Equipment and behavioral causes of noise in intensive care units [5].
\r\n\tAnimal food additives are products used in animal nutrition for purposes of improving the quality of feed or to improve the animal’s performance and health. Other additives can be used to enhance digestibility or even flavour of feed materials. In addition, feed additives are known which improve the quality of compound feed production; consequently e.g. they improve the quality of the granulated mixed diet.
\r\n\r\n\tGenerally feed additives could be divided into five groups:
\r\n\t1.Technological additives which influence the technological aspects of the diet to improve its handling or hygiene characteristics.
\r\n\t2. Sensory additives which improve the palatability of a diet by stimulating appetite, usually through the effect these products have on the flavour or colour.
\r\n\t3. Nutritional additives, such additives are specific nutrient(s) required by the animal for optimal production.
\r\n\t4.Zootechnical additives which improve the nutrient status of the animal, not by providing specific nutrients, but by enabling more efficient use of the nutrients present in the diet, in other words, it increases the efficiency of production.
\r\n\t5. In poultry nutrition: Coccidiostats and Histomonostats which widely used to control intestinal health of poultry through direct effects on the parasitic organism concerned.
\r\n\tThe aim of the book is to present the impact of the most important feed additives on the animal production, to demonstrate their mode of action, to show their effect on intermediate metabolism and heath status of livestock and to suggest how to use the different feed additives in animal nutrition to produce high quality and safety animal origin foodstuffs for human consumer.
",isbn:"978-1-83969-404-2",printIsbn:"978-1-83969-403-5",pdfIsbn:"978-1-83969-405-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",bookSignature:"Prof. László Babinszky",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",keywords:"Technological Feed Additives, Feed Industry, Quality of Compound Feed, Non-Antibiotic Growth Promoter, Product Quality, Additive Enzymes, Digestibility of Nutrients, NSP Enzymes, Farm Animals, Livestock, Immunity, Microbiome",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 24th 2020",dateEndSecondStepPublish:"December 22nd 2020",dateEndThirdStepPublish:"February 20th 2021",dateEndFourthStepPublish:"May 11th 2021",dateEndFifthStepPublish:"July 10th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor Emeritus from the University of Debrecen, Hungary who authored 297 publications (papers, book chapters) and edited 3 books. Member of various committees and chairman of the World Conference of Innovative Animal Nutrition and Feeding (WIANF).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.jpg",biography:"László Babinszky is Professor Emeritus of animal nutrition at the University of Debrecen, Hungary. From 1984 to 1985 he worked at the Agricultural University in Wageningen and in the Institute for Livestock Feeding and Nutrition in Lelystad (the Netherlands). He also worked at the Agricultural University of Vienna in the Institute for Animal Breeding and Nutrition (Austria) and in the Oscar Kellner Research Institute in Rostock (Germany). From 1988 to 1992, he worked in the Department of Animal Nutrition (Agricultural University in Wageningen). In 1992 he obtained a PhD degree in animal nutrition from the University of Wageningen.He has authored 297 publications (papers, book chapters). He edited 3 books and 14 international conference proceedings. His total number of citation is 407. \r\nHe is member of various committees e.g.: American Society of Animal Science (ASAS, USA); the editorial board of the Acta Agriculturae Scandinavica, Section A- Animal Science (Norway); KRMIVA, Journal of Animal Nutrition (Croatia), Austin Food Sciences (NJ, USA), E-Cronicon Nutrition (UK), SciTz Nutrition and Food Science (DE, USA), Journal of Medical Chemistry and Toxicology (NJ, USA), Current Research in Food Technology and Nutritional Sciences (USA). From 2015 he has been appointed chairman of World Conference of Innovative Animal Nutrition and Feeding (WIANF).\r\nHis main research areas are related to pig and poultry nutrition: elimination of harmful effects of heat stress by nutrition tools, energy- amino acid metabolism in livestock, relationship between animal nutrition and quality of animal food products (meat).",institutionString:"University of Debrecen",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51955",title:"Noise Reduction and Control in Hospital Environment: Design of the NeoNoise Project",doi:"10.5772/64629",slug:"noise-reduction-and-control-in-hospital-environment-design-of-the-neonoise-project",body:'\nNoise is an environmental stressor that is known to have physiological and psychological effects. The body responds to noise in the same way it responds to stress and overtime has potential to impair health. In general, vulnerable groups are underrepresented in study populations. Although anyone might be adversely affected by noise exposure (environmental or occupational exposure), groups that are particularly vulnerable include neonates, infants, children, those with mental or physical illnesses, and the elderly. In hospital environment, excessive noise is not only annoying, but can also interfere with the proper performance of health care. Evidence shows that hospital noise levels often exceed those recommended by World Health Organization (WHO) [1] and other agencies. In hospitals, patient exposure has been studied more frequently over the years, than professional exposure. However, the particular case of neonatal intensive care units (NICUs) poses a new challenge, due to the “type” of patients involved—ill and/or premature infants. Newborn infants who need intensive medical attention are often admitted into an NICU. These units combine advanced technology and trained healthcare professionals to provide specialized care for ill and/or premature newborns. NICUs may also have intermediate or continuing care areas for babies who are not as sick but do need specialized health care. Noise production in NICU rooms and inside incubators is usually due to alarms produced by life support devices, flow of medical gas, communication among professionals/visitors and during activities of nursing care [2–4]. Table 1 shows the main causes of noise in NICU.
\nSource of noise | \n\n |
---|---|
Items falling onto the floor | \nUp to 92 dB(A) | \n
Equipment movement (e.g., bed) | \n90 dB(A) | \n
Connection of gas supply | \n88 dB(A) | \n
Door closure | \n85 dB(A) | \n
Pager | \n84 dB(A) | \n
Talking | \n75–85 dB(A) | \n
Ventilator alarm | \n70–85 dB(A) | \n
Nebulizer | \n80 dB(A) | \n
Telephone | \n70–80 dB(A) | \n
Television | \n79 dB(A) | \n
Oximeter | \n60–80 dB(A) | \n
Monitor alarm | \n79 dB(A) | \n
Ventilator | \n60–78 dB(A) | \n
IV infusion alarm | \n65–77 dB(A) | \n
Endotracheal aspiration unit | \n50–75 dB(A) | \n
Equipment and behavioral causes of noise in intensive care units [5].
