment. This is usually done by limiting or conditioning the electromagnetic fields (EMFs) emitted by each device, but mostly by immunizing them so that they are not affected by EMI coming from the rest of the devices.
\nThe second effects are named electromagnetic radiation (EMR) and belong to the field known as bioelectromagnetism or bioelectromagnetics, which studies all kinds of interactions between EMFs and biological systems. EMR is usually classified into ionizing and nonionizing radiation, depending on its capability to ionize atoms and therefore to break chemical bonds. This is only possible if the radiation carries a high amount of energy, and hence ionizing capability is directly associated with wavelength and thus with frequency. The boundary between nonionizing and ionizing EMR is located in the ultraviolet range of the electromagnetic spectrum. In this sense, all the radiation emitted by an electric vehicle is nonionizing.
\nThe relationship between nonionizing EMR and human health has been studied for decades. In 1996, the World Health Organization (WHO) established the
On the other hand, short‐term nonionizing effects are well established, and their mechanisms are well known. These biological effects occur as soon as the exposure begins, and they disappear when it ceases, or shortly after. They are caused by extremely strong low‐frequency (up to a few hundred kHz) and strong medium‐frequency EMFs (radio waves and microwaves up to 300 GHz), and thus they are also known as acute effects. They may be classified into two main groups: electrostimulant effects and thermal effects. The former are a consequence of the coupling between low‐frequency fields and living matter, an example of this would be induced currents in some organic tissues generated by an external magnetic field. The latter are due to energy exchange between medium‐frequency fields and biological tissues, which produces a temperature increase in those body parts affected. Thermal effects are usually negligible for field frequencies below 100 kHz, but become increasingly significant as frequency grows. Current standards, guidelines, and recommendations regarding maximum exposure values are developed considering these acute effects.
\nThis chapter is intended to introduce the reader to the topic of magnetic field exposure in electric vehicles (EVs). For further information, a considerable number of references are provided at the end. The chapter is divided into different sections as follows:\n
Section 2, Problem description, describes the main sources of magnetic field within an EV and the corresponding properties of those fields.
Section 3, Prevention guidelines and standards, presents the two most accepted criteria for limiting magnetic field exposure.
Section 4, State of the art, summarizes the most relevant studies published to date about magnetic field exposure in electric vehicles, as well as their main conclusions.
Section 5, Design guidelines, lists some design modifications and considerations that can help improve the safety on an EV from the EMR point of view.
Section 6, Discussion, presents some arguable ideas about magnetic field exposure in EVs.
Electric vehicles are one of the most relevant applications in which power devices and general public share a common space. Other well‐known precedents are power lines close to houses or buildings, electric trains and trams, and household appliances, to cite a few examples. However, the specific characteristics of EVs could make this issue particularly worrying from the point of view of magnetic field exposure. The combination of high current levels, short average distances between equipment and passengers, and long exposure duration is especially detrimental in this application.
\nAs mentioned in the “Introduction” section, power levels in electric vehicles are of the order of tens of kW, while voltage levels rarely exceed 600 V, as shown in Table 1. This implies that current levels usually reach hundreds of amperes. There are not many applications in which people are close to wires or devices carrying such high currents. Besides, the present trend in EVs nowadays consists in reducing voltage levels as much as possible, which implies even higher currents. Paradoxically, lower voltages imply improved safety in case of short circuit or electrocution, but also reduced safety from the point of view of magnetic field exposure.
\nSecond, distances between the traction drive and the passengers are usually short. For a typical electric car, values range from 0.2 to 3.0 m depending on the location of all the power devices and power cables. In this sense, the topology and the configuration of the vehicle (i.e., how the power devices are located within the available space) are particularly relevant:\n
For instance, there are some differences between those vehicles that add a DC‐DC converter connecting the batteries and the inverter as those who do not (see Figure 1). Without such DC‐DC, the battery must have enough voltage for the inverter to drive the electrical machine in every required operating point (torque‐speed). This is usually done reaching a compromise between battery voltage, which should not be too high (using too many cells in series increase balancing and safety requirements) and machine voltage, which should not be too low (lower voltages imply higher currents and lower number of turns in the windings). In general, adding a DC‐DC allows for higher voltages in the drive, which improves magnetic field exposure but could worsen electric field exposure. However, in most cases the DC‐DC aims to reduce battery voltage, and thus battery current increases. Hence, if the batteries are placed close to the passengers, they could suffer from higher magnetic fields.
There are also some differences between pure electric vehicles and hybrid electric vehicles. The former have simpler traction systems, with fewer devices and mechanisms, which can be easily accommodated within the available space. On the other hand, the power train of the latter comprises more equipment, and thus they are more prone to suffer from room issues. Having more flexibility to distribute the power devices within the vehicle is always a good thing, and magnetic field exposure is another aspect that benefits from it, since certain parts can be moved away from the passengers. Nevertheless, pure electric vehicles use more electric power than their counterparts. Considering that voltage levels are similar (see Table 1), this means that pure EVs use higher currents and thus they generate stronger magnetic fields. In general, it could be expected that the second factor (stronger fields) weighs more than the first one (longer distances), so that pure EVs should imply higher exposure levels than hybrid vehicles.
Finally, the type of drive also has some influence over passenger field exposure, namely those vehicles with rear‐wheel drives usually place most of the traction equipment (i.e., the electrical machine and the inverter) in the rear part of the vehicle, while front‐wheel vehicles place it in the front part. As cars are given aerodynamic shapes to minimize aerodynamic drag, the front part is usually longer than the rear part, and distances between the front wheels and the front seats are usually longer than those between the rear wheels and the rear seats, as shown by the two examples in Figure 2. This means that vehicles with front‐wheel drives will usually have longer distances between these power devices and the closest passengers.
Third, regarding the duration of the exposure, it is important to note that general public is subject to electromagnetic fields generated by EVs for a considerable amount of time, significantly longer than other daily exposures such as household appliances. From the results presented in [5, 6], it can be concluded that European citizens spend an average of 1 h and 25 min per working day driving their cars. Even if an appreciable part of that time is spent with the vehicle stopped (e.g., traffic lights or traffic jams), situation in which magnetic fields should be minimum, the duration of the exposure is still rather long. In the United States of America, these average times are probably even longer, up to 2 hours in average. It is important to note here that, in the case of low‐frequency magnetic fields and health effects, it is not necessary to take exposure duration into account at the moment, since there is no scientific proof of any health consequences due to this type of exposure.
\nModel | \nType | \nDrive | \nPower level | \nVoltage level | \n
---|---|---|---|---|
Mitsubishi i‐MiEV | \n||||
Peugeot iOn | \nBEV | \nRear wheel | \n49 kW | \n400 VDC | \n
Citroën C‐Zero | \n||||
Nissan LEAF | \nBEV | \nFront wheel | \n80 kW | \n400 VDC | \n
BMW i3 | \nBEV | \nRear wheel | \n125 kW | \n500 VDC | \n
Tesla model S | \nBEV | \nRear wheel | \n235 kW | \n650 VDC | \n
Toyota Prius (3rd gen.) | \nHV | \nFront wheel | \n74 kW | \n400 VDC | \n
Toyota Prius PHV | \nPHV | \nFront wheel | \n60 kW | \n350 VDC | \n
Chevrolet Volt | \nPHV | \nFront wheel | \n55 kW (x2) | \n400 VDC | \n
Power and voltage levels of some commercial models of hybrid and electric vehicles.
BEV = battery electric vehicle; HV = hybrid vehicle; PHV = plug‐in hybrid vehicle.
(a) Most common topology in electric cars nowadays. (b) Alternative topology, in which a DC‐DC converter is added between the batteries and the inverter.
Schematics of two well‐known pure EVs, showing the position of the main power devices: batteries, inverter, and electrical machine. (a) Rear‐wheel drive and (b) front‐wheel drive. Original images extracted from [
In summary, magnetic fields in EVs could become an issue from the point of view of human health due to a combination of three factors: average and peak current levels, short distances between field generators and the passengers, and lengthy exposures.
\nUnder static electromagnetic conditions, electric fields basically depend on the voltage levels and on the distances between the passenger and the corresponding power equipment (Coulomb’s law). Similarly, magnetic fields depend on the current levels and on that same distances (Biot‐Savart law). In other words, when these physical magnitudes do not change over time, both fields are not coupled and they can be studied separately.
\nHowever, most electrical systems, EVs included, are characterized by time‐varying electric magnitudes. In the most general case, and according to Maxwell’s equations, both fields are coupled and their dependence with respect to variables such as voltages and currents is much more complex than those given by Coulomb and Biot‐Savart laws. Fortunately, it is not necessary to work with Maxwell’s equations in many cases, in which quasistatic approximations are applicable. Specifically, when the frequencies of the electromagnetic phenomena are low—so that propagation speed can be considered infinite [7]—a quasistatic model can be used, which provides an intermediate solution between the most general dynamic case (Maxwell’s equations) and the purely static case (Coulomb and Biot‐Savart laws). In this sense, a quasistatic system evolves from one state to another as if it was a static system [8].
\nDepending on the particular quasistatic model employed (each variant represents a different approximation of Maxwell’s equations), the simplifications adopted will vary. In this particular case, Darwin’s model is used, which considers both capacitive and inductive effects and which incorporates magnetic field contribution to total electric field (Faraday’s law) [8]. In Darwin’s model, Biot‐Savart law is directly applicable, the only difference being that currents and magnetic fields are time‐varying variables. However, Coulomb’s law must be extended to account for magnetic induction. In other words, magnetic fields still depend on currents and distances, but also on time, while electric fields depend on voltages, distances, time, and on magnetic fields.
\nElectric vehicles constitute an application in which quasistatic models are appropriate, since frequencies are generally low. There are basically two types of frequencies in an electrical drive, such as those propelling EVs:\n
Fundamental frequencies: These are the lowest frequencies in the system, and they are related to the operating point of the drive. For example, in a steady‐state situation, fundamental frequency would be roughly 0 Hz (DC) for the battery current and 100 Hz for a 2000‐rpm 50 Hz synchronous machine working at 4000 rpm in the flux‐weakening region. During transients, some of these fundamental frequencies will show harmonic content. One example of this is power peaks in the batteries, which involve low‐frequency harmonics in battery current. In general, fundamental frequencies will be very low, of the order of hundreds of Hertz at most. However, the absence of steady state in some situations, such as urban driving, implies a wide‐frequency spectrum.
