This chapter explains dynamic manipulation of flexible objects, where the target objects to be manipulated include rope, ribbon, cloth, pizza dough, and so on. Previously, flexible object manipulation has been performed in a static or quasi-static state. Therefore, the manipulation time becomes long, and the efficiency of the manipulation is not considered to be sufficient. In order to solve these problems, we propose a novel control strategy and motion planning for achieving flexible object manipulation at high speed. The proposed strategy simplifies the flexible object dynamics. Moreover, we implemented a high-speed vision system and high-speed image processing to improve the success rate by manipulating the robot trajectory. By using this strategy, motion planning, and high-speed visual feedback, we demonstrated several tasks, including dynamic manipulation and knotting of a rope, generating a ribbon shape, dynamic folding of cloth, rope insertion, and pizza dough rotation, and we show experimental results obtained by using the high-speed robot system.
Part of the book: Becoming Human with Humanoid
It is challenging to realize the autonomy of industrial robots under external and internal uncertainties. A majority of industrial robots are supposed to be programmed by teaching-playback method, which is not able to handle with uncertain working conditions. Although many studies have been conducted to improve the autonomy of industrial robots by utilizing external sensors with model-based approaches as well as adaptive approaches, it is still difficult to obtain good performance. In this chapter, we present a dynamic compensation framework based on a coarse-to-fine strategy to improve the autonomy of industrial robots while at the same time keeping good accuracy under many uncertainties. The proposed framework for industrial robot is designed along with a general intelligence architecture that is aiming to address the big issues such as smart manufacturing, industrial 4.0.
Part of the book: Industrial Robotics