Classification of smart textiles.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"3404",leadTitle:null,fullTitle:"Environmental Biotechnology - New Approaches and Prospective Applications",title:"Environmental Biotechnology",subtitle:"New Approaches and Prospective Applications",reviewType:"peer-reviewed",abstract:"Taking into consideration the outstanding importance of studying and applying the biological means to remove or mitigate the harmful effects of global pollution on the natural environment, as direct consequences of quantitative expansion and qualitative diversification of persistent and hazardous contaminants, the present book provides useful information regarding New Approaches and Prospective Applications in Environmental Biotechnology. This volume contains twelve chapters divided in the following three parts: biotechnology for conversion of organic wastes, biodegradation of hazardous contaminants and, finally, biotechnological procedures for environmental protection. Each chapter provides detailed information regarding scientific experiments that were carried out in different parts of the world to test different procedures and methods designed to remove or mitigate the impact of hazardous pollutants on environment. The book is addressed to researchers and students with specialties in biotechnology, bioengineering, ecotoxicology, environmental engineering and all those readers who are interested to improve their knowledge in order to keep the Earth healthy.",isbn:null,printIsbn:"978-953-51-0972-3",pdfIsbn:"978-953-51-5354-2",doi:"10.5772/56068",price:139,priceEur:155,priceUsd:179,slug:"environmental-biotechnology-new-approaches-and-prospective-applications",numberOfPages:312,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"925d14b19ca0f7945996b169d9836f5b",bookSignature:"Marian Petre",publishedDate:"February 7th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3404.jpg",numberOfDownloads:35618,numberOfWosCitations:83,numberOfCrossrefCitations:45,numberOfCrossrefCitationsByBook:4,numberOfDimensionsCitations:110,numberOfDimensionsCitationsByBook:4,hasAltmetrics:0,numberOfTotalCitations:238,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 2nd 2012",dateEndSecondStepPublish:"May 23rd 2012",dateEndThirdStepPublish:"August 27th 2012",dateEndFourthStepPublish:"November 25th 2012",dateEndFifthStepPublish:"February 20th 2013",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"74654",title:"Prof.",name:"Marian",middleName:null,surname:"Petre",slug:"marian-petre",fullName:"Marian Petre",profilePictureURL:"https://mts.intechopen.com/storage/users/74654/images/1267_n.jpg",biography:"Professor Marian Petre, Bachelor in Science and Ph.D. in Biological Sciences, graduated Faculty of Biology at Bucharest University in 1981. He worked as microbiologist at National Institute of R & D in Floriculture (1982-1984), as research assistant and, then as principal investigator at R & D Institute for Vegetables and Fruits Processing (1984-1994), Research Centre for Ecological Technologies (1994-1998), National Institute of R & D in Biological Sciences (1998-2000). Since 2000, he became lecturer at the Ecological University of Bucharest (2000-2004) and from 2004 to 2007 he worked as senior researcher at National Institute for R & D in Horticultural Biotechnology Stefanesti-Arges. Since 2007, he is teaching as professor of biotechnology for environmental protection, microbiology and bioremediation at the University of Pitesti, Faculty of Sciences, Department of Natural Sciences. So far, he wrote and published over 140 papers, 50 of them being published in international journals and proceeding volumes all over the world. During the last decade, he registered as first author 10 Romanian patents in the field of biotechnology for edible and medicinal mushroom cultivation and he has been awarded with gold and silver medals at international exhibitions for inventions, research and new technologies in Brussels, Geneva and SuZhou (China). He wrote 10 books published in Romania and 2 book chapters published by Marcel Dekker and Kluwer Academic Publishers. He was invited as chairman of five international congresses, conferences and symposia as well as member of the scientific committee of international conference on mushroom biology and mushroom products. He is editor assistant at Journal of Ecology and Natural Environment as well as editorial board member of Annals of Forest Research",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Pitesti",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"410",title:"Biotechnology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-biotechnology"}],chapters:[{id:"42489",title:"Environmental Biotechnology for Bioconversion of Agricultural and Forestry Wastes into Nutritive