\r\n\t1. To draw spotlight on recent studies and research concerned with the regeneration process in animal kingdom and models with emphasis on the cellular origins of regeneration. \r\n\t2. Then, we will be dealing with the reasons for the differences in the regenerative capacity of animals on many levels, including the molecular mechanism, gene expression, epigenetic regulation, common elements affecting regeneration and comparing their contributions to regeneration. \r\n\t3. To provide new insights into how to promote regeneration in mammals.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"689b9f46c48cd54a2874b8da7386549d",bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",keywords:"Regeneration, Cellular Basis, Molecular Basis, Differentiation, Epigenetic Regulators, Regeneration Associated Genes, Autotomy, Epimorphosis, Morphallaxis, Polyphyodonty, Vertebrates, Invertebrates",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 17th 2020",dateEndSecondStepPublish:"December 15th 2020",dateEndThirdStepPublish:"February 13th 2021",dateEndFourthStepPublish:"May 4th 2021",dateEndFifthStepPublish:"July 3rd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in molecular biology, epidemiology, aquaculture toxicology, full professor of animal health and environmental pollution senior member, and holder of two registered patents and three scientific records. Veterinary fellowships in animal care and surgeons and wildlife management & conservation.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud",profilePictureURL:"https://mts.intechopen.com/storage/users/265070/images/system/265070.png",biography:"Dr. Hussein Kaoud was the Chairman of the Department of Preventive Medicine at Cairo University. He has given lectures in Molecular Epidemiology and Biotechnology at different universities and has been a member of many International Publishing Houses, Reviewer, and Editor for indexed journals. Currently, he works as Full Professor of Preventive Medicine at Cairo University, Egypt. His research interest is focused on Molecular Biology and Advanced Technology of Basic Life Sciences after he had his Ph.D. and D.Sc. He has published more than 300 publications. Dr. Hussein Kaoud has several international books, one international award (USA), 10 Cairo university International Publication awards and the Appreciation Award in Advanced Technological Sciences, from Cairo University. He supervised, examined and discussed many medical dissertations.",institutionString:"Cairo University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6475",title:"Tissue Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"d5ed06a80f0205146aa90d158facefd1",slug:"tissue-regeneration",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/6475.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5469",title:"Canine Medicine",subtitle:"Recent Topics and Advanced Research",isOpenForSubmission:!1,hash:"a7e798d88413dd09f8a4af2b2e325b82",slug:"canine-medicine-recent-topics-and-advanced-research",bookSignature:"Hussein Abdelhay Elsayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/5469.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8288",title:"Bacterial Cattle Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f45b8b4974eb0d7de8719ef6b9146200",slug:"bacterial-cattle-diseases",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8288.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"15597",title:"Frictional Property of Flexible Element",doi:"10.5772/14713",slug:"frictional-property-of-flexible-element",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/15597.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/15597",previewPdfUrl:"/chapter/pdf-preview/15597",totalDownloads:2013,totalViews:61,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,dateSubmitted:"May 28th 2010",dateReviewed:"September 26th 2010",datePrePublished:null,datePublished:"April 26th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/15597",risUrl:"/chapter/ris/15597",book:{slug:"new-tribological-ways"},signatures:"Keiji Imado",authors:[{id:"18399",title:"Prof.",name:"Keiji",middleName:null,surname:"Imado",fullName:"Keiji Imado",slug:"keiji-imado",email:"imado@cc.oita-u.ac.jp",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"109",title:"New Tribological Ways",subtitle:null,fullTitle:"New Tribological Ways",slug:"new-tribological-ways",publishedDate:"April 26th 2011",bookSignature:"Taher Ghrib",coverURL:"https://cdn.intechopen.com/books/images_new/109.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"21004",title:"Dr.",name:"Taher",middleName:"Hcine",surname:"Ghrib",slug:"taher-ghrib",fullName:"Taher Ghrib"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"15593",title:"Study of CrAlN Multilayred Thin Films",slug:"study-of-craln-multilayred-thin-films",totalDownloads:3431,totalCrossrefCites:0,signatures:"Tlili Ibrahim and Taher Ghrib",authors:[{id:"21004",title:"Dr.",name:"Taher",middleName:"Hcine",surname:"Ghrib",fullName:"Taher Ghrib",slug:"taher-ghrib"}]},{id:"15594",title:"Optical Characterization of Elastohydrodynamic Lubrication Pressure with Surface Plasmon Resonance",slug:"optical-characterization-of-elastohydrodynamic-lubrication-pressure-with-surface-plasmon-resonance",totalDownloads:2260,totalCrossrefCites:1,signatures:"C.L. Wong, X. Yu, P. Shum and H.P. Ho",authors:[{id:"22896",title:"Prof.",name:"Ho-Pui",middleName:null,surname:"Ho",fullName:"Ho-Pui Ho",slug:"ho-pui-ho"},{id:"23339",title:"Dr.",name:"Chi-Lok",middleName:null,surname:"Wong",fullName:"Chi-Lok Wong",slug:"chi-lok-wong"},{id:"28352",title:"Mr.",name:"Xia",middleName:null,surname:"Yu",fullName:"Xia Yu",slug:"xia-yu"},{id:"37307",title:"Prof.",name:"Perry Ping",middleName:null,surname:"Shum",fullName:"Perry Ping Shum",slug:"perry-ping-shum"}]},{id:"15605",title:"Tribological Properties of Fluorinated Amorphous Carbon Thin Films",slug:"tribological-properties-of-fluorinated-amorphous-carbon-thin-films",totalDownloads:3136,totalCrossrefCites:2,signatures:"Miguel Rubio-Roy, Carles Corbella, José-Luís Andújar, Enric Bertran",authors:[{id:"20652",title:"Dr.",name:"Miguel",middleName:null,surname:"Rubio-Roy",fullName:"Miguel Rubio-Roy",slug:"miguel-rubio-roy"},{id:"22834",title:"Dr.",name:"Carles",middleName:null,surname:"Corbella",fullName:"Carles Corbella",slug:"carles-corbella"},{id:"22835",title:"Prof.",name:"Enric",middleName:null,surname:"Bertran",fullName:"Enric Bertran",slug:"enric-bertran"},{id:"38322",title:"Dr.",name:"José-Luís",middleName:null,surname:"Andújar",fullName:"José-Luís Andújar",slug:"jose-luis-andujar"}]},{id:"15610",title:"Deposition and Tribology of Carbon and Boron Nitride Nanoperiod Multilayer Hard and Solid Lubricating Films",slug:"deposition-and-tribology-of-carbon-and-boron-nitride-nanoperiod-multilayer-hard-and-solid-lubricatin",totalDownloads:2531,totalCrossrefCites:1,signatures:"Shojiro Miyake and Mei Wang",authors:[{id:"22097",title:"Dr.",name:"Mei",middleName:null,surname:"Wang",fullName:"Mei Wang",slug:"mei-wang"},{id:"22103",title:"Prof. Dr.",name:"Shojiro",middleName:null,surname:"Miyake",fullName:"Shojiro Miyake",slug:"shojiro-miyake"}]},{id:"15600",title:"Ferrofluid Seals",slug:"ferrofluid-seals",totalDownloads:2851,totalCrossrefCites:0,signatures:"V. Lemarquand and G. Lemarquand",authors:[{id:"12074",title:"Dr.",name:"Guy",middleName:null,surname:"Lemarquand",fullName:"Guy Lemarquand",slug:"guy-lemarquand"},{id:"23316",title:"Prof.",name:"Valerie",middleName:null,surname:"Lemarquand",fullName:"Valerie Lemarquand",slug:"valerie-lemarquand"}]},{id:"15604",title:"Characteristics of Abrasive Particles and Their Implications on Wear",slug:"characteristics-of-abrasive-particles-and-their-implications-on-wear",totalDownloads:5586,totalCrossrefCites:2,signatures:"Giuseppe Pintaude",authors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",fullName:"Giuseppe Pintaude",slug:"giuseppe-pintaude"}]},{id:"15599",title:"Topographical Change of Engineering Surface due to Running-in of Rolling Contacts",slug:"topographical-change-of-engineering-surface-due-to-running-in-of-rolling-contacts",totalDownloads:3195,totalCrossrefCites:2,signatures:"R. Ismail, M. Tauviqirrahman, Jamari and D.J. Schipper",authors:[{id:"20733",title:"Mr.",name:"Rifky",middleName:null,surname:"Ismail",fullName:"Rifky Ismail",slug:"rifky-ismail"},{id:"22729",title:"Dr.",name:"Mohammad",middleName:null,surname:"Tauviqirrahman",fullName:"Mohammad Tauviqirrahman",slug:"mohammad-tauviqirrahman"},{id:"22730",title:"Dr.",name:"J",middleName:null,surname:"Jamari",fullName:"J Jamari",slug:"j-jamari"},{id:"22731",title:"Prof.",name:"D.J.",middleName:null,surname:"Schipper",fullName:"D.J. Schipper",slug:"d.j.-schipper"}]},{id:"15606",title:"Tribology in Water Jet Processes",slug:"tribology-in-water-jet-processes",totalDownloads:5981,totalCrossrefCites:1,signatures:"Seiji Shimizu",authors:[{id:"22092",title:"Dr.",name:"Seiji",middleName:null,surname:"Shimizu",fullName:"Seiji Shimizu",slug:"seiji-shimizu"}]},{id:"15590",title:"The Elliptical Elastic-Plastic Microcontact Analysis",slug:"the-elliptical-elastic-plastic-microcontact-analysis",totalDownloads:2292,totalCrossrefCites:0,signatures:"Jung Ching Chung",authors:[{id:"21414",title:"Dr.",name:"Jung-Ching",middleName:null,surname:"Chung",fullName:"Jung-Ching Chung",slug:"jung-ching-chung"}]},{id:"15601",title:"Methods of Choosing High-Strengthened and Wear-Resistant Steels on a Complex of Mechanical Characteristics",slug:"methods-of-choosing-high-strengthened-and-wear-resistant-steels-on-a-complex-of-mechanical-character",totalDownloads:2025,totalCrossrefCites:0,signatures:"Georgy Sorokin and Vladimir Malyshev",authors:[{id:"21979",title:"Dr. Hb., Prof.",name:"Vladimir",middleName:"Nikolaevich",surname:"Malyshev",fullName:"Vladimir Malyshev",slug:"vladimir-malyshev"},{id:"22228",title:"Prof.",name:"Georgy",middleName:null,surname:"Sorokin",fullName:"Georgy Sorokin",slug:"georgy-sorokin"}]},{id:"15612",title:"A Comparison of the Direct Compression Characteristics of Andrographis paniculata, Eurycoma longifolia Jack, and Orthosiphon stamineus Extracts for Tablet Development",slug:"a-comparison-of-the-direct-compression-characteristics-of-andrographis-paniculata-eurycoma-longifoli",totalDownloads:3836,totalCrossrefCites:0,signatures:"Yus Aniza Yusof, Aziana Azlin Abdul Hamid, So’bah Ahmad, Norawanis Abdul Razak, Chin Nyuk Ling and Suhaila Mohamed",authors:[{id:"19376",title:"Dr.",name:"Yus Aniza",middleName:null,surname:"Yusof",fullName:"Yus Aniza Yusof",slug:"yus-aniza-yusof"}]},{id:"15597",title:"Frictional Property of Flexible Element",slug:"frictional-property-of-flexible-element",totalDownloads:2013,totalCrossrefCites:2,signatures:"Keiji Imado",authors:[{id:"18399",title:"Prof.",name:"Keiji",middleName:null,surname:"Imado",fullName:"Keiji Imado",slug:"keiji-imado"}]},{id:"15598",title:"Surface Friction Properties of Fabrics and Human Skin",slug:"surface-friction-properties-of-fabrics-and-human-skin",totalDownloads:5609,totalCrossrefCites:4,signatures:"Mari Inoue",authors:[{id:"18582",title:"Dr.",name:"Mari",middleName:null,surname:"Inoue",fullName:"Mari Inoue",slug:"mari-inoue"}]},{id:"15596",title:"Investigation of Road Surface Texture Wavelengths",slug:"investigation-of-road-surface-texture-wavelengths",totalDownloads:2697,totalCrossrefCites:1,signatures:"Chengyi Huang and Shunqi Mei",authors:[{id:"19772",title:"Dr.",name:"Chengyi",middleName:null,surname:"Huang",fullName:"Chengyi Huang",slug:"chengyi-huang"}]},{id:"15609",title:"Adhesion Theory for Low Friction on Ice",slug:"adhesion-theory-for-low-friction-on-ice",totalDownloads:3393,totalCrossrefCites:2,signatures:"Katsutoshi Tusima",authors:[{id:"19650",title:"Prof.",name:"Katsutoshi",middleName:null,surname:"Tusima",fullName:"Katsutoshi Tusima",slug:"katsutoshi-tusima"}]},{id:"15828",title:"Tribology