Switching frequencies: These frequency values and their corresponding harmonic components are given by the operation of power semiconductors such as insulated‐gate bipolar transistors (IGBTs) and diodes. They are defined by many factors, starting with the modulation technique (hysteresis band, pulse width modulation (PWM), space vector modulation (SVM), direct torque control (DTC), etc.), and also on the inductance value of the corresponding filters. For those which use variable‐switching frequency, its values will depend on the operating point as well.
More importantly, switching frequencies change significantly with power electronics technology. For instance, there is a huge difference between conventional IGBTs, fast IGBTs, and silicon carbide (SiC) metal‐oxide‐semiconductor field‐effect transistors (MOSFETs). The former usually work at frequencies ranging from 2 to 20 kHz. Fast IGBTs can reach up to 50 kHz in many applications, while SiC MOSFETs are already exceeding frequencies over 150 kHz. Given the voltage levels usually employed in commercial EVs, there is no way to exclude any of the above three major technologies, so all of them are eligible for this application.
In summary, magnetic field frequencies can change considerably from one vehicle to another. According to current EV designs, and considering the technologies implemented in them (conventional IGBTs, and synchronous or asynchronous machines), it seems reasonable to expect fundamental and switching frequencies up to 10 kHz, with relevant harmonic components up to 300 kHz. These values are classified as “low and extremely low frequencies” from the point of view of electromagnetic exposure. Be that as it may, electromagnetic fields generated by EVs present a relatively wide‐frequency spectrum, from 0 Hz to hundreds of kHz.
\nThere are many magnetic field generators in a vehicle, besides the traction drive itself. Examples present not only in EVs but also in conventional ICE‐based vehicles are other power equipment such as the air‐conditioning system, but also magnetized steel‐belted tires, which are one of the main sources of extremely low‐frequency magnetic fields in conventional vehicles. This unintentional magnetization is a consequence of the manufacturing process, and the result is a magnetic field whose frequency depends on the vehicle speed, ranging from 0 to 20 Hz [9, 10]. This field is of considerable strength but attenuates very quickly as distance increases. Hence, maximum exposure values usually take place in the area of the feet [11, 12]. According to some authors, this source of magnetic field is negligible when considering magnetic field exposure inside hybrid and electric cars [13], but this point is not completely clear.
\nNonetheless, all magnetic field generators contribute to overall magnetic field exposure, and therefore should be included in EMR studies. It is important to state here that magnetic field exposure must be assessed globally (total magnetic field), and not individually (magnetic field generated by each device or piece of equipment). See Section 3.1 for further information and corresponding references about exposure assessment.
\nThere are other factors that may influence magnetic field exposure in a positive way. For instance, the results presented in Ref. [14] suggest that the car body shell could behave as a minor magnetic shield for some frequencies. Therefore, constructive aspects such as the shape, material, and thickness of the body shell could affect magnetic exposure.
\nIt is also convenient to consider which operating points are potentially more hazardous for human health. Under normal operation of the vehicle, power/current peaks will be higher during strong accelerations than during deep regenerative braking. This is due to two main reasons: the passive nature of some of the movement resistances (rolling resistance and aerodynamic drag), which implies that both of them will always oppose movement, and the global energy efficiency of the traction drive. Notice that driving style will heavily impact total magnetic exposure in EVs: the more aggressive the driving style the higher the magnetic fields within the vehicle.
\nNevertheless, there is another situation which could involve potentially hazardous exposure for passengers, or even for pedestrians that are close to the vehicle: fast charging. As battery technology improves, higher recharge rates are achieved, which obviously imply higher currents, and hence stronger magnetic fields. Nowadays, charge rates of 2–4 C are already usual, with even higher values reachable in the near future [15, 16]. Therefore, magnetic field generation must be studied not only during normal operation of the vehicle but also during fast charging. As a general rule, it is highly advisable to remain outside of the vehicle, and at some distance from it, while fast charge is in process.
\nFinally, it is important to consider the wide variety of electric vehicles that exit nowadays, and how their different configurations, topologies, and power levels affect magnetic field exposure. Some considerations have already been mentioned in this chapter about vehicle configuration (front‐wheel vs. rear‐wheel traction, for instance; another example would be battery placement), and also about the power topology (significant differences arise when adding a DC‐DC converter, or when using hybrid energy storage systems that combine batteries and supercapacitors for increased performance [17]). The largest differences, however, appear when considering electric vehicles of different types, such as motorbikes, buses, racing cars, or even electric planes [18, 19]. Magnetic exposure in these other vehicles could be very different when compared to electric cars, depending on the power levels involved and on the distances between the power equipment and the closest passengers.
\nMagnetic field exposure assessment is a two‐step process: first, one must characterize the magnetic field inside the vehicle (either by estimation or by measurement). The second step involves determining whether the obtained values could be hazardous for the passengers. Both tasks can prove very challenging, and thus any guidance is welcome. In this sense, there are some standards and guidelines that help with the second step. This section is dedicated to these documents.
\nConcern regarding potentially hazardous consequences of nonionizing EMR started to raise some decades ago, around the 1950s and 1960s, first about radio waves and microwaves, and more recently about low‐intensity fields as well, such as those generated by power lines, cell phones, and Wi‐Fi devices. The effects of nonionizing electromagnetic fields on the human body have been studied for many years already, and the results are conclusive in some cases and inconclusive in others [20–23].
\nBasically, there are two types of effects that electromagnetic fields can have on biological tissues: short‐term and long‐term effects. Short‐term effects, also known as acute effects, are those that appear instantaneously, or minutes after the beginning of the exposure. In general, these effects only take place under fields of considerable intensity, and disappear as exposure ceases. The biological mechanisms involved in these short‐term effects are relatively well known, as well as the field values (intensity and frequency) that cause them [24–27]. They are usually classified into two main groups: electrostimulant effects and thermal effects. The former are caused by the interaction between low‐frequency fields and living matter, either by polarization and dipole reorientation produced by electric fields, or due to induced currents generated by magnetic fields (for instance, a strong alternate magnetic field can induce electrical currents capable of stimulating nerves and muscles in an undesired way). The latter refer to the exchange of energy between fields and tissues, which rises their temperature. These thermal effects are completely negligible for frequencies under 100 kHz, but become relevant at higher frequencies (consider, for the sake of illustration, the operating principle of a microwave oven, whose working frequency is around 2.45 GHz). Electrostimulant effects are instantaneous, while thermal effects have a time constant of minutes.
\nLong‐term effects, on the other hand, are those that could appear after months or years of exposure. Several studies have tried to determine the relationship between long‐term exposure to electromagnetic fields and different pathologies (cancer, neurodegenerative disorders, etc.), without finding conclusive evidence for it. Approximately half of these studies show small correlations, just statistically significant, between long‐term exposure and these illnesses [28]. In any case, the possibility of such relationships made the International Agency for Research on Cancer (IARC) to classify low‐intensity, low‐frequency electromagnetic fields, and also radiofrequency electromagnetic fields, as “possibly carcinogenic to humans (Group 2B)” [24, 25].
\nGenerally speaking, it is extremely difficult to establish direct biological effects caused by long‐term exposure, and to obtain reproducible results [23]. As a consequence, standards and guidelines to limit human exposure are elaborated based only on well‐known, scientifically proven, short‐term effects (with appropriate safety factors), and therefore long‐term effects are not taken into account. This applies to the two most extended guidelines nowadays, those from the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and those from the Institute of Electrical and Electronic Engineers (IEEE). Both are briefly described subsequently.
\nThe most extended criteria for recommended exposure limit to EMFs were first proposed by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) in 1998 [22]. These guidelines are based on current scientific evidence, as well as risk analysis performed by the World Health Organization (WHO). They establish protection recommendations considering well‐known mechanisms and appropriate security factors, the latter being due mostly to scientific uncertainty.
\nEleven years after their first publication, no new scientific evidence of any adverse effects had been found [29], a reason why a review of the guidelines on limitation to exposure to high‐frequency EMFs (100 kHz to 300 GHz) was considered unnecessary. Nevertheless, concerning static EMFs and extremely low‐frequency EMFs (1 Hz to 100 kHz), special guidelines were published in 2009 [30] and 2010 [31], respectively, in an attempt to include the results of the main scientific publications during those 11 years. The referred publications not only established recommended exposure limits to EMFs but also include explanations concerning the ways these fields could affect human health. These two guidelines suggest recommended exposure limits (which are defined in terms of in‐body quantities such as electrical fields and induced currents in a given tissue, which complicates exposure assessment), but they also provide reference levels for the electromagnetic environment (external electrical and magnetic field values). These levels are extremely helpful to assess magnetic field exposure, since the following consideration is usually applied: if the exposure environment complies with the field reference levels, then it can be assumed that the exposure limits are not infringed. Certainly, exceeding these reference levels does not necessarily imply that the corresponding exposure limits have been breached. In such cases, further analysis is required.
\nFrequency (Hz) | \nMagnetic field | \nMagnetic flux density | \n
---|---|---|
1–8 Hz | \n3.2 × 104/f2 | \n4 × 10-2/f2 | \n
8–25 Hz | \n4 × 103 / f | \n5 × 10-3/f | \n
25–400 Hz | \n1.6 × 102 | \n2 × 10-4 | \n
400–3 kHz | \n6.4 × 104/f | \n8 × 10-2/f | \n
3 kHz to 10 MHz | \n21 | \n2.7 × 10-5 | \n
ICNIRP’s reference levels for general public exposure to time‐varying magnetic fields.
Notes: H and B in unperturbed RMS values. In addition, reference levels relating to tissue‐heating effects need to be considered for frequencies above 100 kHz.
Regarding exposure limits to EMFs, different considerations arise depending on the person affected. Thus, there is an “occupational exposure,” which is applied to those individuals who are exposed to EMFs as a result of performing their regular job activities. There is also a “general public exposure,” which refers to the rest of the population. In summary, ICNIRP’s reference levels for static magnetic fields are 400 mT for general public (EVs passengers included) and 2 T for occupational public [30], whereas the Earth’s magnetic field ranges from 30 to 60 µT, depending on the region on the Earth. Concerning time‐variant fields, the exposure limits to EMFs for “general public” are given in Table 2 and also in Figure 3 [31]. Notice that these values correspond to a sinusoidal, single‐frequency, homogeneous magnetic field exposure.
