Summary of process parameters involved during the electrospinning process and the pyrolysis process, in order to establish a correlation with the morphological properties of carbon-based nanofibers.
\r\n\t
\r\n\tRecently in 2019, International Council on Systems Engineering (INCOSE) has released the latest version of the “Guidelines for the Utilization of ISO/IEC/IEEE 15288 in the Context of System of Systems (SoS) Engineering” to industry for review and comments. The document was developed under the Partner Standards Development Organization cooperation agreement between ISO and IEEE, as it was approved by Council Resolution 49/2007. This document provides guidance for the utilization of ISO/IEC/IEEE 15288 in the context of SoS in many domains, including healthcare, transportation, energy, defense, corporations, cities, and governments. This document treats an SoS as a system whose elements are managerially and/or operationally independent systems, and which together usually produce results that cannot be achieved by the individual systems alone. This INCOSE guide book perceives that SoS engineering demands a balance between linear procedural procedures for systematic activity and holistic nonlinear procedures due to additional complexity from SoS perspectives.
\r\n\tThe objective of this book is to provide a comprehensive reference on Systems-of-Systems Engineering, Modeling, Simulation and Analysis (MS&A) for engineers and researchers in both system engineering and advanced mathematical modeling fields.
\r\n\tThe book is organized in two parts, namely Part I and Part II. Part I presents an overview of SOS, SOS Engineering, SOS Enterprise Architecture (SOSEA) and SOS Enterprise (SOSE) Concept of Operations (CONOPS). Part II discusses SOSE MS&A approaches for assessing SOS Enterprise CONOPS (SOSE-CONOPS) and characterizing SOSE performance behavior. Part II focuses on advanced mathematical application concepts to address future complex space SOS challenges that require interdisciplinary research involving game theory, probability and statistics, non-linear programming and mathematical modeling components.
\r\n\tPart I should include topics related to the following areas:
\r\n\t- SOS and SOS Engineering Introduction
\r\n\t- Taxonomy of SOS
\r\n\t- SOS Enterprise (SOSE), SOSE CONOPS, Architecture Frameworks and Decision Support Tools
\r\n\tPart II should address the following research areas:
\r\n\t- SOS Modeling, Simulation & Analysis (SOS M&SA) Methods
\r\n\t- SOS Enterprise Architecture Design Frameworks and Decision Support Tools
\r\n\t- SOS Enterprise CONOPS Assessment Frameworks and Decision Support Tools.
Electrospinning is a unique process for the fabrication of 1D nanomaterials. During the last decades, it gained progressive interest, demonstrating huge potential in the different scientific areas. Especially in the field of energy and electrochemical energy conversion (EEC), electrospinning has a leading role among the techniques for the fabrication of nanomaterials. Indeed, it offers the possibility to fabricate 1D nanostructures with good control of the nanofiber morphology and of their arrangement in the final mats.
\nIn EEC devices, carbon-based nanofibers have attracted particular interest for the design of high-performing electrodes. They combine high electrochemical stability to unique mechanical properties, exhibiting high surface area to volume ratio.
\nThe high interest on carbon-based nanofibers by electrospinning is evidently analyzed in Figure 1, in which the number of works on this topic, published during the last 20 years, is reported by the blue columns. What is even more interesting is that a significant number of those works discussed the application in energy of carbon nanofibers, as described by the red columns.
\nNumber of publications discussing carbon-based nanofibers by electrospinning in blue, and in red the number of works specifically related to energy is reported (source SCOPUS).
This chapter analyzes the fabrication of carbon-based nanofibers by electrospinning, discussing their formation from different carbon precursors proposed in the literature, presenting the processing of nanofibrous electrodes for EEC and reporting key examples of their application in different EEC systems.
\nElectrochemical energy conversion (EEC) refers to the conversion of chemical energy into electrical energy by the proper control of reduction-oxidation (redox) reactions. By processes of this kind, it is possible to convert chemical energy, trapped in chemical bonds of different molecules acting like fuels, into electrical energy as in fuel cells (FC) [1], or to harvest solar energy of photons thanks to the presence of proper molecules decorating the surface of a semiconducting oxide as in dye-sensitized solar cells (DSSC) [2]. EEC also permits to store energy for its further use as in supercapacitors, by the creation of a double-layered charges, [3, 4] and in Li-ion batteries, by the so-called intercalation process [5]. Moreover, EEC can be associated to redox reactions, induced to obtain new molecules, able to efficiently store the starting energy into their chemical bonds. Interesting examples are electrocatalytic water splitting for H2 production, [6] or CO2 photoelectrochemical reduction [7].
\nFrom a general point of view, all these electrochemical reactors have a common structure, as reported in Figure 2. Indeed, they all are made of two electrodes, that is, anode and cathode, a liquid (or semisolid) electrolyte, eventually containing a separator. Actually, the optimization of the different EEC systems requires specific strategies to properly control the crucial reactions and processes occurring inside them. General agreement exists in this field on the key role played by the material constituting the electrodes. For each EEC system, the electrode material needs to satisfy some requirements. It must
be chemically robust, so as to sustain the electrochemical reaction for long time without degrading or limiting the reaction efficiency;
be high electrically conductive;
expose high surface area to volume ratio, so expose high area to favor the reactions;
have high durability over time;
have high mechanical strength, possibly combined to good mechanical flexibility.
Schematic representation of an electrochemical reactor.
During the last decade, carbon-based materials demonstrated to be the best candidate to fulfill all the requirements, especially when they are nanostructured. In this scenario, carbon-based nanofibers have started to be explored in the field of EEC, showing a tremendous potential to contribute to the further development of this area.
\nElectrospinning process ensures the formation of carbon nanofibers, starting from a polymeric solution and applying successively a proper post-process, typically a thermal treatment, known as pyrolysis process, conducted at high temperature and under an inert atmosphere [8]. The selection of the polymeric precursor with a carbonization yield plays a crucial role in order to obtain final carbon-based nanofiber mats. One of the main advantages, offered by electrospinning technique, is the possibility to obtain several nanostructures, such as hollow nanofibers, porous and dense nanofibers, by using different tools. The electrospinning setup is basically characterized by three parts: (1) the spinneret that hosts the needle representing the first electrode; (2) the counter electrode, also named collector, which is the second electrode and it ensures the collection of dried nanofiber mats; and (3) high voltage supply [9, 10, 11, 12]. As sketched in Figure 3, the high voltage (in the range between 0 and 30 kV) is applied to induce charges distribution inside the polymeric drop that is shaped at the tip of the needle. The interaction between all charges generates a repulsive force, which typically increases as the voltage value grows. Indeed, as voltage progressively increases, the spherical shape of the drop is stretched, assuming a conical shape, named Taylor cone. When the applied voltage overcomes the threshold value, the repulsive force overcomes the surface tension of solution, inducing the ejection of charged polymeric jet.
\nScheme of the electrospinning process together with the representation of bending instabilities achieved during the process. Reprinted with the permission from (Polymer, 2008, 49, 2387–2425) Copyright (2008) Elsevier.
Since during the process, both bending instabilities and solvent evaporation induce the stretching of the charged polymeric jet, leading to provide the deposition of nanofibers with diameters in the order from few nanometers to some micrometers, the definition of working distance is quite important [13, 14, 15]. The working distance is defined as the distance between the tip of needle and the counter electrode and it is directly correlated with the possibility to collect on the counter electrode a dried nanofiber mat. All the process parameters play a crucial role to tune the morphological properties of the nanofibers. Furthermore, the subdivision of these parameters in three main classes is completely known:
Polymeric solution parameters, such as viscosity, electrical conductivity, surface tension, concentration and polymer molecular weight;
Process parameters, as applied voltage, working distance, flow rate and strength electric field, defined as the ratio between the voltage and the working distance;
Environmental parameters, such as room temperature and humidity.
Moreover, the spinnability of the polymeric solution is strictly correlated with the solution parameters. In order to obtain the formation of a continuous charged polymeric jet during the process, the solution viscosity must be in the range (Eq. 1) [16, 17, 18]:
\nWhen the viscosity value, (η (Pa*s)), is lower than 0.1 Pa*s, charged droplets are formed during the process, giving rise to electrospray process. On the contrary, when the solution viscosity is higher than 2 Pa*s, the formation of a continuous charged polymeric jet occurred, leading thus to collect dried nanofiber mats. Different works in the literature demonstrate the direct correlation between the solution viscosity and the uniform morphological properties, characterizing the nanofiber mat [16]. It is possible to define a direct correlation between polymer concentration and solution viscosity: higher is the polymer concentration, higher is the solution viscosity. When the polymer concentration is low, thinner nanofiber mats are collected on the counter electrode.
\nRegarding the second class of parameters, the flow rate and working distance affect the morphological properties of final nanofibers. High flow rate values, indeed, induce the formation of nanofibers, characterized by a no uniform diameter distribution and by a large number of defects. Whereas low flow rate values cause the formation of the Taylor cone inside the needle, leading to the formation of no continuous charged polymeric jet and the collection of beads nanostructured into the mats. Since the evaporation of the solvent can depend on the working distance, its value influences the collection of the final dried nanofiber mats.
\nAs deeply investigated in the literature [8, 19], the main polymeric precursor used in order to obtain carbon-based nanofibers is Poly (acrylonitrile) (PAN). The polymer chain of PAN is represented in Figure 4.
\nMolecular chain of polymer polyacrylonitrile.
PAN is selected as precursor thanks to its properties, such as high carbonization yield, high melting polymer and high content of nitrogen, leading to the self-induced nitrogen doping into the final nanofiber mats, modulating properly the heating treatment [19]. Different works in the literature investigate the role of nitrogen in order to optimize the carbon-based nanofibers, designing new electrode to improve the overall performance of electrochemical devices. In particular, the so-called activated carbon-based nanofibers (ACNFs) are obtained by applying successive chemical treatments (e.g. ammonia treatments, oxidation treatment in nitric acid and so on) on carbon nanofibers after the thermal treatment conducted at temperatures higher than 100°C [20]. Whereas, PAN nanofibers can show a self-induced nitrogen doping, when the pyrolysis treatment is conducted at low temperature values, in the range from 600–900°C. In order to obtain a final polymeric solution suitable for electrospinning, the most common polymeric mixture is based on PAN dissolved in an organic solvent, as Dimethylformamide (N-N DMF). Different works in the literature investigate the correlation between all involved electrospinning parameters and the morphological properties of PAN nanofibers [8, 21]. Therefore, Yordem et al. [8] demonstrate that the working distance results to be the main parameter, which can be influenced by the diameter distribution in the range of several nanometers. PAN nanofibers can be obtained by starting from a polymeric solution, containing a low PAN concentration (in the range 8–10 wt%) and applying a voltage value among 10–20 kV.