of 2-Mercaptobenzothiazole in Lithium Complex Grease",slug:"tribology-of-2-mercaptobenzothiazole-in-lithium-complex-grease",totalDownloads:3030,totalCrossrefCites:0,signatures:"B S Nagarkoti",authors:[{id:"21061",title:"Mr.",name:"Bhagwat",middleName:null,surname:"Nagarkoti",fullName:"Bhagwat Nagarkoti",slug:"bhagwat-nagarkoti"}]},{id:"15592",title:"No Conventional Fluid Film Bearings with Waved Surface",slug:"no-conventional-fluid-film-bearings-with-waved-surface",totalDownloads:1492,totalCrossrefCites:0,signatures:"Florin Dimofte, Nicoleta M. Ene and Abdollah A. Afjeh",authors:[{id:"22005",title:"Dr.",name:"Nicoleta",middleName:null,surname:"Ene",fullName:"Nicoleta Ene",slug:"nicoleta-ene"},{id:"22783",title:"Dr.",name:"Florin",middleName:null,surname:"Dimofte",fullName:"Florin Dimofte",slug:"florin-dimofte"}]},{id:"15608",title:"Identification of Discharge Coefficients of Orifice-Type Restrictors for Aerostatic Bearings and Application Examples",slug:"identification-of-discharge-coefficients-of-orifice-type-restrictors-for-aerostatic-bearings-and-app",totalDownloads:5256,totalCrossrefCites:0,signatures:"Guido Belforte, Terenziano Raparelli, Andrea Trivella and Vladimir Viktorov",authors:[{id:"14076",title:"Prof.",name:"Guido",middleName:null,surname:"Belforte",fullName:"Guido Belforte",slug:"guido-belforte"},{id:"14077",title:"Prof.",name:"Terenziano",middleName:null,surname:"Raparelli",fullName:"Terenziano Raparelli",slug:"terenziano-raparelli"},{id:"22013",title:"Dr.",name:"Andrea",middleName:null,surname:"Trivella",fullName:"Andrea Trivella",slug:"andrea-trivella"},{id:"22428",title:"Prof.",name:"Vladimir",middleName:null,surname:"Viktorov",fullName:"Vladimir Viktorov",slug:"vladimir-viktorov"}]},{id:"15595",title:"Inverse Approach for Calculating Temperature in Thermal Elasto-Hydrodynamic Lubrication of Line Contacts",slug:"inverse-approach-for-calculating-temperature-in-thermal-elasto-hydrodynamic-lubrication-of-line-cont",totalDownloads:2490,totalCrossrefCites:0,signatures:"Li-Ming Chu, Hsiang-Chen Hsu, Jaw-Ren Lin and Yuh-Ping Chang",authors:[{id:"9979",title:"Prof.",name:"Hsiang-Chen",middleName:null,surname:"Hsu",fullName:"Hsiang-Chen Hsu",slug:"hsiang-chen-hsu"},{id:"21193",title:"Prof.",name:"Li-Ming",middleName:null,surname:"Chu",fullName:"Li-Ming Chu",slug:"li-ming-chu"},{id:"21194",title:"Prof.",name:"Jaw-Ren",middleName:null,surname:"Lin",fullName:"Jaw-Ren Lin",slug:"jaw-ren-lin"},{id:"21195",title:"Prof.",name:"Yuh-Ping",middleName:null,surname:"Chang",fullName:"Yuh-Ping Chang",slug:"yuh-ping-chang"}]},{id:"15611",title:"Construction of Various Self-assembled Films and Their Application as Lubricant Coatings",slug:"construction-of-various-self-assembled-films-and-their-application-as-lubricant-coatings",totalDownloads:2064,totalCrossrefCites:0,signatures:"Jinqing Wang, Junfei Ou, Sili Ren and Shengrong Yang",authors:[{id:"22526",title:"Prof.",name:"Jinqing",middleName:null,surname:"Wang",fullName:"Jinqing Wang",slug:"jinqing-wang"},{id:"22616",title:"Prof.",name:"Shengrong",middleName:null,surname:"Yang",fullName:"Shengrong Yang",slug:"shengrong-yang"},{id:"27892",title:"Dr.",name:"Junfei",middleName:null,surname:"Ou",fullName:"Junfei Ou",slug:"junfei-ou"},{id:"27893",title:"Prof.",name:"Sili",middleName:null,surname:"Ren",fullName:"Sili Ren",slug:"sili-ren"}]},{id:"15602",title:"A Novel Tool for Mechanistic Investigation of Boundary Lubrication: Stable Isotopic Tracers",slug:"a-novel-tool-for-mechanistic-investigation-of-boundary-lubrication-stable-isotopic-tracers",totalDownloads:1706,totalCrossrefCites:1,signatures:"Ichiro Minami",authors:[{id:"18432",title:"Dr.",name:"Ichiro",middleName:null,surname:"Minami",fullName:"Ichiro Minami",slug:"ichiro-minami"}]},{id:"15607",title:"FEM Applied to Hydrodynamic Bearing Design",slug:"fem-applied-to-hydrodynamic-bearing-design",totalDownloads:3744,totalCrossrefCites:3,signatures:"Fabrizio Stefani",authors:[{id:"20899",title:"Dr.",name:"Fabrizio",middleName:null,surname:"Stefani",fullName:"Fabrizio Stefani",slug:"fabrizio-stefani"}]},{id:"15591",title:"Comparison between Different Supply Port Configurations in Gas Journal Bearings",slug:"comparison-between-different-supply-port-configurations-in-gas-journal-bearings",totalDownloads:1569,totalCrossrefCites:0,signatures:"Federico Colombo, Terenziano Raparelli and Vladimir Viktorov",authors:[{id:"14077",title:"Prof.",name:"Terenziano",middleName:null,surname:"Raparelli",fullName:"Terenziano Raparelli",slug:"terenziano-raparelli"},{id:"22428",title:"Prof.",name:"Vladimir",middleName:null,surname:"Viktorov",fullName:"Vladimir Viktorov",slug:"vladimir-viktorov"},{id:"21110",title:"Dr.",name:"Federico",middleName:null,surname:"Colombo",fullName:"Federico Colombo",slug:"federico-colombo"}]}]},relatedBooks:[{type:"book",id:"6175",title:"Porosity",subtitle:"Process, Technologies and Applications",isOpenForSubmission:!1,hash:"c4cfd280dbc5716589a1062c5a20fcf9",slug:"porosity-process-technologies-and-applications",bookSignature:"Taher Hcine Ghrib",coverURL:"https://cdn.intechopen.com/books/images_new/6175.jpg",editedByType:"Edited by",editors:[{id:"21004",title:"Dr.",name:"Taher",surname:"Ghrib",slug:"taher-ghrib",fullName:"Taher Ghrib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"58683",title:"Porous Silicon",slug:"porous-silicon",signatures:"Farshid Karbassian",authors:[{id:"215928",title:"Dr.",name:"Farshid",middleName:null,surname:"Karbassian",fullName:"Farshid Karbassian",slug:"farshid-karbassian"}]},{id:"58429",title:"Nanoporous Carbon Synthesis: An Old Story with Exciting New Chapters",slug:"nanoporous-carbon-synthesis-an-old-story-with-exciting-new-chapters",signatures:"Ana S. Mestre and Ana P. Carvalho",authors:[{id:"214044",title:"Prof.",name:"Ana Paula",middleName:null,surname:"Carvalho",fullName:"Ana Paula Carvalho",slug:"ana-paula-carvalho"},{id:"214045",title:"Dr.",name:"Ana Sofia",middleName:null,surname:"Mestre",fullName:"Ana Sofia Mestre",slug:"ana-sofia-mestre"}]},{id:"58208",title:"Carbon Xerogels: The Bespoke Nanoporous Carbons",slug:"carbon-xerogels-the-bespoke-nanoporous-carbons",signatures:"María Canal-Rodríguez, J. Angel Menéndez and Ana Arenillas",authors:[{id:"14045",title:"Dr.",name:"J. Angel",middleName:null,surname:"Menéndez Díaz",fullName:"J. Angel Menéndez Díaz",slug:"j.-angel-menendez-diaz"},{id:"15134",title:"Dr.",name:"Ana",middleName:null,surname:"Arenillas",fullName:"Ana Arenillas",slug:"ana-arenillas"},{id:"207301",title:"Mrs.",name:"María",middleName:null,surname:"Canal-Rodriguez",fullName:"María Canal-Rodriguez",slug:"maria-canal-rodriguez"}]},{id:"57013",title:"Controlled Porosity in Thermochromic Coatings",slug:"controlled-porosity-in-thermochromic-coatings",signatures:"Ning Wang, Yujie Ke and Yi Long",authors:[{id:"180388",title:"Dr.",name:"Yi",middleName:null,surname:"Long",fullName:"Yi Long",slug:"yi-long"},{id:"218177",title:"Dr.",name:"Ning",middleName:null,surname:"Wang",fullName:"Ning Wang",slug:"ning-wang"},{id:"218178",title:"Mr.",name:"Yujie",middleName:null,surname:"Ke",fullName:"Yujie Ke",slug:"yujie-ke"}]},{id:"58360",title:"Ultrasound Measuring of Porosity in Porous Materials",slug:"ultrasound-measuring-of-porosity-in-porous-materials",signatures:"Zine El Abiddine Fellah, Mohamed Fellah, Claude Depollier, Erick\nOgam and Farid G. Mitri",authors:[{id:"143693",title:"Dr.",name:"Zine El Abiddine",middleName:null,surname:"Fellah",fullName:"Zine El Abiddine Fellah",slug:"zine-el-abiddine-fellah"},{id:"144519",title:"Prof.",name:"Claude",middleName:null,surname:"Depollier",fullName:"Claude Depollier",slug:"claude-depollier"},{id:"178778",title:"Prof.",name:"Mohamed",middleName:null,surname:"Fellah",fullName:"Mohamed Fellah",slug:"mohamed-fellah"},{id:"209074",title:"Dr.",name:"Erick",middleName:null,surname:"Ogam",fullName:"Erick Ogam",slug:"erick-ogam"},{id:"209076",title:"Prof.",name:"F.G.",middleName:null,surname:"Mitri",fullName:"F.G. Mitri",slug:"f.g.-mitri"}]},{id:"59403",title:"Unsteady Magnetohydrodynamic Flow of Jeffrey Fluid through a Porous Oscillating Rectangular Duct",slug:"unsteady-magnetohydrodynamic-flow-of-jeffrey-fluid-through-a-porous-oscillating-rectangular-duct",signatures:"Amir Khan, Gul Zaman and Obaid Algahtani",authors:[{id:"207298",title:"Dr.",name:"Amir",middleName:null,surname:"Khan",fullName:"Amir Khan",slug:"amir-khan"},{id:"218748",title:"Prof.",name:"Gul",middleName:null,surname:"Zaman",fullName:"Gul Zaman",slug:"gul-zaman"},{id:"218749",title:"Prof.",name:"Obaid",middleName:null,surname:"Algehtani",fullName:"Obaid Algehtani",slug:"obaid-algehtani"}]},{id:"57910",title:"Porous Structures in Heat Pipes",slug:"porous-structures-in-heat-pipes",signatures:"Patrik Nemec",authors:[{id:"208635",title:"Ph.D.",name:"Patrik",middleName:null,surname:"Nemec",fullName:"Patrik Nemec",slug:"patrik-nemec"}]},{id:"56922",title:"High-Porosity Metal Foams: Potentials, Applications, and Formulations",slug:"high-porosity-metal-foams-potentials-applications-and-formulations",signatures:"Ahmed Niameh Mehdy Alhusseny, Adel Nasser and Nabeel\nM J Al-zurfi",authors:[{id:"208783",title:"Dr.",name:"Ahmed",middleName:"Niameh Mehdy",surname:"Alhusseny",fullName:"Ahmed Alhusseny",slug:"ahmed-alhusseny"},{id:"208796",title:"Dr.",name:"Adel",middleName:"Gharib",surname:"Nasser",fullName:"Adel Nasser",slug:"adel-nasser"},{id:"217892",title:"Dr.",name:"Nabeel",middleName:null,surname:"Al-Zurfi",fullName:"Nabeel Al-Zurfi",slug:"nabeel-al-zurfi"}]},{id:"58630",title:"Porosity Evolution during Chemo-Mechanical Compaction",slug:"porosity-evolution-during-chemo-mechanical-compaction",signatures:"Anders Nermoen",authors:[{id:"208706",title:"Associate Prof.",name:"Anders",middleName:null,surname:"Nermoen",fullName:"Anders Nermoen",slug:"anders-nermoen"}]},{id:"57224",title:"Role of Interparticle Space in Hollow Spheres of Silica-Based Solid Acids on Their Acidic Properties and Activity for Hydrolytic Dehydrogenation of Ammonia Borane",slug:"role-of-interparticle-space-in-hollow-spheres-of-silica-based-solid-acids-on-their-acidic-properties",signatures:"Tetsuo Umegaki, Toyama Naoki and Yoshiyuki Kojima",authors:[{id:"207629",title:"Dr.",name:"Tetsuo",middleName:null,surname:"Umegaki",fullName:"Tetsuo Umegaki",slug:"tetsuo-umegaki"},{id:"216591",title:"Dr.",name:"Naoki",middleName:null,surname:"Toyama",fullName:"Naoki Toyama",slug:"naoki-toyama"},{id:"216592",title:"Prof.",name:"Yoshiyuki",middleName:null,surname:"Kojima",fullName:"Yoshiyuki Kojima",slug:"yoshiyuki-kojima"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"57434",title:"Cytotoxic and Antiproliferative Effects of Nanomaterials on Cancer Cell Lines: A Review",doi:"10.5772/intechopen.71685",slug:"cytotoxic-and-antiproliferative-effects-of-nanomaterials-on-cancer-cell-lines-a-review",body:'\n
\n
1. Introduction
\n
Toxicity studies are needed for nanoparticles’ (NPs) intended application on biomedical theranostics. Nanostructures are being designed and fabricated with a wide range of potentialities, including those in cancer therapeutics, medical imaging and diagnostics. Thus, research on cell models and in vivo toxicity is growing as the nanostructures that are being fabricated will find possible uses in biomedical, clinical medicine and health-related sectors. NPs have interesting physical-chemical properties that are of value when engineering drug delivery systems, diagnostic platforms and nanotechnology-based imaging strategies. The high surface-to-volume ratio of NPs allows the use of different molecules, such as those intended for targeted drug delivery [1]. The above properties, however, might render NPs a toxic in vitro and in vivo profile. Since many NPs are entering the health market, it becomes increasingly necessary to perform toxicological investigation along with NP fabrication.