\nICNIRP’s reference levels for sinusoidal magnetic field exposure as a function of frequency (up to 10 kHz).
Notice that the above reference levels are not given as a function of time (exposure duration). They are maximum or absolute values that must never be breached. This is consistent with the fact that their corresponding exposure limits have been established based on short‐term effects only. In other words, the above reference levels should guarantee the absence of harmful biological effects in the short term, based on current scientific evidence and in accordance to the experts’ consensus‐based criteria.
\nRegarding multiple frequency sinusoidal exposure, ICNIRP states that all contributions should be considered cumulative, so that the following global limit should be met:\n
where
In the case of nonsinusoidal exposure, the evaluation procedure consists in performing a frequency analysis to obtain the corresponding harmonic decomposition. After this, all harmonic components must be considered at the same time by means of Eq. (1). This metho-dology is simple, but very conservative, given that it assumes that all harmonic components are in phase (worst‐case scenario), which is hardly real. This assumption is so pessimistic that even background noise can result in a breach of ICNIPR’s reference levels if enough harmonic components are included in the calculation [32]. Consequently, a second method is recommended instead for those cases in which the number of harmonic component is considerable [31]. This alternative method consists in weighting the field components with a filter function (inverse Fourier transform) related to the reference levels [33]:\n
where
As aforementioned, ICNIRP’s values are given for homogeneous exposure with respect to the whole extension of the human body. However, this assumption is not valid when magnetic field sources are close to the people affected, as might occur in an EV. Again, considering a heterogeneous exposure as homogeneous (taking maximum values as average values) results in a conservative approach. Other methods involve spatial averaging [35] or dosimetric analysis [31].
\nIt is also important to clarify that these guidelines are not legally mandatory, and that become legally binding only if a country incorporates them into its own legislation [36]. At present, many countries and organizations have adopted these security limits. For example, the European Commission uses ICNIRP’s guidelines to write regulations about EMR emission limits, applicable within the European Union [37]. Most member countries have therefore adopted these regulations, and some of them have even applied more restrictive criteria or have developed measures to legally enforce them.
\nThis subsection briefly describes the standard IEEE C95.6 [38]. This standard defines exposure levels to protect against adverse effects in humans from exposure to electric and magnetic fields at frequencies from 0 to 3 kHz.
\nRegarding long‐term exposures to magnetic fields, the most recent reviews considered in the standard are the following: the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) [22], the International Agency for Research on Cancer (IARC) [24], the US National Research Council (NRS) [39], the US National Institute of Environmental Health Sciences (NIEHS) [20, 40] the Health Council of the Netherlands [41], the Institution of Electrical Engineers [42], and the Advisory Group on Non‐Ionizing Radiation (AGNIR) of the UK National Radiological Protection Board [43].
\nBecause none of the above reviews concluded that any hazard from long‐term exposure has been confirmed, this standard does not propose limits on exposures that are lower than those necessary to protect against adverse short‐term effects. The purpose of this standard is just to define exposure standards for the frequency regime 0–3 kHz. For pulsed or nonsinusoidal fields, it may be necessary to evaluate an acceptance criterion at frequencies outside this frequency regime by means of a summation from the lowest frequency of the exposure waveform, to a maximum frequency of 5 MHz, as detailed in the standard itself [38].
\nFrequency (Hz) | \nMagnetic field H (Am-1) | \nMagnetic flux density | \n
---|---|---|
<0.153 Hz | \n9.39 × 104 | \n118 × 10-3 | \n
0.153–20 Hz | \n1.44 × 104/f | \n18.1 × 10-3/f | \n
20–759 Hz | \n719 | \n0.904 × 10-3 | \n
759 Hz to 3 kHz | \n5.47 × 105/f | \n687 × 10-3/f | \n
IEEE’s maximum permissible exposure to sinusoidal magnetic fields for general public: head and torso.
Notes:
Frequency (Hz) | \nMagnetic field H (Am-1) | \nMagnetic flux density | \n
---|---|---|
<10.7 Hz | \n– | \n353 × 10-3 | \n
10.7 Hz to 3 kHz | \n– | \n3790 × 10-3/f | \n
IEEE’s maximum permissible exposure to sinusoidal magnetic fields for general public: arms and legs.
Note:
In addition to the in situ electric field restrictions collected in the standard, but not discussed in this chapter, the in situ magnetic field below 10 Hz should be restricted to a peak value of 167 mT for the general public and up to 500 mT in a controlled environment. For frequencies above 10 Hz, a basic restriction on the in situ magnetic field is not specified in IEEE’s standard. Table 3 lists maximum permissible magnetic field limits (flux density
Aversive or painful stimulation of sensory or motor neurons.
Muscle excitation that may lead to injury while performing potentially hazardous activities.
Excitation of neurons or direct alteration of synaptic activity within the brain.
Cardiac excitation.
Adverse effects associated with induced potentials or forces on rapidly moving charges within the body, such as in blood flow.
IEEE’s maximum permissible exposure values must be understood in the same way as INCIRP’s reference levels. In this sense, compliance with Tables 3 and 4 ensures compliance with the basic restrictions, which are defined in terms of in‐body quantities. However, lack of compliance with these tables does not necessarily imply lack of compliance with the basic restrictions, but rather that it may be necessary to evaluate whether the basic restrictions have been met [38]. For more information, the reader is referred to the standard itself.
\nThe information contained in Tables 3 and 4 is also shown in Figure 4 for clarity. Besides, ICNIRP’s reference levels for general public are also included in the figure for comparison.
\nIEEE’s maximum permissible exposure to sinusoidal magnetic fields as a function of frequency (up to 3 kHz).
This section is devoted to a brief overview of recent publications that deal with EMR and magnetic field exposure in EVs. Some main conclusions, drawn for these studies, are summarized here as well. Related publications, such as those that analyze EMC in electric vehicles or EMR in other applications, are also mentioned.
\nIn general, there are not many publications about magnetic field exposure in electric and hybrid cars. Most works about electromagnetic fields and EVs address problems belonging to the field of EMC. Some examples of such studies can be found in [44–48]. There are certainly several publications that deal with EMFs and its potentially hazardous effects on human health, both from the medical and from the engineering points of view, but for other applications. A review of the medical literature is certainly out of the scope of this chapter, and hence the reader is referred to specialized bibliography such as [23–26, 28] for that purpose. Regarding engineering publications, one classical field of study are power lines [49–52], substations, and other transformation centers [49–54]. Most of these works focus on the effects of EMFs on workers (i.e., occupational exposure). Medical equipment in hospitals is another typical example of electromagnetic evaluation, again focusing on the people operating these machines on a daily basis. More recently, some studies have approached electromagnetic exposure from the point of view of general public, for example, in buildings and urban environments [55, 56]. The first studies in vehicles were probably those about electrical trains and trams, and also about conventional ICE‐based cars [57–59].
\nIn general, publications about EVs and EMR can be classified into two main groups: studies that perform measurements in vehicles (experimental approach) and studies that use analytical approximations or numerical simulations, usually based on the finite element method (FEM) (simulation approach). These two groups are treated separately in the following sections.
\nOne of the first publications specifically dedicated to EMR in hybrid and electric cars is the one by
The next two noteworthy publications, Ref. [58] from 2010 and Ref. [34] from 2013, describe some issues that should be taken into account when measuring magnetic fields in vehicles. The work in Ref. [58] deals mainly with trains and trams, but hybrid cars are also considered. Previous measurements performed in trains, locomotives, and railway stations by different researchers are summarized in that paper. Average results are provided for each type of vehicle considered in the study: 200 trains and trams (both urban and suburban), and also one hybrid car. Train and tram measurements were taken in varied conditions: weekdays and weekends, day and night, inside and outside. Regarding the hybrid car, different positions (front and rear parts, left and right sides, floor, seat, and head levels) were taken into account. Frequency spectrum ranges from 5 Hz to 100 kHz. Magnetic field values found in the car are low (in the order of a few μT), especially when compared to ICNIRP’s reference levels, although it is not clear which method was used to account for multifrequency exposure (see Subsection 3.1). In average, highest magnetic field values were found at the rear left side of the hybrid car. The maximum levels of recorded magnetic field strength are emitted at 12 Hz, which is a very low frequency. About the study published in [34], it provides an example of how to deal with multifrequency exposure in accordance to ICNIRP’s recommendations. This work focuses on electric vehicles exclusively, and the magnetic field values obtained are in line with those from [13], around 15–20% of ICNIRP’s reference levels. The paper also presents simulation results (see Subsection 4.2).
\nIn 2015, two journal papers were published with measurement results from a wide variety of hybrid and electric cars [9, 10]. Some of their authors participated in the two publications from the previous paragraph. The study in [9] comprises a total of three conventional cars and eight electric vehicles, including some based on fuel cells instead of batteries. Both laboratory measurements and road measurements were taken and compared to INCIRP’s reference levels with a wide‐frequency range, up to 10 MHz. The vehicle that showed highest values reached 18% of ICNIRP’s levels. Unsurprisingly, the researchers found that magnetic field exposure was higher in EVs than in ICE‐based vehicles in average. However, the position of maximum exposure within each vehicle (front vs. rear part, foot vs. seat level) was different. This position is probably influenced by the configuration and topology of the vehicle, as described in Section 2. The main sources of magnetic field are identified in this study: at frequencies below 1 Hz, hundreds of μT are present (most likely due to battery current). Between a few Hz and 1 kHz, fields up to 2 μT were found, generated by most sources (combustion engine, steering pump, and wheels are mentioned in the paper, but probably fundamental currents in the inverter and in the electrical machine were also responsible). Finally, above 1 kHz, less than 100 nT was measured, and the authors identified the inverter as the only source (which makes sense, since it is the only power electronics device in the traction drive).
\nThe open‐access study in Ref. [10] focuses on diesel, gasoline, and hybrid cars. Up to 10 vehicles are analyzed, and the results are consistent with previous investigations. Results are presented separately for different seats and for different engine types. In general, magnetic field exposure was higher in hybrid cars, and then in gasoline cars. The authors state that magnetic field exposure depends on the operating conditions (speed, acceleration, etc.), which is unsurprising.