\nThe pyrolysis treatment is the heat treatment, carried out in order to transform the PAN nanofiber mats in carbon nanofibers (CNFs). Liu et al. [22] showed the pyrolysis treatment, divided into three main steps: (i) the oxidative stabilization; (ii) the carbonization; and (iii) the graphitization. All these steps should be implemented in order to maintain the nanostructures during the conversion of PAN fibers into CNFs. Among all these steps, the most important and complex stage results to be the oxidative stabilization. This step plays a crucial role in the definition of carbon nanofiber structures and involves several chemical reactions, such as cyclization, dehydrogenation, aromatization, oxidation and crosslinking [23, 24]. The oxidative stabilization occurred in air at temperature lower or equal to 280°C and during this step, the \n
Scheme of the two main reactions occurred during the oxidative stabilization: Cyclization and dehydrogenation, which induces the formation of a water molecule.
In particular, the dehydrogenation involves the formation of double bonds between nitrogen and carbon atoms and successively the removal of water molecules. Whereas the cyclization is the reaction able to create the ring configuration in the main chain. Indeed, the nitrile groups react with each adjacent group, originating then stable polymeric structure. Once obtained a nanostructured material thermally stable, the following steps of carbonization and graphitization are carried out. Typically, both of the two steps are conducted under inert atmosphere (using argon or nitrogen flow) at high temperature values. The carbonization step is occurred at temperature higher than 900°C and during this phase, the ring structure starts to arrange itself to get the formation of small size graphene sheets. In particular, a molecule of HCN broke out and a reduction of nitrogen content in the main chain takes place. The last graphitization step is conducted for temperature higher than 1000°C (1000°C < T < 3000°C) in order to convert the majority of PAN precursor into a carbon structure, ensuring thus the formation of larger graphitic ordered sheets. Although the formation of uniform CNFs mats, starting from PAN as precursor, results to be difficult, the final CNFs show unusual properties, thanks to their high surface area ratio to volume and high porosity webs, making them suitable to design new nanostructured electrodes.
\nThe class of polymers, reported in Table 1, which can be used as precursor in order to obtain carbon-based nanofibers, turn out to be restricted. Theoretically, the carbon backbone ensures the possibility to convert that polymer precursor in a carbon-based material.
\nElectrospun carbon-based nanofibers | \n|||
---|---|---|---|
Polymeric precursors | \nPyrolysis process | \nParameters involved in nanofibers morphology | \nReferences | \n
PAN dissolved in N-N DMF, used as solvent | \nOxidative stabilization conducted in air at T = 280°C Carbonization step conducted under inert atmosphere at T ≥ 900°C Graphitization step conducted under inert atmosphere at 100°C < T < 3000°C | \nWorking distance Polymer concentration Voltage applied in the range from 10 to 20 kV | \n[8, 20, 21, 22, 23, 24, 25] | \n
Nano-sized Cellulosic Precursor | \nIn air at T = 240°C Carbonization step conducted under inert atmosphere at two temperatures: T1 = 800°C and T2 = 2200°C | \nHeating temperature: average diameters vary in the range from 430 to 200 nm; | \n[26] | \n
PI nanofibers obtained by starting from a solution based on PAA | \nImidization process: in N2 T1 = 150°C(50 min);T2 = 280°C (40 min) Carbonization step::inert atmosphere T = 1000°C | \nPAA concentration Viscosity solution The diameters of PI nanofibers decrease during imidization process | \n[8, 27, 28, 29, 30, 31] | \n
PVDF nanofibers | \nOxidative stabilization process in air at T = 400°C Carbonization process in N2 flow is conducted at T = 1000°C | \nPolymer concentration: higher is the polymeric concentration, higher is the diameter values | \n[33] | \n
Porous nanofibers obtained starting from a polymeric solution based on PVDF and PEO dissolved in DMF | \nOxidative stabilization process in air at T = 400°C Carbonization process in N2 flow is conducted at T = 1000°C | \nHigher is the molecular weight of PEO and its concentration, higher is the pore distribution inside the mat and on nanofibers surface. | \n[34] | \n
PVA nanofibers | \nCarbonization process is implemented at low temperature T = 500°C under flow of argon and hydrogen | \npH of polymeric solution: diameters increase as the basic pH increases: pH is more acid the formation of charged droplets occurred | \n[35, 36] | \n
Core-shell and hollow carbon-based Nanofibers | \n|||
Polymeric precursors | \nPyrolysis process | \nHollow Carbon-based nanofibers | \nReferences | \n
PAN dissolved in N-N DMF, used as shell PMMA, mixed in a solvent of DMF/acetone, used as core | \nOxidative stabilization conducted in air at T = 250°C Carbonization step conducted under inert atmosphere at T = 1100°C | \nHollow nanofibers show an external diameter equal to 7 μm and the internal diameter is close to 2 μm | \n[37, 38, 39] | \n
Summary of process parameters involved during the electrospinning process and the pyrolysis process, in order to establish a correlation with the morphological properties of carbon-based nanofibers.
One of the most interesting possibilities is the selection of a natural polysaccharide, such as cellulose, chosen as carbon precursor. Deng et al. [26] fabricated CNFs by using nano-sized cellulosic precursors. The nanofibers, obtained by electrospinning of a polymeric solution based on cellulose acetate, were then left in a solution of 0.5 M NaOH dissolved in ethanol to obtain regenerate cellulose-based nanofibers. Subsequently, a pyrolysis treatment was carried out through two steps, converting thus cellulose-based nanofibers into CNFs. The first step is conducted in air at 240°C in order to stabilize the nanostructure, while the carbonization (second step) is obtained by varying the temperature in the range from 800–2200°C under argon flow. In this work, it was possible to observe that the diameters decrease with the increasing of the heating temperature. In particular, the diameters varied from 430 to 200 nm, when the heating temperature is close to 2200°C. These obtained CNFs show an improvement of mechanical resistances, due to their high surface area and small diameter distribution. Moreover, the yield of carbonization of cellulose is ensured by the possibility to obtain a graphitic-like nanostructure starting from 1500°C.
\nDifferent synthetic polymers can be used as precursors for carbonization: polyimide (PI), poly(vinyl alcohol) (PVA) and poly(vinyliden fluoride) (PVDF). Many works in the literature investigate the formation of PI nanofibers [27, 28, 29, 30], by providing three different steps: (i) preparation of polymeric solution based on polyamic acid (PAA); (ii) electrospinning of this polymeric solution and (iii) imidization of the PAA nanofiber mats. The imidization process is carried out in N2 atmosphere; during this process two heating phases are implemented: the first is conducted at 150°C for 40 min (heating rate equal to 5°C min−1) and the second one at 280°C for 40 min (heating rate is 2°C min−1) [27]. The carbonization process was conducted at a temperature of 1000°C with a heating rate of 10°C min−1 in inert atmosphere [30, 31]. Different approaches were investigated in order to induce the graphitization of the samples [31] and/or to create a N2 doping to functionalize the nanofiber mats [30]. Indeed, Yang et al. [31] sandwiched the carbonized PI nanofibers into graphite plates and treated them at 2200°C in He atmosphere. Whereas Kim et al. [30], in order to activate the carbon-based nanofibers after the carbonization process and thus optimize the materials as supercapacitors, implemented a heating treatment at temperature in the range from 650–800°C with a 40%vol steam in the nitrogen. PAA concentration or viscosity solution are the two main parameters that can influence the morphological properties of PI nanofibers [32], as represented in Figure 6. The diameters of PI nanofibers vary in the range between some tens and several hundreds nanometers [8]. In order to tune the morphological properties of final carbon nanofibers and their porosity distribution, it is important to underline that the diameter values decrease during the imidization process and the carbonization treatment [31].
\nDiameters shrinkage provided/reached in (a) PAA nanofibers; (b) PI nanofibers after the imidization process and (c) and (d) after the carbonization process, conducted at 1000°C for 1 h. Reprinted with the permission from (journal of physical chemistry B letters, 2007, 111, 11,350–11,353) copyright (2007) American Chemical Society.
The thermoplastic polymer PVDF is used as carbon precursor thanks to its intrinsic properties, which ensure the formation of a continuous charged polymeric jet during the electrospinning, avoiding as much as possible the instauration of nano-droplets during the process [33]. Kim et al. investigate the correlation between the morphological properties of mats with the polymer concentration. Indeed, different electrospun polymeric solutions were prepared by dissolving 12, 14, 16 and 18 wt% of PVDF in a mixture, based on acetone and dimethylacetamide (DMAc, volume ratio of 7/3 weight). PVDF nanofibers are characterized by an average diameter close to several hundreds nanometers and a microporous structure, defined by the interconnections between all nanofibers. As confirmed theoretically, it is possible to observe that the diameter increases with the increasing of polymer concentration: higher is the polymeric concentration, higher are the diameter values.