Biomass",doi:"10.5772/55204",slug:"environmental-biotechnology-for-bioconversion-of-agricultural-and-forestry-wastes-into-nutritive-bio",totalDownloads:3103,totalCrossrefCites:0,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Marian Petre and Violeta Petre",downloadPdfUrl:"/chapter/pdf-download/42489",previewPdfUrl:"/chapter/pdf-preview/42489",authors:[{id:"74654",title:"Prof.",name:"Marian",surname:"Petre",slug:"marian-petre",fullName:"Marian Petre"}],corrections:null},{id:"42491",title:"Comparison of the Performance of the Laccase Bioconversion of Sodium Lignosulfonates in Batch, Continuous and Fed Batch Reactors",doi:"10.5772/53103",slug:"comparison-of-the-performance-of-the-laccase-bioconversion-of-sodium-lignosulfonates-in-batch-contin",totalDownloads:2407,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Nidal Madad, Latifa Chebil, Hugues Canteri, Céline Charbonnel and Mohamed Ghoul",downloadPdfUrl:"/chapter/pdf-download/42491",previewPdfUrl:"/chapter/pdf-preview/42491",authors:[{id:"83791",title:"Prof.",name:"Mohamed",surname:"Ghoul",slug:"mohamed-ghoul",fullName:"Mohamed Ghoul"},{id:"161139",title:"Dr.",name:"Latifa",surname:"Chebil",slug:"latifa-chebil",fullName:"Latifa Chebil"},{id:"166391",title:"Dr.",name:"Nidal",surname:"Madad",slug:"nidal-madad",fullName:"Nidal Madad"},{id:"166392",title:"Mrs.",name:"Céline",surname:"Charbonnel",slug:"celine-charbonnel",fullName:"Céline Charbonnel"},{id:"167790",title:"Dr.",name:"Hugues",surname:"Canteri",slug:"hugues-canteri",fullName:"Hugues Canteri"}],corrections:null},{id:"42494",title:"Biochemical Processes for Generating Fuels and Commodity Chemicals from Lignocellulosic Biomass",doi:"10.5772/55309",slug:"biochemical-processes-for-generating-fuels-and-commodity-chemicals-from-lignocellulosic-biomass",totalDownloads:3107,totalCrossrefCites:12,totalDimensionsCites:19,hasAltmetrics:0,abstract:null,signatures:"Amy Philbrook, Apostolos Alissandratos and Christopher J. Easton",downloadPdfUrl:"/chapter/pdf-download/42494",previewPdfUrl:"/chapter/pdf-preview/42494",authors:[{id:"163206",title:"Dr",name:"Christopher J.",surname:"Easton",slug:"christopher-j.-easton",fullName:"Christopher J. Easton"},{id:"163207",title:"Dr.",name:"Amy",surname:"Philbrook",slug:"amy-philbrook",fullName:"Amy Philbrook"},{id:"167543",title:"Dr.",name:"Apostolos",surname:"Alissandratos",slug:"apostolos-alissandratos",fullName:"Apostolos Alissandratos"}],corrections:null},{id:"42499",title:"Synergistic Effects of Pretreatment Process on Enzymatic Digestion of Rice Straw for Efficient Ethanol Fermentation",doi:"10.5772/54949",slug:"synergistic-effects-of-pretreatment-process-on-enzymatic-digestion-of-rice-straw-for-efficient-ethan",totalDownloads:3994,totalCrossrefCites:7,totalDimensionsCites:16,hasAltmetrics:0,abstract:null,signatures:"Prihardi Kahar",downloadPdfUrl:"/chapter/pdf-download/42499",previewPdfUrl:"/chapter/pdf-preview/42499",authors:[{id:"78873",title:"Dr.",name:"Prihardi",surname:"Kahar",slug:"prihardi-kahar",fullName:"Prihardi Kahar"}],corrections:null},{id:"42502",title:"Microbial Degradation of Persistent Organophosphorus Flame Retardants",doi:"10.5772/53749",slug:"microbial-degradation-of-persistent-organophosphorus-flame-retardants",totalDownloads:2178,totalCrossrefCites:6,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Shouji Takahashi, Katsumasa Abe and Yoshio Kera",downloadPdfUrl:"/chapter/pdf-download/42502",previewPdfUrl:"/chapter/pdf-preview/42502",authors:[{id:"160139",title:"Dr.",name:"Shouji",surname:"Takahashi",slug:"shouji-takahashi",fullName:"Shouji Takahashi"}],corrections:null},{id:"42503",title:"Continuous Biotechnological Treatment of Cyanide Contaminated Waters by Using a Cyanide Resistant Species of Aspergillus awamori",doi:"10.5772/53349",slug:"continuous-biotechnological-treatment-of-cyanide-contaminated-waters-by-using-a-cyanide-resistant-sp",totalDownloads:3487,totalCrossrefCites:1,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Bruno Alexandre Quistorp Santos, Seteno Karabo Obed Ntwampe and James Hamuel Doughari",downloadPdfUrl:"/chapter/pdf-download/42503",previewPdfUrl:"/chapter/pdf-preview/42503",authors:[{id:"65370",title:"Dr.",name:"James",surname:"Hamuel Doughari",slug:"james-hamuel-doughari",fullName:"James Hamuel Doughari"},{id:"161195",title:"Prof.",name:"Seteno",surname:"Ntwampe",slug:"seteno-ntwampe",fullName:"Seteno Ntwampe"},{id:"161198",title:"B.Sc.",name:"Bruno",surname:"Santos",slug:"bruno-santos",fullName:"Bruno Santos"}],corrections:null},{id:"42611",title:"Biodegradation of Cyanobacterial Toxins",doi:"10.5772/55511",slug:"biodegradation-of-cyanobacterial-toxins",totalDownloads:3004,totalCrossrefCites:5,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Sonja Nybom",downloadPdfUrl:"/chapter/pdf-download/42611",previewPdfUrl:"/chapter/pdf-preview/42611",authors:[{id:"161201",title:"Dr.",name:"Sonja",surname:"Nybom",slug:"sonja-nybom",fullName:"Sonja