Health professionals are aware about this issue and identified noise as an agent with a negative impact on work performance [6–8]. In fact, it is known that the hospital environment has many occupational health risks due to the variety of clinical and nonclinical tasks performed by healthcare workers. The exposures to psychosocial, chemical, physical, mechanical, and biological hazards are common in hospital units and predispose healthcare workers to different types of accidents [9]. However, the work performed in NICU can be particularly psychologically demanding which combined with noise exposure within the NICU can increase the risk of work accidents occurrence, with negative consequences for staff and also for patients. In fact, noise may induce extraauditory effects in professionals including burnout, stress, and fatigue [10]. There is some association between noise and some health outcomes such increases in blood pressure, heart rate, hypertension, and other cardiovascular diseases. Noise exposure can also stimulate the release of epinephrine (adrenaline), increase pain, and alter quality of sleep [11, 12]. Even in newborns these effects are being implicated and associated with noise [13]. Although, it is important to underline that the levels of noise exposures associated with these health effects range widely [14].
\nA literature review conducted by Konkani and Oakley [15] showed that several authors studied and characterized acoustic environment of intensive care units in hospitals. Studies measuring noise amplitude in dB or frequency analysis or through an approach combining noise measurements and patient or staff questionnaire surveys or interviews are quite usual in this domain. Dube et al. [16] surveyed patients to identify the noisiest time of the day, and were also asked to list the noises that they felt were annoying. Connor and Ortiz [17] conducted a survey where patients rated the noise level before and after a staff education program. However, to our knowledge in Portugal, until 2010 only one study was performed in intensive care units, namely in NICU. Nicolau et al. [13] characterized noise levels in six NICUs of Lisbon region, revealing that noise levels were above the recommended by international guidelines. They emphasized the need to train healthcare staff and include actively health professionals in noise reduction strategies. Due to the lack of data in Portugal, including lack of studies measuring the effectiveness of noise reduction strategies, the Research Group on Occupational and Environmental Health of the Research Center on Health and Environment (SOA/CISA), designed the “NeoNoise Project: Integrated Approach to Minimize Sound Pressure Levels in Neonatal Intensive Care Units.” NeoNoise project intends to be a contribution to understand the role of educational, environmental, and infrastructural factors on noise reduction and health promotion in neonatal intensive care units considering two major risk groups: premature infants and staff. The specific goals of the project are (1) to characterize sound pressure levels in different locations of NICU; (2) to determine the influence of these levels on health and well‐being of premature infants and health professionals (3) to identify staff perceptions regarding working conditions, comfort, and main noise sources in NICU; (4) to develop and implement a quiet time protocol in NICU; (5) to study the relationship between the previous factors; (6) to create a good practices guide for these environments, in order to control noise production and improve well‐being, comfort and satisfaction levels of professionals and patients; and finally (7) to suggest recommendations for health authorities, the scientific community and general public.
\nThe main goal of this work is to present and discuss the study design and protocol of the NeoNoise project, by reviewing its rationale and outlining methods that might be implemented by other researchers in this field.
\nThis project started in 2011 and is being conducted in three NICUs located in hospitals of the North of Portugal involving some tasks/activities that were or will be performed simultaneously in order to complete the study. NeoNoise was designed to be carried out in two different phases. The study protocol and the concluded and ongoing substages/studies (underlined in red) are presented in Figure 1.
\nNeoNoise protocol.
The north region of Portugal has six public hospitals with differentiated perinatal support. Five hospitals were contacted, and authorization to perform the study was given by three hospitals, after favorable statement by their Ethics Committee and approval by their respective administration boards. The study was carried out according to the Helsinki Declaration. Figure 2 shows the location of these three hospitals.
\nSpatial distribution of the three hospitals involved in the study (A and B in Porto and C in Vila Real, Portugal).
As shown in Figure 1, field investigations were transversal to the most of the substages of the project. They included walkthrough inspections and assessment of sound pressure levels in the different spaces of the selected NICU. Additionally, healthcare staff answered a self‐reporting questionnaire. In order to perform the ongoing tasks, some general considerations about methodological procedures are made below.
\nWalkthrough inspections were made by two trained researchers, in order to characterize the built environment and indoor spaces of the three NICUs under study. A checklist for this purpose was used. It should be noted, that since in Portugal there is no legislation related to NICU design for public institutions, the checklist was based on legal requirements applicable to private healthcare units, which have specific criteria for the design, conception, and equipment that should exist in NICU. Detailed information regarding the building environment such as traffic and rural/urban surroundings and other external noise sources, construction characteristics, among others, was gathered. Identification of all relevant information such as area, finishing materials, and conditions concerning floor, walls, ceiling, windows, and ground as well as equipment installed and healthcare routines was made. Partial information about the characteristics of NICU is presented in Table 2. Detailed information is given in [3, 18, 19].
\nNICU | \nGeneral characterization | \n
---|---|
A | \n14 incubators, 5 nurseries, 2 workstations, 4 sinks, 1 isolation room, 1 waste storage room, 1 storage room, 1 meeting room. | \n
B | \n6 (or 7)* incubators, 3 nurseries, 1 workstations, 5 sinks, 2 isolation room, 1 storage room, 1 meeting room. | \n
C | \n11 incubators, 8 nurseries, 2 workstations, 4 sinks, 1 milk preparation room, 1 WC, 1 storage room, 1 meeting room. | \n
General characteristics of the three NICUs.