\n
Earlier and recent toxicity studies on human cell lines have found a range of nanostructures that might be selectively toxic for particular cellular lines, including cancerous ones [2, 3]. This selective toxicity against specific types of cancer is a promising research field with potential implications in (pro)diagnosis and therapeutics [4, 5]. Human cell models are available for a variety of malignancies, serving as suitable platforms for exploring antiproliferative and cytotoxic effects of nanostructures [6]. Data from cancer cell models and NP exposure are valuable for guiding and designing in vivo testing and, potentially, for developing new anticancer theranostic strategies [7].
\n
In this review, we compile and discuss the findings of several recent works using cancer cell models and exploring selective NP toxicity and/or antiproliferative effects for potential therapeutic applications in cancer. We looked for particularly interesting scientific papers from indexed journals published within 2015–2017. The focus of this review is on methodological aspects of NP treatment on human cell–based models, i.e. viability assessment techniques, experimental design for investigation of mechanisms of cellular damage, cell culture protocols and NP stability assessment, including in biological media. Results of this review are presented by nature of NPs. Studies exploring new cell culture techniques for assessment of NP toxicity on cancer cell lines were also included.
\n
\n
\n
2. Physicochemical characteristics of nanomaterials and their influence on toxicity
\n
The potential for biomedical applications of several NPs is enormous. There are, however, several shortcomings regarding interactions of engineered NPs with biological environments. Toxicity concerns for NPs intended for use in biomedicine have limited their translation into clinical settings. NP properties such as size, surface-to-volume ratio, shape, surface functionalization and stability on biological media, among others, have been demonstrated to influence the toxicological profile of the nanostructures and their biocompatibility in general [7, 8]. It has been also demonstrated that the level of toxicity varies depending upon cell type, which reflects on particular cell line biology and genetics [9].
\n
Interactions of NPs inside a biological environment, e.g. eukaryotic cells, have been widely studied [10]. Proteins, lipids or any biomolecule may be absorbed by NPs, affecting not only the original synthetic structure but its biological effect. Assessing antitumor properties of NPs requires stability in investigation under in vitro cell culture conditions. The interactions between NPs and biomolecules present in the culture media, such as proteins and lipids, could change nanomaterial’s characteristics [12]. For instance, research has demonstrated the formation of protein corona around NP surface due to interaction with cellular media, resulting in modifications of their physical properties and leading, for instance, to aggregation and sedimentation [13]. Thus, NP characterization during in vitro experiments is essential to understand the relationship between physical properties and mechanisms of in vitro toxicity.
\n
In general, smaller NPs are more toxic than larger ones [14]. Several works have confirmed this relationship and some authors have identified NP sizes that correlate well with the level of toxicity observed on in vitro tests [15]. A range of toxic mechanisms leading to apoptosis, necrosis and genotoxicity is triggered by NPs of different range of dimensions. The net cytotoxic effect is usually cell and NP concentration dependent [9].
\n
Several coating strategies have been tested for lowering the cytotoxic effects of many engineered NPs intended for medical applications. Metallic NPs have been extensively investigated and are excellent candidates as drug nanocarriers, for imaging strategies and for immunological platforms in biomedicine [11]. Toxicity concerns have, however, slowed their faster development and translation. Green chemistry or biologically mediated synthesis of coated metallic NPs is on the rise, and consequently their nanotoxicity evaluation on biological media has been pursued and published [15, 16].
\n
Nanostructures such as semiconductor quantum dots (QDs) are also being investigated for biomedical purposes. Since the toxicity of these nanostructures is known, different coating procedures have been investigated in order to reduce their toxicity. For instance, zinc sulfide (ZnS) QDs functionalized with chitosan have shown no toxic effects on human leukocytes, contrary to the highly toxic cadmium sulfide (CdS) QDs that, even coated with biocompatible chitosan, showed to be toxic in a concentration and time-dependent manner [17]. A summary of the pros and cons of the use of NPs in cancer research is shown in Table 1.
• High antitumor activity • Storage and release of energy to other molecules quite effectively • Improvement of sensitive single-molecule detection techniques • External stimuli responsive, e.g. light and magnetism modulate its activity • Tunable physical and chemical properties
\n
• Conformational changes • Coalescence • Stabilizers do not function properly in different solvents • In a large extent, synthesized with toxic chemicals for health and/or environment
• Easy conjugation to drugs, proteins, and/or nucleotides • Attenuated cytotoxicity against normal cells due to surface functionalization • Specific site of action
\n
• Biological effect varies among different coatings • Formation of a protein corona • Sedimentation and/or aggregation
• High biocompatibility • Capability of conjugation with soluble and insoluble drugs • Targeted drug release • Low toxicity
\n
• Colloidal stability and biodegradability • Complex and expensive synthesis
\n
\n\n
Table 1.
Advantages and disadvantages of (non)metallic nanoparticles and liposomes application in cancer research.
\n
\n
\n
3. The selective toxicity of nanomaterials on in vitro cancer cell models
\n
Several mechanisms are involved in NP-mediated in vitro toxicity in normal (i.e. noncancerous) and cancerous cells. Cellular responses to NP exposure might include those at cell, organelle and gene level or a combination of them [18]. Direct cytotoxic effects might be apoptosis or necrosis (or both) mediated, with a number of mechanisms leading to cell death, changes in proliferation patterns and effects on cell differentiation. High levels of reactive oxygen species (ROS) production, downregulation of antioxidant enzyme coding genes, lipid peroxidation and genotoxic effects, among others, may be involved in the integrated cellular response to NPs [19, 20].
\n
In spite of the number of studies providing useful information on nanotoxicological profiling, there remains particular information with regard to cell-NP specificity interactions. In addition, investigation on the toxicity of nanostructures and biointeractions rely on data from a wide variety of experiments with several different methods and techniques that are chosen on the basis of laboratory capabilities and researchers´ technical expertise [21, 22]. Then, there are, as today, no standard cell panels or defined protocols available for assessment of cancer cell responses to NPs; therefore, data arising from those studies are difficult to compile and integrate. Moreover, there is still the risk that the toxicological picture from a particular study on specific NPs and cell lines might not be “complete” enough and that toxic risks may be overlooked.
\n
Apoptosis is a common response of cells to NP treatment. Azizi and colleagues found that albumin-coated silver NPs (AgNPs) LD50 were several times lower for breast cancer cells than for normal white blood cells. Apoptosis assays such as Annexin V and microscopy counts of apoptotic bodies demonstrated that albumin-coated AgNPs exert proapoptotic selective effects on breast cancer cells while normal blood cells remained viable at the tested concentrations and times of exposure [5].
\n
In a recent work on several murine cancer cell lines, Namvar and colleagues investigated the antitumor properties of biosynthesized zinc oxide NPs (ZnONPs). They found that cancer cell proliferation was inhibited by NPs in a time- and concentration-dependent manner and that the mechanism of cell death was primarily apoptosis via procaspases activation and intrinsic mitochondrial pathway triggering [2].
\n
NP exposure may cause cancer cell death by oxidative stress through varied mechanisms, including ROS production, inhibition of antioxidant enzymes, mitochondrial damage and lipid peroxidation [20]. For instance, Matulionyte, et al. demonstrated that photoluminescent gold nanoclusters have specific toxicity against MCF-7 breast cancer cells and were less toxic on MDA-MB 231 breast cancer cells, a highly drug-resistant cell line. The mechanism of cell death was apoptosis, necrosis and generation of ROS, effects that were more evident in MCF-7 cells [23].
\n
Several other mechanisms are involved in the selective toxicity of NPs against different cancer cell lines. Endoplasmic reticulum (ER) autophagy is a well-known process related with NP exposure. A study by Wei, et al. found that silica NPs (SiNPs) induced ER autophagy in colon cancer cells. The authors showed a time-dependent effect of NP exposure, but interestingly, autophagy was present only at either low or high NP concentrations [24].
\n
Due to the complexity of cell responses to NPs, it is important to evaluate the biological effect of NPs from different perspectives, from toxicology assessment to both in vitro and in vivo testing, to better understand NP-induced cellular responses and the mechanisms behind them (Figure 1).
\n
\nFigure 1.
Schematic interpretation of nanoparticle (NP) cellular effects. NPs undergo internalization by nonspecific or specific endocytosis and remain in the cytoplasm or inside intracellular vesicles, either individually or in aggregates. NPs might release ions that enter the nucleus and cause DNA fragmentation/hypermethylation and/or cell cycle arrest in cancer cells. Furthermore, NPs’ inhibitory effect on cellular viability is due to downregulation of antiapoptotic genes, e.g. Bcl2, generation of reactive oxygen species (ROS), mitochondria fission and autophagy and events that finally induce cell death through apoptosis. NPs could decrease the expression of transcription factors involved in stemness and thus inhibit angiogenesis.
\n
In the following sections, we discuss the cytotoxic and antiproliferative in vitro properties of different types of NPs and their potential application in nanotherapeutics.
\n
\n
3.1. Metallic nanoparticles: noble metals and selective antitumor properties
\n
Inorganic nanostructures exhibit interesting physical properties such as magnetism, fluorescence and localized surface plasmon resonance, which in combination with NPs’ small dimensions make them suitable for biological applications. An advantage over other types of nanostructures is that inorganic NPs could respond to external stimulation with light or magnetic fields [1]. Among inorganic NPs, noble metals have been commonly used for the synthesis of nanomaterials. For instance, silver, gold and platinum NPs are of interest in cancer research as multifunctional anticancer agents due to their particular properties [25, 26]. In the subsequent sections, antitumor properties of noble metallic NPs are discussed focusing on their in vitro effects on several cancer cell lines.
\n
\n
3.1.1. Silver nanoparticles
\n
Silver nanoparticles (AgNPs) possess particular physicochemical properties that determine their extent of cytotoxicity in biological systems [27]. It is well documented that AgNPs exert an antiproliferative effect on cancer cell lines [19, 28]. According to Choi, et al., AgNPs develop a potential cytotoxic effect on A2780 ovarian carcinoma cells and ovarian cancer stem cells (OvCSCs) at high concentrations. The inhibitory effect on cellular viability is caused by the upregulation of p53 and caspase-3 genes. In contrast, AgNPs might promote cell proliferation at low concentrations. The relevance of these findings is that OvCSCs present more sensitivity to the treatment with AgNPs, which is particularly interesting due to the fact that CSCs might increase the risk of acquired resistance to chemotherapy [19].
\n
The therapeutic effect of AgNPs in multidrug resistant (MDR)-cancer cells has also been investigated. Kovacs, et al. demonstrated that AgNPs induce apoptosis-mediated cell death in drug-sensitive (Colo 205) and drug-resistant (Colo 320) colon adenocarcinoma cell lines, in a dose-dependent manner [28]. The internalization of AgNPs was observed in both cell types; thus, they remained in the cytoplasm. In addition, AgNPs may act synergistically with anticancer drugs to enhance their tumor-killing effects in MDR cells due to their capability of modulating efflux activity [28]. It is important to highlight the risk of exposing normal cells to AgNPs. To illustrate, a hippocampal neuronal cell model (HT22) was treated with AgNPs, obtaining a decrease in cell viability, oxidative damage and hypermethylation in DNA due to the internalization of AgNPs. These effects in normal cells may be prolonged since harmful impacts remain after AgNP removal [29]. Similar reports were found by Gao, et al., demonstrating that AgNPs can potentially damage mouse embryonic stem cells [30]. A novel approach to reduce cytotoxicity against normal cells is the functionalization or modification of AgNP surface [16]. Extensive research has been conducted to validate the hypothesis that AgNPs could inhibit angiogenesis, a complex process that is involved in the formation of new blood vessels and tumor progression [31]. For instance, Gurunathan, et al. concluded that the treatment of bovine retinal endothelial cells (BRECs) with AgNPs might activate PI3K/Akt pathway resulting in the inhibition of capillary formation [32]. Based on this evidence, AgNPs are potent antineoplastic agents with acute cytotoxic effects that modulate several metabolic pathways leading to decreased cell viability, independently or in combination with other anticancer drugs. This synergistic effect will be further discussed along this chapter.