\nOther research projects take a different approach and analyze the problem by means of finite element method (FEM) simulations and even analytical approximations. FEM simulations are helpful to better understand the problem, to analyze magnetic field exposure dependence on certain parameters (for instance, by performing sensitivity analysis), and to develop a predictive methodology. Being able to estimate magnetic field exposure without actually having to perform measurements could prove extremely useful for EV designers. As proposed in Ref. [62], a fully operational estimation tool would allow for optimized predesign even before building the first prototype, thus reducing engineering time and cost.
\n(a) FEM model used in Ref. [
This is the approach taken in Refs. [63, 64], works that analyze the magnetic field generated by the inverter and by the batteries, respectively, of a hypothetical EV via FEM simulations (Figure 5). Simulation results are validated with experimental measurements in both cases, and then they are used to estimate the worst operating points from the point of view of passenger exposure. Similarly, Refs. [14] and [34] contain two examples of how FEM simulations can be used for estimation and prediction purposes (Figure 5).
\nIn this section, some design guidelines and recommendations to minimize magnetic field exposure in EVs are provided. Note that all these measures are of pure electric nature, and therefore they may not be applicable when considering other factors. They are based on the ALARP principle (“As Low As Reasonably Practicable”). In other words, the goal is to maintain exposure levels as low as reasonably possible with the available means, both in a technical and in an economic sense. This criterion allows the implementation of safety strategies at an acceptable cost, and it should preferably be applied during the first design stages of the EV and its components.
\nThese guidelines are classified into two groups, depending on whether they involve major changes in the vehicle or not. The first group contains measures that do not change the topology nor the configuration of the vehicle, and that do not increase its weight nor its cost:\n
A general design guideline is to place the power devices and their connections as far from the passengers as possible. However, a vehicle usually provides little room to maneuver in this sense, especially in the case of hybrid electric vehicles. The battery stack, the electronic converters, and the motor should be as far away as possible from the passengers. Batteries are usually placed just under the seats, in order to minimize risks in case of crash. However, this involves bringing them closer to the passengers. A compromise should be reached.
Complementary, power devices should be oriented so that the magnetic field suffered by the passengers is minimized. As described in Section 4, some power equipment such as batteries and inverters could generate stronger fields in some specific directions [63, 64]. Therefore, their relative direction with respect to the passengers should be carefully chosen.
Wires of the same type should be as close as possible of each other: both DC wires must be taped together; similarly, the three‐phase AC wires must be taped together, preferably in a triangular disposition. This way, the magnetic field generated by each cable in the interior of the vehicle will be cancelled by the rest.
Wires should be as short as possible, except when this involves bringing them closer to the passengers.
When placing batteries below the seats, the battery pack can be redesigned in order to allow terminals to be placed at the bottom. This would increase the distance from the stack connections to the passengers in a value equal to the height of the battery cells. This is very convenient, given that those connections are usually close to the occupants, they carry currents up to hundreds of amperes, and it is very difficult to place them together so the magnetic field generated by all of them as a whole is cancelled out. Naturally, the chemistry of the batteries must allow this inverted position, which is not a problem with lithium‐based technologies. Notice that this action does not necessarily increase the distances between the passengers and the cells themselves.
If further actions were necessary in order to reduce the magnetic field generated by the EV, these additional measures may prove helpful:\n
Longer distances between power equipment and passengers are always welcome. As discussed in Section 2, front‐wheel traction drives are usually better suited to provide such longer distances.
In the same sense, in‐wheel motor technology [65] allows the devices inside an EV to be distributed in a much more flexible way. The space reserved for the conventional internal combustion motor could be occupied by the battery stack instead, which would mean that no field‐generating devices would be placed under the seats.
The higher the voltages, the lower the currents and the magnetic field, but the electric field could become higher (considering a quasistatic approximation [8], higher voltages, and higher du/dt will imply higher Coulomb electric field, but lower currents involve lower magnetic fields and thus lower Faraday electric field during transients [62]). Nonetheless, high on‐board voltages may be hazardous in case of a crash, so once again a compromise would be necessary.
A magnetic shield can be placed around the main devices responsible for the magnetic field in the interior of the car. Alternatively, the whole interior could be shielded, yielding higher protection at the expense of increased shield weight and cost. In both cases, the efficacy of the shield will be determined by its properties, and especially by its thickness. In the first case, a ferromagnetic alloy of high magnetic permeability, such as Mu‐metal or similar, could be used [66]. For shielding the whole interior, ferromagnetic sheets such as those used to shield hospital rooms and some laboratories are recommended instead [67]. Notice that if switching frequencies grow above 100 kHz (by using SiC power devices, for instance), Faraday shielding could become necessary. This consist in radiofrequency shields made of copper or similar [67], such as those found in microwave ovens.
Magnetic field exposure is a matter of growing concern in the society. Recently, low‐intensity exposure is receiving much attention due to its possible hazardous effects on human health in the long term. However, uncertainty is high and there is still much research to be done. In this sense, short‐term effects are proven and well known, while long‐term effects remain to be found (although some theoretical bases and some experimental results point to the existence of potential hazardous effects [23]). With respect to EVs in particular, results presented so far in the scientific literature suggest that this concern is not scientifically justified, at least according to current standards and guidelines, which only take short‐term exposure into account. In general, exposure levels in EVs are low when compared to ICNIRP’s and IEEE’s recommended levels, but high when compared to other daily exposures such as those suffered at home or at work. This increase in overall magnetic field exposure is what generates concern, despite the lack of scientific proof.
\nUncertainty is not the only worrying aspect of magnetic field exposure in EVs. Some emerging and promising technologies, such as SiC power electronics, could pose a significant threat, given that they allow for higher switching frequencies. Certainly, there are many aspects involved, and therefore deep analysis is required before drawing any conclusions. However, it is clear that replacing silicon‐based IGBTs with SiC MOSFETs could change the spectrum of the magnetic field inside the vehicle drastically, for better or for worse. In this sense, there are already a few publications that alert about a worsening in EMC phenomena when using SiC technology [68].
\nParadoxically, some scientific results suggest that low‐intensity low‐frequency magnetic fields could have beneficial effects on human health. Certainly, these usually refer to medical treatments based on EMFs, but still knowledge is scarce about what will happen to EV passengers in the long term. Other experts have mentioned that even if magnetic fields have undesired effects on humans, it is perfectly possible that our bodies have inbuilt mechanisms to compensate for these effects [23]. Once again, further research is needed.
\nFinally, the authors would like to state that driving style has a strong influence on magnetic field exposure. In this regard, those drivers that favor aggressive styles (strong accelerations and deep regenerative braking) will be exposed to stronger magnetic fields. Efficient driving does not only reduce fuel consumption and maintenance needs; it also reduces magnetic field exposure.
\nThis work was partially supported by the Community of Madrid, which contributed to it through the SEGVAUTO-TRIES-CM Program (S2013/MIT-2713).
Snakes produce venoms that finds its use in immobilizing and digesting the prey and acts as an effective defense system against threats. Thus, venom is a functional trait utilized by an organism to regulate homeostatic processes of another organism i.e., it mediates the outcome of interactions between two or more organisms [1]. These snake venoms are storehouse of fascinating and useful bioactive compounds. Although various studies have been carried out on venoms, only few of them are well understood and tapped for their potential use in medicine as pharmacological molecules and diagnostics, understanding the molecular mechanisms of bodily processes such as homeostasis, coagulation, thrombosis, angiogenesis, and metastasis. The enthusiasm to understand animal envenomation and associated medical treatments has driven the animal venom studies in a multifaceted manner [2]. This chapter deals with what is venom, need for venom, evolution of venom, the poison apparatus that aids in producing the venom, genetics and biochemistry of the venom, effects of venom, antivenom, and applications of venom as therapeutics, diagnostics, and as biochemical tool.
Venom in layman’s terms is modified snake saliva. This concoction is a combination of zootoxins, enzymes, and pharmacologically active peptides [3, 4, 5]. Digestive enzymes and other proteins that act as a paralyzing and pre-digestive agent. Digestion is therefore initiated outside the predator’s alimentary canal while simultaneously immobilizing the prey. The snake then swallows the prey whole, liquefying most of the tissue and discarding what cannot be digested (feathers/hair/claws) along with the fecal matter. Although venomous snakes apply venom in the acquisition of the prey, they also fan out them in defensive bites against intimidating predators and aggressors.
Snakes are carnivores and actively hunt their prey. Most of them are ambush hunters and generalized feeders. Their geographic distribution and dietary preferences being varied, snakes had to evolve a method of incapacitating their prey quickly and their answer was venom. Geographic location and varied diet have led to the development of more and more complex venom. Being generalized feeders, many species of snake have a larger repertoire of proteins in their venom that affect individual prey animal species differently [6]. Honing the composition, mechanism of delivery, dosage and action of venom remains one of nature’s greater success stories to date. Venom production has aided the proliferation and diversification of snakes as a group.
The evolution of snakes remains a partially solved mystery to scientists. Though they have known that snakes are descended from lizards since the 1970’s there are many missing links due to a lack of proper fossil evidence. Debates of their descent from aquatic or terrestrial lizards persist as there is evidence to support both hypotheses. But the evolution of venom on the other hand has started to unravel. Initial research suggested that the venom and the venom delivery apparatus evolved together. But in 2002 a group of scientists in Australia led by Dr. B. Fry made amazing roads into the history of the evolution of venom. The major factor in the previous theory was that though many species had fangs they were in different locations in the jaw, size, and structure. The venom gland on the other hand remained the same.
Dr. Fry and his team examined the idea that the production of venom must predate the use of fangs. They looked at the extant lizard species which were said to contain toxins in their saliva. They discovered that the Komodo dragon and many of their related monitor lizards all had venom glands at the base of the lower jaw. This venom mixed with saliva caused damage to the prey previously thought to be caused by bacteria mixed in the saliva. The venom was like snake venom [7]. Most lizard species have been shown to have a gland like the venom gland of snakes, this led to the theory that snakes and lizards had a common venomous ancestor and that venom predated fangs.
Discoveries have shown around 1500 species of lizards had components like snake venom. Sea snakes are considered to have diverged from terrestrial snakes around 30 mya. Their venom is highly toxic. Studies have shown that they are evolving more complex toxin molecules to suit their ever-changing prey. This goes to show that venom is still evolving. The dietary preferences of the snake can magnify the change in venom. The snake can produce a potent mixture that can affect different prey animals uniquely [6]. There is no efficient antivenin generated against sea snakes.
There are so many species of snakes whose venom composition is yet to be studied in detail. These studies are crucial in understanding the evolution of venom and the effect of venom on prey species [8].