Note. *When necessary, one more incubator can be installed.
The measurements were mostly carried out continuously over 24 hours, during seven days in each measurement place (work station, traffic zone, inside incubator). Inside the incubator, short measurements (5–10 min.) were also made. The measurement protocol was based on the orientations of previous studies [20]. In this sense, a preliminary survey was performed in order to identify noise sources. Measurements were performed using a sound level meter class 1 (01 dB®, model Solo‐Premium). The measurements of peak sound pressure level (Lp, Cpeak) were made using the C filter and the A‐weighted equivalent sound pressure level (LAeq) were obtained using the A filter, which is a frequency weighting filter that simulates human hearing. “C‐weighting” curve was used, providing a flat frequency response with slight attenuation for high and low frequencies. It is usual to measure the peak noise levels in hospitals environment in order to define improvements to the acoustical environment [21]. Slow response time averaging (1 s) was also used because it is the most appropriate response for the majority of the applications in hospitals and provides stable readings [22]. To ensure accurate measurement, recording was preceded by calibration of the sound level meter [23] with an acoustic calibrator class 1 (RION®, model NC‐74). In the analysis and interpretation of results reference values given by WHO [1], were used. Table 3 shows reference levels for hospitals, given by WHO and other organizations. After the field measurements, the data were transferred and processed in the dBTRAIT software, version 5.4.
\nOrganization | \nRecommended values | \n
---|---|
United States Environmental Protection Agency [24] | \n45 dBA daytime 35 dBA night | \n
World Health Organization [1] | \nFor areas where patients are treated or observed—35 dB LAeq For wardrooms in hospitals—30 dBA LAeq with a corresponding LAmax (maximum A‐weighted sound pressure level) of 40 dBA | \n
Committee on Environmental Health—American Academy of Pediatrics [25] | \n45 dBA | \n
Recommended noise levels in hospitals.
The analysis of staff noise perception in their workplaces involved the application of a questionnaire, in order to characterize working conditions, comfort, and the main noise sources. The questionnaire developed and tested in previous studies of this project, was divided into three main sections containing a total of 11 questions: (1) demographic information (sex, age, profession, years of work in NICU, shift); (2) judgment of personal acceptability of noise and comfort; and (3) judgment of the noisiest shift and main sources of noise in the NICU. There were no contacts between the researchers and the participants. The questionnaire was delivered and received by a nurse, responsible for the NICU. The questionnaire fulfillment was completely anonymous and confidential. This questionnaire was (and will be) used in different studies of the project. Information regarding noise perception by professionals during the completed stages is given by [18]. Other results and respective data analysis regarding questionnaire survey are being considered for another publication.
\nThis task consisted in a short systematic review, conducted in selected databases and based on PRISMA statement [26], to summarize studies characterizing noise levels in hospital NICUs, in the last 15 years (since the year 2000), to gather more relevant and recent information. Some of the keywords used were NICU, noise and hospital, noise, among others. It was an important study, in order to determine gaps in knowledge and to define the purpose and concept of the NeoNoise project, more accurately.
\nThe activities regarding behavioral changes were already performed. In this phase of the project measurements were made before and after a training program (TP) in one NICU. TP was conducted by three researchers. The TP was performed through a lecture of approximately 60 min and conducted by the investigators. To ensure that all the staff of the NICU under study such as physicians, nursing staff, and auxiliary staff attended the lecture (n = 79), 14 training sessions were given [2, 6]. The lecture included (1) general concepts of noise; (2) the results of the sound pressure levels obtained in the first phase and the comparison of these to the recommended values suggested by WHO and other regulatory agencies; (3) the negative impact of noise on health, both for neonates and professionals; and (4) some actions that needed to be implemented to ensure noise reduction were undertaken [6]. Regarding these actions, health professionals had a significant role in the development of an action plan to address specific noise issues. Detailed information is given in [6].
\nThe tasks regarding the effectiveness of environmental or infrastructural modifications will be conducted in one NICU. As referred before, this field investigation will involve a walkthrough inspection by two trained researchers using a checklist and measurements for the assessment of the sound pressure levels. Some infrastructural modifications are being performed in the selected NICU for this study (B). Noise measurements were already made before and will be carried out after these modifications.
\nBased on acquired knowledge obtained in all the studies developed within the scope of NeoNoise project, it will be developed a quiet time protocol involving not only frequent and ongoing training sessions of healthcare staff, but also other good practices to control noise production and guarantee a quiet environment. Quiet times are designated hours where activity and conversation is minimized to allow patients to rest. Some authors referred the most effective model is to have a period in the afternoon and a period during the night, when quiet hours are observed. However the structure of the quiet times must to be defined taking into account shift changes, among other specific activities of the NICU. Quiet hours could be observed in many ways (when possible), such: conduct conversations in workstations and other areas in a hushed manner; encourage visitors to participate and also to take breaks to let patients rest; restrict phone conversations to designated areas of the NICU; minimize or eliminate clinical interventions (e.g., blood draws, etc.) during these hours, etc. The effectiveness of QTP will be tested in three NICUs, through noise measurements and questionnaire survey.
\nBased on previous phases of NeoNoise project and taking into account the reality of the Portuguese healthcare services, a manual will be developed and published. This will help health professionals in the adoption of efficient strategies to reduce the production of noise not only in NICU but also, in other intensive care units.
\nData gathered during the project is being managed and analyzed through IBM SPSS™ (Statistical Package for the Social Sciences) 20th version and MS Excel® 2013 software\'s. Data obtained by measurements were transferred and processed in the dBTRAIT software version 5.4 and exported to MS Excel® 2013 for further analysis. Databases were developed specifically for the study by the research team in order to record the large amount of data. Data input was the responsibility of two researchers of the project. An exploratory analysis of the variables of interest was carried out using classic descriptive statistics to calculate frequencies, means, medians, and associated dispersion measures with analysis of LAeq and Lp, Cpeak values. Normality, parametric and nonparametric tests of hypothesis were also used as appropriate. All tests considered a 95% confidence interval.