\n
\n
\n
3.1.2. Gold nanoparticles
\n
Compatibility of gold with biosystems has been well demonstrated since metallic nanoscale materials were originally developed [33]. In recent years, synthesis and application of gold NPs (AuNPs) in the biomedical field have substantially increased due to their ductility physicochemical properties and biocompatibility. AuNPs can be synthesized in different shapes including spheres, rods, cubes, triangles, cones and shells [34]. Therefore, based on their size and shape, “naked” AuNPs possess several applications, e.g. as antitumor agents, drug nanocarriers, hyperthermia enhancers and radio sensitizers [1, 35].
\n
AuNPs exert in vitro cytotoxicity on several human cancer cell lines including cervical (HeLa), prostate (PC-3), hepatocellular carcinoma (HepG2) and breast cancer (MDA-MB-231) [3, 36–38]. Wozniak, et al. proved that spherical and rod-shaped AuNPs are more efficient than other shapes in reducing cell proliferation of cancer cells in vitro [36]. Positively charged naked AuNPs interact with negatively charged cell membranes, increasing cellular uptake, preferably with smaller diameter particles rather than larger ones [37]. Also of interest, AuNPs can be used in combination with other anticancer molecules. For instance, Ke, et al. reported that AuNPs improved the responsiveness of Calu-1 epidermoid carcinoma cell line to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) [39]. This combined approach induced DNA fragmentation, mitochondrial fission and a decrease in cell viability due to apoptosis. By contrast, the effect on cell viability was minimal in the BEAS-2B normal lung cell line [39].
\n
In addition, AuNPs could act as enhancers of hyperthermia-targeted therapy because they efficiently absorb laser light and convert it into thermal energy [40]. The synergistic effect of AuNPs and laser-induced thermotherapy renders thermally exposed cancer cells susceptible to be ablated with minimal exposure times and lower laser intensities [33]. Rau, et al. showed that AuNPs could cause severe damage in the cytoskeleton of MG63 osteosarcoma cells in combination with laser treatment, increasing the calcium content inside the cells and leading to mineralization [41]. Another technique to induce hyperthermia in tumors is directed ultrasound. Kosheleva, et al. discovered that the combined treatment of ultrasound and AuNPs exerted a more acute cytotoxic effect on A549 lung cancer cells compared to BEAS-2B normal lung cells when cultivated separately and in coculture [42]. These findings suggested that AuNP-assisted thermotherapy could cause targeted cancer cell ablation, while avoiding damage to surrounding noncancerous cells.
\n
AuNPs can be uptaken by cancer cells via endocytosis and trigger apoptotic events [43]. As a consequence, an improvement in radiation therapy has been observed when cancer cells are previously exposed to AuNPs [43]. Likewise, high atomic number in AuNPs increases radiation absorption from the target tumor [43]. Literature suggests that AuNPs act as radiosensitizers in several cancer cell lines, such as U251 glioblastoma, which in clinical practice could increase radiotherapy efficacy and prevent the development of drug-resistant tumors [44]. Another approach thoroughly studied by Rezaee, et al. showed that electroporation enhances radiosensitizing effect of AuNPs in HT-29 colon adenocarcinoma cells as a result of increasing cell membrane permeability. In this study, AuNPs’ radiosensitizing effect was more prominent in cancer cells than in normal counterparts [43].
\n
\n
\n
3.1.3. Platinum nanoparticles
\n
Several investigations have addressed the antiproliferative effect of platinum nanoparticles (PtNPs) in cell models [45–48]. Bendale, et al. concluded that the harmful effect of PtNPs on cancer cell viability depends on the cell type. At the same PtNP concentration, an acute cytotoxic effect was observed in lung (A549), ovary (PA-1) and pancreatic (Mia-Pa-Ca-2) cancer cells [45] . In this study, no significative effect on cell viability was observed in breast, renal, colon and leukemia cancer cell lines. Interestingly, peripheral blood mononuclear cells (PBMCs) were not affected either, suggesting that PtNPs could preferably target tumor cells [45]. According to Kutwin, et al., PtNPs severely affect the proliferation rate and morphology of U118 and U87 human malignant glioma cell lines, and as a consequence, cells suffer from membrane disruption, reduced density and decreased migration [46]. Gehrke, et al. did not find any adverse effect on cellular viability when HT29 colon carcinoma cells were treated with PtNPs. It was observed, however, that smaller PtNPs enter the cells and remain in the cytoplasm or inside intracellular vesicles, either individually or in aggregates. Additionally, PtNPs released Pt ions that may bind to DNA leading to strand cleavage damage [49]. Another important feature is the synergistic antitumor activity between platinum and gold NPs. Ahamed, et al. reported that platinum-coated gold nanorods (AuNRs-Pt) affected cell viability on MCF7 breast cancer cells at relatively low doses. The mechanism of action of AuNRs-Pt involved impairment of normal morphology resulting in rounded cells, cell cycle detention at SubG1 phase, increased expression levels of proapoptotic genes caspase-3 and caspase-9 and generation of ROS [47]. Manikandan, et al. demonstrated that PtNPs could improve photothermal treatment in cancer cells. Neuro-2a brain neuroblastoma cells were exposed to the combined scheme of laser irradiation and PtNPs, which resulted in induction of apoptosis [48]. There was no significative effect on cellular viability when PtNPs and laser treatment were applied separately [48].
\n
\n
\n
3.1.4. Other metal-based nanomaterials
\n
Titanium dioxide (TiO2), zinc (Zn), copper (Cu) and iron (Fe) are used in several industrial applications such as cosmetics, paint chemicals, food additives, pharmacological coatings, drug delivery systems, biosensor technologies and body implants. These nanomaterials have been also tested in cancer research and development of new therapeutics [22, 50].
\n
Xia and coworkers reported the cytotoxic effect of cuprous oxide nanoparticles (CONPs) on HeLa, SiHa and MS751 human cervical cancer cell lines. Results demonstrated that CONPs are uptaken by cells and internalized into the cytoplasm, mitochondria and lysosomes; as a result, cell morphology alterations and decreased cellular viability were observed. Cell cycle arrest in the G1/G0 phase, induction of apoptosis and autophagy were also reported [51].
\n
The antineoplastic effect of CONPs in PC-3, LNCaP FGC and DU145 human prostate carcinoma cells was investigated by Wang, et al. The results of this study suggest that CONPs might induce cytotoxicity selectively on cancerous cells without affecting normal prostate epithelial cells (RWPE-1). Moreover, a significant decrease in the expression of Oct4, Sox2 and KLF4 transcription factors related with stem-cell proliferation capability was observed [52].
\n
Superparamagnetic iron oxide nanoparticles (SPIONs) are also included in a large extent in nanomedical products [1]. SPIONs develop magnetic properties within a magnetic field; therefore, they are able to act in specific target sites [1]. Several studies demonstrated that SPIONS can be approached as hyperthermia enhancers, contrast agents in magnetic resonance imaging, drug nanocarriers and anticancer candidates [1]. For instance, Du, et al. studied the combined effect of SPIONs and spinning magnetic field (SMF) on the survival rate of U-2 OS and Saos-2 osteosarcoma cell lines. This combined treatment exerts a more effective cytotoxic response triggering the intracellular ROS generation, autophagic cell death and apoptosis, than SPION treatment alone [53].
\n
\n
\n
\n
3.2. Nonmetallic and organically coated metallic nanomaterials: antiproliferative and cytotoxic properties
\n
\n
3.2.1. Green synthesis–based nanomaterials
\n
Production of materials at the nanometric scale (1–100 nm) has been performed using several approaches [54]. The most common synthesis method involves the use of three elements: capping agent, reducing agent and solvent [54]. However, most of these elements are toxic, flammable, corrosive and even dangerous for the natural environment and living organisms. For this reason, a new green chemistry tendency emerged in the nanotechnology area to modify chemical processes and reduce or minimize the use of hazardous reagents [55]. The green-synthesis approach has been focused on finding nontoxic elements to develop a more eco-friendly design with improved efficiency [54]. Some of these new techniques require the use of solvents such as water, supercritical CO2 or ionic liquids [56, 57]. For example, silver and gold nanoscale structures, due to their chemical and biological properties, have been widely used in green synthesis in combination with medicinal plants (photosynthesis) or bacterial/fungi/viral proteins (microbial-synthesis) [58]. This section provides further interesting examples of green-synthetized nanomaterials.
\n
\n
3.2.1.1. Photosynthesis
\n
The importance of developing an alternative nanosynthesis protocol is not only for an environmental footprint reduction, but contributes also for the simplification of industrial production with the lack of expensive organic solvents and toxic chemicals [59]. The use of innocuous plant extracts with solvents such as water facilitates the production and further evaluation of green nanomaterials, which are fundamental for biological applications in critical areas e.g. drug production [59]. There are several nanoscale structures coated with plant extracts and their effect on living systems has been extensively studied [60]. For instance, Krishnaraj, et al. reported that Ag/Au biosynthesized NPs with Acalypha indica extract exerted a cytotoxic effect in MDA-MB-231 human breast cancer cells. These NPs exhibited a proapoptotic effect through caspase-3 activation [58]. Another example of naturally coated AgNPs includes the effect of the Erythrina indica extract causing a dose-dependent reduction of viability in MCF7 breast cancer cells and HepG2 hepatocellular carcinoma [27]. The authors also demonstrated high antimicrobial activity for AgNPs against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Bacillus subtilis, Salmonella typhi and Salmonella paratyphi [27]. Moreover, AgNPs were synthesized using Albizia adianthifolia leaf extract; the AgNP analysis determined the presence of saponins and glycosides as stabilizing agents [61]. Toxicity analysis was performed on A549 lung cancer cells and normal peripheral lymphocytes [61]. The results showed a reduction in A549 cellular viability to 21% at 10 g/mL and 73% at 50 g/mL after 6 h of exposure [61]. In comparison, proliferation rates for normal cell lines were not altered [61]. Other applications of these nanostructured particles for disease treatment include antidiabetic effects, described with Cassia fistula AuNPs that reduce glucose levels in rats with streptozotocin-induced diabetes [62], and antimosquito larvicidal activity of Nelumbo nucifera AuNPs [63].
\n
\n
\n
3.2.1.2. Microbial synthesis
\n
Bacterial survival in the presence of heavy metals is caused by a transformation (reduction/precipitation) of metal ions into insoluble nontoxic metal nanoclusters. These detoxification reactions are mediated by intracellular accumulation or a physicochemical process–denominated extracellular biosorption, which facilitates the concentration of contaminants, e.g. heavy metals, and binds them in their cellular structure, with variable levels of dispersity [64]. Based on these bacterial properties, Klaus, et al. described AgNP production in Pseudomonas stutzeri. This bacterium reduces silver ion to generate Ag0 and AgS2 NPs of different shapes and sizes located around the cellular poles [65]. Another interesting example is B. subtilis that reduces Au3+ to a neutral nanocompound (Au0) [66]. Moreover, production of lipopolysaccharides and phospholipids in some bacteria mediates bioreduction, e.g. transformation of chloroauric acid (HAuCl4) to AuNPs in E. coli DH5α [64]. Nonetheless, assembly of microbial NPs is also performed in several fungi species such as Penicillium chrysogenum, which has showed to be an AuNP producer in HAuCl4 solution [67]. Another remarkable study optimized nanowire production with M13 virus as biotemplate for development of lithium batteries [68]. Based on this information, affordable and massive industrial production should be feasible with the use of biological nanofactories such as the above-mentioned examples. However, the lack of complete understanding of the molecular reaction mechanism is a major disadvantage of this methodology.
\n
\n
\n
\n
3.2.2. Organically coated metallic and nonmetallic nanomaterials\n
\n
Nanobiotechnology as a mature biomedical field emerged in the last years [69]; for example, from gene-delivery systems to targeted drug delivery, it has several applications in cancer treatment, diagnosis (biomarkers), molecular biology and genetic/cell engineering [70, 71]. A nanomedicine-based therapeutic approach might be built on nanocarriers, e.g. liposomes and NPs that improve chemotherapeutic biodistribution [72] and have been useful for treating diseases such as cancer [73] and microbial infections [74]. In 1989, Matsumura and Maeda described the enhanced permeation and retention (EPR) effect, a controversial concept based on the passive accumulation of macromolecular drugs in tumors due to the presence of a high number of abnormal blood vessels (angiogenesis), which lack lymphatic drainage, affecting in turn as a drug delivery system [75]. Despite the fact that this effect has been extensively studied but has failed in clinical trials [76], EPR is still one of the most used concepts in nanobiodistribution [76]. With this information in mind, this section discusses relevant aspects of metallic and nonmetallic coated nanomaterials, including liposomes as novel therapeutic agents for cancer.