In reptiles, twice the venom glands have evolved; once in helodermatid lizards and secondly in advanced snakes belonging to colubroids, viperids, elapids and astractaspidids [9]. Venomous snakes belong to 4 genera. These snakes possess a poison apparatus or venom producing glands in their heads, which produces toxic substance that acts as either a poison or a venom. When the toxic substance is injected into the body of prey, it is venomous.
A poison apparatus of a snake consists of snakes consists of 4 major parts, namely, a pair of poison gland, poison ducts, fangs and muscles.
These glands situated on either side of the upper jaw, is possibly the superior labial glands or parotid glands. Each poison gland has a sac-like capsule and a narrow duct at the anterior end. The vascular fibrous septum of the capsule separates glandular substances into secretory pockets. The duct after passing along the sides of the upper jaw, opens at the base of the fang or at the base of the tunnel on the fang. The poison glands are held in position via anterior and posterior ligaments, which attaches anterior end of glands to maxilla and posterior end to the quadrate respectively. The fan shapes ligaments are situated between the side walls and squamosal-quadrate junction.
The pair of ducts opens into a pocket of mucous sheath that covers the basal part of the fang. In spitting cobras (
The fangs evolved to inject venom into the prey is a grooved or tubular tooth. The paired pointed and hook-like teeth are modified form of maxillary teeth. They are long, curved, sharp and pointed. Based on the structure and position, fangs are of 3 types:
Proteroglyphous (Protero – first)
These are small, grooved, articulated at permanently erect at the anterior end of maxillae. They are found in Cobras, Kraits, Coral snakes and Sea snakes.
Opisthoglyphous (Opistho - behind)
They are small and grooved but remain associated with posterior end of maxillae.
Solenoglyphous (Solen – pipe; glyph - hollow)
This type of fangs is seen in vipers and rattle snakes. A large functional fang occurs on the front of each maxilla and are movable and turned inside to lie in the roof of mouth when it is closed. This fang contains a narrow hollow poison canal with enamel, which opens at anterior end of the fang.
Positioning and functioning of the poisonous apparatus is enabled by the presence of 3 types of muscle bands, namely, Digastrics, Sphenopterygoid, and Anterior and posterior temporalis.
Early description about the elapid venom gland dates to 1936 [10].
The venom glands belonging to two viperid subfamilies, namely
The venom gland has four distinct regions: the main gland, the primary duct, the accessory glands, and the secondary duct that leads to the fang sheath. The accessory glands have two distinct regions. The anterior part is lined by mucous epithelium that contains goblet cells while the posterior part is lined with flat to cuboidal epithelium, correlating with the secretory function [14]. The main gland is made of repeatedly branched tubules arranged around a large central lumen, where a considerable amount of venom can be stored. The tubules are made of secretory cells.
A pair of homologous oral venom glands located behind the eye on either side of the upper jaw are connected to the ducts that transfers the secreted venom to the base if morphologically diverse teeth, fangs [15].
The venom glands and related muscles of sea snakes are like the general structure that we observe in the terrestrial elapids. The considerable reduction in venom gland as well as the accessory gland is attributed to the aquatic environment. An early divergence of sea snakes from an ancestral elapis stock has been proposed as the musculus compressor glandulae is well developed in the sea snakes. A possible phylogenetic relationship exists between Australian elapids and hydrophiine snakes which is evident from the similarities that exists between them [16].
The bioactivity of the venom is determined by the complex and variable interactions between genes, their expression, their translation, and their post translational modification. Evidence that the loss of genes also has a strong influence on shaping venom phenotypes further reinforces the usage of animal venom systems to understand adaptation in the natural world is evident from the loss of genes that have a strong effect on forming the venom phenotype [20].
Venom was identified to be a proteinaceous concoction in the 1800s. 90 to 95% of the dry weight of venom is made of proteins. These proteins are also responsible for the biological effects of the venom. These proteins can be classified as enzymes and toxins [21]. The components of venom can vary from animal to animal within a species too. Research has shown that age [22], gender [23], geographic location [24], prey species/diet [25] and season [26] can all influence the composition of venom. All the proteins involved in venom are repurposed from regular physiological functions.
The proteins identified in venom have been studied individually, as protein complexes and as protein families. The proteins in the complex can be homodimers (made up of identical subunits) or heterodimers (made up of different subunits – sometimes these subunits are from different families). These complexes are held together by covalent bonds and the complexes are pharmacologically more potent than the individual enzymes or proteins. The complexes seem to expose critical residues that otherwise may have been buried in the individual enzymes [27].
Typically, snake venom contains hundreds of components, all of which work in tandem to paralyze the prey and initiate digestion. Many enzymes are found and even some toxins have enzymatic functions. The most studied enzymes and their role are discussed below.
This is an enzyme made up of 548 amino acids and a molecular mass of 61 kDa found in almost all living cells. The enzyme hydrolyses nucleosides. It is found in all snake venom around the world. Isoforms have also been isolated, like the isoform from the venom of
It is the primary enzyme that catalyzes the breakdown of Acetylcholine in the body among other related neurotransmitters. AChE is found in nerve and muscle tissue, especially abundant in synaptic junctions. This is perhaps one of the well-studied enzymes from snake venom, its structure has been elucidated in detail. AChE is abundant in the venom of all snakes and higher concentrations are observed in the Elapid snakes except the Mambas [32]. Although the enzyme is present in the venom of snakes belonging to Viperidae and Crotalidae the activity was not detected. The highest concentration of venom AChE (VAChE) is found in the venom of
The protein structure of VAChE shows homology to mammalian and Torpedo AChE with a few major changes. These changes ensure that VAChE has a less complicated structure than membrane-bound AChE. Many isoenzymes exist and can be differentiated on charge alone [35]. Protein structure has been studied from the VAChE of
The NnAChE exists as a monomer at 0.2 mg/ml and a dimer at 2 mg/ml. It is a single polypeptide chain with a molecular weight of 67,000 ± 2000 Da and exists in several isoforms with different isoelectric points [37]. It differs from BfAChE by having a dimerization domain where His replaces Pro at position 514 [38]. VAChE has been associated with acute neuromuscular paralysis and neuromuscular weakness. This may be due to a defective transmission in the neuromuscular junction [5]. The function of AChE in elapid venoms could be to aid in the immediate hydrolysis of acetylcholine released from synaptic vesicles. This release could be under the influence of β-neurotoxin to avoid competitive protection by acetylcholine of postjunctional receptors against α-neurotoxin [39].
These enzymes are found in lysosomes and during digestion they work on releasing the phosphoryl groups from molecules. They are found in all snake venoms. Both enzymes have a greater action in Elapids than Viperids. In a study that compared
Hyaluronidases are a group of enzymes that are responsible for the degradation of Hyaluronic acid (HA), a glycosaminoglycan commonly found in abundance in nervous, epithelial, and connective tissues in all animals. Isolation and biological characterization of Hyl has been done from the venom of many snakes including
The cDNA of SHyl isolated
These are enzymes that generally hydrolyze phospholipids into fatty acids and lipophilic substances. There are four major classes named A, B, C and D which are differentiated by the type of reaction they catalyze. Phospholipase A2 (PLA2) is found to be present in the venom of snakes and bees [50]. The enzyme acts on intact lectin molecules and hydrolyses the fatty acids esterified to the second carbon atom [51]. The venom enzymes are like mammalian enzymes in structure and function. The Phospholipase A2 enzymes found in venom are further grouped as I, II and IIE. Group I are major components of Elapidae venom, Group II are major components Viperidae venom [52] and IIE have been identified in the venom of non-front fanged snakes [53]. This enzyme which has a high affinity to specific receptors and a separate pharmacological site can target a large spectrum of tissues and thereby induce pharmacological effects which are dependent or independent of the catalytic activity of the enzyme.
There exist many unique examples of modulation of PLA2 activity generated by molecular evolution. The enzyme can exist as a homodimer, a post synaptic complex called Vipoxin (South-Eastern European Viper,
L-amino acid oxidases (LAAOs) are multifunctional enzymes. They produce hydrogen peroxide and ammonia as part of their catalytic activity. These are highly toxic and can destroy major components of the cell viz. nucleic acids, proteins and the plasma membrane [56]. Snake venom L-amino acid oxidases (SVLAAOs) were first detected in the venom of
SVLAAOs vary between snake species. The enzymes when injected into the prey cause the formation of oxygen reactive species extracellularly. These highly toxic oxygen reactive species, hydrogen peroxide and ammonia, alter the permeability of the plasma membrane and induce apoptosis, which in turn leads to cell death [58]. The SVLAAOs are dependent on ions for activation and inactivation. The LAAOs found in the venom of
Analysis of the sequences of SVLAAOs from around the globe showed ~60% similarity. The most dissimilar regions were the C and N terminals of the protein. Most SVLAAOs are rich in asparagine, glutamic acid and aspartic acid residues. The number of cysteine residues varies implying variation in the tertiary structure of these proteins [61].
Metalloproteinases are typically enzymes that depend on a metal ion to aid their catalytic activity. Snake venom Metalloproteinases (SVMPs) are Zinc (Zn2+) dependent enzymes. Their size ranges from 20 to 110 kDa. They are broadly grouped into three (PI, PII, PIII) based on their structural domains. SVMPs in their varied isoforms are responsible for heaemorrhagic and coagulopathic nature of snake venoms. The SVMPs act on the different stages of the blood clotting pathway [62, 63].
The myriad of toxins found in snake venom are biologically costly to produce but potent and snakes have invested years of evolution to refine them. Many other toxins are species-specific and have been grouped by their pharmacological action to enable easy study. Though many toxins have been named, the neurotoxins and hemotoxins dominate them all. The identification, isolation characterization and evolution of snake venom toxins have been an area of prolific research since the 1970s.
Many of the toxins predominant in snake venom belong to the three-finger toxin (3FTx) family. The group is named for the specific protein fold of three β strand loops connected to a central core with four disulphide bonds. This is a conserved feature. The proteins in this family are at an average of 60 to 74 amino acid residues in length [64]. These 3FTxs are peculiar to snakes although the superfamily of three-fold proteins is common to all eukaryotes [65]. Studies have shown that the 3FTxs of snakes have evolved from non-toxic three-finger proteins [3].