\nAs previously mentioned, some studies within the scope of NeoNoise project were published or submitted for publication in international peer reviewed journals and presented at international scientific conferences. The results were communicated to the NICU responsibles to better understand noise production and its sources and to contribute for the development of preventive measures, through technical reports and short information sessions. Additionally, a final conference/seminar will be organized to disseminate results to the general public.
\nNeoNoise is the first Portuguese study addressing the effect of noise on premature infants and healthcare staff through objective measurements of sound pressure levels and subjective analysis by questionnaire surveys, and testing the effectiveness of different noise reduction strategies in the NICU. Data collection was carried out successfully (except for the stages that are not completed yet). Data analysis is still ongoing, but preliminary results were already presented at scientific meetings and published or accepted for publication. Formal recommendations to national authorities and public education materials will be made available in written documents.
\n\n | N (%) | \nMean (min‐max) | \n
---|---|---|
N | \n95 (100) | \n\n |
Sex | \n\n | – | \n
Male | \n9 (9.5) | \n|
Female | \n86 (90.5) | \n|
Age in years | \n\n | 40.4 (24–61) | \n
18–39 | \n45 (47.4) | \n|
40–59 | \n(48.4) | \n|
>60 | \n2 (2.1) | \n|
missings | \n2 (2.1) | \n\n |
Professional group | \n\n | – | \n
Operational assistants | \n24 (25.3) | \n|
Nurses | \n52 (54.7) | \n|
Physicians | \n17 (17.9) | \n|
missings | \n2 (2.1) | \n\n |
Years at NICU | \n\n | 10.1 (0.5–35) | \n
<5 | \n34 (35,8) | \n|
5–20 | \n47 (49.5) | \n|
>20 | \n9 (9.5) | \n|
missings | \n5 (5.3) | \n\n |
Shift | \n\n | ‐‐‐ | \n
Morning | \n53 (55.8) | \n|
Afternoon | \n24 (25.3) | \n|
Night | \n18 (18.9) | \n
Demographic characteristics of the sample (n = 95) [18].
In the exploratory study shown in Figure 1, Santos and Miguel [19] combined objective measurements of noise and a questionnaire survey in order to characterize noise levels in eight intensive care units (ICU) of a hospital, located in Porto, Portugal. The study also involved the application of the Ergonomic Workplace Analysis (EWA) methodology adapted by Miguel et al. [27] for the determination of risk level and intervention prioritization. The values of LAeq dBA obtained in the ICUs ranged from 50.0 to 65.0 dBA in the center of the units and between 57.8 and 67.1 dBA at the bedside of the patients. These values are above those recommended by WHO. Similar results were obtained by several authors in the same type of units [4, 8, 28, 29]. It is important to note that during the measurements, different operational equipment, including alarms, monitors, ventilators, infusion pumps, and nebulizers were operating. The conversation between the health professionals team at ICU was also identified as a possible source of noise that interfered the results. Comparing the results, it was found that the morning LAeq dBA values were higher than the afternoon ones, which may be related to the fact that during this period, medical examinations and hygiene of patients were more frequent. All ICUs had noise levels above the recommended and NICU was considered for further studies due to the patients involved: premature infants, who are not able to complain about noise. In fact, in Portugal there has been a considerable increase in preterm births, which in 2004 increased from 6.7 to 8.8% in 2009 [30]. Thus, it is essential to promote a quiet environment to reduce the impact of noise levels on health and well‐being of premature infants and health professionals. In this sense, Santos et al. [3] documented some preliminary results on noise levels and responses given by healthcare staff of a NICU. It was found that during the week, the mean values of LAeq dBA obtained in the evaluated rooms ranged from 48.3 to 82.5 dBA. The results demonstrated that Monday LAeq dBA values were higher than the others days of the week, ranging between 52.0 and 86.0 dBA. Furthermore, sound pressure levels were significantly higher on weekdays than on weekend days (p < 0.05). In general, mean values of LAeq were lower in night shift; such was already reported for other authors [31, 32]. Night period is characterized by fewer visitors and health professionals and low lighting, which might reduce conversation. Significant differences have been found between the morning and night shift (p < 0.05) and between the afternoon and night shift (p < 0.05). On the other side, no significant differences has been found between the morning and afternoon shift (p = 0.369). Questionnaire survey showed that patient care activities and conversation between staff and visitors were identified as an important source of noise. This study concluded that noise levels were above the recommended and that routine activity of healthcare professionals has been identified as a potential source of noise. It was emphasized that training the staff in order to implement quiet work behaviors is essential, but changing physical elements of a space can result in great noise reduction. Following those conclusions, Carvalhais et al. [6] conducted a pilot study regarding the effectiveness of a training program on noise reduction in an NICU. The results showed that after six months of TP implementation, there was no significant noise reduction in the NICU rooms and inside the incubator. The “Work Station” of Room A had a decrease on LAeq and Lp, Cpeak values, 71.7–58.8 dBA and 143.3–102.8 dBC, respectively. However, in the “Traffic Zone” of Room B, the noise level increase almost 6 dB after the TP, probably attributed to the presence of visitors and other staff (from ancillary departments that did not participated in the TP) and might be the source of this rise. The LAeq values obtained in the “Work Station” and “Traffic Zone” before and after the implementation of TP exceed the recommended values given by WHO for day and night periods, indicating more attention needs to be taken. A spectral analysis was also made. In this study healthcare professionals (n = 79) were asked to identify the main sources of noise. Visitors, equipment, healthcare procedures, and conversation among others, were generally the most referred sources.
\n\n\nThe workers perception in those environments is very important in the definition, development, and implementation of an intervention to reduce noise levels and to ensure that changes take place. In this sense, a questionnaire survey was performed in order to characterize health staff perceptions regarding noise in NICU [18]. A total of 95 professionals from three NICUs participated in this study. Table 4 shows the characteristics of the sample.