\nIn order to obtain highly porous carbon-based nanofiber mats, derived from PVDF nanofibers, Yang et al. [34] synthetized PVDF nanofibers, starting from a polymeric solution, containing PEO (0.06 g) and PVDF (1 g) dissolved in 9 g of mixture of DMF and deionized water (5:3 volume ratio). The addition of PEO together with water as non-solvent for PVDF guarantees the formation of microporous structure on PVDF nanofibers surface. The heating treatment, selected in order to convert the PVDF precursor into carbon, is based on two different steps, named dehydrofluorination and carbonization. Dehydrofluorination enhances the thermal stability of the material before the carbonization step. Different from the thermal stability conducted for PAN nanofibers, which is achieved at low temperature close to 300°C, for PVDF the stabilization occurred through a heating treatment at 400°C in air. Since this temperature is much above the temperature of melting point (190°C), dehydrofluorination is commonly provided as chemical treatment at low temperature, introducing a large number of C–C bonds into the main chains. The PVDF nanofibers are soaked in the solution containing DMF and methanol (9:1 volume ratio) as solvent, and the chemical compound (DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene) that is added for each unit of vinylidene fluoride unit. The carbonization process was carried out at temperature higher than 1000°C in N2 flow for 1 h. The PEO concentration, the amount of water in the polymeric solution and the relative humidity reached when the nanofibers collected play a crucial role to control the porous morphology of the sample, as represented in Figure 7. When PEO is absent in the initial polymeric solution (Figure 7a), PVDF nanofibers show a certain surface roughness and few pores inside the mat. Whereas, high relative humidity combined with PEO provide the formation of pores on the nanofiber surface (Figure 7b). Both of the presence of water and PEO induce the pores distributions all through inside the fibers (Figure 7b, c and d); one pore is connected with each other. It is possible to define a correlation between the pores distributions (on the nanofibers surface and on the bulk) with PEO molecular weight and PEO concentration (Figure 7d). Indeed higher is the molecular weight of PEO, higher is no-solubility of PVDF, leading thus to increase the porous structure inside the mat and on nanofibers surface. The same trend can be observed when PEO concentration increases: the pores number on the surface is larger when PEO concentration increases.
\nModulation of porous structure in the PVDF nanofibers, obtained by adding PEO and increasing the relative humidity. (a) Only PVDF-based nanofibers; (b) PVDF and PEO nanofibers collected when the relative humidity is 45%; (c) relative humidity is 35%; (d) PVDF and PEO nanofibers obtained with a lower PEO concentration. Reprinted with the permission from (carbon, 2011, 49, 3395–3403) copyright (2011) Elsevier.
Poly(vinyl alcohol) (PVA) is used to obtain carbon nanofibers, starting from named green polymeric solution, although its low carbonization yield and low decomposition temperature. PVA nanofibers, indeed, are obtained starting from a water-based solution and the carbonization process is implemented at low temperature, close to 500°C, for 3 h under flow of argon and hydrogen [35]. The main parameter, which influences the diameter distribution of PVA nanofibers, is the pH of polymeric solution. At neutral pH value, the diameters are in the order of hundreds nanometers [36]; while the average diameters increase as the basic pH increases. On the contrary, when the pH becomes more acid a no continuous polymeric jet is guaranteed during the electrospinning process, inducing the formation of charged droplets
\nConsidering PAN as the most suitable carbon precursor, it is possible to obtain different carbon nanofibers morphology, for example, core-shell nanofibers, hollow nanofibers, porous nanofibers, as summarized in Table 1.
\nThese kind of nanofibers is obtained by modifying the electrospinning setup into a coaxial electrospinning. Coaxial electrospinning is carried out by a concentric disposition of two syringe holders, where two spinning solutions can be loaded, as represented in Figure 8.
\nSketch of coaxial electrospinning used in order to obtain core-shell nanofibers or hollow nanofibers.
Core-shell nanofibers are made of a shell, typically natural or synthetic polymers, and by a core that can be a solvent or a polymer, known as sacrificial polymer. In this latter configuration, through a post-process, such as heating treatment and/or chemical treatment, the core was removed, leading thus to the formation of hollow nanofibers [37]. Therefore hollow nanofibers show an empty core and a shell, also defined wall, based on polymer, ceramic or carbon-based materials. Zussman et al. used coaxial electrospinning in order to obtain hollow carbon-based nanofibers. In this work, the shell solution contained 12 wt% of PAN dissolved in DMF, selected as carbon precursor; while the core is obtained starting from a solution of Poly(methyl)methacrylate (PMMA) mixed in a solvent of DMF/acetone. The acetone is no solvent for PAN, leading thus to create, during electrospinning process, a solid interface between shell and core and consequently a dried core-shell nanostructure. Core-shell nanofibers mat was thermally treated in order to ensure the carbonization of shell (PAN nanostructures) and simultaneously the completely degradation and decomposition of PMMA core. The heating treatment is achieved through two steps: the first step is in air at 250° to thermal stabilize the sample and the second step is in inert atmosphere (N2 atmosphere) at 1100°C. These hollow nanofibers show an external diameter equal to 7 μm and an internal diameter close to 2 μm.
\nAnother way, provided to obtain hollow nanofibers, is based on the preparation of electrospun solution similar to an emulsion mixture [38, 39]. Kim et al. [38] prepared the emulsion-like solution mixed two immiscible polymers: PAN as carbon source, forming the continuous phase of solution, and PMMA, which constitutes the dispersed phase. The collected nanofiber mats results to be a core-shell nanostructure: the shell is made of continuous and long fibers of PAN, whereas the core is discontinuous part of PMMA. The carbonization process ensures the formation of hollow carbon-based nanofibers through the completely degradation of PMMA polymers.
\nThe great importance to identify new models to make human development sustainable for the environment has pushed and potentiated the scientific research in the area of renewable energy sources. Nanotechnologies are gaining a prominent role in driving this revolution toward sustainability. Indeed nanomaterials offer several advantages with respect to their macroscopic counterparts. First of all, since they offer high specific surface area combined to outstanding mechanical and electrical properties, they grant the design of high-performing devices [32, 33]. Among the different nanostructures that have been proposed in the area of EEC, nanofibers by electrospinning belong to one of the most versatile class of nanomaterials, able to be easily optimized with different morphologies and with a set of final properties that can be tuned as required by the final application [34, 35]. The development of carbon nanofibers, as electrodes in EEC devices, ensures great improvements of their overall performances [32, 33, 34, 35]. In particular, all EEC devices described in this book chapter represent the most promising technologies in terms of renewable energy. In the last decades, the new renewable sources were developed in order to supply the 50% of energy demand, minimizing greenhouse gas emissions (GHG), limiting environmental pollution and producing power through electrochemical conversion of new fuels, such as wastes, CO2 and other compounds.
\nFuel cells represent an important class of electrochemical devices for energy conversion. They are capable of directly convert the chemical energy present in a wide range of molecules into electrical energy. The starting molecules, as hydrogen and methanol, act as fuel and, thanks to presence of the proper catalysts, oxidation reactions occur at the anode of the systems, resulting in the production of electricity [1]. Actually different fuel cell technologies have been developed, that make possible to use as starting fuels not only small size molecules as hydrogen, methanol and ethanol, but also more complex solid organic matter present in different king of wastewaters and soils as in happen in microbial fuel cells (MFCs) [39]. The use of carbon-based nanofibers is quite frequent in this area, since they combine good electrochemical stability with high electrical conductivity, while offering several strategies for their decoration and coupling with the required catalysts. In microbial fuel cell, particular class of microorganisms, named exoelectrogenic, catalyzes the oxidation reaction, which permits the conversion of chemical energy of organic matter of wastewater into electricity. These kinds of bacteria are able to directly release electrons that can be accepted by the anode of the device, during their metabolic activity. The electrode plays a role similar to that of different minerals that exoelectrogenic bacteria can find in their natural environments, for example, freshwater and seawater sediments [40]. Carbon-based nanomaterials are intriguing materials for the fabrication of anodes for MFCs, since they offer good electrochemical behavior and optimal morphological features that can favor bacteria growth on them [41].
\nAn interesting possibility to improve the performances of FCs is the use of oxygen at the cathode of the system as the final electron acceptor. The reaction that occurs in these reactors is the so-called oxygen reduction reaction (ORR). The complete ORR is proposed in Eq. (2), it permits to use 4 electrons for each molecule of reacting oxygen.
\nActually to promote the ORR reaction according to the pathway described by Eq. (2), avoiding the formation of dangerous and unwanted side products as H2O2, the presence of a proper catalyst is mandatory. The most important catalyst for this reaction is Pt, which is a rare and expensive metal [42]. Many efforts are spent worldwide to identify and optimize substitutes for Pt-based catalysts, able to offer the same catalytic efficiency but with a significant cost reduction.
\nCarbon-based nanofibers by electrospinning offer an interesting opportunity to design high-performing cathodes. Indeed selecting the proper precursors for the fabrication of nanofiber it is possible to add spontaneous doping sites made of heteroatoms that have demonstrated to be quite active toward the ORR. In paragraph 3.1 PAN has been introduced as the reference precursor for the synthesis of carbon-based nanofibers, due to its high carbon yield during the pyrolysis process. The structure of the polymer chain of PAN was proposed in Figure 5, showing the presence of -C≡N groups along the chain. Properly controlling the thermal treatment, it is possible to fabricate nanofibers with a good degree of graphitization in which several N-based defects can be present into the graphitic structure of carbon, as proposed inFigure 9. It has been reported by several works in the literature that those defects actually behave as N-doping sites for the carbon nanofibers, and their presence can be controlled during the fabrication process [43]. The N-based defects in the graphitic structure of the nanofibers play an important role as active catalytic sites toward the ORR. Moreover several strategies are possible to decorate the carbon-based nanofibers with metal-based catalyst, with the possibility to optimize a co-catalysis process.
\nSketch of a graphitic plane with the different nitrogen defects that can be formed during the pyrolysis process starting from PAN precursor.
Photovoltaic devices whose working principle involves electrochemical reactions have been proposed, they are the dye-sensitized solar cells (DSSCs). As in traditional solar cells, photons are directly converted in electrons, but in DSSCs organic molecules, that is, the dye, are responsible for the adsorption/conversion processes [36, 37]. A wide band gap semiconductor, which is usually TiO2, captures the produced electrons and the regeneration of the dye is grant by the presence of a redox mediator into the electrolyte. The most frequently used redox couple is iodide/triiodide (I−/I3−), that is then reduced at the counter electrode (CE). The design of the CE is particularly challenging, since it must show high chemical resistance to the aggressive redox couple used in DSSC and preserve high efficiency over time in catalyzing the triiodide reduction. Platinum is the reference catalyst employed at the CE in DSSC, but high is the interest to substitute it with high-performing materials, leading thus to keep low the cost of the final devices and overcome the issues related to Pt that rapidly degrades because of the exposure to iodide/triiodide. The use of carbon-based nanofibers in this area has been especially important for the optimization of new counter electrodes [44, 45]. High efficiency of DSSC are strictly related to the proper design of photo-anodes, especially related to the different interfaces among all materials, that is, dye/semiconductor/electrode. Indeed the optimization of charge injection after their photo-generation is a key step to avoid charge recombination. Electrospinning offers interesting possibilities to optimize these interfaces by the preparation of composite nanofibers. An interesting example is the work by Hieu et al. [46], in which the authors optimize a photo-anode made of core/shell nanofibers with a core made of highly graphitized carbon and TiO2 as the outer shell. The nanofibers were obtained with a starting solution made of PAN as the carbon precursor and titanium isopropoxide added to polyvinylpyrrolidone (PVP) as the TiO2 source. The resulting DSSC performed extremely well, reaching an efficiency of 7.5%.