The number of 3FTxs varies from species to species. Elapsid and Colubrid venom are found to be abundant in 3FTxs [66]. 95% of the proteins in the venom of
The structural differences between members of the family are broadly based on the length and number of disulphide bridges. - the longer 3FTxs with a chain length of 66–74 residues with 5 disulphide bridges (Examples: α-neurotoxins, γ-neurotoxins, hannalgesin, κ-neurotoxins) and the shorter chains with a chain length of 57–62 residues with 4 disulphide bridges (Examples: α-neurotoxins, β-cardiotoxins, cytotoxins, fasciculins and mambalgins). The 3FTxs can exist as covalent/non-covalent homo or heterodimers.
The mechanism of action of 3FTxs is varied despite them all having the same 3-finger fold. α-neurotoxins have been shown to inhibit acetylcholine receptors in muscle synapses [70]. κ-neurotoxins on the other hand inhibit acetylcholine receptors in neural synapses [71], fasciculins inhibit acetylcholinesterase [72], mambin interacts with platelet receptors [73], mambaligins inhibit ASIC channels [74] and calliotoxin activates voltage-gated sodium channel [75] to name just a few. It is to be noted that no 3FTxs are involved in inflammation and hyperalgesia typical of other snake toxins. The 3Ftxs target many ion channels and receptors in the prey animal. This is attributed to the unique capacity of the 3-finger fold and its ability to modulate diverse biological functions. Specific amino acid sequences in critical segments of 3FTxs have been identified, these sequences play an important role in binding to the target sites. The interactions of Acetylcholinesterase in the prey with the 3 loops in the fasciculin molecule show the first look of the fasciculin interaction with the outer enzyme but the second loop is inserted in the active site with hydrogen bonding (Lys 25, Arg24, Asn47, Pro31, Leu35 and Ala12) and hydrophobic interactions (Lys32, Cys59, Val34, Leu48, Ser26, Gly36, Thr15 and Asn20) [76]. The interactions of Muscarinic toxins from mamba venom [77], Neurotoxin II (NTII) from the venom of
These toxins attack the cardiac muscle preventing muscle contraction. This leads to the irregularity of heartbeat and ultimately stopping of the heart. Experiments have shown that the toxins tend to bind to the surface of the muscle and cause depolarization. These toxins are ample in mamba venom and few species of cobra venom. Other cardiotoxins interact non-specifically with phospholipids [80] or induce insulin secretion [81]. Β – cardiotoxins inhibit β-adrenoreceptors [82].
Cardiotoxins are single chain, small molecular weight (~ 6.5 kDa) proteins that are highly basic (pI>10). They exhibit a broad spectrum of pharmacological action. The cardiotoxins share significant sequence homology to neurotoxins yet despite this homology they display remarkably different properties. As many as 52 cardiotoxins have been reported and they have a 90% homology of sequence among themselves [83]. Cardiotoxin III (CTx III, Cytotoxin 3) is a 60-residue long toxin peculiar to the Taiwan Cobra (
A set of proteins called Cardiotoxin-like basic proteins (CLBP) are found to have homology with cardiotoxins but where cardiotoxins have the triple peptide signature (-I-D-V-) between 39 and 41, CLBPs lack this. Other differences include CLBPs having a Gln at 17 which is absent in cardiotoxins. CLBPs also lack the Met residue needed for activity [86]. These molecules are now being assessed for therapeutic ability.
Snake bite is a neglected public health issue in many tropical and subtropical countries. According to WHO (2021), an annual record of about 5.4 million snake bites and 1.8 to 2.7 million cases of envenomings has been reported. They have also reported that about 140,000 deaths occur. Bites by venomous snakes can cause acute medical emergencies involving severe paralysis that may prevent breathing, cause bleeding disorders that can lead to fatal hemorrhage, cause irreversible kidney failure and severe local tissue destruction that can cause permanent disability and limb amputation. The more severe effects experienced by the children is because of their smaller body mass [87].
The response of neurotoxicity to snake antivenom is dependent on the type of neurotoxins that the snake possess. Cobra venom contains post-synaptic nerutoxins that produce curare-like effect and hence can be reversed by snake antivenom after clinical effects have developed. While krait venom which contains many pre-synaptic neurotoxins, causes paralysis that is irreversible once developed and hence their response to antivenom is very poor [88, 89].
One of the major public health issues in the rural tropics is snake bites. Currently, the only specific treatment available to ameliorate the effect of snake bite is antivenom [90]. Snake antivenom was produced by raising hyperimmune serum in animals, such as horses. The hyerimmune serum was further purified to produce whole immunoglobulin G (IgG) antivenoms and then fractionated to F(ab) and F(ab′)2 antivenoms to reduce adverse reactions and increase efficacy.
A significant challenge in manufacturing of antivenoms is the preparation of the correct immunogens (snake venoms). At present very few countries have capacity to produce snake venoms of adequate quality for antivenom manufacture, and many manufacturers rely on common commercial sources [87]. Poor data on the number and type of snake bites have led to difficulty in estimating needs, and deficient distribution policies have further contributed to manufacturers reducing or stopping production or increasing the prices of antivenoms. Weak regulation and the marketing of inappropriate or poor quality antivenoms has also resulted in a loss of confidence in some of the available antivenoms by clinicians, health managers, and patients, which has further eroded demand.
Snake venom consists of pharmacologically active proteins and peptides. The snake venoms show a distinct complexity from other animal venoms in that they possess a diverse array of proteins and peptides with wide range of pharmacological and toxicological effects.
Based on the pharmacological effects produced, snake venom has been classified into haemotoxic, neurotoxic and cytotoxic venom. Although snake venoms are considered as mini drug libraries, only about 0.01% venom has been characterized. Snake venom is considered a valuable source of new principal compounds in drug discovery. Components of snake venom such as PLA2, serine proteases, metalloproteinase, lectins, l-amino acid oxidases, bradykinin potentiating factors, natriuretic factors, integrin antagonists possess pharmacological properties and exhibit neurotoxicity, myotoxicity, cytotoxicity, hemotoxicity, antimicrobial activity, which in turn exerts its action and disrupts the central and peripheral nervous systems, the blood coagulation cascade, the cardiovascular and neuromuscular systems and the general homeostasis state [5].
Importance of snake venom in medicine dates to thousands of years in Ayurveda, homeopathy and traditional or folk medicines. Cobra venom is used in the ayurvedic treatment of joint pain, inflammation, and arthritis [91] and other body fluids such as blood and bile duct in Chinese medicine [92] and lots of the snake venom-based drugs are available in the market and in clinical trials [93].
Various drugs based on snake venom in the market are Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) and many more are in the pipeline at pre-clinical or clinical trial stage [94]. Captopril®, approved by FDA in 1981, was the first successful drug derived from snake venom [95]. This drug is a biomimetic of bradykinin-potentiating peptide, isolated from the venom of Brazilian arrowhead viper
Two drugs based on snake venom disintegrins, Aggrastat® (Tirofiban) marketed by Medicure Pharma in the US and Correvio International outside US, and Integrilin® (Eptifibatide) developed by Millennium Pharmaceuticals and co-promoted by Schering-Plow (which are both now part of Merck and Takeda Pharmaceuticals) are used as antiplatelet agents [97]. Aggrastat, belonging to the platelet glycoprotein (GP) IIb/IIIa inhibitors and developed based on the RGD sequence (Arg-Gly-Asp) motif from snake venom disintegrins isolated from the venom of
Defibrase®/Reptilase® (Batroxobin), a drug based on the thrombin-like serine protease enzyme isolated from the snake venom of two subspecies
Botrocetin® is a drug that is developed based on the platelet aggregating protein from the venom of
Taipoxin, a powerful presynaptic neurotoxin from
Vicrostatin (VCN) is a chimeric disintegrin, made by the fusion of echistatin and contortrostatin, seen in crotalids snake venom. When VCN, packaged in liposome (LVCN), was intravenously administered
Hannalgesin, an α-neurotoxin of approximately 7.9 kDa (72 residues) isolated from
The feature of not being not affected by therapeutic or physiological coagulation inhibitors [Marsh, 2002], it has been applied for the analysis of hemostatic parameters, such as fibrinogen (dysfibrinogenemia, its breakdown products), antithrombin III, prothrombin (dysprothrombinaemias), von Willebrand factor (vWF), blood clot- ting factors (V, VII, X), protein C (PC), activated protein C (APC), and lupus anticoagulants (LA) [110]. Protac® and Proc Global assay, reptilase® and reptilase time, Anti-nAChR antibodies assay, textarin time, botrocetin®, RVV-V, RVV-X, and dRVVT (dilute Russell’s viper venom time),
The structures, functions and molecular mechanisms of receptors/ ion-channels that exhibit high potency, selectivity, and efficacy can be studied using snake venom peptides as molecular probes [112]. α- neurotoxins such as erabutoxin, α-cobratoxin, and α- bungarotoxin have high affinity for nicotinic acetylcholine receptors (nAChR). This feature is applied in isolating the α-bungarotoxin, from
Snake venoms are complex mixtures of toxins that exhibit interspecies and intraspecies variation due to the rapidly evolving and diverging venom genes in relation to the geographical area, environmental niches etc. The efficacy of snake venom is influenced by these variations. Future implications on the venom study are in the direction for search of effective pharmacological and diagnostic products.
“The authors declare no conflict of interest.”