Nybom"}],corrections:null},{id:"42588",title:"Bioavailability of High Molecular Weight Polycyclic Aromatic Hydrocarbons Using Renewable Resources",doi:"10.5772/54727",slug:"bioavailability-of-high-molecular-weight-polycyclic-aromatic-hydrocarbons-using-renewable-resources",totalDownloads:2939,totalCrossrefCites:1,totalDimensionsCites:15,hasAltmetrics:0,abstract:null,signatures:"Olusola Solomon Amodu, Tunde Victor Ojumu and Seteno Karabo Obed Ntwampe",downloadPdfUrl:"/chapter/pdf-download/42588",previewPdfUrl:"/chapter/pdf-preview/42588",authors:[{id:"161195",title:"Prof.",name:"Seteno",surname:"Ntwampe",slug:"seteno-ntwampe",fullName:"Seteno Ntwampe"},{id:"160162",title:"Dr.",name:"Olusola",surname:"Amodu",slug:"olusola-amodu",fullName:"Olusola Amodu"},{id:"161208",title:"Prof.",name:"T.V.",surname:"Ojumu",slug:"t.v.-ojumu",fullName:"T.V. Ojumu"}],corrections:null},{id:"42508",title:"Polyhydroxyalkanoate (PHA) Production from Carbon Dioxide by Recombinant Cyanobacteria",doi:"10.5772/54705",slug:"polyhydroxyalkanoate-pha-production-from-carbon-dioxide-by-recombinant-cyanobacteria",totalDownloads:3185,totalCrossrefCites:6,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Hitoshi Miyasaka, Hiroshi Okuhata, Satoshi Tanaka, Takuo Onizuka and Hideo Akiyama",downloadPdfUrl:"/chapter/pdf-download/42508",previewPdfUrl:"/chapter/pdf-preview/42508",authors:[{id:"159173",title:"Dr.",name:"Hitoshi",surname:"Miyasaka",slug:"hitoshi-miyasaka",fullName:"Hitoshi Miyasaka"}],corrections:null},{id:"42572",title:"The Extracellular Indolic Compounds of Lentinus edodes",doi:"10.5772/53262",slug:"the-extracellular-indolic-compounds-of-lentinus-edodes",totalDownloads:1818,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Olga M. Tsivileva, Ekaterina A. Loshchinina and Valentina E. Nikitina",downloadPdfUrl:"/chapter/pdf-download/42572",previewPdfUrl:"/chapter/pdf-preview/42572",authors:[{id:"159232",title:"Dr.",name:"Olga",surname:"Tsivileva",slug:"olga-tsivileva",fullName:"Olga Tsivileva"},{id:"166498",title:"Ms.",name:"Ekaterina",surname:"Loshchinina",slug:"ekaterina-loshchinina",fullName:"Ekaterina Loshchinina"},{id:"166499",title:"Dr.",name:"Valentina",surname:"Nikitina",slug:"valentina-nikitina",fullName:"Valentina Nikitina"}],corrections:null},{id:"42585",title:"Role of Biotechnology for Protection of Endangered Medicinal Plants",doi:"10.5772/55024",slug:"role-of-biotechnology-for-protection-of-endangered-medicinal-plants",totalDownloads:3504,totalCrossrefCites:4,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Krasimira Tasheva and Georgina Kosturkova",downloadPdfUrl:"/chapter/pdf-download/42585",previewPdfUrl:"/chapter/pdf-preview/42585",authors:[{id:"161343",title:"Dr.",name:"Georgina",surname:"Kosturkova",slug:"georgina-kosturkova",fullName:"Georgina Kosturkova"},{id:"161344",title:"Dr.",name:"Krasimira",surname:"Tasheva",slug:"krasimira-tasheva",fullName:"Krasimira Tasheva"}],corrections:null},{id:"40830",title:"The Use of Interactions in Dual Cultures in vitro to Evaluate the Pathogenicity of Fungi and Susceptibility of Host Plant Genotypes",doi:"10.5772/53214",slug:"the-use-of-interactions-in-dual-cultures-in-vitro-to-evaluate-the-pathogenicity-of-fungi-and-suscept",totalDownloads:2907,totalCrossrefCites:3,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Katarzyna Nawrot-Chorabik",downloadPdfUrl:"/chapter/pdf-download/40830",previewPdfUrl:"/chapter/pdf-preview/40830",authors:[{id:"107730",title:"Dr.",name:"Katarzyna",surname:"Nawrot-Chorabik",slug:"katarzyna-nawrot-chorabik",fullName:"Katarzyna Nawrot-Chorabik"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"584",title:"Advances in Applied Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"fcc9fab84b820983f2a462d5145d2a0e",slug:"advances-in-applied-biotechnology",bookSignature:"Marian Petre",coverURL:"https://cdn.intechopen.com/books/images_new/584.jpg",editedByType:"Edited by",editors:[{id:"74654",title:"Prof.",name:"Marian",surname:"Petre",slug:"marian-petre",fullName:"Marian Petre"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1910",title:"Oxidative Stress",subtitle:"Molecular Mechanisms and Biological Effects",isOpenForSubmission:!1,hash:"a5fc01580caefb2637f31d59b377032a",slug:"oxidative-stress-molecular-mechanisms-and-biological-effects",bookSignature:"Volodymyr Lushchak and Halyna M. Semchyshyn",coverURL:"https://cdn.intechopen.com/books/images_new/1910.jpg",editedByType:"Edited by",editors:[{id:"96151",title:"Dr.",name:"Volodymyr",surname:"Lushchak",slug:"volodymyr-lushchak",fullName:"Volodymyr Lushchak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2115",title:"Biotechnology",subtitle:"Molecular Studies and Novel Applications for Improved Quality of Human Life",isOpenForSubmission:!1,hash:"07ebd9c0af07dd6b0649bc67ae612b1e",slug:"biotechnology-molecular-studies-and-novel-applications-for-improved-quality-of-human-life",bookSignature:"Reda Helmy Sammour",coverURL:"https://cdn.intechopen.com/books/images_new/2115.jpg",editedByType:"Edited by",editors:[{id:"32232",title:"Dr.",name:"Reda",surname:"Sammour",slug:"reda-sammour",fullName:"Reda Sammour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2303",title:"Gel Electrophoresis",subtitle:"Advanced Techniques",isOpenForSubmission:!1,hash:"99b6af88dfcbe43d82dc7293184207c1",slug:"gel-electrophoresis-advanced-techniques",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/2303.