\nThe majority of the respondents (55.8%) found “equipment” (including telephones and the signals and sounds from medical devices) as the most annoying noise sources and the NICU environment regarding noise as “slightly uncomfortable” (41.1%). Since environmental modifications might effectively decrease noise levels [32–34], a study testing the effectiveness of those modifications is proposed in this project, as shown in Figure 1.
\nThe data gathered until now is still under analysis, but Table 5 shows the average noise levels by NICU (the noise levels inside incubators were not considered in this analysis).
\nNICU | \nLAeq (dB) Mean (min‐max) | \n
---|---|
A | \n59.0 (48.3–82.5) | \n
B | \n52.4 (38.9–71.3) | \n
C | \n55.8 (42.8–72.8) | \n
Average noise levels by NICU.
The noise levels in the three NICUs are higher than that recommended by WHO, which proposes that the average background noise in hospitals should not exceed 35 dB LAeq for areas where patients are treated or observed (Table 3). As concentration, precise communication and fast decisions are necessary in the hospital in general, the acoustical environment has to be considered an enormous strain for the staff and a potential risk [35].
\nThe main strength of NeoNoise is the combination of strategies to reduce noise levels that are being tested. Furthermore, the different types of studies and approaches, combining questionnaire surveys, educational interventions, and objective measurements provided the collection of a large variety of data, focusing on multiple aspects of staff perception and behavior, as well as factors related to the direct environment of the premature infants. The main concern in NeoNoise was to contribute and to promote healthier environments both for infants and healthcare professionals in hospitals. With that in mind, some particularly important outcomes of this project will be to contribute to educate healthcare staff and to make recommendations to reduce and control noise production in those environments. Health promotion programs should be the mainstream of all interventions and should integrate as much as possible, staff, patients, and visitors. Some limitations of the study are related to the challenge of working in an environment such a NICU, where the tasks and activities performed, are continuously changing due to the evolution of the infants health state.
\nThis work outlines the study design and methods that might be followed by future researchers conducting field studies regarding noise reduction in healthcare facilities. The preliminary findings are relevant to characterize noise exposure of premature infants and staff in NICU. So far, preliminary data analysis revealed that noise levels in the three NICU demonstrated to be higher than recommended. The next step in ongoing analysis is to develop and implement a quiet time protocol, assess its effectiveness and to produce a good practices guide to reduce noise production in a daily basis, improving work conditions as well.
\nThe authors would like to thank the assistance given by the Occupational Health Services of the Hospitals involved, as well as to the responsibles of the NICUs under study. The authors also thank to the undergraduate Environmental Health students Mara Nóia, Maria João Coelho, António Azevedo, Raquel Martins, Raquel Lázaro, and Cláudia Nunes (from the School of Allied Health Technologies of Polytechnic Institute of Porto (ESTSP.IPP)) for partial data collection and their support.
\nAdvanced glycation end products (AGEs) are formed through a non-enzymatic process in hyperglycemic conditions, and they impact the retinal vasculature negatively through the formation of reactive oxygen species, secretion of aberrant proteins or growth factors, alteration of the extracellular matrix, and secretion of inflammatory cytokines [1]. It is important to consider the difficulty of differentiating the effects of hyperglycemia from those of AGEs, as AGE concentration is controlled by glucose levels. Because of this, occasionally high glucose levels are measured interchangeably with high levels of AGEs. There are two primary mechanisms by which AGEs damage the retinal vasculature which will be discussed in this chapter: interactions with RAGE (AGE receptors) and damage to the extracellular matrix [2]. While these two mechanisms work differently, both pathways result in thickening of the basement membrane which impairs signaling between cells of the microvasculature hindering their structure and increasing rigidity, which leads to the hemorrhagic signs seen in patients with diabetic retinopathy (DR) [3]. Endogenous anti-stressors are important for the management of high levels of AGEs through various mechanisms, but many times are not sufficient to control the progression of DR [2]. Thus, it is important to modify the production of AGEs through exogenous mechanisms, such as nutrition, reducing smoking, or treating the condition through medication [2].
Advanced glycation end products (AGEs) were first discovered in the early 1900s by the Maillard reaction process. Scientists discovered that when amino acids were heated in a mixture with reducing sugars, the reaction turned a yellowish brown color. Further studies indicated that reducing sugars, i.e., glucose, reacted non-enzymatically with the amino acid reagents to form Schiff bases, an early glycation product, and Amadori products, intermediate glycation products. AGE formation can utilize other reagents such as lipids, connective tissue extracellular matrix, and nucleic acids. The process of glycation is enhanced by diabetic complications and occurs in the earlier stages of the Maillard reaction; intracellular sugars, such as glycolytic pathway intermediate glucose-6-phosphate, are glycated at a faster rate than glucose. Amadori products are α-dicarbonyls (oxoaldehydes) such as 3-deoxyglucosone (3-DG) and methylglyoxal (MGO) which is formed by the non-oxidative rearrangement of Amadori adducts from fructose-3-phosphate in the polyol pathway. This pathway has also been studied as a precursor to hyperglycemia-induced damage in diabetes. Methylglyoxal and 3-deoxyglucosone are formed in the early stages of glycation processes: degradation of glucose, Schiff’s bases, and from Amadori products; these oxoaldehyde products can serve as a checkpoint in the AGE pathway since an accumulation of these products is an implication of accelerated vascular damage [4, 5].