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:132968},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:95},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:314},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"188",title:"Morphology",slug:"morphology",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:85,numberOfWosCitations:20,numberOfCrossrefCitations:20,numberOfDimensionsCitations:34,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"188",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9413",title:"Essentials in Hip and Ankle",subtitle:null,isOpenForSubmission:!1,hash:"1c44b3dd87ad50bb95ac035e5bf5ea54",slug:"essentials-in-hip-and-ankle",bookSignature:"Carlos Suarez-Ahedo, Anell Olivos-Meza and Arie M. Rijke",coverURL:"https://cdn.intechopen.com/books/images_new/9413.jpg",editedByType:"Edited by",editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7870",title:"Muscle Cells",subtitle:"Recent Advances and Future Perspectives",isOpenForSubmission:!1,hash:"64634d90d737661d1e606cac28b79969",slug:"muscle-cells-recent-advances-and-future-perspectives",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/7870.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7329",title:"Histology",subtitle:null,isOpenForSubmission:!1,hash:"9af2e2fd8f28c4d1b8b9510c3d73e1ec",slug:"histology",bookSignature:"Thomas Heinbockel and Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/7329.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5933",title:"Human Anatomy",subtitle:"Reviews and Medical Advances",isOpenForSubmission:!1,hash:"30fc0e64308e5905986edf17b56080d5",slug:"human-anatomy-reviews-and-medical-advances",bookSignature:"Alina Maria Sisu",coverURL:"https://cdn.intechopen.com/books/images_new/5933.jpg",editedByType:"Edited by",editors:[{id:"138775",title:"Associate Prof.",name:"Alina Maria",middleName:null,surname:"Sisu",slug:"alina-maria-sisu",fullName:"Alina Maria Sisu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"55062",doi:"10.5772/intechopen.68524",title:"Human Anatomy: A Review of the Science, Ethics and Culture of a Discipline in Transition",slug:"human-anatomy-a-review-of-the-science-ethics-and-culture-of-a-discipline-in-transition",totalDownloads:2272,totalCrossrefCites:10,totalDimensionsCites:13,abstract:"Anatomy has undergone radical changes over its history, and even now its appearance varies between audiences. Within academia, it has frequently been seen as the bastion of medical teaching, even as a handmaid of surgery. To the general public over recent years, it is represented by the enormously popular public exhibitions of plastinated cadavers and body parts. Increasingly within medical teaching, it has acquired a far more humanistic face, epitomized by ceremonies at the start and end of dissection to connect the dead body with the once living individual and his/her families. Modern anatomy has also developed a strong research ethos. These movements can be traced in the many editions of Gray’s Anatomy, from 1858 to the present day. However, the humanistic side of anatomy reminds us that anatomy is not merely a science, since its ethical dimensions are legion as it has transformed from a dubiously moral and barely legal activity to one that now aims to manifest the highest of ethical standards. Nevertheless, it continues to have challenging dimensions, such as its ongoing dependence upon the use of unclaimed bodies in many societies. These challenges are reminders that anatomy does not remain stationary.",book:{id:"5933",slug:"human-anatomy-reviews-and-medical-advances",title:"Human Anatomy",fullTitle:"Human Anatomy - Reviews and Medical Advances"},signatures:"David Gareth Jones",authors:[{id:"35851",title:"Prof.",name:"Gareth",middleName:null,surname:"Jones",slug:"gareth-jones",fullName:"Gareth Jones"}]},{id:"55203",doi:"10.5772/intechopen.68775",title:"Innovative Technologies for Medical Education",slug:"innovative-technologies-for-medical-education",totalDownloads:2113,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"This chapter aims to assess the current practices of anatomy education technology and provides future directions for medical education. It begins by presenting a historical synopsis of the current paradigms for anatomy learning followed by listing their limitations. Then, it focuses on several innovative educational technologies, which have been introduced over the past years to enhance the learning. These include E-learning, mobile apps, and mixed reality. The chapter concludes by highlighting future directions and addressing the barriers to fully integrating the technologies in the medical curriculum. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.",book:{id:"5933",slug:"human-anatomy-reviews-and-medical-advances",title:"Human Anatomy",fullTitle:"Human Anatomy - Reviews and Medical Advances"},signatures:"Pascal Fallavollita",authors:[{id:"85455",title:"Prof.",name:"Pascal",middleName:null,surname:"Fallavollita",slug:"pascal-fallavollita",fullName:"Pascal Fallavollita"}]},{id:"66388",doi:"10.5772/intechopen.85177",title:"Orexin System and Avian Muscle Mitochondria",slug:"orexin-system-and-avian-muscle-mitochondria",totalDownloads:849,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"In mammals, orexin A and B (also known as hypocretin 1 and 2) are two orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G-protein-coupled receptors, orexin receptors 1/2, and have been implicated in the regulation of several physiological processes. However, the physiological roles of orexin are not well defined in avian (non-mammalian vertebrate) species. Recently, we made a breakthrough by identifying that orexin and its related receptors 1/2 (ORXR1/2) are expressed in avian muscle tissue and cell line, and appears to be a secretory protein. Functional in vitro studies showed that orexin A and B differentially regulated expression of the orexin system, suggesting that orexins might have autocrine, paracrine, and/or endocrine roles. Administration of recombinant orexin modulated mitochondrial biogenesis, dynamics, function, and bioenergetics. In this chapter, we include a brief overview of the (patho) physiological role of orexin, comparative findings between mammalian and avian orexin, and in-depth analysis of orexin’s action on avian muscle mitochondria.",book:{id:"7870",slug:"muscle-cells-recent-advances-and-future-perspectives",title:"Muscle Cells",fullTitle:"Muscle Cells - Recent Advances and Future Perspectives"},signatures:"Kentu Lassiter and Sami Dridi",authors:[{id:"274577",title:"Ph.D. Student",name:"Kentu",middleName:null,surname:"Lassiter",slug:"kentu-lassiter",fullName:"Kentu Lassiter"},{id:"274579",title:"Dr.",name:"Sami",middleName:null,surname:"Dridi",slug:"sami-dridi",fullName:"Sami Dridi"}]},{id:"66964",doi:"10.5772/intechopen.85903",title:"Vascularisation of Skeletal Muscle",slug:"vascularisation-of-skeletal-muscle",totalDownloads:907,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Skeletal muscle is mainly involved in physical activity and movement, which requires a large amount of glucose, fatty acids, and oxygen. These materials are supplied by blood vessels and incorporated into the muscle fiber through the cell membrane. In contrast, metabolic waste is discarded outside the cell membrane and removed by blood vessels. The formation of a functional, integrated vascular network is a fundamental process in the growth and maintenance of skeletal muscle. On the other hand, vascularization is one of the main central components in skeletal muscle regeneration. In order for regeneration to occur, blood vessels must invade the transplanted muscle. This is confirmed by the fact that muscle regeneration occurred from the outside of the muscle bundle toward the inner regions. In fact, it is likely that capillary formation is a key process to start muscle regeneration. Thus, vascularization activates muscle regeneration, and a decrease in vascularization could lead to disruption the process of muscle regeneration. Also, a better understanding of vascularization of skeletal muscle necessary for the successful formation of collateral arteries and recovery of injured skeletal muscle may lead to more successful strategies for skeletal muscle regeneration and engineering. So, in this chapter, we want to review vascularization in skeletal muscle.",book:{id:"7870",slug:"muscle-cells-recent-advances-and-future-perspectives",title:"Muscle Cells",fullTitle:"Muscle Cells - Recent Advances and Future Perspectives"},signatures:"Kamal Ranjbar and Bayan Fayazi",authors:[{id:"143655",title:"Ph.D. Student",name:"Kamal",middleName:null,surname:"Ranjbar",slug:"kamal-ranjbar",fullName:"Kamal Ranjbar"},{id:"299168",title:"Dr.",name:"Bayan",middleName:null,surname:"Fayazi",slug:"bayan-fayazi",fullName:"Bayan Fayazi"}]},{id:"54586",doi:"10.5772/67897",title:"Human Brain Anatomy: Prospective, Microgravity, Hemispheric Brain Specialisation and Death of a Person",slug:"human-brain-anatomy-prospective-microgravity-hemispheric-brain-specialisation-and-death-of-a-person",totalDownloads:1541,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Central nervous system seems to float inside a craniospinal space despite having miniscule amount of CSF. This buoyancy environment seems to have been existing since embryogenesis. This indicates central nervous system always need microgravity environment to function optimally. Presence of buoyancy also causes major flexure to occur at midbrain level and this deep bending area of the brain, better known as greater limbic system seems to regulate brain functions and site for cortical brainwave origin. These special features have made it as a possible site for seat of human soul and form a crucial part in discussion related to death. Besides exploring deep anatomical areas of the brain, superficial cortical areas were also studied. The brainwaves of thirteen clinical patients were analysed. Topographical, equivalent current dipoles and spectral analysis for somatosensory, motor, auditory, visual and language evoked magnetic fields were performed. Data were further analysed using matrix laboratory method for bilateral hemispheric activity and specialization. The results disclosed silent word and picture naming were bilaterally represented, but stronger responses were in the left frontal lobe and in the right parieto-temporal lobes respectively. The sensorimotor responses also showed bilateral hemispheric responses, but stronger in the contralateral hemisphere to the induced sensation or movements. For auditory-visual brainwave responses, bilateral activities were again observed, but their lateralization was mild and could be in any hemisphere. The conclusions drawn from this study are brainwaves associated with cognitive-language, sensorimotor and auditory-visual functions are represented in both hemispheres; and they are efficiently integrated via commissure systems, resulting in one hemispheric specialization. Therefore, this chapter covers superficial, integrative and deep parts of human brain anatomy with emphasis on brainwaves, brain functions, seat of human soul and death.",book:{id:"5933",slug:"human-anatomy-reviews-and-medical-advances",title:"Human Anatomy",fullTitle:"Human Anatomy - Reviews and Medical Advances"},signatures:"Zamzuri Idris, Faruque Reza and Jafri Malin Abdullah",authors:[{id:"42580",title:"Prof.",name:"Jafri",middleName:"Malin",surname:"Abdullah",slug:"jafri-abdullah",fullName:"Jafri Abdullah"},{id:"73844",title:"Prof.",name:"Zamzuri",middleName:null,surname:"Idris",slug:"zamzuri-idris",fullName:"Zamzuri Idris"},{id:"200214",title:"Dr.",name:"Faruque",middleName:null,surname:"Reza",slug:"faruque-reza",fullName:"Faruque Reza"}]}],mostDownloadedChaptersLast30Days:[{id:"70162",title:"Rehabilitation of Lateral Ankle Sprains in Sports",slug:"rehabilitation-of-lateral-ankle-sprains-in-sports",totalDownloads:1233,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Lateral