Mohammed Khalid

Taif University

Mohammed Khalid received his B.S. in Chemistry in July 2000, and his Ph.D. in Physical Chemistry in 2007 from the University of Khartoum, Sudan. In 2009 he joined the Dr. Ron Clarke research group at the School of Chemistry, Faculty of Science, University of Sydney, Australia as a postdoctoral fellow where he worked on the Interaction of ATP with the phosphoenzyme of the Na+, K+-ATPase, and Dual mechanisms of allosteric acceleration of the Na+, K+-ATPase by ATP. He then worked as Assistant Professor at the Department of Chemistry, University of Khartoum, and in 2014 was promoted to Associate Professor ranking. In 2011 he joined the staff of the Chemistry Department at Taif University, Saudi Arabia, where he is currently active as an Assistant Professor. His research interests include: (1) P-type ATPase Enzyme Kinetics and Mechanisms; (2) Kinetics and Mechanism of Redox Reactions; (3) Autocatalytic reactions; (4) Computational enzyme kinetics; (5) Allosteric acceleration of P-type ATPases by ATP; (6) Exploring of allosteric sites of ATPases and interaction of ATP with ATPases located in the cell membranes.

Mohammed Khalid

2books edited

1chapters authored

Latest work with IntechOpen by Mohammed Khalid

Biophysical chemistry is one of the most interesting interdisciplinary research fields. Some of its different subjects have been intensively studied for decades. Now the field attracts not only scientists from chemistry, physics, and biology backgrounds but also those from medicine, pharmacy, and other sciences. We aimed to start this version of the book Biophysical Chemistry from advanced principles, as we include some of the most advanced subject matter, such as advanced topics in catalysis applications (first section) and therapeutic applications (second section). This led us to limit our selection to only chapters with high standards, therefore there are only six chapters, divided into two sections. We have assumed that the interested readers are familiar with the fundamentals of some advanced topics in mathematics such as integration, differentiation, and calculus and have some knowledge of organic and physical chemistry, biology, and pharmacy. We hope that the book will be valuable to graduate and postdoctoral students with the requisite background, and by some advanced researchers active in chemistry, biology, biochemistry, medicine, pharmacy, and other sciences.

Go to the book