\nLithium ion batteries (LIBs) are a key technology for energy storage. A LIB is made of negative and positive electrodes that can both intercalate Li+ ions reversibly. The electrodes are separated by conducting non-aqueous electrolyte containing lithium ions. Discharge correspond to use of the battery, during this phase Li+ ions grant the current flow from the negative to the positive electrode. The reverse operation, called charge, requires the use of an external voltage. Under the external potential, lithium ions are forced to move from the positive electrode to the negative one. At the negative electrode, lithium ions are trapped into the porous material forming the electrode during a process named intercalation [47]. Good examples, which show the use of nanofibers by electrospinning in LIBs, are especially related to the preparation of anodes, where the intercalation process causes huge mechanical stress to the materials, usually limiting their durability. The possibility to decorate electrospun carbon-based nanofibers with metal oxides is an intriguing strategy to reduce the size of the metal oxide down to the nanoscale, significantly improving the mechanical robustness of the material. The synthesis proposed by L. Ji et al. [48], is relatively easy. The authors obtained the starting polymer solution based on the addition of the oxide precursor into the solution already containing the carbon precursor. They synthetized carbon nanofibers decorated with α-Fe2O3 nanoparticles, demonstrating homogenous dispersion of the nanoparticles along the carbon-based nanofibers. The thermal process is carefully optimized in order to proper control the carbonization of the nanofibers, and at the same time favor the nucleation of the semiconducting oxide nanoparticles. The resulting nanofibrous composite anode showed good performances, especially in terms of its reversibility. Another interesting oxide used in LIBs anodes is SnOx. Unfortunately, despite the huge potential of this material, the problem of its stability over time, due to the effect of the intercalation process, make impossible its real use. New approaches and processes are investigated to reduce the effect of the volume variation caused by Li ions intercalation. The fabrication of nanostructures usually helps to alleviate the problem of volume variation. Zhu et al. [49] demonstrated the possibility to co-synthetized SnOx nanoparticles directly on 1D carbon-based nanofibers, through several phases: (i) an electrospinning step, (ii) a calcination process. The resulting anodes showed extraordinary good cycling durability. The development on smart systems and new portable electronic tools has required the development of devices for energy storage able to couple light-weight to small dimensions and frequently to high mechanical flexibility. Carbon-based nanofibers represent a unique opportunity for electrochemical energy storage for the design and optimization of flexible systems. It is indeed quite interesting to consider that carbon-based nanofiber mats obtained by electrospinning usually preserve high flexibility and bending ability after the pyrolysis treatment. So that processing the nanofiber mat in such a way to have it as a freestanding membrane, it is possible to fabricate incredibly flexible electrodes that can be integrated in LIBs. As an example the work of Samul et al. [50] can be considered. They demonstrated that carbon-based nanofibers were able to preserve their high flexibility even if decorated by MnO nanoparticles for the fabrication of high-performing anodes for flexible LIBs.
\nSupercapacitors (SCs) are able to store impressively higher energy density than traditional capacitors, thanks to the creation of an electric double layer (EDL) as the key mechanism to store the charges. Moreover, SCs are able to accept and deliver charges quite faster than batteries and with a quite higher durability to charge/discharge cycles than batteries. Due to these features, SCs are usually considered as the technology filling the gap between conventional capacitors and LIBs [51]. The use of carbon-based nanofibers to design electrodes for supercapacitors is strictly related to high interest to develop flexible, portable and easy-to-integrate SCs for smart electronics. As already introduced discussing flexible LIBs, carbon-based nanofibers combine unique mix of electrical conductivity, mechanical flexibility and electrochemical stability that make a great material to design flexible systems. These impressive properties are coupled to the high versatility offered by the electrospinning technique that makes relatively easy to prepare composite and decorated carbon nanofibers [52].
\nHydrogen is progressively gaining importance as one of the possible green fuels of the future, able to become a potential substitute for fossil fuels. The electrocatalysis of the hydrogen evolution reaction (HER) is the critical step for this technology, pushing intense research to identify high-performing and low-cost catalysts. The availability of catalyst, able to efficiently drive the HER, while keeping the overall costs of the process, is indeed the mandatory requirement for large-scale H2 production by this technology. In the area of electrochemical water splitting, carbon-based nanofibers by electrospinning are frequently used as a conductive and robust matrix to offer a support for other catalysts. Recently the huge potential of composite carbon nanofibers has been considered in this area too. Zhao et al. synthetized N-doped carbon nanofibers with embedded Co nanoparticles. They demonstrated the superior electrocatalytic performance of the resulting electrode, explaining the results as due to the ability of the material to expose two catalytic sites, the nitrogen defects into the main carbon nanofibers and the Co nanoparticles [53]. Again with the aim to identify possible substitute to expensive noble metal-based catalysts, Chen et al. optimized an interesting method to directly synthetized WO3-x in carbon-based nanofibers. They improve the thermal treatment to induce graphitization of the starting electrospun nanofibers, as well as the synthesis of the oxygen vacancy-rich WO3-x [54]. In recent years a new interest emerged in developing efficient electrochemical processes for the conversion of the environmental harmful CO2 into new high-value products. Efficient catalysts are needed to grant good conversion efficiency, possibly involving low-cost materials that can help making competitive the process. In this area carbon-based nanofibers obtained by the pyrolysis of PAN nanofibers have been successfully investigate as catalysts of CO2 reduction into CO. Kumar et al. demonstrated that nitrogen defects play a crucial role in catalyzing the reaction, with a mechanism quite similar to the one demonstrated for the catalysis of the ORR by the same class of materials [55].
\nThe ever-increasing energy demand, related to the progress of human activities, favored an intense scientific research for the development of new technologies able to harness, convert and store environmental energy with safer and more efficient approaches than the traditional ones. In this frame, electrochemical processes for energy conversion have emerged as a unique, versatile and reliable platform to design efficient energy systems. This chapter has shown the key advancements obtained in the area of EEC by the introduction of the electrospinning process to design a new generation of carbon-based electrodes starting from nonwoven nanofiber mats. Relevant examples of electrodes made of carbon-based nanofibers have been demonstrated in all the key EEC technologies, from photovoltaics to batteries, from fuel cells to supercapacitors, clearly showing the most promising strategies introduced up to now.
\nAortic root dilation (AoD) is frequently an incidentally discovered, asymptomatic finding in that is seen on various imaging modalities [1]. The anatomy of the aortic root includes the annulus, sinuses of Valsalva, sinotubular junction and ascending aorta [1], with the size being a function of a patient’s biologic variables such as height, age, BSA, and gender [1, 2]. However, while natural variations in the size of the aortic root are well known, the identification of progression from normal to pathologic AoD is a key clinical diagnosis that carries significant cardiovascular risk including aortic dissection, rupture, valvular regurgitation and cardiac tamponade [1, 3, 4, 5]. The etiology of pathological AoD is varied, ranging from congenital, infectious, autoimmune, and idiopathic conditions; and influences the medical and surgical management [1, 5]. Due to the variety of clinical conditions that can result in AoD, and the risks associated with worsening AoD, a thorough understanding of the pathophysiology of AoD, noninvasive imaging modalities and pharmacologic therapies is critical. The aim of this chapter is to review the most common conditions associated with AoD, appropriate imaging modalities, and treatment strategies to manage AoD.
\nMultiple etiologies of AoD exist such as Marfan syndrome, bicuspid aortic valve, Loeys-Dietz and Ehler-Danlos syndromes, idiopathic conditions, hypertension, infections, and inflammatory disorders. In this chapter, we will discuss the various etiologies categorized into two standardized groups—genetically-mediated and nongenetically mediated AoD.
\nGenetically-mediated aortic root dilation or enlargement is the leading cause of thoracic aortic aneurysms. Marfan syndrome (MFS), the prototype condition for AoD, and bicuspid aortic valve has led to a greater understanding of AoD pathophysiology, pharmacologic treatment, timing of surgical intervention and optimal surveillance strategies with noninvasive imaging [6].
\nMFS is one of the most common hereditary disorders of connective tissues and is characterized by manifestations in cardiovascular, skeletal, and ocular systems [7]. MFS is the most common genetic cause of thoracic aortic aneurysms (TAAs). Its inheritance is almost exclusively autosomal dominant and mostly involves a mutation of the fibrillin-1 (FBN1) gene encoding the connective tissue structural protein fibrillin-1 [8]. The widely accepted incidence of Marfan syndrome is ~1 in 5000 individuals [9].
\nAlthough the inheritance pattern is predominantly autosomal dominant, rare cases of autosomal recessive FBN1 gene mutations has been described [10]. While patients with Marfan phenotypes usually have an affected family member, 25% of the cases are sporadic due to de novo mutations [9]. In addition, in <10% of Marfan cases, no mutation of FBN1 was determined [11]. Since it was first identified as the main cause of Marfan syndrome, FBN1 mutations, depending on how it is mutated, were linked to a variety of syndromes and phenotypes [12]. Animal studies investigating the pathophysiology of the disease demonstrated over-expression of TGF-β in the mitral valve preceding prolapse, the aorta associated with dilatation, skeletal muscle associated with myopathy, and the dura leading to ectasia [12]. Later, mutations in TGF-beta receptor 2 (TGFBR2) and TGFBR1 genes were identified in some patients with Marfan phenotypes and subsequently implicated in the disease process in FBN1 mutation negative individuals [13, 14, 15]. These genes were also linked to another condition later, namely Loeys-Dietz syndrome (LDS) [14].