ankle sprains are one of the most common injuries in athletes. The rate of injury is as high as 70%. The most commonly involved ligament is the anterior talofibular ligament (ATFL), followed by the calcaneofibular (CFL) and posterior talofibular ligament (PTFL). The common mechanism of injury is inversion with excessive ankle supination in forced plantarflexion when the ankle joint is in its most unstable position. There are three grades of ankle sprains: Grade I, mild with an incomplete tear of ATFL; Grade II, moderate with a complete tear of ATFL with or without an incomplete tear of CFL; and Grade III, severe with complete tear of ATFL and CFL. Grades I and II respond well to functional treatment. Functional treatment includes RICE protocol, i.e., rest, ice, compression, and elevation. It also includes range of motion and strengthening exercises, proprioceptive training, and sports-specific exercises. Bracing and taping of the ankle joint help in preventing the sprains and also reduce the recurrence of the injury. Grade III ankle injury may be treated with surgery if the symptoms persist post functional treatment. The guidelines provided for the treatment of ankle sprains are of general validity, but each athlete is different with different needs. Hence, a personalized exercise protocol should be followed to achieve best results.",book:{id:"9413",slug:"essentials-in-hip-and-ankle",title:"Essentials in Hip and Ankle",fullTitle:"Essentials in Hip and Ankle"},signatures:"Rachana Dabadghav",authors:[{id:"305115",title:"M.Sc.",name:"Rachana",middleName:null,surname:"Dabadghav",slug:"rachana-dabadghav",fullName:"Rachana Dabadghav"}]},{id:"55330",title:"Mesencephalon; Midbrain",slug:"mesencephalon-midbrain",totalDownloads:3359,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The mesencephalon is the most rostral part of the brainstem and sits above the pons and is adjoined rostrally to the thalamus. It comprises two lateral halves, called the cerebral peduncles; which is again divided into an anterior part, the crus cerebri, and a posterior part, tegmentum. The tectum is lay dorsal to an oblique coronal plane which includes the aquaduct, and consist of pretectal area and the corpora quadrigemina. In transvers section, the cerebral peduncles are seen to be composed of dorsal and ventral regions separated by the substantia nigra. Tegmentum mesencephali contains red nucleus, oculomotor nucleus, thochlear nucleus, reticular nuclei, medial lemnisci, lateral lemnisci and medial longitudinal fasciculus. In tectum, the inferior colliculus and superior colliculus have main nucleus, which are continuous with the periaqueductal grey matter. The mesencephalon serves important functions in motor movement, particularly movements of the eye, and in auditory and visual processing. The mesencephalic syndrome cause tremor, spastic paresis or paralysis, opisthotonos, nystagmus and depression or coma. In addition cranial trauma, brain tumors, thiamin deficiency and inflammatory or degenerative disorders of the mesencephalon have also been associated with the midbrain syndrome.",book:{id:"5933",slug:"human-anatomy-reviews-and-medical-advances",title:"Human Anatomy",fullTitle:"Human Anatomy - Reviews and Medical Advances"},signatures:"Ayla Kurkcuoglu",authors:[{id:"200913",title:"Prof.",name:"Ayla",middleName:null,surname:"Kurkcuoglu",slug:"ayla-kurkcuoglu",fullName:"Ayla Kurkcuoglu"}]},{id:"64758",title:"Introductory Chapter: Histological Microtechniques",slug:"introductory-chapter-histological-microtechniques",totalDownloads:2248,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"7329",slug:"histology",title:"Histology",fullTitle:"Histology"},signatures:"Vonnie D.C. Shields and Thomas Heinbockel",authors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}]},{id:"63843",title:"Salivary Glands",slug:"salivary-glands",totalDownloads:3925,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Saliva is a fluid secreted by the salivary glands that keeps the oral cavity moist and also coats the teeth along with mucosa. The salivary gland possesses tubuloacinar units, and these are merocrine. The functional unit of the salivary glands is the terminal secretory piece called acini with a roughly spherical or tubular shape. It also consists of branched ducts for the passage of the saliva and also plays an important role in the production and modification of saliva. Each type of duct is lined by different types of epithelia, on the basis of its location. Myoepithelial cells are contractile cells with respect to intercalated and secretory endpieces. Parotid, submandibular, and sublingual glands are the major salivary glands. The minor salivary glands are labial and buccal gland, glossopalatine gland, and palatine and lingual glands. Saliva plays an important role in mastication, speech, protection, deglutition, digestion, excretion, tissue repair, etc. Secretion stimulated in response to sympathetic stimulation will differ in protein and electrolyte from that due to parasympathetic stimulation. The concentration of saliva depends only on the rate of flow and not on the nature of stimulus. Saliva guides the clinician toward the optimal mode of treatment and guides the patient toward ultimate prognosis.",book:{id:"7329",slug:"histology",title:"Histology",fullTitle:"Histology"},signatures:"Sonia Gupta and Nitin Ahuja",authors:[{id:"245048",title:"Dr.",name:"Sonia",middleName:null,surname:"Gupta",slug:"sonia-gupta",fullName:"Sonia Gupta"},{id:"258367",title:"Dr.",name:"Nitin",middleName:null,surname:"Ahuja",slug:"nitin-ahuja",fullName:"Nitin Ahuja"}]},{id:"55062",title:"Human Anatomy: A Review of the Science, Ethics and Culture of a Discipline in Transition",slug:"human-anatomy-a-review-of-the-science-ethics-and-culture-of-a-discipline-in-transition",totalDownloads:2272,totalCrossrefCites:10,totalDimensionsCites:13,abstract:"Anatomy has undergone radical changes over its history, and even now its appearance varies between audiences. Within academia, it has frequently been seen as the bastion of medical teaching, even as a handmaid of surgery. To the general public over recent years, it is represented by the enormously popular public exhibitions of plastinated cadavers and body parts. Increasingly within medical teaching, it has acquired a far more humanistic face, epitomized by ceremonies at the start and end of dissection to connect the dead body with the once living individual and his/her families. Modern anatomy has also developed a strong research ethos. These movements can be traced in the many editions of Gray’s Anatomy, from 1858 to the present day. However, the humanistic side of anatomy reminds us that anatomy is not merely a science, since its ethical dimensions are legion as it has transformed from a dubiously moral and barely legal activity to one that now aims to manifest the highest of ethical standards. Nevertheless, it continues to have challenging dimensions, such as its ongoing dependence upon the use of unclaimed bodies in many societies. These challenges are reminders that anatomy does not remain stationary.",book:{id:"5933",slug:"human-anatomy-reviews-and-medical-advances",title:"Human Anatomy",fullTitle:"Human Anatomy - Reviews and Medical Advances"},signatures:"David Gareth Jones",authors:[{id:"35851",title:"Prof.",name:"Gareth",middleName:null,surname:"Jones",slug:"gareth-jones",fullName:"Gareth Jones"}]}],onlineFirstChaptersFilter:{topicId:"188",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"94",type:"subseries",title:"Climate Change and Environmental Sustainability",keywords:null,scope:null,coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:null,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:null},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81226",title:"Computational Methods for the Study of Peroxisomes in Health and Disease",doi:"10.5772/intechopen.103178",signatures:"Naomi van Wijk and Michal Linial",slug:"computational-methods-for-the-study-of-peroxisomes-in-health-and-disease",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80871",title:"Tumor-Derived Exosome and Immune Modulation",doi:"10.5772/intechopen.103718",signatures:"Deepak S. Chauhan, Priyanka Mudaliar, Soumya Basu, Jyotirmoi Aich and Manash K. Paul",slug:"tumor-derived-exosome-and-immune-modulation",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80326",title:"Anti-Senescence Therapy",doi:"10.5772/intechopen.101585",signatures:"Raghad Alshadidi",slug:"anti-senescence-therapy",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79834",title:"Morphology and Formation Mechanisms of Cellular Vesicles Harvested from Blood",doi:"10.5772/intechopen.101639",signatures:"Veronika Kralj-Iglič, Gabriella Pocsfalvi and Aleš Iglič",slug:"morphology-and-formation-mechanisms-of-cellular-vesicles-harvested-from-blood",totalDownloads:53,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80195",title:"Diversity of Extracellular Vesicles (EV) in Plasma of Cancer Patients",doi:"10.5772/intechopen.101760",signatures:"Theresa L. Whiteside and Soldano Ferrone",slug:"diversity-of-extracellular-vesicles-ev-in-plasma-of-cancer-patients",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79955",title:"The Role of Extracellular Vesicles in Immunomodulation and Pathogenesis of Leishmania and Other Protozoan Infections",doi:"10.5772/intechopen.101682",signatures:"Zeynep Islek, Batuhan Turhan Bozkurt, Mehmet Hikmet Ucisik and Fikrettin Sahin",slug:"the-role-of-extracellular-vesicles-in-immunomodulation-and-pathogenesis-of-em-leishmania-em-and-othe",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80126",title:"Extracellular Vesicles as Biomarkers and Therapeutic Targets in Cancers",doi:"10.5772/intechopen.101783",signatures:"Prince Amoah Barnie, Justice Afrifa, Eric Ofori Gyamerah and Benjamin Amoani",slug:"extracellular-vesicles-as-biomarkers-and-therapeutic-targets-in-cancers",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80108",title:"Exosomes and HIV-1 Association in AIDS-Defining Patients",doi:"10.5772/intechopen.101919",signatures:"Sushanta Kumar Barik, Sanghamitra Pati, Keshar Kunja Mohanty, Sashi Bhusan Mohapatra, Srikanta Jena and Srikanth Prasad Tripathy",slug:"exosomes-and-hiv-1-association-in-aids-defining-patients",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79850",title:"Retracted: The Role of Extracellular Vesicles in the Progression of Tumors towards Metastasis",doi:"10.5772/intechopen.101635",signatures:"Bhaskar Basu and Subhajit Karmakar",slug:"retracted-the-role-of-extracellular-vesicles-in-the-progression-of-tumors-towards-metastasis",totalDownloads:155,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79828",title:"Cellular Senescence in Bone",doi:"10.5772/intechopen.101803",signatures:"Danielle Wang and Haitao Wang",slug:"cellular-senescence-in-bone",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79775",title:"Extracellular Vesicles as Intercellular Communication Vehicles in Regenerative Medicine",doi:"10.5772/intechopen.101530",signatures:"Gaspar Bogdan Severus, Ionescu Ruxandra Florentina, Enache Robert Mihai, Dobrică Elena Codruța, Crețoiu Sanda Maria, Crețoiu Dragoș and Voinea Silviu Cristian",slug:"extracellular-vesicles-as-intercellular-communication-vehicles-in-regenerative-medicine",totalDownloads:95,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"94",title:"Climate Change and Environmental Sustainability",scope:null,coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",keywords:null},{id:"92",title:"Health and Wellbeing",scope:"\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health production"},{id:"93",title:"Inclusivity and Social Equity",scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",keywords:"Sustainable, Society, Economy, Digitalization, KPIs, Decision Making, Business, Digital Footprint"},{id:"95",title:"Urban Planning and Environmental Management",scope:"