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4529",title:"Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"187f1fe91150e1be30e641799522b977",slug:"biotechnology",bookSignature:"Deniz Ekinci",coverURL:"https://cdn.intechopen.com/books/images_new/4529.jpg",editedByType:"Edited by",editors:[{id:"13652",title:"Prof.",name:"Deniz",surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",isOpenForSubmission:!1,hash:"3a8efa00b71abea11bf01973dc589979",slug:"bioluminescence-analytical-applications-and-basic-biology",bookSignature:"Hirobumi Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-sustainable-solid-waste-management-in-morocco-co-incineration-of-rdf-as-an-alternativ",title:"Corrigendum to: Sustainable Solid Waste Management in Morocco: Co-Incineration of RDF as an Alternative Fuel in Cement Kilns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74392.pdf",downloadPdfUrl:"/chapter/pdf-download/74392",previewPdfUrl:"/chapter/pdf-preview/74392",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74392",risUrl:"/chapter/ris/74392",chapter:{id:"73967",slug:"sustainable-solid-waste-management-in-morocco-co-incineration-of-rdf-as-an-alternative-fuel-in-cemen",signatures:"Aziz Hasib, Abdellah Ouigmane, Otmane Boudouch, Reda Elkacmi, Mustapha Bouzaid and Mohamed Berkani",dateSubmitted:"June 25th 2020",dateReviewed:"September 8th 2020",datePrePublished:"November 7th 2020",datePublished:"April 21st 2021",book:{id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,fullTitle:"Strategies of Sustainable Solid Waste Management",slug:"strategies-of-sustainable-solid-waste-management",publishedDate:"April 21st 2021",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"166445",title:"Prof.",name:"Aziz",middleName:null,surname:"Hasib",fullName:"Aziz Hasib",slug:"aziz-hasib",email:"azhasib@yahoo.fr",position:null,institution:null},{id:"237725",title:"Prof.",name:"Reda",middleName:null,surname:"Elkacmi",fullName:"Reda Elkacmi",slug:"reda-elkacmi",email:"redakcm@gmail.com",position:null,institution:null},{id:"325462",title:"Dr.",name:"Abdellah",middleName:null,surname:"Ouigmane",fullName:"Abdellah Ouigmane",slug:"abdellah-ouigmane",email:"ouigmaneabdellah@gmail.com",position:null,institution:null},{id:"325463",title:"Prof.",name:"Otmane",middleName:null,surname:"Boudouch",fullName:"Otmane Boudouch",slug:"otmane-boudouch",email:"oboudouch@gmail.com",position:null,institution:null},{id:"325528",title:"Prof.",name:"Mustapha",middleName:null,surname:"Bouzaid",fullName:"Mustapha Bouzaid",slug:"mustapha-bouzaid",email:"bozidstof@yahoo.fr",position:null,institution:null},{id:"325529",title:"Prof.",name:"Mohammed",middleName:null,surname:"Berkani",fullName:"Mohammed Berkani",slug:"mohammed-berkani",email:"m.berkani@gmail.com",position:null,institution:null}]}},chapter:{id:"73967",slug:"sustainable-solid-waste-management-in-morocco-co-incineration-of-rdf-as-an-alternative-fuel-in-cemen",signatures:"Aziz Hasib, Abdellah Ouigmane, Otmane Boudouch, Reda Elkacmi, Mustapha Bouzaid and Mohamed Berkani",dateSubmitted:"June 25th 2020",dateReviewed:"September 8th 2020",datePrePublished:"November 7th 2020",datePublished:"April 21st 2021",book:{id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,fullTitle:"Strategies of Sustainable Solid Waste Management",slug:"strategies-of-sustainable-solid-waste-management",publishedDate:"April 21st 2021",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"166445",title:"Prof.",name:"Aziz",middleName:null,surname:"Hasib",fullName:"Aziz Hasib",slug:"aziz-hasib",email:"azhasib@yahoo.fr",position:null,institution:null},{id:"237725",title:"Prof.",name:"Reda",middleName:null,surname:"Elkacmi",fullName:"Reda Elkacmi",slug:"reda-elkacmi",email:"redakcm@gmail.com",position:null,institution:null},{id:"325462",title:"Dr.",name:"Abdellah",middleName:null,surname:"Ouigmane",fullName:"Abdellah Ouigmane",slug:"abdellah-ouigmane",email:"ouigmaneabdellah@gmail.com",position:null,institution:null},{id:"325463",title:"Prof.",name:"Otmane",middleName:null,surname:"Boudouch",fullName:"Otmane Boudouch",slug:"otmane-boudouch",email:"oboudouch@gmail.com",position:null,institution:null},{id:"325528",title:"Prof.",name:"Mustapha",middleName:null,surname:"Bouzaid",fullName:"Mustapha