\n
\n
3.2.2.1. Organically coated nanomaterials
\n
Organic coating is used to stabilize NPs and maintain a balance between electrostatic and electrosteric repulsion forces [73]. NPs of different shapes might be covered with diverse capping agents such as citric acid, polysaccharides, surfactants, proteins, polymers and nucleic acids [77, 78]. However, despite the fact that they have the same core material, coated-NPs exert different biological responses. For instance, viability, genotoxicity and mutagenicity evaluation of AgNPs coated with anionic (citrate, SDS), neutral (disperbyk, tween) or cationic (byk and chitosan) compounds were performed by Kun, et al. using lymphoblast TK6 cell line and Chinese hamster lung fibroblasts. The methodology used for testing involved trypan blue exclusion assay, relative growth activity, cell morphology, HPRT mutation and comet assay. The results determined that AgNPs_byk and AgNPs_chitosan were the most cytotoxic, affecting cell morphology, inhibiting proliferation and inducing cell death through apoptosis or necrosis. Furthermore, AgNPs_byk showed significant mutagenic effects by inducing DNA strand breaks and oxidation. It is important to note that AgNPs_byk formed the smallest agglomerates in medium solution in comparison to other coated AgNPs, suggesting that size is an important factor in toxicity. To sum up, coated NPs display various biological in vitro effects depending mainly on their surface charge [12].
\n
One of the well-known NP biointeractions is that with bovine serum albumin (BSA), which relies on principle that a protein corona is dynamically formed around NPs when they enter a biological environment [79]. A recent investigation performed by Zhou, et al. determined that ZnONPs bound to BSA elicited interleukin-6 (IL-6) production-mediated anti-inflammatory responses in HepG2 liver cancer cell line. Additionally, synthesized NPs induced mitochondria and lysosomal damage by increasing intracellular Zn ions production [79]. However, the analysis of the biological effect of ZnONPs bound to α-linolenic acid (LNA) did not show the same response [79]. Another interesting example is the evaluation of the response of SPIONs conjugated to the antitumor peptide ATWLPPR (A7R) on HUVEC human umbilical vein endothelial cells and MDA-MB-231 human breast adenocarcinoma [11]. These NPs might be adjusted carriers for targeted drug delivery systems using their magnetic properties. Furthermore, the presence of cell receptors for the A7R peptide facilitates the uptake of the nanocarriers. This is particularly important because the role of the receptor is to repress the vascular endothelial growth factor A (VEGF A). Consequently, NPs affect angiogenic events and impair cell proliferation [11].
\n
The study of commercial anticancer drug formulations in nanoform has also been evaluated, with positive results in many cases. For instance, tamoxifen, an anticancer agent used in estrogen receptor-positive (ER+) breast cancer, has been commonly used before surgery to reduce tumor volume [80]. However, tamoxifen resistance has become a significant problem in cancer treatment [80]. Devulapally, et al. synthesized biodegradable polymer NPs loaded with the active compound of tamoxifen (4-hydroxytamoxifen-4OHT) and the noncoding RNA (anti-miR-21). NPs showed antiproliferative and proapoptotic effects in human breast (MCF7, ZR-751, BT-474) and mouse mammary (4 T1) carcinoma cells [81].
\n
\n
\n
3.2.2.2. Nonmetallic nanomaterials
\n
Despite the fact that most widely used nanomaterials have metal cores, a number of industry-relevant nonmetallic nanoscale particles such as SiO2 and carbon NPs have been engineered. For instance, silica NPs have been extensively used in food additives [82], toothpaste and skin care products [83]. However, their use requires toxicology screening to determine their innocuity. According to Wittig, et al., commercially available nanosilica (Ø 12 nm) increases the growth of GXF251L human gastric carcinoma cells. The results showed an important proliferative effect through the activation of cellular epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling pathways [84].
\n
On the contrary, research on antiproliferative properties have found that cerium oxide nanocrystals (nanoceria: CeO2-NCs) can act as an anticancer drug [85]. The investigation conducted by Khan, et al. found that fluorescence microscopy assessments of nanoceria displayed a marked in vitro cytotoxic effect and reduced cellular viability on HT-29 human colorectal adenocarcinoma. The results showed downregulation of Bcl2 and BclxL protein expression suggesting proapoptotic effects. Additionally, this study confirmed previous reports [86] where cerium oxide exhibited a cytotoxic effect toward cancer cells with minimum toxicity to normal cells [86]. Another interesting example involved the evaluation of cytotoxic effects of smart-releasing NPs synthesized using cytochrome C (Cyt C) and hyaluronic acid (HA) [87]. This study, by Figueroa, et al., showed that A549 human lung adenocarcinoma cellular viability was reduced to 20% (0.16 mg/mL [Cyt C], 6 h of exposure), while OS-7 African green monkey kidney fibroblasts were not affected. Confocal microscopy imaging confirmed the release of Cyt C to the cytoplasm upon reaching the target. In this study, EPR effect is used to develop a new potential stimuli-driven nanoparticle for cancer treatment [87].
\n
Liposomes were firstly described in the middle 1960s as spherical vesicles constituted with phospholipid bilayers [88]. These lipid-based nanoparticles have been used in several fields from biophysics to biology for many years [88]. With the advances of nanotechnology, liposomes have evolved in order to assure controlled delivery of active molecules to a specific site of action. For instance, a radiation therapy scheme in use for more than 50 years is boron neutron capture (BNCT), which is based on the specific delivery of the isotope (boron-10) undergoing a nuclear reaction to form boron-11, through exposure to a laser beam (neutron source [89]). This reaction causes a release of an -particle that has a high linear energy transfer (LET) and kills the equivalent of one cell diameter [89]. In the above research, conducted by Maitz, et al., the effect of unilamellar liposomes (composed of cholesterol, 1, 2-distearoyl-sn-glycero-3-phosphocholine, K [nido-7-CH3 (CH2)15-7, 8-C2B9H11] and core Na3 [1-(2′-B10H9)-2-NH3B10H8]) on mice bearing tumors (breast carcinoma EMT6 and colon carcinoma CT26) was studied. The results showed a 50% tumor reduction after 45 min of radiation, despite lower boron concentrations inside EMT6 tumor, in comparison to CT26. The average time for tumor growth, set as three times the pretreatment volume, was 38 days for BNCT-treated mice in comparison to 4 days for untreated controls. In conclusion, the authors found that liposomes were useful elements for increasing inherent radiosensitivity in selected tumors [89].
\n
The use of liposomes has also been found useful for drug delivery systems [90]. Sadhu, et al. evaluated the cytotoxicity and antiproliferative effects of liposomes designed to increase the intracellular glutathione disulfide (GSSG) on B16 murine metastatic melanoma tumor cells (B16F10), human metastatic lung carcinoma cells (NCI-H226) and in vivo on C57BL/6 mice. Glutathione (GSH) is fundamental in the antioxidant defense against ROS [91]. Oxidation of GSH is mediated by a sulfhydryl residue from oxidative species and results in GSSG [91]. Analysis of GSSG has been a challenge since it is not inducible and neither cell membrane permeant. The results showed an important effect in the apoptotic pathway affecting cell migration, invasion and adhesion. Dacarbazine (the treatment option for melanoma) and GSSG liposomes showed a significant in vivo reduction of tumor proliferation (90% and 85%, respectively) [91].
\n
Drewes, et al. demonstrated that lipid-core nanocapsules containing poly(ε-caprolactone), capric/caprylic triglyceride, sorbitan monostearate and polysorbate 80 affected cell proliferation and triggered cell cycle arrest on SK-Mel-28 human melanoma cells. Furthermore, nanocapsules induced apoptosis and necrosis on a murine model B16F10 (H2b) bearing B16 melanoma cell line [92]. To sum up, GSSG liposomes and lipid-core nanocapsules are potentially useful for antimetastatic treatment and as drug delivery systems for melanoma treatment, respectively [91]. Organically coated nanostructures, including liposomes, might exert antiproliferative cytotoxic properties against cancer cells/tumors but may also induce cell proliferation depending on the type of tumor and nanostructure used.
\n
The wide spectrum of known cancer cellular responses to nanomaterials is summarized in Table 2.
Biological effects of different types of nanoparticles (NPs) on cancer cells.
\n
\n
\n
\n
\n
\n
4. Conclusion
\n
In vitro cellular models for the study of antiproliferative and/or cytotoxic properties of engineered nanomaterials are valuable tools in cancer research. Cancer cell lines represent very easy-to-use models where different codelivery treatments might be tested. For instance, including chemotherapeutic drugs, siRNAs and antibodies in the same NPs should help lower drug concentrations and side effects as well as improve the therapeutic effect. Taking advantage of this type of approach in cancer cell lines might be of value when testing NPs in personalized medicine applications, when tumor cells from the patients are collected and either cultured or injected into in vivo vertebrate models. Recently, Rita, et al. reported the use of zebrafish xenotransplants [93] using colon cancer cell lines, SW480, SW620, and HT29, HCT116 and Hke3. Larvae were injected with cancer cells to develop mono-/polyclonal tumors, which were treated with different antiproliferation drugs. Results displayed differential drug sensitivities and support the potential application of this assay in personalized medicine and diagnostics. Such approaches should also decrease multidrug resistance rates.
\n
Several techniques and methods are readily available for investigation of nanostructured particle properties regarding their selective cytotoxicity and/or antiproliferative effects. Setting up of those techniques, however, needs to be carefully monitored. Harmonization of the wide range of methods available is necessary for assay comparison and replicability.
\n
To sum up, extended cell-based testing (in vivo) is necessary to obtain a complete understanding of the in vitro results. Although individual or core laboratory capabilities play a role in selection and availability of techniques, data arising from cancer cell models have demonstrated usefulness in guiding further research.