\nThe diagnosis of Marfan syndrome is established by using a combination of clinical manifestations, family history, and the presence of FBN1 mutation. In order to facilitate accurate recognition of the syndrome and improve patient management and counseling, a set of defined clinical criteria, called the Ghent nosology was developed [16] and later revised [17] (Table 1). Apart from the genetic testing for FBN1 mutation, Ghent nosology uses a systemic score calculation using clinical manifestations of Marfan and an aortic root dilatation Z-score (see noninvasive imaging below).
\nPatients with family history of Marfan disease | \n
\n
| \n
\n
| \n
\n
| \n
Patients without family history of Marfan disease | \n
\n
| \n
\n
| \n
\n
| \n
\n
| \n
Revised Ghent nosology.
One of the major causes of mortality and clinical hallmark of Marfan syndrome is aortic root dilation and related complications such as dissection, rupture and/or aortic valvular regurgitation. Aortic root dilation is typically first identified on echocardiography in 60–80% of Marfan patients [18]. Therefore, surveillance echocardiography has been routinely used to serially monitor aortic dimensions. If the aortic root diameter is above 4.5 cm in adults, aortic dilation rates are above 0.5 cm/year, and/or significant aortic insufficiency is already present, more frequent monitoring is recommended [6] (see Diagnosis and Surveillance of Aortic Root Dilation below for more detailed guidelines).
\nBicuspid aortic valve is one of the most frequent congenital heart anomalies in adults, affecting 0.9–2% of the population [19]. Most cases of bicuspid aortic valve are familial and studies show that heritability of the disease is ~90% making it an autosomal dominant pattern with incomplete penetrance [20]. Bicuspid aortic valve can occur alone or with other congenital cardiovascular disorders such as coarctation of the aorta, supravalvular or subvalvular aortic stenosis, and ventricular septal defect [21].
\nThe diagnosis is often established by transthoracic echocardiogram (TTE), which has high sensitivity (~92%) and specificity (~96%) [22]. TTE is also useful for surveillance of potential complications of bicuspid aorta such as aortic stenosis, aortic dilation, aortic regurgitation, and infective endocarditis [23]. Given the risk of inheritance, first degree relatives are also recommended to be screened with TTE [21].
\nPrevalence of aortic dilation in patients with bicuspid aortic valve disease ranges from 20 to 84% depending on the criteria used in different studies [24]. The risk of aortic dilation increases with age and the risk of dissection increases as the aortic diameter increases [25, 26]. When the aortic root diameter is above 4.5 cm, there is a family history of aortic dissection, or aortic diameter change is rapid it is recommended to perform echocardiogram annually [21]. More frequent surveillance is recommended for patients with aortic root diameters approaching surgical thresholds (see Surgical Interventions section below).
\nLoeys-Dietz syndrome (LDS) is a rare congenital syndrome characterized by hypertelorism (widely spaced eyes), a split uvula or cleft palate, tortuous arteries and aortic aneurysms. LDS shares many features with Marfan syndrome [14]. Most of the LDS cases are sporadic or show an autosomal dominant pattern of inheritance [14].
\nThe incidence and prevalence of the disease is still not well established.
\nLoeys-Dietz syndrome was initially classified into two subtypes based on the severity of the cutaneous and craniofacial features but later was divided into six subtypes stratified by genotypes [27]. These subtypes are labeled 1–6 and associated with mutations in TGFBR1, TGFBR2, SMAD3, TGFB2, TGFB3, SMAD2, respectively [27]. Type 1 and type 2 are the most commonly seen subtypes with frequencies of 20 and 55% among all subtypes, respectively [28].
\nAortic root dilation is a hallmark feature of this disease entity and is frequently seen in patients (~80%) [29]. Another vascular manifestation is aneurysms throughout the arterial tree. This is a concerning clinical manifestations of the disease and can cause aggressive arteriopathy; therefore, early operative intervention at ascending aortic diameters of ≥42 mm is recommended [30].
\nEhlers-Danlos syndromes (EDS) are a heterogeneous and relatively rare group of connective tissue disorders characterized by skin hyperextensibility, joint hypermobility, and tissue fragility [31]. Ehler-Danlos syndrome can present with a variety of clinical manifestations and can be caused by different kinds of genetic mutations. Overall prevalence of EDS is ~1 in 5000 and EDS hypermobile (hEDS) is the most common type [31].
\nVascular complications can be seen with different types of EDS; however, it is most commonly seen in type IV (vascular or arterial ecchymotic type; vESD), characterized by an autosomal dominant mutation in COL3A1 (collagen, type III, α-1 gene) encoding type III procollagen [32]. Up to 80% with vESD patients suffer from vascular complications by the age 40 years [32]. Therefore EDS patients, especially vEDS, patients should be routinely evaluated for aortic root disease. These patients are recommended to undergo elective operation at smaller diameters (4.0–5.0 cm) to avoid acute dissection or rupture. Patients with a growth rate of more than 0.5 cm/year in an aorta that is <5.5 cm in diameter are recommended to be considered for operation [33].
\nAortic root dilation is an established phenomenon that has shown strong correlations to key pathobiological factors such as age, body surface area (BSA), height and gender. The correlation of aortic root size with age and BSA were initially described in the development of screening nomograms using M-mode echocardiograms [34]. Follow up studies with 2D echocardiography further validated these correlations, allowing for the development of nomograms for normal patient populations or adjusted for patients with underlying congenital disorders (i.e., Marfan syndrome) [2, 35]. These studies evaluating AoD by echocardiograms are further supported by reviews of autopsy data that show clear correlations to key pathobiological factors such as increased age and height with AoD [36].
\nDespite the validation of age as being correlated strongly with AoD, the mechanism of age on the development of AoD still remains an area of active research. One of the predominant hypotheses is based on the idea of cyclic stress, and how the aorta degrades through gradual mechanical decline of elastin proteins [37]. Elastic arteries, namely the aorta, are estimated to dilate by 10% with each beat [38]. It is hypothesized that the shear stress over a normal lifetime results in the degradation of elastic lamella, resulting in arterial dilation and stiffening [38]. This is corroborated by histologic data demonstrating damage to medial elastin of the proximal aorta [38]. Furthermore, there is evidence to suggest that in the absence of risk factors such as hypertension or atherosclerosis, the aortic wall undergoes age-associated reprograming that is proinflammatory promotes progression of arterial disease [39]. Wang et al. demonstrated in pathologic samples of aortas that age correlated with increased smooth muscle cell invasion, and increased production of downstream angiotensin II mediators [39].
\nIn addition to age and BSA, gender is another key factor which can increase the risk and progression of AoD [40]. In the Framingham study of 1849 men and 2152 women, not currently diagnosed with cardiac disease or having a cardiac history, aortic root was 2.4 mm smaller in women than men with m-mode echocardiography [40]. A systematic review in 2014 of 10,741 patients with hypertension revealed men had a significantly higher incidence of AoD relative to women [41].
\nIn conclusion, a series of biological variables are correlated with AoD, and it is important to take these into account as they are potential confounders or contributors in the evaluation of patients with pathologic AoD. Even exercise capacity has been correlated with AoD, with a recent meta-analysis showing that athletes defined by participation in National Collegiate Athletic Association (NCAA) or international equivalent had an aortic root diameter that was larger than nonathletic controls [42], and a statistically significant increase by measurement of sinuses of Valsalva and aortic root annulus [42]. It is important to understand the significance of biological variables such as age, height, BSA, or gender to fully evaluate pathologic AoD without the influence of known confounders.
\nHypertension is a well-known risk factor for aortic dissection, and in some studies, it is estimated to factor into roughly half of the overall risk for aortic dissection [43]. A recent prospective cohort study of 30,447 patients, 86% of patients who developed aortic dissection had hypertension [4]. However the relationship between hypertension and AoD is not as clearly established. In a Framingham study of 3195 patients, there was no relationship between the development of AoD with hypertension [44]. A subsequent follow up study of Framingham participants evaluating aortic root diameter was positively correlated with mean arterial pressure, but negatively associated with pulse pressure, indicating that the mechanism behind AoD is more complicated [45]. Moreover, investigations have shown that in patients with other comorbidities for AoD, such as, Turner syndrome, hypertension is significantly associated with increased prevalence of AoD [45]. This has led to interesting insights into the cyclic stress hypothesis of the development of AoD [43]. If AoD develops due to chronic shear stress, then it would be expected that AoD is correlated with higher pulse pressure (PP), which would presumably lead to greater stress and aortic dilation [43]. However, studies have reported an inverse relationship between AoD and PP [43]. Additionally a systematic review in 2014 showed that in a population of 10,791 hypertensive patients, 9.1% had AoD with a significant gender skew toward men [41]. However there was no significant correlation of mean arterial pressure or pulse pressure values and AoD [41]. While hypertensive patients have a higher incidence of AoD, the mechanism remains to be further investigated. Moreover, these unclear correlations between MAP, PP, and AoD suggest that the aorta is not static, but a dynamic structure whose response to stress, such as hypertension, is still being elucidated [43].
\nSince the first mass production of penicillin in 1945, the modern era of antibiotics has resulted in a decrease in the prevalence of mycotic aneurysms due to bacterial infections in developed countries [46, 47]. However they can still be found in developing countries, and are rare but well described causes of mycotic aneurysms [46]. Most common pathogens include Salmonella, Staphylococcus and Streptococcus pneumonia, and while rare have been in the pathogenesis of mycotic aneurysms of the aortic root [46, 48, 49]. Other common bacteria include Mycobacterium tuberculosis and Treponema pallidum, which will be discussed below, and more rare causes include Listeria, Bacteroides, Clostridium septicum, and Campylobacter jejuni [46]. With the majority of bacterial aortitis, aneurysm development is generally saccular, and Salmonella has been reported in case studies to predominantly affect the abdominal aorta than the thoracic [46, 48]. Infections with Staphylococcal species generally are related to underlying aortic valve infections, but have been reported to progress into aneurysms of the aortic root [46, 49].