Bouzaid",slug:"mustapha-bouzaid",email:"bozidstof@yahoo.fr",position:null,institution:null},{id:"325529",title:"Prof.",name:"Mohammed",middleName:null,surname:"Berkani",fullName:"Mohammed Berkani",slug:"mohammed-berkani",email:"m.berkani@gmail.com",position:null,institution:null}]},book:{id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,fullTitle:"Strategies of Sustainable Solid Waste Management",slug:"strategies-of-sustainable-solid-waste-management",publishedDate:"April 21st 2021",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7702",leadTitle:null,title:"Electrolysis of Water",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tWater electrolysis has a longer history than 200 years and the technology is expected to be applied in various fields, such as the realization of a hydrogen society, environmental conservation, sterilization and cleaning, and water purification. When water is electrolyzed, dozens of kinds of ions and radicals are formed, but the stable molecules formed by electrolysis are only four: hydrogen, oxygen, ozone, and hydrogen peroxide.
\r\n\r\n\t
\r\n\tHydrogen gas is the key energy source for hydrogen-based society. Ozone dissolved water is expected as the sterilization and cleaning agent that can comply with the new law enacted by the US Food and Drug Administration (FDA). The law “FDA Food Safety Modernization Act” requires sterilization and washing of foods to prevent food poisoning and has a strict provision that vegetables, meat, and fish must be washed with non-chlorine cleaning agents to make E. coli adhering to food down to “zero”. If ozone dissolved water could be successively applied in this field, electrochemistry would make a significant contribution to society.
\r\n\t
\r\n\tOxygen-enriched water is said to promote the growth of farmed fish. Hydrogen dissolved water is said to be able to efficiently remove minute dust on the silicon wafer when used in combination with ultrasonic irradiation.
\r\n\tAt present researches on direct water electrolysis have shown significant progress. For example, boron-doped diamonds and complex metal oxides are widely used as an electrode, and the interposing polymer electrolyte membrane (PEM) between electrodes has become one of the major processes of water electrolysis.
\r\n\t
\r\n\tThe purpose of this book is to show the latest water electrolysis technology and the future of society applying it.
Textiles, with the basic characteristics of clothing, protection, and esthetics, are the indispensable part of our lives, but in recent years with the development of technology and the variation of requirements, the demand to smart materials and intelligent textiles grows increasingly all over the world. In other words, technology has also taken control of textile industry. Smart textiles have superior performance and functionalities for the applications ranging from simple to more complicated uses such as military, healthcare, sportswear, etc. Smart or intelligent textiles can also be called as the next-generation textiles.
Many classifications related to smart textiles are available in the literature. In this chapter, the classifications based on the esthetic and performance functions are mentioned as two categories. Esthetic smart textiles use the technology for fashion design, because of their ability to light up and change color. Light-emitting clothes and luminous dresses are the typical and commercial examples for esthetic smart textiles. As for the performance, smart textiles are classified into three categories as passive smart textiles, active smart textiles, and ultra smart textiles.
Passive smart textiles can only sense the environment, as they are just sensors. UV protecting clothing, conductive fibers, plasma-treated clothing, and waterproof fabrics are the typical examples of passive smart textiles. Active smart textiles can sense the stimuli from the environment and also react to them; besides the sensor function, they also have an actuator function. Phase change materials, shape memory materials, and heat sensitive dyes are active smart textile applications.
Ultra smart textiles take a step further. Ultra smart textiles are materials that sense, react, monitor, and adopt themselves according to the stimuli or environmental conditions, such as thermal, mechanical, chemical, magnetic, or other sources. An ultra smart or intelligent textile essentially consists of a unit which works like a brain, with cognition, reasoning, and activating capacities. For instance, spacesuits, musical jackets, and wearable computers are ultra smart materials [1, 2] (Table 1).
Sensing external conditions | Reacting | Responding and adopting | |
---|---|---|---|
Passive smart textiles | |||
Active smart textiles | |||
Ultra smart textiles |
Classification of smart textiles.