\n
\n\n',keywords:"cancer, nanoparticles, organic, metallic, nanobiotechnology, cytotoxicity, antiproliferation",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/57434.pdf",chapterXML:"https://mts.intechopen.com/source/xml/57434.xml",downloadPdfUrl:"/chapter/pdf-download/57434",previewPdfUrl:"/chapter/pdf-preview/57434",totalDownloads:1060,totalViews:651,totalCrossrefCites:2,dateSubmitted:"June 16th 2017",dateReviewed:"October 13th 2017",datePrePublished:"December 20th 2017",datePublished:"March 21st 2018",dateFinished:null,readingETA:"0",abstract:"Cell models for the study of antiproliferative and/or cytotoxic properties of engineered nanoparticles are valuable tools in cancer research. Several techniques and methods are readily available for the study of nanoparticles’ properties regarding selective toxicity and/or antiproliferative effects. Setting up of those techniques, however, needs to be carefully monitored. Harmonization of the wide range of methods available is necessary for assay comparison and replicability. Although individual or core laboratory capabilities play a role in selection and availability of techniques, data arising from cancer cell models are useful in guiding further research. The variety of cell lines available and the diversity of metabolic routes involved in cell responses make in vitro cell models suitable for the study of the biological effect of nanoparticles at the cell level and a valid approach for further in vivo and clinical studies. The present systematic review looks at the in vitro biological effects of different types of nanoparticles in cancer cell models.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/57434",risUrl:"/chapter/ris/57434",signatures:"Marcelo Grijalva, María José Vallejo-López, Lizeth Salazar, Javier\nCamacho and Brajesh Kumar",book:{id:"5884",title:"Unraveling the Safety Profile of Nanoscale Particles and Materials",subtitle:"From Biomedical to Environmental Applications",fullTitle:"Unraveling the Safety Profile of Nanoscale Particles and Materials - From Biomedical to Environmental Applications",slug:"unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications",publishedDate:"March 21st 2018",bookSignature:"Andreia C. Gomes and Marisa P. Sarria",coverURL:"https://cdn.intechopen.com/books/images_new/5884.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"146466",title:"Prof.",name:"Andreia",middleName:null,surname:"Ferreira de Castro Gomes",slug:"andreia-ferreira-de-castro-gomes",fullName:"Andreia Ferreira de Castro Gomes"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"76070",title:"Dr.",name:"Javier",middleName:null,surname:"Camacho",fullName:"Javier Camacho",slug:"javier-camacho",email:"fcamacho@cinvestav.mx",position:null,institution:null},{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",fullName:"Brajesh Kumar",slug:"brajesh-kumar",email:"krmbraj@gmail.com",position:null,institution:{name:"Kolhan University",institutionURL:null,country:{name:"India"}}},{id:"214600",title:"Dr.",name:"Marcelo",middleName:null,surname:"Grijalva",fullName:"Marcelo Grijalva",slug:"marcelo-grijalva",email:"rmgrijalva@espe.edu.ec",position:null,institution:{name:"Escuela Politécnica del Ejército",institutionURL:null,country:{name:"Ecuador"}}},{id:"214602",title:"MSc.",name:"María José",middleName:null,surname:"Vallejo",fullName:"María José Vallejo",slug:"maria-jose-vallejo",email:"mjvallejo2@espe.edu.ec",position:null,institution:null},{id:"214603",title:"BSc.",name:"Lizeth",middleName:null,surname:"Salazar",fullName:"Lizeth Salazar",slug:"lizeth-salazar",email:"lasalazar@espe.edu.ec",position:null,institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Physicochemical characteristics of nanomaterials and their influence on toxicity",level:"1"},{id:"sec_3",title:"3. The selective toxicity of nanomaterials on in vitro cancer cell models",level:"1"},{id:"sec_3_2",title:"3.1. Metallic nanoparticles: noble metals and selective antitumor properties",level:"2"},{id:"sec_3_3",title:"3.1.1. Silver nanoparticles",level:"3"},{id:"sec_4_3",title:"3.1.2. Gold nanoparticles",level:"3"},{id:"sec_5_3",title:"3.1.3. Platinum nanoparticles",level:"3"},{id:"sec_6_3",title:"3.1.4. Other metal-based nanomaterials",level:"3"},{id:"sec_8_2",title:"3.2. Nonmetallic and organically coated metallic nanomaterials: antiproliferative and cytotoxic properties",level:"2"},{id:"sec_8_3",title:"3.2.1. Green synthesis–based nanomaterials",level:"3"},{id:"sec_8_4",title:"3.2.1.1. Photosynthesis",level:"4"},{id:"sec_9_4",title:"3.2.1.2. Microbial synthesis",level:"4"},{id:"sec_11_3",title:"Table 2.",level:"3"},{id:"sec_11_4",title:"3.2.2.1. Organically coated nanomaterials",level:"4"},{id:"sec_12_4",title:"Table 2.",level:"4"},{id:"sec_16",title:"4. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chemistry. Jan. 2017;28(1):212-221\n'},{id:"B2",body:'Namvar F, et al. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evidence-Based Complementary and Alternative Medicine. 2015;2015:593014\n'},{id:"B3",body:'Moses SL, Edwards VM. Cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells, without harming MCF-10A healthy cells. Journal of Nanomedicine & Nanotechnology. 2016;7(2):369\n'},{id:"B4",body:'Ortega FG, et al. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. International Journal of Nanomedicine. 2015;10:2021-2031\n'},{id:"B5",body:'Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Scientific Reports. Jul. 2017;7(1):5178\n'},{id:"B6",body:'Chang J-S, Kuo H-P, Chang KLB, Kong Z-L. Apoptosis of hepatocellular carcinoma cells induced by nanoencapsulated polysaccharides extracted from Antrodia camphorata. PLoS One. 2015;10(9):e0136782\n'},{id:"B7",body:'Liu G, et al. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells. International Journal of Nanomedicine. 2015;10:6075-6087\n'},{id:"B8",body:'Saifullah B, Hussein MZB. Inorganic nanolayers: Structure, preparation, and biomedical applications. International Journal of Nanomedicine. 2015;10:5609-5633\n'},{id:"B9",body:'Joris F, et al. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. Journal of Nanobiotechnology. Sep. 2016;14(1):69\n'},{id:"B10",body:'Foglia S, et al. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Scientific Reports. Apr. 2017;7:46513\n'},{id:"B11",body:'Niescioruk A, et al. Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R. Journal of Nanoparticle Research. 2017;19(5):160\n'},{id:"B12",body:'Huk A, et al. Impact of nanosilver on various DNA lesions and HPRT gene mutations—Effects of charge and surface coating. Particle and Fibre Toxicology. Jul. 2015;12:25\n'},{id:"B13",body:'Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA. Silver nanoparticle protein corona composition in cell culture media. PLoS One. Sep. 2013;8(9):e74001\n'},{id:"B14",body:'Joksić G, Stašić J, Filipović J, Šobot AV, Trtica M. Size of silver nanoparticles determines proliferation ability of human circulating lymphocytes in vitro. Toxicology Letters. Apr. 2016;247:29-34\n'},{id:"B15",body:'Guo X, et al. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology. Oct. 2016;10(9):1373-1384\n'},{id:"B16",body:'Das B, et al. Surface modification minimizes the toxicity of silver nanoparticles: An in vitro and in vivo study. Journal of Biological Inorganic Chemistry. Aug. 2017;22(6):893-918\n'},{id:"B17",body:'Mansur AA, Mansur HS, de Carvalho SM, Lobato ZI, Guedes MI, Leite MF. Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: To be or not to be nanotoxic? International Journal of Nanomedicine. 2016;11:4669-4690\n'},{id:"B18",body:'Patil NA, Gade WN, Deobagkar DD. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: Alterations in DNA methylation. International Journal of Nanomedicine. 2016;11:4509-4519\n'},{id:"B19",body:'Choi Y-J, et al. Differential cytotoxic potential of silver nanoparticles in human ovarian cancer cells and ovarian cancer stem cells. International Journal of Molecular Sciences. Dec. 2016;17(12):2077\n'},{id:"B20",body:'Abdal Dayem A, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences. Jan. 2017;18(1):120\n'},{id:"B21",body:'Yang F, et al. Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope. Journal of Nanobiotechnology. Mar. 2017;15(1):23\n'},{id:"B22",body:'Kuku G, Culha M. Investigating the origins of toxic response in TiO2 nanoparticle-treated cells. Nanomaterials. 2017;7(4):83\n'},{id:"B23",body:'Matulionyte M, Dapkute D, Budenaite L, Jarockyte G, Rotomskis R. Photoluminescent gold nanoclusters in cancer cells: Cellular uptake, toxicity, and generation of reactive oxygen species. International Journal of Molecular Sciences. Feb. 2017;18(2):378\n'},{id:"B24",body:'Wei F, Wang Y, Luo Z, Li Y, Duan Y. New findings of silica nanoparticles induced ER autophagy in human colon cancer cell. Scientific Reports. Feb. 2017;7:42591\n'},{id:"B25",body:'Rai M, Ingle AP, Birla S, Yadav A, Dos Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology. Sep. 2016;42(5):696-719\n'},{id:"B26",body:'Fekrazad R, Naghdi N, Nokhbatolfoghahaei H, Bagheri H. The combination of laser therapy and metal nanoparticles in cancer treatment originated from epithelial tissues: A literature review. Journal of Lasers in Medical Science. Mar. 2016;7(2):62-75\n'},{id:"B27",body:'Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine. 2017;12:3941-3965\n'},{id:"B28",body:'Kovacs D, et al. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine. Apr. 2016;12(3):601-610\n'},{id:"B29",body:'Mytych J, Zebrowski J, Lewinska A, Wnuk M. Prolonged effects of silver nanoparticles on p53/p21 pathway-mediated proliferation, DNA damage response, and methylation parameters in HT22 hippocampal neuronal cells. Molecular Neurobiology. Mar. 2017;54(2):1285-1300\n'},{id:"B30",body:'Gao X, Topping VD, Keltner Z, Sprando RL, Yourick JJ. Toxicity of nano- and ionic silver to embryonic stem cells: A comparative toxicogenomic study. Journal of Nanobiotechnology. Apr. 2017;15(1):31\n'},{id:"B31",body:'Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. Jul. 2016;8(25):12444-12470\n'},{id:"B32",body:'Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. Oct. 2009;30(31):6341-6350\n'},{id:"B33",body:'Chen C-H, Chan T-M, Wu Y-J, Chen J-J. Review: Application of nanoparticles in urothelial cancer of the urinary bladder. Journal of Medical and Biological Engineering. 2015;35(4):419-427\n'},{id:"B34",body:'Amendola V, Pilot R, Frasconi M, Marago OM, Iati MA. Surface plasmon resonance in gold nanoparticles: A review. Journal of Physics Condensed Matter. May 2017;29(20):203002\n'},{id:"B35",body:'Orlando A, et al. Evaluation of gold nanoparticles biocompatibility: A multiparametric study on cultured endothelial cells and macrophages. Journal of Nanoparticle Research. Feb. 2016;18(3):58\n'},{id:"B36",body:'Wozniak A, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. Journal of Materials Science. Materials in Medicine. Jun. 2017;28(6):92\n'},{id:"B37",body:'Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. Journal of Applied Toxicology. Apr. 2010;30(3):212-217\n'},{id:"B38",body:'Paino IMM, Marangoni VS, de Oliveira R d CS, Antunes LMG, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicology Letters. 2012;215(2):119-125\n'},{id:"B39",body:'Ke S, et al. Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. International Journal of Nanomedicine. 2017;12:2531-2551\n'},{id:"B40",body:'Popp MK, Oubou I, Shepherd C, Nager Z, Anderson C, Pagliaro L. Photothermal therapy using gold nanorods and near-infrared light in a murine melanoma model increases survival and decreases tumor volume. Journal of Nanomaterials. 2014;2014 Article ID 450670, 8 pages\n'},{id:"B41",body:'Rau L-R, Huang W-Y, Liaw J-W, Tsai S-W. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. International Journal of Nanomedicine. 2016;11:3461-3473\n'},{id:"B42",body:'Kosheleva OK, Lai T-C, Chen NG, Hsiao M, Chen C-H. Selective killing of cancer cells by nanoparticle-assisted ultrasound. Journal of Nanobiotechnology. Jun. 2016;14(1):46\n'},{id:"B43",body:'Rezaee Z, Yadollahpour A, Bayati V, Negad Dehbashi F. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: An in vitro study. International Journal of Nanomedicine. 2017;12:1431-1439\n'},{id:"B44",body:'Liu P, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. International Journal of Nanomedicine. 2016;11:5003-5014\n'},{id:"B45",body:'Bendale Y, Bendale V, Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integrative Medicine Research. Jun. 2017;6(2):141-148\n'},{id:"B46",body:'Kutwin M, et al. Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment. PLoS One. 2017;12(5):e0178277\n'},{id:"B47",body:'Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alrokayan SA. Cytotoxic response of platinum-coated gold nanorods in human breast cancer cells at very low exposure levels. Environmental Toxicology. Nov. 2016;31(11):1344-1356\n'},{id:"B48",body:'Manikandan M, Hasan N, Wu H-F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials. Jul. 2013;34(23):5833-5842\n'},{id:"B49",body:'Gehrke H, et al. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Archives of Toxicology. Jul. 2011;85(7):799-812\n'},{id:"B50",body:'Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(5):544-568\n'},{id:"B51",body:'Xia L, et al. Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy. Oncotarget. May 2017;8(37):61083-61092\n'},{id:"B52",body:'Wang Y, et al. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway. International Journal of Nanomedicine. 2017;12:2569-2579\n'},{id:"B53",body:'Du S, Li J, Du C, Huang Z, Chen G, Yan W. Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget. Feb. 2017;8(6):9410-9424\n'},{id:"B54",body:'Fedlheim DL, Foss CA. Metal Nanoparticles: Synthesis, Characterization, and Applications. Marcel Dekker Inc. New York; 2002\n'},{id:"B55",body:'Poinern GEJ. A Laboratory Course in Nanoscience and Nanotechnology. CRC Press, Taylor & Francis Group, Boca Raton, FL; 2014\n'},{id:"B56",body:'Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chemical Society Reviews. 2015;44(16):5778-5792\n'},{id:"B57",body:'Kumar B, Smita K, Seqqat R, Benalcazar K, Grijalva M, Cumbal L. In vitro evaluation of silver nanoparticles cytotoxicity on hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. Journal of Photochemistry and Photobiology B: Biology. Jun. 2016;159:8-13\n'},{id:"B58",body:'Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports. 2014;4(1):42-49\n'},{id:"B59",body:'Dauthal P, Mukhopadhyay M. Phyto-synthesis and structural characterization of catalytically active gold nanoparticles biosynthesized using Delonix regia leaf extract. 3 Biotech. Dec. 2016;6(2):118\n'},{id:"B60",body:'Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research. Jan. 2016;7(1):17-28\n'},{id:"B61",body:'Gengan RM, Anand K, Phulukdaree A, Chuturgoon A. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids and Surfaces B: Biointerfaces. May 2013;105:87-91\n'},{id:"B62",body:'Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International Journal of Nanomedicine. Mar. 2012;7:1189-1202\n'},{id:"B63",body:'Santhoshkumar T, et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology Research. Mar. 2011;108(3):693-702\n'},{id:"B64",body:'Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. Apr. 2010;156(1-2):1-13\n'},{id:"B65",body:'Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America. Nov. 1999;96(24):13611-13614\n'},{id:"B66",body:'Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology. Feb. 1980;141(2):876-887\n'},{id:"B67",body:'Magdi HM, Bhushan B. Extracellular biosynthesis and characterization of gold nanoparticles using the fungus Penicillium chrysogenum. Microsystem Technologies. 2015;21(10):2279-2285\n'},{id:"B68",body:'Nam KT, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. May 2006;312(5775):885-888\n'},{id:"B69",body:'Heath JR. Nanotechnologies for biomedical science and translational medicine. Proceedings of the National Academy of Sciences of the United States of America. Nov. 2015;112(47):14436-14443\n'},{id:"B70",body:'De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine. 2008;3(2):133-149\n'},{id:"B71",body:'Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;135:1137-1144\n'},{id:"B72",body:'Sharkey RM, Goldenberg DM. Targeted therapy of cancer: New prospects for antibodies and immunoconjugates. CA: A Cancer Journal for Clinicians. 2006;56(4):226-243\n'},{id:"B73",body:'Wesselinova D. Current major cancer targets for nanoparticle systems. Current Cancer Drug Targets. Feb. 2011;11(2):164-183\n'},{id:"B74",body:'Liu L, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotechnology. Jul. 2009;4(7):457-463\n'},{id:"B75",body:'Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. Journal of Controlled Release. Dec. 2012;164(2):138-144\n'},{id:"B76",body:'Nichols JW, Bae YH. EPR: Evidence and fallacy. Journal of Controlled Release. Sep. 2014;190:451-464\n'},{id:"B77",body:'Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science. Feb. 2014;204:15-34\n'},{id:"B78",body:'Kumar B, et al. One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Materials Science & Engineering. C, Materials for Biological Applications. May 2016;62:725-731\n'},{id:"B79",body:'Zhou Y, et al. The interactions between ZnO nanoparticles (NPs) and α-linolenic acid (LNA) complexed to BSA did not influence the toxicity of ZnO NPs on HepG2 cells. Nanomaterials (Basel, Switzerland). 2017;7(4):1-15\n'},{id:"B80",body:'Chang M. Tamoxifen resistance in breast cancer. Biomolecules & Therapeutics. May 2012;20(3):256-267\n'},{id:"B81",body:'Devulapally R, Sekar TV, Paulmurugan R. Formulation of anti-miR-21 and 4-hydroxytamoxifen co-loaded biodegradable polymer nanoparticles and their antiproliferative effect on breast cancer cells. Molecular Pharmaceutics. Jun. 2015;12(6):2080-2092\n'},{id:"B82",body:'Bouwmeester H, et al. Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology. Feb. 2009;53(1):52-62\n'},{id:"B83",body:'Frohlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products. Toxicology. Jan. 2012;291(1-3):10-17\n'},{id:"B84",body:'Wittig A, et al. Amorphous silica particles relevant in food industry influence cellular growth and associated signaling pathways in human gastric carcinoma cells. Nanomaterials (Basel, Switzerland). Jan. 2017;7(1):18\n'},{id:"B85",body:'Khan S, et al. Evaluation of in vitro cytotoxicity, biocompatibility, and changes in the expression of apoptosis regulatory proteins induced by cerium oxide nanocrystals. Science and Technology of Advanced Materials. 2017;18(1):364-373\n'},{id:"B86",body:'Gao Y, Chen K, Ma J-L, Gao F. Cerium oxide nanoparticles in cancer. OncoTargets and Therapy. 2014;7:835-840\n'},{id:"B87",body:'Figueroa CM, Suárez BN, Molina AM, Fernández JC, Torres Z, Griebenow K. Smart release nano-formulation of cytochrome C and hyaluronic acid induces apoptosis in cancer cells. Journal of Nanomedicine & Nanotechnology. Feb. 2017;1:8\n'},{id:"B88",body:'Akbarzadeh A, et al. Liposome: Classification, preparation, and applications. Nanoscale Research Letters. Feb. 2013;8(1):102\n'},{id:"B89",body:'Maitz CA, et al. Validation and comparison of the therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes in multiple murine tumor models. Translational Oncology. Jul. 2017;10(4):686-692\n'},{id:"B90",body:'Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology. Dec. 2015;6:286\n'},{id:"B91",body:'Sadhu SS, et al. In vitro and in vivo tumor growth inhibition by glutathione disulfide liposomes. Cancer Growth and Metastasis. 2017;10:1179064417696070\n'},{id:"B92",body:'Drewes CC, et al. Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models. International Journal of Nanomedicine. 2016;11:1261-1279\n'},{id:"B93",body:'Fior R, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proceedings of the National Academy of Sciences. Aug. 2017;114(39):E8234-E8243\n'},{id:"B94",body:'Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. Journal of Pharmacy & Bioallied Sciences. Jun. 2010;2(4):282-289\n'},{id:"B95",body:'Kumar CSSR. Mixed Metal Nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; 2009\n'},{id:"B96",body:'Lee JJ, Saiful Yazan L, Che Abdullah CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. International Journal of Nanomedicine. Mar. 2017;12:2373-2384\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Marcelo Grijalva",address:"rmgrijalva@espe.edu.ec",affiliation:'
Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Ecuador
Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Ecuador
'},{corresp:null,contributorFullName:"María José Vallejo-López",address:null,affiliation:'
Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Ecuador
Department of Chemistry, Kolhan University, Tata College, India
'}],corrections:null},book:{id:"5884",title:"Unraveling the Safety Profile of Nanoscale Particles and Materials",subtitle:"From Biomedical to Environmental Applications",fullTitle:"Unraveling the Safety Profile of Nanoscale Particles and Materials - From Biomedical to Environmental Applications",slug:"unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications",publishedDate:"March 21st 2018",bookSignature:"Andreia C. Gomes and Marisa P. Sarria",coverURL:"https://cdn.intechopen.com/books/images_new/5884.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"146466",title:"Prof.",name:"Andreia",middleName:null,surname:"Ferreira de Castro Gomes",slug:"andreia-ferreira-de-castro-gomes",fullName:"Andreia Ferreira de Castro Gomes"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"137172",title:"MSc.",name:"Christian",middleName:null,surname:"Navarro Cota",email:"cnavarro@uabc.edu.mx",fullName:"Christian Navarro Cota",slug:"christian-navarro-cota",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Using RFID/NFC and QR-Code in Mobile Phones to Link the Physical and the Digital World",slug:"using-rfid-nfc-and-qr-code-in-mobile-phones-to-link-the-physical-and-the-digital-world",abstract:null,signatures:"Mabel Vazquez-Briseno, Francisco I. Hirata, Juan de Dios Sanchez-Lopez, Elitania Jimenez-Garcia, Christian Navarro-Cota and Juan Ivan Nieto-Hipolito",authors:[{id:"21010",title:"Dr.",name:"Juan De Dios",surname:"Sanchez Lopez",fullName:"Juan De Dios Sanchez Lopez",slug:"juan-de-dios-sanchez-lopez",email:"jddios@uabc.mx"},{id:"23203",title:"Dr.",name:"Juan Iván",surname:"Nieto Hipólito",fullName:"Juan Iván Nieto Hipólito",slug:"juan-ivan-nieto-hipolito",email:"jnieto@uabc.mx"},{id:"112804",title:"PhD.",name:"Mabel",surname:"Vazquez Briseno",fullName:"Mabel Vazquez Briseno",slug:"mabel-vazquez-briseno",email:"mabel.vazquez@uabc.edu.mx"},{id:"136665",title:"Dr.",name:"Francisco Iwao",surname:"Hirata",fullName:"Francisco Iwao Hirata",slug:"francisco-iwao-hirata",email:"fchirata@gmail.com"},{id:"137172",title:"MSc.",name:"Christian",surname:"Navarro Cota",fullName:"Christian Navarro Cota",slug:"christian-navarro-cota",email:"cnavarro@uabc.edu.mx"},{id:"137173",title:"MSc.",name:"Elitania",surname:"Jimenez Garcia",fullName:"Elitania Jimenez Garcia",slug:"elitania-jimenez-garcia",email:"ejimenez@uabc.edu.mx"}],book:{title:"Interactive Multimedia",slug:"interactive-multimedia",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"103622",title:"Dr.",name:"Ioannis",surname:"Deliyannis",slug:"ioannis-deliyannis",fullName:"Ioannis Deliyannis",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/103622/images/system/103622.jpeg",biography:"Dr. Ioannis Deliyannis is an Assistant Professor at Ionian University in Corfu. He is a member of the Faculty of the Department of Audio and Visual Arts and a founding member of the inArts research laboratory. He has created various interactive multimedia systems ranging from experimental television stations featuring multiple modes of delivery to educational and multi-sensory games. He is the author of a series of journal and conference publications in the above field and a series of books targeting the experimental and creative aspects of the technologies involved. He is involved in the design of user-centred software products and services, focusing on the use of mobile sensory systems to create intelligent interactive systems, entertainment education systems, educational applications for people with disabilities, multimedia adapters, holograms, interactive navigation narrative applications, augmented and virtual reality systems.",institutionString:"Ionian University",institution:{name:"Ionian University",institutionURL:null,country:{name:"Greece"}}},{id:"108619",title:"Prof.",name:"Kamisah",surname:"Osman",slug:"kamisah-osman",fullName:"Kamisah Osman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National University of Malaysia",institutionURL:null,country:{name:"Malaysia"}}},{id:"109101",title:"Dr.",name:"Tien Tien",surname:"Lee",slug:"tien-tien-lee",fullName:"Tien Tien Lee",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sultan Idris Education University",institutionURL:null,country:{name:"Malaysia"}}},{id:"109634",title:"Prof.",name:"Jorge",surname:"Montalvo",slug:"jorge-montalvo",fullName:"Jorge Montalvo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Lima",institutionURL:null,country:{name:"Peru"}}},{id:"110747",title:"Dr.",name:"Marina",surname:"Milovanović",slug:"marina-milovanovic",fullName:"Marina Milovanović",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Union University",institutionURL:null,country:{name:"United States of America"}}},{id:"112151",title:"Prof.",name:"Michael",surname:"Henninger",slug:"michael-henninger",fullName:"Michael Henninger",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Education Weingarten",institutionURL:null,country:{name:"Germany"}}},{id:"113022",title:"Prof.",name:"Edward",surname:"Berger",slug:"edward-berger",fullName:"Edward Berger",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Virginia",institutionURL:null,country:{name:"United States of America"}}},{id:"113380",title:"Prof.",name:"Charles",surname:"Krousgrill",slug:"charles-krousgrill",fullName:"Charles Krousgrill",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Purdue University West Lafayette",institutionURL:null,country:{name:"United States of America"}}},{id:"113750",title:"Prof.",name:"Djurdjica",surname:"Takaci",slug:"djurdjica-takaci",fullName:"Djurdjica Takaci",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Novi Sad",institutionURL:null,country:{name:"Serbia"}}},{id:"137176",title:"Dr.",name:"Christina",surname:"Barth",slug:"christina-barth",fullName:"Christina Barth",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"our-story",title:"Our story",intro:"
The company was founded in Vienna in 2004 by Alex Lazinica and Vedran Kordic, two PhD students researching robotics. While completing our PhDs, we found it difficult to access the research we needed. So, we decided to create a new Open Access publisher. A better one, where researchers like us could find the information they needed easily. The result is IntechOpen, an Open Access publisher that puts the academic needs of the researchers before the business interests of publishers.
",metaTitle:"Our story",metaDescription:"The company was founded in Vienna in 2004 by Alex Lazinica and Vedran Kordic, two PhD students researching robotics. While completing our PhDs, we found it difficult to access the research we needed. So, we decided to create a new Open Access publisher. A better one, where researchers like us could find the information they needed easily. The result is IntechOpen, an Open Access publisher that puts the academic needs of the researchers before the business interests of publishers.",metaKeywords:null,canonicalURL:"/page/our-story",contentRaw:'[{"type":"htmlEditorComponent","content":"
We started by publishing journals and books from the fields of science we were most familiar with - AI, robotics, manufacturing and operations research. Through our growing network of institutions and authors, we soon expanded into related fields like environmental engineering, nanotechnology, computer science, renewable energy and electrical engineering, Today, we are the world’s largest Open Access publisher of scientific research, with over 4,200 books and 54,000 scientific works including peer-reviewed content from more than 116,000 scientists spanning 161 countries. Our authors range from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery.
\\n\\n
In the same year that IntechOpen was founded, we launched what was at the time the first ever Open Access, peer-reviewed journal in its field: the International Journal of Advanced Robotic Systems (IJARS).
\\n\\n
The IntechOpen timeline
\\n\\n
2004
\\n\\n
\\n\\t
Intech Open is founded in Vienna, Austria, by Alex Lazinica and Vedran Kordic, two PhD students, and their first Open Access journals and books are published.
\\n\\t
Alex and Vedran launch the first Open Access, peer-reviewed robotics journal and IntechOpen’s flagship publication, the International Journal of Advanced Robotic Systems (IJARS).
\\n
\\n\\n
2005
\\n\\n
\\n\\t
IntechOpen publishes its first Open Access book: Cutting Edge Robotics.
\\n
\\n\\n
2006
\\n\\n
\\n\\t
IntechOpen publishes a special issue of IJARS, featuring contributions from NASA scientists regarding the Mars Exploration Rover missions.
\\n
\\n\\n
2008
\\n\\n
\\n\\t
Downloads milestone: 200,000 downloads reached
\\n
\\n\\n
2009
\\n\\n
\\n\\t
Publishing milestone: the first 100 Open Access STM books are published
\\n
\\n\\n
2010
\\n\\n
\\n\\t
Downloads milestone: one million downloads reached
\\n\\t
IntechOpen expands its book publishing into a new field: medicine.
\\n
\\n\\n
2011
\\n\\n
\\n\\t
Publishing milestone: More than five million downloads reached
\\n\\t
IntechOpen publishes 1996 Nobel Prize in Chemistry winner Harold W. Kroto’s “Strategies to Successfully Cross-Link Carbon Nanotubes”. Find it here.
\\n\\t
IntechOpen and TBI collaborate on a project to explore the changing needs of researchers and the evolving ways that they discover, publish and exchange information. The result is the survey “Author Attitudes Towards Open Access Publishing: A Market Research Program”.
\\n\\t
IntechOpen hosts SHOW - Share Open Access Worldwide; a series of lectures, debates, round-tables and events to bring people together in discussion of open source principles, intellectual property, content licensing innovations, remixed and shared culture and free knowledge.