\n\nTreponema pallidum, a sexually transmitted spirochete which is the causative organism of syphilis, is a well characterized cause of aortitis [46, 50, 51]. Cardiovascular involvement is limited to late stage, or tertiary syphilis, and generally occurs 5 to upwards of 40 years after primary infection [50, 51]. Aortitis, and aneurysm development is due to invasion of the vasa vasorum, resulting in obliterative endarteritis that leads to degradation of the aortic media [50, 51]. The chronic inflammation results in fibrosis of the intima, a phenomenon known as “tree-barking” that ultimately progresses to aneurysm development. In an autopsy study in 1960 of 51 aortic aneurysms secondary to syphilitic aortitis, 7.8% were found at the sinuses of Valsalva and 29.4% involved the ascending aorta, representing a majority of the sample [52]. This predominance to the ascending thoracic aorta have been further corroborated in later studies, however the detailed echocardiographic analysis of syphilitic aortitis, specifically in relation to AoD is limited due to the rarity of the disease presentation [46, 50].
\nTuberculosis is a relatively common infection especially in developing countries [53]. Mycobacterium tuberculosis, the causative pathogen, is a known cause of mycotic aortic aneurysms [46, 50]. Pathogenesis of tuberculous mycotic aneurysm is believed to be due to lymphatic spread or hematogenous seeding, and mortality rates are reported as high as 60% in patients who develop this complication [50]. While more commonly affecting the distal aortic arch and descending aorta, there are case reports detailing aortic root aneurysms due to tuberculosis [50, 54].
\nThere have been case reports proposing an association between aortic aneurysms and HIV [50]. In a variety of these cases the causes are generally multifactorial, as the majority of cases have reported coinfections (Q fever and leishmaniasis) or comorbid autoimmune conditions (giant cell arteritis) [55, 56]. It is still an area of investigation as to whether there is a true association, and there is sparse data showing a relationship with AoD.
\nAnkylosing spondylitis, a seronegative spondyloarthropathy, is a chronic, progressive rheumatologic disorder, and was one of the first found to be associated with aortitis [50, 57]. The proposed mechanism of AoD in ankylosing spondylitis is fibrous growth development along the intima, which leads to subsequent weakening [57]. Prior TEE studies further evaluated the prevalence of AoD in ankylosing spondylitis, and 82% of patients with ankylosing spondylitis had aortic root abnormalities [58]. Specifically, 61% of patients had aortic root thickening and 25% of patients had AoD [58]. AoD in these populations is a relatively common phenomenon and is associated with significant cardiac morbidity [45, 57].
\nRelapsing polychondritis is another autoimmune disorder, which is a multisystem inflammatory disorder that primarily affects the cartilaginous structures of the body [59]. Cardiovascular involvement is common, estimated to be the second most frequent cause of death and can result in aneurysm development in 5% of cases of both thoracic and abdominal aorta [50, 59]. AoD has been known to occur, albeit rare, with cases of requiring surgical revision after the development of aortic regurgitation [60, 61].
\nTakayasu arteritis is a chronic granulomatous large vessel vasculitis, predominantly found in pediatric populations [50, 62]. A rare disorder, the pathogenesis is characterized by granulomatous panarteritis that can affect the entirety of the aorta and major branches, however predominantly affects the common carotid and subclavian artery [62]. While rare, there are reports of AoD from Takayasu arteritis resulting in aortic regurgitation [63, 64].
\nGiant cell arteritis is a large vessel vasculitis that is characterized by chronic granulomatous inflammation [50]. While commonly affecting carotid, temporal and vertebral arteries, it has been known to affect the ascending aorta, at times resulting in dissection or aortic valve insufficiency [50]. The development of AoD from GCA may be influenced by other comorbid conditions such as HIV; however, this association is currently only supported with case reports [55].
\nAdditionally left ventricular hypertrophy is reported to be positively correlated with AoD. Early retrospective reviews of echocardiographic studies have shown a positive relationship between LVH and AoD, and this has been further supported in subsequent systematic reviews [41, 65]. Patients with AoD with concomitant left ventricular hypertrophy are shown to have an increased risk of adjusted cardiovascular events [66]. However as with previous studies, the exact mechanism between LVH and AoD is still being determined.
\nAortic root dilation is typically a silent disease, with most cases being diagnosed incidentally on imaging. AoD can become symptomatic as the aneurysm enlarges. Aortic root aneurysms grow at an average of 1–4 mm/year [5], with a faster rate of growth noted in patients with bicuspid aortic valves, Marfan syndrome, ESRD, male gender, and smokers [5, 67]. When the aneurysm enlarges to the point of compressing surrounding structures the patient may begin to observe symptoms—the most common of which is chest pain, seen in up to 75% of patients [5, 68]. Other nonspecific symptoms can include back pain, abdominal pain and fatigue (though only present in 5% of patients).
\nAdditionally, patients may present with symptoms secondary to complications of a dilated aortic root such as aortic insufficiency and congestive heart failure. Thus, patients can develop dyspnea as the presenting symptom of aortic root dilation up to 40% of the time [68]. Other presenting symptoms may be related to the complications noted in Table 2 [69, 70, 71, 72, 73, 74].
\nComplication of aortic root aneurysm | \nPresenting symptom | \n
---|---|
Aortic insufficiency, aortic regurgitation | \nDyspnea, diastolic murmur, congestive heart failure symptoms | \n
Aortic dissection | \nSharp chest pain, may radiate to the back | \n
Thromboembolism | \nSymptoms of stroke | \n
Compression of tracheal or bronchus | \nHemoptysis, cough, recurrent pneumonitis | \n
Compression of left recurrent laryngeal nerve | \nHoarseness | \n
Compression of superior vena cava | \nSigns of superior vena cava syndrome | \n
Compression of esophagus | \nDysphagia | \n
Complications and presenting symptoms of aortic root dilation.
Acute aortic emergencies that occur secondary to aortic root dilation include dissection, rupture, and aortic insufficiency. As the aortic root diameter increases, the risk for aortic dissection and rupture rises [75]. Aortic dissections are the most common acute aortic emergencies [76], and can be classified depending on the segment of the aorta affected: type A dissections involve the ascending aorta (seen in aortic root dilation), while type B dissections are those that occur distal to the left subclavian artery.
\nAortic dissection most commonly presents with acute onset chest pain that may radiate to the back. The character of the pain has traditionally been described as ripping or tearing in nature, however over half of patients may instead complain of sharp pain [77]. In addition, geriatric populations are less likely to have an acute onset of pain [78]. Physical exam findings that may be present include unequal blood pressures in the upper extremities, a new diastolic murmur indicative of acute aortic regurgitation, or muffled heart sounds secondary to tamponade (with proximal extension of the dissection). Imaging may be notable for widening of the mediastinum on CXR [77]. In order to aid in the diagnosis of a dissection, an aortic dissection detection risk score (ADD-RS) has been developed. The score is comprised of three categories: the presence of high risk conditions such as Marfan syndrome, the presence of typical symptoms (such as abrupt onset chest pain), and the presence of physical exam findings such as unequal blood pressure readings in the upper extremities. Each group is given a score of 1 if a feature is present, and the total score helps pave the next steps of workup—a score of 0 can be followed by diagnostic workup of other pathologies, while scores of 2–3 should be followed by expedited workup and immediate surgical consultation for possible aortic dissection [79].
\nAortic rupture is also an acute and life-threatening complication of aortic root dilation. It can present similarly to aortic dissection with regards to chest pain, however rupture can lead to severe and abrupt hypotension. Moreover, contingent with the site of rupture the patient may have symptoms such as hemoptysis [80] (if there is rupture into the lung), hematemesis [81] (if there is rupture into the esophagus), or cardiogenic shock [82] (if there is rupture into the pericardial cavity with resultant tamponade physiology).
\nAortic root dilation may also lead to aortic insufficiency. Roughly 30% of aortic insufficiency is now recognized as being caused by aortic root dilation, surpassing the incidence of any valvular cause [83]. The pathophysiology is related to stretching of the aortic valve annulus secondary to aortic root dilation, which results in incomplete closure of the aortic leaflets during diastole. Unfortunately, at the onset of aortic regurgitation, patients may be asymptomatic; therefore, congestive heart failure can develop when the regurgitant valve goes unnoticed.
\nWhile aortic root aneurysms are known to grow at an average of 1–4 mm/year [5], it is difficult to ascertain how fast an individual’s aortic root aneurysm will grow, therefore necessitating surveillance imaging. The frequency of surveillance imaging recommended is dependent on the etiology of the aortic root dilatation as well as its size, with genetically mediated aortic disease having a lower threshold for more frequent (biannual) imaging [84]. At the very least however patients are recommended to have annual imaging for aortic root dilation to closely monitor the aortic diameter. The impact that frequent imaging (CT, MR angiography or echocardiography) has on public health is likely significant, with cumulative costs. In addition, any patient with a bicuspid aortic valve should be screened for a thoracic aortic aneurysm, as well as screening all first-degree family members of a patient with genetic conditions such as Marfan syndrome [85].
\nThe aortic root is the most proximal segment of the aorta. It extends from the annulus of the aortic valve to the sinotubular junction (STJ). It is composed of the left, right, and non coronary sinuses of Valsalva. The diameter of the aorta decreases as it moves distally. The aortic root is assessed using multimodality imaging techniques. These include transthoracic echocardiogram (TTE), cardiac magnetic resonance imaging (cMRI), and cardiac computed tomography angiography (cCTA).
\nTTE is widely used for the detection and monitoring of aortic root pathology. Early studies established age- and sex-specific nomograms for aortic root measurements [86]. These studies used the motion mode (M-mode) of TTE, in which the amplitude of the ultrasound pulses amplitudes is converted to corresponding level on gray-scale imaging [86]. Using the M-mode, the American Society of Echocardiography (ASE) has recommended using the leading-edge to leading-edge approach for measuring the aortic root [87]. Later studies used 2D TTE and obtained reference measurements of the aortic root. This is now preferred over M-mode images, which may be off-axis and are subject to aortic motion that may produce erroneous measurements.
\nOn echocardiogram, the aortic root diameter is typically measured in the parasternal long-axis view from the right coronary sinus to the opposite sinus of Valsalva. When unable to obtain the long axis view, the parasternal short axis view may provide more accurate measurements. However, universal landmarks to measure the root in this view have not been established. Some suggest measuring the diameter from the right coronary sinus to the opposite commissure. These measurements are typically performed at end diastole, as this represents the resting aortic diameter [88]. In adults, these measurements correlate with age and body size. In addition, the aorta is about 2 mm larger in men compared to women due to differences in body size [89]. Normal values stratified by body surface area and age have been published by the ASE [87].