In the mid-1970s, with the development of personal computers, a technological explosion was recorded in all the areas of human activity for any purposes. In the early 1990s, the benefits of smart textiles became apparent. Many researchers have studied on smart materials and textiles. Chan Vili studied the use of shape memory materials in developing high performance smart textiles, taking into consideration the ways for enhancing the esthetics of woven interior textiles. Dunne et al. provided an overview on textile integration strategies and component attachments. Choi and Jiang presented a system intended for cardiorespiratory measurement to monitor sleep condition. Mattmann et al. analyzed a yarn sensor that is nearly hysteresis-free while measuring elongation along body parts, for example, the back. Paradiso et al. presented a smart garment that can be used as wearable healthcare system. Cho et al. compared different conductive textiles and their performance for measuring joint angles.
The market for smart textile is growing with a high potential globally. The rise in demand for smart textile products is causing the existing market to expand, leading the way to new players to enter the smart textile market. In the emerging economies, the market share of smart textile consumed relative to conventional textile products is increasing. The global smart textile market size is expected to reach $5369 million by 2022 from $943 million in 2015, with a CAGR of 28.4% from 2016 to 2022. The global smart textile market is thriving and witnessing significant growth owing to the numerous applications in various industries.
Smart textiles are smart systems that can both perceive or communicate the environmental conditions and can detect and process the wearer’s condition. They can use electrical, heat, mechanical, chemical, magnetic, and other detection systems to detect them. Smart garments are separated from wearable computing systems by revealing the importance of the garment on which they are integrated. Wearable computing systems are formed by the traditional systems being attached to the garment in some way. The equipment used is placed in non-textile ways without being integrated. Although some electronic materials have been reduced to be used in garments, the actual smart garments should use materials made entirely by textile production. The electronic materials to be placed must not impair the comfort of the standard textile material garment. Therefore, providing this combination is vital for wearability in smart garment and textile manufacturing. It is clear that smart textiles are simple computer systems and have five functions basically as sensors, data processing, actuators, storage, and communication (Figure 1). But it must be compatible with the function of clothing such as comfort, durability, resistant to regular textile maintenance processes, and so on [1, 2].
Functions of smart textiles.
Sensors are the components that transform one type of signal into another type of signal. There are already systems in the textiles that measure heart, breath rate, temperature, movement, and moisture, but these systems work with the installation of traditional sensors in textiles. At the present stage of intelligent textiles, the sensors are produced from real textile material, and the heart, breath, and movement sensitive sensors are already produced with satisfactory results. There are also different materials and structures that have the capacity of transforming signals:
Data processing is one of the components that is required only when active processing is necessary. According to information theory, it is necessary to process every collected information and data and obtain the desired output. Therefore, in order to obtain the desired output by processing the parameters collected by the sensors, a processor suitable for the relevant purpose is required in smart textiles. The information processing element is only needed when the textile is actively processing information. Textile sensors can provide information to a large extent, but the main problem lies in how the information is evaluated and the processor component comes to the fore. Variation of signals and analysis of signals are main problems for data processors. Furthermore, the energy required for the processor is another problem encountered today. Since the electronic components required for energy do not have sufficient smallness and flexibility, they differ from the structure of the textile. The waterproofing requirement of these energy units and other electronic units is another problem. However, these problems are generally seen more in the garment-type smart textiles. In the case of vehicles, this is not a problem; the information processing elements can be mounted inside the vehicle [4, 6].
Actuators are the devices designed to perform the necessary action according to signals from the sensor or processor. These devices are also called actuators. Actuators act by an effect sent from the sensor and possibly by first passing this effect through an information processor to perform objects such as moving objects, releasing materials, and making noise. Shape memory materials are the best examples in this field. Shape memory alloys can be formed in the form of lattice. Its responsiveness to heat changes enables shape memory materials to be used as an actuator and meets the requirements of intelligent textiles very well. Another type of actuator is the materials that are capable of releasing certain chemicals under certain conditions, which can be trapped in protective microcapsules or chemically bound to the fiber polymer. Such secretory materials have various commercial applications. Odors, skin protectors, antimicrobial products, and so on. Application studies have been started with active secretion methods and some simple projects have been implemented yet. It is contemplated that the release will be effected by triggering other environment variables such as temperature, pH, humidity, chemical substance, and the like. In one view, a system capable of actively controlling drug secretion would integrate the body with a smart suit capable of receiving simple health findings. For this reason, it is expected that the actuators will have some technological and mechanical components and will bring problems in both fields [6, 7].
Storage is another component of smart textiles. Although not a fundamental goal, smart suits are expected to need a storage capacity to operate on their own. While the information to be stored in smart textiles is usually information or energy, examples such as textiles that inject or emit drugs or odors indicate that this storage unit will also serve different areas. Detection, computing, actuators, and communication units generally require energy, especially electrical energy. Efficient energy management is achieved by combining the energy source and storage in an appropriate manner. Examples of the energy sources that can be used in clothing are body temperature, mechanical movement (the energy generated by movement resulting from the elasticity of fabrics or kinetic energy from body movement), radiation (solar energy), and so on. The energy source required for the operation of sensors, processors, and moving systems in smart textiles should be combined with energy storage capability. Nowadays, very small and light batteries are available, and this solution of this energy requirement is a method that comes to mind in the first place. Even if the flexible ones are manufactured, they are not sufficient in performance and are still under development. On the other hand, the situation is easier and the energy requirement can be achieved by direct contact with clothing or by wireless connection [8, 9].