The main mechanisms of AGE that affect cells are the adducts on proteins (including N-carboxymethyllysine, pentosidine, or hydroimidazolone) that can interact via AGE ligand-gated receptors such as RAGE on endothelium that lead to secretion of cytokines TNF-α and VEGF; AGEs can stem from exogenous and endogenous adducts due to glucose metabolism. RAGE is the most widely studied AGE receptor found on endothelial cells in vasculature and on macrophages and microglia. AGE interacts with RAGE on macrophages, leading to intracellular generation of free radicals and oxidative stress, which are then phosphorylated by MAP kinase to activate NF-κB and increase expression of NF-κB controlled genes to cause vasoconstriction, enhanced adhesion molecule expression, and induce a procoagulant state. An overexpression of RAGE leads to oxidative stress and NF-κB activation. Current studies show that cross-linked AGEs with RAGE on proteins are closely linked with diabetic retinopathy progression. In the diabetic retina, AGE and adducts are found on vascular cells, neurons, glia, and in elevated levels in Muller macroglia—these specialized retinal cells show increased dysfunction in hyperglycemic and hypoxic conditions that lead to more AGE formation. AGEs induce oxidative stress and consequent apoptosis of retinal pericytes; furthermore, AGEs induce the closure of intercellular junctions between endothelial cells [4, 5, 6, 7].
Inflammation is an important component in the progression of diabetic retinopathy (DR), and AGEs induce this process through interaction with receptors on the cell surface called RAGEs. These receptors are found on most cells, meaning that AGEs exert a wide effect on many different organs. In DR, results of AGE-RAGE interaction on inflammatory cells such as macrophages and lymphocytes, and on microvascular cells such as endothelial cells or pericytes are thought to produce a significant impact on the progression of DR [8]. Monocytes and lymphocytes secrete inflammatory cytokines through the induction of NF-κB [9], production of IL-1, IL-6, IL-8, MCP-1 and TNF-α, and upregulation of adhesion molecules such as VCAM and ICAM [9]. IL-8 and TNF-α levels are elevated in patients with nonproliferative diabetic retinopathy (NPDR), signifying the increased inflammation in the early stages of DR. These cytokines are produced by activated neuronal cells and endothelial cells, and they exert their effect by causing early neuronal cell death in the retina [9]. Inflammation negatively impacts the retinal vasculature by altering the action of vascular cells which leads to the upregulation of various proteins that contribute to the thickening of the basement membrane. MIP-1, IL-3, and IL-1 are thought to play a role in angiogenesis [9, 10], which would facilitate the progression from NPDR to proliferative diabetic retinopathy (PDR). Communication between glial cells and neurons is imperative for maintenance of the vasculature, and it has been shown that inflammation can impede the crosstalk between these cells early in the disease process [9]. Thickening of the basement membrane is one of the leading mechanisms by which crosstalk amongst cells of the retinal vasculature are impeded. This crosstalk is essential for many processes such as providing energy to retinal vascular cells and maintaining homeostasis [9]. In endothelial cells, AGE-RAGE interaction has been shown to increase proliferation via increased VEGF production induced through the MAPK pathway [10, 11]. This process contributes to angiogenesis and accelerates the progression of DR from NPDR to PDR. In pericytes, an opposite effect has been observed, as increased AGE-RAGE interaction leads to apoptosis of these cells, which is one of the first steps in the pathogenesis of DR [11]. As pericyte dropout occurs, the vasculature becomes less regulated leading to hemorrhage and leaking.
Reactive oxygen species (ROS) accumulate in DR from the conversion of glucose to fructose through the NADPH pathway. This accumulation of ROS leads to increased production of AGEs, which then exert their effects through AGE-RAGE interactions or by crosslinking extracellular matrix proteins. One of the outcomes of AGE-RAGE interactions is production of ROS as well, leading to enhanced concentrations of ROS and further progression of the disease. Aldose reductase, which is upregulated to compensate for the high levels of glucose and is essential for the conversion of glucose to fructose, activates a serine/threonine-related protein kinase PKC-δ. Protein kinase PKC-δ is known to inhibit platelet derived growth factor survival activity, an essential pathway for pericyte proliferation and survival. Considering that pericyte loss is typically the initial step in the pathogenesis of DR, this explains the role of ROS in the early stages of DR [12].
The other predominant mechanism of damage from AGEs pertains to their effect on the extracellular matrix of the retinal basement membrane. Inflammation induced by AGEs that was discussed above has a significant impact on the basement membrane, specifically from the elevated levels of inflammatory cytokines IL-1β and TNF-α which induce the production of extracellular matrix proteins. As these excess proteins accumulate in the extracellular matrix, the basement membrane begins to thicken. When AGEs attach to collagen or elastin in the extracellular matrix, it causes the collagen to be less susceptible to hydrolytic breakdown and becomes less flexible. It has also been found that glycation increases the production of collagen and other extracellular matrix proteins, along with the increase in production induced by inflammatory cytokines. This increased production and crosslinking of collagen along with the decreased elastin levels significantly increase the rigidity of the microvasculature through stiffening and thickening of the basement membrane [2, 10, 13].
The accumulation and crosslinking of extracellular matrix proteins contributes to the thickening of the basement membrane, which hinders its integrity ultimately leading to the hemorrhagic pathologies that occur as a result of diabetic retinopathy. The initial damage caused by this thickening is decreased perfusion of the retinal capillaries, leading to occlusion or degeneration of these capillaries [14]. This is one of the characteristic steps in NPDR: ischemia caused by lack of oxygen perfusion sets off the cascade of events that leads to neovascularization, the hallmark of PDR. When looking at the sequelae following the impact of AGEs on the basement membrane, it suggests that AGEs play a significant role in the progression and pathogenesis of diabetic retinopathy. A study showed rats with diabetes tested positive for AGEs (periodic acid/Schiff reagent positive material) at significantly higher levels than those under normal conditions [15]. Rats with diabetes also demonstrated a twofold increase in acellular retinal capillaries over the course of 26 weeks compared to their wild type counterparts, and diabetic rats also experienced significant capillary closure over the course of 75 weeks.