\nImportantly, TTE is limited by its two-dimensional images and thus does not give a complete depiction of the aortic root. It is also limited by patient factors that limit the visualization windows and thus aortic root measurement. Since the aorta is not a straight tube, it can be imaged obliquely leading to over-estimation of its true diameter. Newer modalities, such cMRI and cCTA, can provide three-dimensional images.
\nDespite ECG-gated CT being the most accurate modality for evaluating the thoracic aorta, it is limited by the radiation and contrast exposure. This is particularly important in younger patients with connective tissue disorders that require serial follow up imaging. Cardiac MRI provides an alternative approach for imaging the thoracic aorta including the aortic root and is considered the preferred modality in select groups. It can be performed with ECG gating to provide motion-free evaluation of the aorta. In addition, young patients, in whom this is more commonly used, can hold their breath for longer periods, allowing acquisition of images with high spatial resolution.
\nCardiac MRI evaluation of the aorta does not require contrast use. MRI sequences used include balanced steady-state free precession (SSFP) sequences, fast imaging employing steady-state acquisition (FIESTA), true fast imaging with steady-state precession (FISP), and balanced fast-field echo (FFE) sequences. These sequences provide a high signal-to-noise ratio and adequate contrast between vessel wall and blood pool [90]. When used with ECG gating and contrast enhanced MRA, images tend to have less artifact, higher resolution, and overall short imaging time. Another approach is to use ECG gating 2D balanced SSFP sequence that is oriented perpendicular to the aortic root in two planes to assess the aortic valve and root throughout the cardiac cycle. In addition, prospective ECG gating and respiratory navigation with three-dimensional balanced SSFP sequences can provide 3D aortic imaging without contrast administration [91, 92].
\nIt is important to note that different methods of aortic measurement have been described and guidelines are less well defined. Aortic root measurements can be challenging given different approaches. Burman et al. found in the Framingham Heart Study that cusp-commissure dimensions better corresponded with reference echocardiographic aortic root measurements [89, 93]. This best correlated with study measurements after averaging the three end-diastolic cusp-commissure measurements [93]. In addition, there is a lack of consensus with regard to measurements used (inner lumen only versus lumen and wall) and whether measurements should be adjusted to body surface area, sex, and age.
\nAlthough TTE is widely used for the imaging and surveillance of aortic root, cardiac computed tomography angiography (cCTA) is currently the most commonly used technique for the study of the thoracic aorta. Main advantages of cCTA are fast scanning times, low artifact sensibility, and wide availability including emergency rooms operating 24 h [94].
\nThe new generation CT scanners acquire high-resolution 3D datasets of the thoracic aorta, showing sensitivities up to 100% and specificities of 98–99% [95]. ECG synchronization is vital for detailed assessment of the aortic root anatomy since it allows suppression of pulsation artifacts [96]. ECG gating also allows viewing images in a particular phase of the cardiac cycle. Unfortunately, the ECG-gated technique can increase the acquisition time and required breath-hold time. In order to minimize the increased acquisition times, employment of a 64 or wider ECG-gated row detector system is suggested [95, 97].
\nModern CT scanners can be used to employ several different cardiac synchronization methods such as prospective ECG triggering where images are only acquired during a specified portion of the cardiac cycle, starting at a predetermined delay from the R wave; retrospective ECG gating where the desired cardiac phase is selected retrospectively from the raw data [95, 97]. The details of each technique will not be discussed in this chapter; however, it is important to determine the advantages and disadvantages of different techniques. The main limitations of CT are related to the radiation exposure and the use of iodinated contrast media and different techniques come at a higher cost of each limitation.
\nFor the surveillance of aortic root, any technique can be used and be useful; therefore, the technique with the least amount of radiation exposure should be selected such as prospective sequential triggering without padding, retrospective gating with tube-current modulation optimized for diastolic-phase datasets only, or a prospectively triggered high-pitch helical acquisition [95, 97]. Retrospective ECG gating acquires redundant helical CT data which allows the reconstruction of images at different cardiac phases and providing detailed images which can be useful in complicated cases and pre-/post-operative imaging since pseudoaneurysm or small leaks which are some of the most common complications of aortic root surgery can only be detected during a specific phase of the cardiac cycle. Iodinated contrast-media is another risk related to CT imaging given the risk of contrast induced nephropathy and allergic reactions of various severity. Surveillance CT data for the dimensions of aortic root can be acquired without contrast injection; however, a complete endoluminal evaluation can only be achieved by the injection of contrast-medium [97].
\nIt is standard of care to monitor the size of aortic aneurysms that are below surgical threshold, <5.5 cm for nongenetic aneurysms and <5.0 cm for genetically-mediated aneurysms [98]. In general, physicians should be conscientious about patient cumulative radiation exposure as there is evidence that it can increase cancer incidence and cancer mortality [99]. One study estimated that ionizing radiation exposure results in 0.7% of total expected baseline cancer incidence and 1% of total cancer mortality. These rates increase with greater cumulative exposure [99]. Therefore, physicians should opt to perform serial CT imaging with longer intervals in the most appropriate patients. A study investigating patients with moderate-risk thoracic aortic aneurysms (defined as size <5.0 cm) showed that patients with aneurysms below 4.3 cm had overall lower risk of significant aneurysm growth or size reaching surgical threshold. Thus, the authors suggested that these subset of patients undergo surveillance CT scans less frequently.
\nManagement focuses on slowing the rate of growth and the complications of aortic root dilation. The line of management that is chosen for a patient depends on symptoms and size of the aneurysm. For patients who are asymptomatic and have root dilation <55 mm, medical management is advised. In patients with Marfan syndrome or a bicuspid aortic valve, the cut off of ≤50 mm is used for medical management [1, 100].
\nThe use of beta blockers has shown a survival benefit in patients with aortic root dilation secondary to Marfan syndrome [101]. While data on survival benefits for patients with bicuspid aortic valves is sparse, the common practice is to also prescribe beta blockers given that both conditions share a similar pathology and therefore both are likely to benefit from beta blockade. The mechanism by which beta blockers slow the progression of aortic root dilation is through their negative inotropic and chronotropic effects, reducing the peak left ventricular ejection rate and therefore decreasing shear stress and the rate of aortic dilation [102].
\nThe goal blood pressure for patients with thoracic aortic aneurysms is <130/80 mmHg. In patients who cannot tolerate beta blockers, calcium channel blockers (CCB) are an alternative group of medications available. While less studied as compared to beta blockers, CCB have also been found to reduce the rate of aortic root dilation [103]. Other agents that can be used for additional blood pressure control include ACE-inhibitors and ARBs.
\nIn order to reduce the risk for complications such as aortic dissection, patients should be counseled on smoking cessation, and cessation of drugs that increase aortic wall stress such as cocaine or other stimulants. In addition patients should have dyslipidemia well controlled, which can be achieved through the use of atorvastatin 40–80 mg daily in individuals with aortic root aneurysms [104, 105].
\nPatients should be counseled on avoiding high intensity and collision sports, such as boxing and cycling. Instead patients should take part in low dynamic sports, such as, golf [5, 106]. Pregnancy should be avoided in patients with Marfan syndrome with an aortic diameter >40 mm, if a patient does chose to become pregnant however there must be close follow up with surveillance imaging of the aortic diameter [5, 101].
\nEmergent surgical interventions are indicated for management of an aortic dissection or rupture, or a symptomatic aneurysm. In addition, surgical repair can be performed electively in high risk patients to prevent propagation of an aneurysm (Table 3). Indications for elective surgical intervention include the absolute size of the aneurysm—if the diameter is over 55 mm, or over 50 mm in patients with Marfan syndrome or bicuspid valves. Other indications for elective surgery include if the rate of growth of an aneurysm surpasses 10 mm/year, and if there is concurrent aortic insufficiency [1, 100]. In addition, patients who undergo aortic insufficiency repair who have concurrent aortic root dilation should be considered for aortic replacement at the time of their surgery—that is since 25% of patients with aortic root diameters >40 mm will eventually also require intervention for their aortic aneurysm [107].
\nEmergent surgical repair | \nElective surgical repair | \n
---|---|
\n
| \n\n
| \n
Indications for emergent and elective surgical repair of aortic root dilation.
As opposed to supravalvular aortic aneurysms, aortic root aneurysms involve the coronary ostia as well as the aortic valve, which have implications on the type of surgical procedure available for patients. There are two approaches for a surgical intervention: radical and conservative. In a radial surgical intervention the patient’s aortic valve and root are replaced (commonly referred to as the Bentall procedure), whereas in conservative interventions only the aortic root is replaced [108].
\nThe Bentall procedure involves replacing the aortic valve with a prosthetic valve, and thus has the caveat of requiring indefinite anticoagulation [5]. If patients have a high bleeding risk it may therefore be worthwhile investigating replacement of the aortic root while preserving the valve. In addition, it is important to note that a large number of patients with aortic root dilation are young (secondary to its association with Marfan syndrome), and therefore lifelong anticoagulation in cases such as these confers a cumulative bleeding risk. Preserving the aortic valve while surgically treating the aortic root dilatation is made possible by the development of two surgical procedures: the first is removing the aortic root while keeping the valve intact. The second method is through re-implantation of the aortic valve [5]. Both the Bentall procedure as well as aortic valve-preserving procedures have been shown to have comparable short and long-term outcomes with regards to the risk of death and valve associated complications. The main difference however is that patients undergoing valve sparing operations were significantly more likely to develop moderate to severe aortic regurgitation later [108].
\nIn patients with both severe aortic stenosis and ascending aortic aneurysm, undergoing surgical aortic valve replacement (sAVR) and concomitant surgical intervention for aortic aneurysms above 4.5 cm is recommended by the American College of Cardiology (ACC) foundation guidelines [84]. However, in high-risk surgical patients, undergoing a transcatheter aortic valve replacement (TAVR) has become an alternative approach that obviates the need for parallel surgical aortic aneurysm intervention. This raises the concern for the safety of TAVR catheter-based delivery system in patients with aortic aneurysms since intraoperative rupture or dissection risk potentially increases. However, a clinical study showed that TAVR does not increase intraoperative aortic dissection/rupture risk or mortality with a median follow-up of 14 months [109]. Therefore, there are no recommendations against performing TAVR in patients with ascending aortic aneurysms.