One of the components of smart textiles is the communication component, which is shaped according to the type and need of communication. There are many types of communication within smart textiles. Some of the basic situations in which smart textiles are contacted are as follows: in one element of the garment itself; can be mounted between two different elements of the garment; and in order to command the garment by the wearer, contact is made to inform the wearer or his surroundings. In today’s prototypes, communication within the garment is provided by optical fibers or by conductive fine wires. They are naturally woven and can be placed in textiles without the use of stitches. A specific communication protocol is followed to communicate with the wearer. The outlines of this protocol can be provided by the technologies described below. Optical fibers are used in the creation of optical screens, and France Telecom has managed to produce several prototypes by producing a sweater and a backpack. On the other hand, since it requires more than one fiber for a pixel, it appears that the present situation needs further consideration. Another communication protocol in smart textiles is pressure-transmission systems. Information can be provided to the garment with pressure-sensitive textile materials, and a data processing element needs to process these entered orders. In some intelligent textile applications, communication with wider environmental elements is important. For example, there are many situations in which the suit is required to interact with the vehicle when 41 drivers are handled. The first thing that comes to mind in the communication of the dress with the vehicle is the seat in which it is in direct contact. A wireless connection can be achieved by integrating an antenna into the suit. This antenna is integrated into the clothes. The major advantage of this integration of antennas to the garment is that a large area can be used for communication without the user even being aware of it. In the summer of 2002, a prototype was produced in Philips Research Laboratories. With regard to road safety or driving comfort, a lot of data about the driver, such as heat comfort, concentration etc., can be obtained using intelligent textiles for a better and safer driving quality. For risky human profiles, for example, heart patients can anticipate the problems of clothing and provide information to stop the vehicle or even call for help if necessary. Although these developments are considered unquestionable, it is thought that these studies can only be implemented in the future with more advanced technology due to the limited information that can be obtained from the human body and the lack of materials and concepts for the systems to process this information [8, 9].
Materials capable of remembering the original shape are called shape memory materials. Materials are shaped out of its original shape as the temperature change returns to its original shape with a chemical, mechanical, magnetic, or electrical external effect. There are many classes of shape memory materials such as alloys, polymers, gels, and ceramics. Shape memory alloys and shape memory polymers are the types of shape memory materials with applications in textiles. The important point in these applications is that the material used exhibits the shape memory effect at temperatures close to body temperature.
Shape memory alloys are composed of a combination of two or more elements with the properties of hardness and elasticity that vary considerably at certain temperatures. An example of the application of shape memory alloys in textiles is a nickel-titanium alloy, which is used in protective clothing against fire and high temperatures and provides different levels of protection according to temperature.
Under the degree of activation, the easily deformable alloy becomes more rigid at the degree of activation, taking its original shape. Alloy applied to the fabric in the form of a flat surface takes the form of spring with the effect of temperature, increasing the air gap in the fabric, thus increasing the protection of the garment and the formation of second-degree burns under the same conditions.
The degree of activation can be adjusted by changing the ratio of nickel to titanium in the alloy. T-shirts developed by an Italian company Corpo Nove shortens the sleeves with the increase in temperature and do not require ironing, which is another example of the application of shape memory alloys in textiles.
Shape memory polymers can be used in fiber production or can be applied to the fabric by finishing, coating, or lamination processes. Polymers have different water vapor permeability, air permeability, modulus of elasticity, refractive index, and expansion properties below and above the glass transition temperature (Tg).
The shape-memory polymer, placed between two layers of fabric, has a tight structure below a certain temperature and prevents heat, water and wind circulation around the body. By the increase in temperature it starts the molecules motion and becomes a porous structure resulted with the expulsion in body heat. This flexible barrier function makes it possible to adjust the insulation properties of the garment to temperature changes and to provide optimum comfort in any environment.
The crystal structure of a material at a given temperature determines its many physical properties. During the phase change, besides microscopic changes, macroscopic changes such as modulus of elasticity, coefficient of friction, electrical conductivity, and hardness occur. One of the important applications using these changes is surgical yarns.
Self-tangled surgical threads are designed for endoscopic surgery, and implants that are small in normal ambient conditions are designed for use in endoscopic surgery. Thus, it will be possible to perform operations with small incisions, shortening the healing time and reducing the risk of infection. Shape memory textiles can also be used for esthetic and decorative purposes. Textile materials that deform with the stimulating effect acquire a third dimension [1, 8, 9].
They are intelligent textile materials that have the ability to change color with an external stimulus effect. They are obtained by incorporating color-changing materials into the structure of textile materials. Color-changing materials are chromic materials or chameleon materials. There are many different color-changing mechanisms, but mostly the electron density or molecular structure of the material changes due to the external stimulus effect and the color change occurs; when the stimulus effect disappears, they return to their initial state where they are more stable and get their first color.