Processing of foods at high temperatures using the Maillard reaction to enhance flavoring and color subsequently leads to the formation of reactive aldehydes that leads to formation of advanced glycation end products, which are also formed naturally in body tissues. Studies depicted that canned meats, nuts, and grain-based products contained the highest levels of AGE, and coffee, butter, vegetables, and fruits as well as food prepared by steaming or boiling contained the lowest amounts of AGE [5, 16].
Research studies show that the average amount of AGE consumed on a daily basis by an individual range from 12,000 to 20,000 kilo-units (kU) of AGEs/day with diabetic subjects consuming a range of 4000–24,000 kU AGEs/day. Pyrraline is one of the most common AGE adducts and may be found in milk and bread crust, while pentosidine, another AGE adduct, is found in pretzel sticks and in its free form in coffee. Study of individual AGEs suggest that protein-bound pentosidine is not as readily absorbed as free pentosidine, therefore, increased levels free AGE in urine and plasma is correlated to AGE-rich dietary intake. Intake of elevated levels of sodium, carbohydrates, and vitamins were found to not be associated with DR risk or progression. Relationship between dietary AGE and promotion of AGE formation in the body tissues will require new research since current research has only centered on skin autofluorescence before and after intake of AGE-rich foods [5, 16].
The effects of dietary AGE were examined in several studies. AGE-poor diets depicted improved biomarkers for oxidative stress, endothelial, and inflammation in healthy subjects, and restricted AGE diets showed decreased levels of oxidative stress in diabetic patients as well as decreased insulin resistance and reduced levels of low-density-lipoprotein. Other studies have also found that dietary AGEs affect inflammatory markers including cytokine TNF-α, and AGE-poor diets have led to decreased risk for cardiovascular disease and endothelial dysfunction. Several studies have also examined the effects of dietary AGE on motor functions, finding that increases in oxidative stress and inflammation due to high levels of AGE lead to muscle stiffness and loss of elasticity [5, 16].
Hyperglycemic conditions initiate formation of AGE and promote biochemical abnormalities that involve formation of AGE. The three main AGE formation biochemical abnormalities include flux via hexosamine pathway, diacylglycerol-mediated activation of PKC-β with benfotiamine, and the stimulation of transketolase activity that induces excess triose phosphates to undergo the pentose phosphate pathway [17, 18].
The primary precursor of AGE is glucose, but other carbonyl precursors exists, though diminutively less reactive, including glyoxal, methylglyoxal, and 3-deoxyglucosone that result from glycolysis. The levels of AGE in the body tissues increase significantly in complications of disease such as diabetic retinopathy, but it is the accumulation of AGE that results in accelerated complications of diseases. Body cells have innate detoxification systems that prevent accumulation of AGE precursors such as methylglyoxal, and detoxification properties of enzymes may be essential in further research about prevention of diabetic retinopathy complications. Deterioration of kidney function leads to accumulation of AGEs, thus leading to endothelial abnormality and vascular disease [4, 5, 17].
No cure for diabetic retinopathy has been discovered yet, despite many efforts from various clinical trials. The standard pharmacological treatment currently for diabetic retinopathy is anti-VEGF injections, which aids in the stabilization and halts progression of the disease [19]. This approach has only been successful in treating about two-thirds of the population and the best second-line pharmacological therapy has not been identified [19]. These factors have spurred the search for a better alternative, especially agents which combat the AGEs and their effects directly. There are different categories of treatments against AGEs, but the most widely studied treatments include those that specifically inhibit AGEs themselves as well as lifestyle changes to reduce the production of AGEs.
The first direct AGE inhibitor that garners the most promise is aminoguanidine, which inhibits AGE formation on both collagen and the basement membrane [15]. As discussed above in the section about AGE’s impact on the extracellular matrix, AGEs crosslink collagen and other proteins in the basement membrane and extracellular matrix which causes it to thicken, lose its integrity and ultimately become leaky. By inhibiting the formation of these crosslinked proteins, the basement membrane and extracellular matrix can preserve their integrity and the normal communication between pericytes and endothelial cells can continue. A study demonstrated that rats treated with aminoguanidine showed significantly less AGE deposition in the basement membrane/extracellular matrix and overall healthier capillaries [15]. Treatment with aminoguanidine also reduced endothelial cell proliferation in diabetic retina, which is another pathological change associated with diabetes. The downside is that this treatment was unable to completely resolve all of the pathological processes of diabetes, namely the occurrence of retinal microaneurysms. In untreated diabetic rats, 38% demonstrated microaneurysms while those treated with aminoguanidine reduced the incidence to 20% (0% in controls). This improvement is promising, but microaneurysms lead to vessel destruction, which advances the progression of NPDR to PDR, the more detrimental stage of DR. An alternative study demonstrated an even greater decrease in microaneurysms, but their sample size was small (a single retina) and it was conducted in dogs rather than rats [20].
Another direct AGE inhibitor is pyridoxamine. This compound has been found to decrease glycation of proteins in the extracellular matrix as well as decrease the formation and production of AGEs. A study measured the success of treating diabetic retinopathy with pyridoxamine by the quantity of acellular capillaries formed over a period of time [4]. Acellular capillaries are nonperfused capillaries which result from a variety of factors onset by diabetes such as pericyte dropout, extracellular matrix, and endothelial damage [21]. After 29 weeks, it was found that diabetic rats treated with pyridoxamine showed similar amounts of acellular capillaries to controls. It also demonstrated the impact of pyridoxamine on the production of extracellular matrix proteins, which are upregulated in diabetic retinopathy. Pyridoxamine significantly reduced the production of extracellular matrix proteins like collagen type IV and laminin, close to the levels found in controls [4].