\nNone.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"920",title:"Electromagnetism",slug:"ceramics-electromagnetism",parent:{title:"Ceramics",slug:"ceramics"},numberOfBooks:2,numberOfAuthorsAndEditors:61,numberOfWosCitations:120,numberOfCrossrefCitations:44,numberOfDimensionsCitations:118,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"ceramics-electromagnetism",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"201",title:"Advances in Ceramics",subtitle:"Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment",isOpenForSubmission:!1,hash:"b0114f594adeffd96b8f8928761a9ea8",slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",bookSignature:"Costas Sikalidis",coverURL:"https://cdn.intechopen.com/books/images_new/201.jpg",editedByType:"Edited by",editors:[{id:"42599",title:"Prof.",name:"Costas",middleName:null,surname:"Sikalidis",slug:"costas-sikalidis",fullName:"Costas Sikalidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3678",title:"Ceramic Materials",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"ceramic-materials",bookSignature:"Wilfried Wunderlich",coverURL:"https://cdn.intechopen.com/books/images_new/3678.jpg",editedByType:"Edited by",editors:[{id:"11680",title:"Prof.",name:"Wilfried",middleName:null,surname:"Wunderlich",slug:"wilfried-wunderlich",fullName:"Wilfried Wunderlich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"18282",doi:"10.5772/21630",title:"Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations",slug:"application-of-zirconia-in-dentistry-biological-mechanical-and-optical-considerations",totalDownloads:15296,totalCrossrefCites:9,totalDimensionsCites:32,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Cláudia Ângela Maziero Volpato, Luis Gustavo D ́Altoé Garbelotto, Márcio Celso Fredel and Federica Bondioli",authors:[{id:"12370",title:"Prof.",name:"Claudia",middleName:null,surname:"Volpato",slug:"claudia-volpato",fullName:"Claudia Volpato"},{id:"44042",title:"MSc.",name:"Luis",middleName:null,surname:"Garbelotto",slug:"luis-garbelotto",fullName:"Luis Garbelotto"},{id:"44043",title:"Prof.",name:"Marcio",middleName:null,surname:"Fredel",slug:"marcio-fredel",fullName:"Marcio Fredel"},{id:"44044",title:"Prof.",name:"Federica",middleName:null,surname:"Bondioli",slug:"federica-bondioli",fullName:"Federica Bondioli"}]},{id:"18273",doi:"10.5772/23012",title:"Polymer Based Nanodielectric Composites",slug:"polymer-based-nanodielectric-composites",totalDownloads:4535,totalCrossrefCites:6,totalDimensionsCites:22,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Daniel Tan and Patricia Irwin",authors:[{id:"50169",title:"Dr.",name:"Daniel",middleName:null,surname:"Tan",slug:"daniel-tan",fullName:"Daniel Tan"}]},{id:"19252",doi:"10.5772/19189",title:"Ceramic Based Intelligent Piezoelectric Energy Harvesting Device",slug:"ceramic-based-intelligent-piezoelectric-energy-harvesting-device",totalDownloads:5810,totalCrossrefCites:5,totalDimensionsCites:11,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Imran Patel",authors:[{id:"33990",title:"Dr.",name:"Imran",middleName:null,surname:"Patel",slug:"imran-patel",fullName:"Imran Patel"}]}],mostDownloadedChaptersLast30Days:[{id:"18275",title:"Modeling and Identification of Parameters the Piezoelectric Transducers in Ultrasonic Systems",slug:"modeling-and-identification-of-parameters-the-piezoelectric-transducers-in-ultrasonic-systems",totalDownloads:7262,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Pawel Fabijanski and Ryszard Lagoda",authors:[{id:"13086",title:"Dr.",name:"Pawel",middleName:null,surname:"Fabijański",slug:"pawel-fabijanski",fullName:"Pawel Fabijański"}]},{id:"18282",title:"Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations",slug:"application-of-zirconia-in-dentistry-biological-mechanical-and-optical-considerations",totalDownloads:15296,totalCrossrefCites:9,totalDimensionsCites:32,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Cláudia Ângela Maziero Volpato, Luis Gustavo D ́Altoé Garbelotto, Márcio Celso Fredel and Federica Bondioli",authors:[{id:"12370",title:"Prof.",name:"Claudia",middleName:null,surname:"Volpato",slug:"claudia-volpato",fullName:"Claudia Volpato"},{id:"44042",title:"MSc.",name:"Luis",middleName:null,surname:"Garbelotto",slug:"luis-garbelotto",fullName:"Luis Garbelotto"},{id:"44043",title:"Prof.",name:"Marcio",middleName:null,surname:"Fredel",slug:"marcio-fredel",fullName:"Marcio Fredel"},{id:"44044",title:"Prof.",name:"Federica",middleName:null,surname:"Bondioli",slug:"federica-bondioli",fullName:"Federica Bondioli"}]},{id:"18273",title:"Polymer Based Nanodielectric Composites",slug:"polymer-based-nanodielectric-composites",totalDownloads:4535,totalCrossrefCites:6,totalDimensionsCites:22,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Daniel Tan and Patricia Irwin",authors:[{id:"50169",title:"Dr.",name:"Daniel",middleName:null,surname:"Tan",slug:"daniel-tan",fullName:"Daniel Tan"}]},{id:"18283",title:"The Rationale for Silicon Nitride Bearings in Orthopaedic Applications",slug:"the-rationale-for-silicon-nitride-bearings-in-orthopaedic-applications",totalDownloads:3515,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"B. Sonny Bal and Mohamed Rahaman",authors:[{id:"34782",title:"Dr.",name:"B. Sonny",middleName:null,surname:"Bal",slug:"b.-sonny-bal",fullName:"B. Sonny Bal"}]},{id:"18280",title:"Biocompatibility",slug:"biocompatibility",totalDownloads:7725,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Waleed Elshahawy",authors:[{id:"31602",title:"Dr.",name:"Waleed",middleName:null,surname:"Elshahawy",slug:"waleed-elshahawy",fullName:"Waleed Elshahawy"}]},{id:"19130",title:"Metal Oxide ZnO-Based Varistor Ceramics",slug:"metal-oxide-zno-based-varistor-ceramics",totalDownloads:6893,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Mohammad Reza Meshkatoddini",authors:[{id:"52745",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Meshkatoddini",slug:"mohammad-reza-meshkatoddini",fullName:"Mohammad Reza Meshkatoddini"}]},{id:"18279",title:"Structural, Morphological, Magneto-Transport and Thermal Properties of Antimony Substituted (La,Pr)2/3Ba1/3Mn1-xSbxO3 Perovskite Manganites",slug:"structural-morphological-magneto-transport-and-thermal-properties-of-antimony-substituted-la-pr-2-3b",totalDownloads:2430,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Neeraj Panwar, Indrani Coondoo, Vikram Sen and S. K. Agarwal",authors:[{id:"16020",title:"Dr.",name:"Indrani",middleName:null,surname:"Coondoo",slug:"indrani-coondoo",fullName:"Indrani Coondoo"},{id:"49099",title:"Dr.",name:"Vikram",middleName:null,surname:"Sen",slug:"vikram-sen",fullName:"Vikram Sen"},{id:"49100",title:"Dr.",name:"S. K.",middleName:null,surname:"Agarwal",slug:"s.-k.-agarwal",fullName:"S. K. Agarwal"},{id:"289829",title:"Dr.",name:"Neeraj",middleName:null,surname:"Panwar",slug:"neeraj-panwar",fullName:"Neeraj Panwar"}]},{id:"18277",title:"Glass Ceramics with Para, Anti or Ferroelectric Active Phases",slug:"glass-ceramics-with-para-anti-or-ferroelectric-active-phases",totalDownloads:2757,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Manuel Pedro Fernandes Graça and Manuel Almeida Valente",authors:[{id:"40763",title:"Prof.",name:"Manuel Pedro",middleName:null,surname:"Graça",slug:"manuel-pedro-graca",fullName:"Manuel Pedro Graça"},{id:"40786",title:"Prof.",name:"Manuel",middleName:null,surname:"Valente",slug:"manuel-valente",fullName:"Manuel Valente"}]},{id:"18278",title:"Evaluation on Structure Modification and Properties of (Ba1-xSrx)(Ti1-y Zry)O3 Ceramics by using Rietveld Method",slug:"evaluation-on-structure-modification-and-properties-of-ba1-xsrx-ti1-y-zry-o3-ceramics-by-using-rietv",totalDownloads:2568,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Hong-Hsin Huang, Hsin-Hsiung Chiu, Nan-Chung Wu and Moo-Ching Wang",authors:[{id:"30492",title:"Prof.",name:"Moo-Chin",middleName:null,surname:"Wang",slug:"moo-chin-wang",fullName:"Moo-Chin Wang"},{id:"43104",title:"Prof.",name:"Hong-Hsin",middleName:null,surname:"Huang",slug:"hong-hsin-huang",fullName:"Hong-Hsin Huang"},{id:"43105",title:"MSc.",name:"Hsin-Hsiung",middleName:null,surname:"Chiu",slug:"hsin-hsiung-chiu",fullName:"Hsin-Hsiung Chiu"},{id:"43106",title:"Prof.",name:"Nan-Chung",middleName:null,surname:"Wu",slug:"nan-chung-wu",fullName:"Nan-Chung Wu"}]},{id:"11628",title:"Development of Thermoelectric Materials Based on NaTaO3 - Composite Ceramics",slug:"development-of-thermoelectric-materials-based-on-natao3-composite-ceramics",totalDownloads:3799,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"ceramic-materials",title:"Ceramic Materials",fullTitle:"Ceramic Materials"},signatures:"Wilfried Wunderlich and Bernd Baufeld",authors:null}],onlineFirstChaptersFilter:{topicSlug:"ceramics-electromagnetism",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/111037/linda-enns",hash:"",query:{},params:{id:"111037",slug:"linda-enns"},fullPath:"/profiles/111037/linda-enns",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()