\\n
\\n\\n
2012
\\n\\n
\\n\\t
Publishing milestone: 10 million downloads reached
\\n\\t
IntechOpen holds Interact2012, a free series of workshops held by figureheads of the scientific community including Professor Hiroshi Ishiguro, director of the Intelligent Robotics Laboratory, who took the audience through some of the most impressive human-robot interactions observed in his lab.
\\n
\\n\\n
2013
\\n\\n
\\n\\t
IntechOpen joins the Committee on Publication Ethics (COPE) as part of a commitment to guaranteeing the highest standards of publishing.
\\n
\\n\\n
2014
\\n\\n
\\n\\t
IntechOpen turns 10, with more than 30 million downloads to date.
\\n\\t
IntechOpen appoints its first Regional Representatives - members of the team situated around the world dedicated to increasing the visibility of our authors’ published work within their local scientific communities.
\\n
\\n\\n
2015
\\n\\n
\\n\\t
Downloads milestone: More than 70 million downloads reached, more than doubling since the previous year.
\\n\\t
Publishing milestone: IntechOpen publishes its 2,500th book and 40,000th Open Access chapter, reaching 20,000 citations in Thomson Reuters ISI Web of Science.
\\n\\t
40 IntechOpen authors are included in the top one per cent of the world’s most-cited researchers.
\\n\\t
Thomson Reuters’ ISI Web of Science Book Citation Index begins indexing IntechOpen’s books in its database.
\\n
\\n\\n
2016
\\n\\n
\\n\\t
IntechOpen is identified as a world leader in Simba Information’s Open Access Book Publishing 2016-2020 report and forecast. IntechOpen came in as the world’s largest Open Access book publisher by title count.
\\n
\\n\\n
2017
\\n\\n
\\n\\t
Downloads milestone: IntechOpen reaches more than 100 million downloads
\\n\\t
Publishing milestone: IntechOpen publishes its 3,000th Open Access book, making it the largest Open Access book collection in the world
We started by publishing journals and books from the fields of science we were most familiar with - AI, robotics, manufacturing and operations research. Through our growing network of institutions and authors, we soon expanded into related fields like environmental engineering, nanotechnology, computer science, renewable energy and electrical engineering, Today, we are the world’s largest Open Access publisher of scientific research, with over 4,200 books and 54,000 scientific works including peer-reviewed content from more than 116,000 scientists spanning 161 countries. Our authors range from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery.
\n\n
In the same year that IntechOpen was founded, we launched what was at the time the first ever Open Access, peer-reviewed journal in its field: the International Journal of Advanced Robotic Systems (IJARS).
\n\n
The IntechOpen timeline
\n\n
2004
\n\n
\n\t
Intech Open is founded in Vienna, Austria, by Alex Lazinica and Vedran Kordic, two PhD students, and their first Open Access journals and books are published.
\n\t
Alex and Vedran launch the first Open Access, peer-reviewed robotics journal and IntechOpen’s flagship publication, the International Journal of Advanced Robotic Systems (IJARS).
\n
\n\n
2005
\n\n
\n\t
IntechOpen publishes its first Open Access book: Cutting Edge Robotics.
\n
\n\n
2006
\n\n
\n\t
IntechOpen publishes a special issue of IJARS, featuring contributions from NASA scientists regarding the Mars Exploration Rover missions.
\n
\n\n
2008
\n\n
\n\t
Downloads milestone: 200,000 downloads reached
\n
\n\n
2009
\n\n
\n\t
Publishing milestone: the first 100 Open Access STM books are published
\n
\n\n
2010
\n\n
\n\t
Downloads milestone: one million downloads reached
\n\t
IntechOpen expands its book publishing into a new field: medicine.
\n
\n\n
2011
\n\n
\n\t
Publishing milestone: More than five million downloads reached
\n\t
IntechOpen publishes 1996 Nobel Prize in Chemistry winner Harold W. Kroto’s “Strategies to Successfully Cross-Link Carbon Nanotubes”. Find it here.
\n\t
IntechOpen and TBI collaborate on a project to explore the changing needs of researchers and the evolving ways that they discover, publish and exchange information. The result is the survey “Author Attitudes Towards Open Access Publishing: A Market Research Program”.
\n\t
IntechOpen hosts SHOW - Share Open Access Worldwide; a series of lectures, debates, round-tables and events to bring people together in discussion of open source principles, intellectual property, content licensing innovations, remixed and shared culture and free knowledge.
\n
\n\n
2012
\n\n
\n\t
Publishing milestone: 10 million downloads reached
\n\t
IntechOpen holds Interact2012, a free series of workshops held by figureheads of the scientific community including Professor Hiroshi Ishiguro, director of the Intelligent Robotics Laboratory, who took the audience through some of the most impressive human-robot interactions observed in his lab.
\n
\n\n
2013
\n\n
\n\t
IntechOpen joins the Committee on Publication Ethics (COPE) as part of a commitment to guaranteeing the highest standards of publishing.
\n
\n\n
2014
\n\n
\n\t
IntechOpen turns 10, with more than 30 million downloads to date.
\n\t
IntechOpen appoints its first Regional Representatives - members of the team situated around the world dedicated to increasing the visibility of our authors’ published work within their local scientific communities.
\n
\n\n
2015
\n\n
\n\t
Downloads milestone: More than 70 million downloads reached, more than doubling since the previous year.
\n\t
Publishing milestone: IntechOpen publishes its 2,500th book and 40,000th Open Access chapter, reaching 20,000 citations in Thomson Reuters ISI Web of Science.
\n\t
40 IntechOpen authors are included in the top one per cent of the world’s most-cited researchers.
\n\t
Thomson Reuters’ ISI Web of Science Book Citation Index begins indexing IntechOpen’s books in its database.
\n
\n\n
2016
\n\n
\n\t
IntechOpen is identified as a world leader in Simba Information’s Open Access Book Publishing 2016-2020 report and forecast. IntechOpen came in as the world’s largest Open Access book publisher by title count.
\n
\n\n
2017
\n\n
\n\t
Downloads milestone: IntechOpen reaches more than 100 million downloads
\n\t
Publishing milestone: IntechOpen publishes its 3,000th Open Access book, making it the largest Open Access book collection in the world
\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"6,5"},books:[{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10750",title:"Solanum tuberosum - a Promising Crop for Starvation Problem",subtitle:null,isOpenForSubmission:!0,hash:"516eb729eadf0d1a9d1d2e6bf31e8e9c",slug:null,bookSignature:"Prof. Mustafa Yildiz and Dr. Yasin Ozgen",coverURL:"https://cdn.intechopen.com/books/images_new/10750.jpg",editedByType:null,editors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10772",title:"Parasitic Plants",subtitle:null,isOpenForSubmission:!0,hash:"31abd439b5674c91d18ad77dbc52500f",slug:null,bookSignature:"Dr. Ana Maria Gonzalez and Dr. Hector Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10772.jpg",editedByType:null,editors:[{id:"281854",title:"Dr.",name:"Ana Maria",surname:"Gonzalez",slug:"ana-maria-gonzalez",fullName:"Ana Maria Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10737",title:"Equus",subtitle:null,isOpenForSubmission:!0,hash:"258ffafc92a7c9550bb85f004d7402e7",slug:null,bookSignature:"Associate Prof. Adriana Pires Neves",coverURL:"https://cdn.intechopen.com/books/images_new/10737.jpg",editedByType:null,editors:[{id:"188768",title:"Associate Prof.",name:"Adriana",surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10777",title:"Plant Reproductive Ecology - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"3fbf391f2093649bcf3bd674f7e32189",slug:null,bookSignature:"Dr. Balkrishna Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/10777.jpg",editedByType:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10749",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",slug:null,bookSignature:"Dr. Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",editedByType:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:null,isOpenForSubmission:!0,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:null,bookSignature:"Dr. Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:null,editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1511,numberOfAuthorsAndEditors:39573,numberOfWosCitations:21767,numberOfCrossrefCitations:11544,numberOfDimensionsCitations:29307,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editedByType:"Edited by",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9134",title:"Recent Advances in Digital System Diagnosis and Management of Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"ff00a5718f23cb880b7337b1c36b5434",slug:"recent-advances-in-digital-system-diagnosis-and-management-of-healthcare",bookSignature:"Kamran Sartipi and Thierry Edoh",coverURL:"https://cdn.intechopen.com/books/images_new/9134.jpg",editedByType:"Edited by",editors:[{id:"29601",title:"Dr.",name:"Kamran",middleName:null,surname:"Sartipi",slug:"kamran-sartipi",fullName:"Kamran Sartipi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1511,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9697,totalCrossrefCites:109,totalDimensionsCites:230,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:1995,totalCrossrefCites:79,totalDimensionsCites:180,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8066,totalCrossrefCites:57,totalDimensionsCites:145,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:39763,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"70711",title:"Fetal Growth Restriction",slug:"fetal-growth-restriction",totalDownloads:1706,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"growth-disorders-and-acromegaly",title:"Growth Disorders and Acromegaly",fullTitle:"Growth Disorders and Acromegaly"},signatures:"Edurne Mazarico Gallego, Ariadna Torrecillas Pujol, Alex Joan Cahuana Bartra and Maria Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"311835",title:"Dr.",name:"Edurne",middleName:null,surname:"Mazarico",slug:"edurne-mazarico",fullName:"Edurne Mazarico"}]},{id:"70405",title:"Hemostasis in Cardiac Surgery: How We Do it with Limited Resources",slug:"hemostasis-in-cardiac-surgery-how-we-do-it-with-limited-resources",totalDownloads:2694,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1",fullTitle:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1"},signatures:"Fevzi Sarper Türker",authors:null},{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:9954,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"59779",title:"Effective Communication in Nursing",slug:"effective-communication-in-nursing",totalDownloads:6504,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"nursing",title:"Nursing",fullTitle:"Nursing"},signatures:"Maureen Nokuthula Sibiya",authors:[{id:"73330",title:"Dr.",name:"Nokuthula",middleName:null,surname:"Sibiya",slug:"nokuthula-sibiya",fullName:"Nokuthula Sibiya"}]},{id:"64858",title:"The Neurobiology of Anorexia Nervosa",slug:"the-neurobiology-of-anorexia-nervosa",totalDownloads:892,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"anorexia-and-bulimia-nervosa",title:"Anorexia and Bulimia Nervosa",fullTitle:"Anorexia and Bulimia Nervosa"},signatures:"Ashley Higgins",authors:null},{id:"63771",title:"The Role of Catheter Reshaping at the Angiographic Success",slug:"the-role-of-catheter-reshaping-at-the-angiographic-success",totalDownloads:536,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"angiography",title:"Angiography",fullTitle:"Angiography"},signatures:"Yakup Balaban",authors:[{id:"252647",title:"Associate Prof.",name:"Yakup",middleName:null,surname:"Balaban",slug:"yakup-balaban",fullName:"Yakup Balaban"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5564,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"17956",title:"Sexual and Reproductive Function in Chronic Kidney Disease and Effect of Kidney Transplantation",slug:"sexual-and-reproductive-function-in-chronic-kidney-disease-and-effect-of-kidney-transplantation",totalDownloads:11790,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"after-the-kidney-transplant-the-patients-and-their-allograft",title:"After the Kidney Transplant",fullTitle:"After the Kidney Transplant - The Patients and Their Allograft"},signatures:"Mahboob Lessan-Pezeshki and Shirin Ghazizadeh",authors:[{id:"26564",title:"Prof.",name:"Mahboob",middleName:null,surname:"Lessan Pezeshki",slug:"mahboob-lessan-pezeshki",fullName:"Mahboob Lessan Pezeshki"},{id:"26571",title:"Prof.",name:"Shirin",middleName:null,surname:"Ghazizadeh",slug:"shirin-ghazizadeh",fullName:"Shirin Ghazizadeh"}]},{id:"64747",title:"Bone Development and Growth",slug:"bone-development-and-growth",totalDownloads:3711,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"osteogenesis-and-bone-regeneration",title:"Osteogenesis and Bone Regeneration",fullTitle:"Osteogenesis and Bone Regeneration"},signatures:"Rosy Setiawati and Paulus Rahardjo",authors:null}],onlineFirstChaptersFilter:{topicSlug:"medicine",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75604",title:"Normal Puerperium",slug:"normal-puerperium",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96348",book:{title:"Midwifery"},signatures:"Subrat Panda, Ananya Das, Arindam Mallik and Surajit Ray Baruah"},{id:"75596",title:"The Use of a Dynamic Elastomeric Fabric Orthotic Intervention in Adolescents and Adults with Scoliosis",slug:"the-use-of-a-dynamic-elastomeric-fabric-orthotic-intervention-in-adolescents-and-adults-with-scolios",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96391",book:{title:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Martin Matthews and James Wynne"},{id:"75582",title:"Elimination of Plasmodium vivax Malaria: Problems and Solutions",slug:"elimination-of-plasmodium-vivax-malaria-problems-and-solutions",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.96604",book:{title:"Current Topics and Emerging Issues in Malaria Elimination"},signatures:"Liwang Cui, Awtum Brashear, Lynette Menezes and John Adams"}],onlineFirstChaptersTotal:652},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/137172/christian-navarro-cota",hash:"",query:{},params:{id:"137172",slug:"christian-navarro-cota"},fullPath:"/profiles/137172/christian-navarro-cota",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()