Besides the usage of direct AGE inhibitors, other drugs options are being explored. One such drug is Tanshinone IIA (Tan IIA). Tan IIA is derived from the roots of Salvia miltiorrhiza, which is a plant that is used in traditional Chinese medicine. Studies indicate that Tan IIA impacts several of the negative effects that hyperglycemic conditions have on human retinal endothelial cells. Tan IIA has an inhibitory effect on proliferation, migration, and vascularization in human endothelial cells and has some correlation to VEGF expression [22]. In terms of AGEs, a recent study explored how Tan IIA protects retinal endothelial cells from the impacts of AGEs, specifically cell dysfunction resulting from the presence of MGO. The study showed that MGO impacted cell viability negatively in a dose-dependent manner. Treatment of the cells with Tan IIA increased their viability in conditions where MGO was also present. MGO presence also resulted in mitochondrial fission in bovine retinal endothelial cells, and the presence of Tan IIA protected against this type of AGE-induced injury in the cells [23].
Exogenous AGEs are AGEs that are consumed and produced through diet and lifestyle, and they differ from the endogenous AGEs that form in hyperglycemic conditions metabolically. Because of this, diet and lifestyle changes are arguably the most important treatment in DR, as diet is a significant contributor to exogenous AGEs found in the form of foods high in protein and fat. Pertaining to lifestyle, smoking tobacco products is associated with higher levels of AGEs in serum which contributes to the progression and risk of DR [24]. Overall, a decreased calorie intake, a modified diet, and smoking cessation have been shown to increase risk and overall disease progression of DR and should be an important treatment regimen, in addition to pharmacological treatments with AGE inhibitors, in all patients with DR.
Advanced glycation end products (AGEs) are formed in increasing amounts due to hyperglycemic conditions implicated in diseases such as diabetic retinopathy. Endogenous AGEs are products from metabolic pathways that follow the Maillard reaction with the oxidation of oxoaldehydes. Exogenous AGEs may come from food sources processed at high temperatures, which increased the amount of reactive aldehydes in the food. Several studies have indicated that inhibition of AGEs holds high potential in the treatment of diabetic retinopathy. Aminoguanidine, a nonspecific inhibitor of AGE, holds the most pharmaceutical promise according to several studies conducted, but other drugs such as Tanshinone IIA are also promising. However, alterations of lifestyles may also provide highly favorable results in decreasing the amount of AGE produced and consumed by the body.
Diabetes and the complication of diabetic retinopathy are gradually on the rise and are widespread. Another disease that is nearly as widespread and also equally relevant in scientific study is Alzheimer’s disease. Recent studies indicate that there may be a link between the two and the factors that are known to impact one of those diseases, such as AGEs, also have effects on the other [25]. Of organs that may exhibit diabetic complications, the eye and its associated connections are one that are closest physically to the brain, and one long-term study on retinal health and cognitive dysfunction showed that 40% of patients with DR showed reduced cognition [26]. Future studies in relation to AGEs will not only focus on the properties of AGEs and their impact on diabetes and its complications, but also how other illnesses are impacted by them as well.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:10365},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"802",title:"Operations Management",slug:"industrial-engineering-and-management-operations-management",parent:{title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:1,numberOfAuthorsAndEditors:1,numberOfWosCitations:2,numberOfCrossrefCitations:7,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management-operations-management",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3723",title:"Management and Services",subtitle:null,isOpenForSubmission:!1,hash:"fd3d170b6b6bfc78a9568d26c89ca435",slug:"management-and-services",bookSignature:"Mamun Habib",coverURL:"https://cdn.intechopen.com/books/images_new/3723.jpg",editedByType:"Edited by",editors:[{id:"12501",title:"Prof.",name:"Dr. Md. Mamun",middleName:null,surname:"Habib",slug:"dr.-md.-mamun-habib",fullName:"Dr. Md. Mamun Habib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"11653",doi:"10.5772/9950",title:"An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model",slug:"an-empirical-research-of-itescm-integrated-tertiary-educational-supply-chain-management-model",totalDownloads:3047,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Mamun Habib",authors:null},{id:"11655",doi:"10.5772/9952",title:"Nonfunctional Requirements Validation Using Nash Equilibria",slug:"nonfunctional-requirements-validation-using-nash-equilibria",totalDownloads:2026,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Andreas Gregoriades and Vicky Papadopoulou",authors:null},{id:"11654",doi:"10.5772/9951",title:"Learning 2.0: Collaborative Technologies Reshaping Learning Pathways",slug:"learning-2-0-collaborative-technologies-reshaping-learning-pathways",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Veronica Popovici and Ramona Nicoleta Bunda",authors:null}],mostDownloadedChaptersLast30Days:[{id:"11653",title:"An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model",slug:"an-empirical-research-of-itescm-integrated-tertiary-educational-supply-chain-management-model",totalDownloads:3046,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Mamun Habib",authors:null},{id:"11657",title:"Realization of Lowpass and Bandpass Leapfrog Filters Using OAs and CCCIIs",slug:"realization-of-lowpass-and-bandpass-leapfrog-filters-using-oas-and-ccciis",totalDownloads:3632,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Yanhui Xi and Hui Peng",authors:null},{id:"11655",title:"Nonfunctional Requirements Validation Using Nash Equilibria",slug:"nonfunctional-requirements-validation-using-nash-equilibria",totalDownloads:2026,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Andreas Gregoriades and Vicky Papadopoulou",authors:null},{id:"11654",title:"Learning 2.0: Collaborative Technologies Reshaping Learning Pathways",slug:"learning-2-0-collaborative-technologies-reshaping-learning-pathways",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Veronica Popovici and Ramona Nicoleta Bunda",authors:null},{id:"11656",title:"Constructing Geo-Information Sharing GRID Architecture",slug:"constructing-geo-information-sharing-grid-architecture",totalDownloads:1561,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-and-services",title:"Management and Services",fullTitle:"Management and Services"},signatures:"Qiang Liu and Boyan Cheng",authors:null}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management-operations-management",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/112282/victor-popa",hash:"",query:{},params:{id:"112282",slug:"victor-popa"},fullPath:"/profiles/112282/victor-popa",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()