Color changing materials are specified according to the effect mechanism. Light, heat, pH change, solution, friction and pressure are basic effect parameters. They are also called by the effect type as photochromic (light effected), thermochromic (heat effected), electrochromic (electric effected), solventchromic (solution effected), halochromic (pH effected), tribochromic (friction effected), mechanochromic (pressure effected).
The application of chromic materials to textile materials can be done by different methods at different stages. For example, a chromic dyestuff can be used for dyeing fibers by conventional dyeing methods; the fibers can be added to the fiber structure at the polymer stage; color-changing fibers can be obtained by melt spinning or wet spinning; they can be mixed with resin and coated onto the fabric surface, thereby using them for fabric printing or dyeing.
Smart textiles change colors depending on environmental factors; they are important because of their esthetic advantages. It is thought that the use of color-changing textiles will become more widespread in the future in the field of fashion and will change the color depending on many other effects besides the existing ones. Photochromic, thermochromic, electrochromic, and solventchromic textile applications can be seen in fashion and decoration. They are available for T-shirts, bags, and hats.
The reversible color-changing property of thermochromic dyes indirectly changes the heat absorbing property of the textile material. While light reflection increases, darker colors increase heat absorption. Because of these properties, thermochromic dyestuffs are used to coat the uniforms of firefighters who turn white under very high temperatures and reflect the heat in this way and also in building coatings. The fact that thermochromic dyes accelerate the dimensional change of fibers provides another thermoregulation effect. At high temperatures, fibers containing thermochromic dyestuff shorten. The pores of the fabric are enlarged so that a large amount of air is introduced in and consequently the body temperature decreases. At low temperatures, the fibers are elongated, the pores are closed, and the fabric maintains the body’s temperature [1, 2, 10, 11].
Phase change materials, with a textile substrate, are basicly thermo regulating materials. When the melting temperature of the material is reached during the heating process, the transition from solid state to liquid, that is, a phase change occurs, during which the phase change material absorbs and stores a large amount of heat. The temperature of the phase-changing material remains virtually constant during the entire phase change. During cooling of the same material, the stored heat is transferred to the medium and the transition from liquid to solid state takes place. Again, the temperature of the material remains constant throughout the phase change process. If the temperature change continues except for phase change, the temperature of the material also changes.
By using two or more phase-changing materials together, the temperature range at which the phase change occurs can be adjusted so that it can be used in specific applications. Textile materials in which the phase-changing materials are applied have a cooling effect, heating effect, or thermoregulation effect caused by the absorption or dissipation of heat depending on the ambient temperature conditions. The degree of all effects depends on the type of material used, its thermal capacity, and the amount of application. Of course, in order to obtain the desired effect efficiently, the temperature values in which the material changes phase must match the temperature values to be encountered during use.
The application of phase-changing materials to textile materials can be done in different ways. Microencapsulated phase-changing materials can be added to the structure of synthetic fibers during fiber drawing, can be added to the nonwoven structure, or can be coated on textile surfaces. Product design is also very important in all these applications. For example, when changing from a warm indoor environment to a cold outdoor environment, it was seen that the garment containing the phase-changing material showed heating effect on average 12–15 min depending on the phase-changing material content and outdoor conditions.
If the structure of the garment is not designed well, it is also possible to dissipate heat from the phase-changing material. When we look at their usage, they have commercialized usage in hospital beds and pillows. With the effects of thermoregulation, they keep the temperature at levels that do not disturb the patient and ensure that the patient does not sweat and thus contribute to the healing process of the patient. There are also studies on heating or cooling plasters and heating blankets for use in the medical field. In long-term operations, it is possible to provide thermal comfort by preventing surgeons’ sweats by providing a coating on the inside of their garments with a phase-changing material. There are commercialized everyday garments, underwear, shoes, and sportswear where phase-changing materials are applied [2, 10, 11, 12].
Wearable smart electronic textiles make lifes more reliable, healthy and comfortable in many areas. Wearable smart electronic textiles; temperature change, light, moisture, such as environmental stimuli can detect, react to these stimuli, can change itself according to external conditions, store data, these data are used to produce information and communication purposes. In this sense, they are perceived as intelligent technologies that will have the qualities to support the vital activities of human beings such as sensation, movement, communication, taking action, and adapting to environmental conditions.
The four basic elements of wearable smart electronic textiles are conductivity, sensors, wireless communication module, and power supply. Depending on the nature of these components, the degree to which they can be integrated into the textile material varies. As a first method, existing electronic devices can be integrated into the textile material. An example of a life belt to which the existing sensors are attached is an example. The biggest advantage is that the process is very easy. However, the disadvantages of the large, inflexible electronic components used are disturbing the user and washing problems. The second method is the production of electronic components using textile materials and textile manufacturing techniques (textronics) and their use as part of the garment. The disadvantage of this method is that integration processes can be carried out easily, but that a limited number of electronic components can be produced by textile materials and methods. The third method is to produce and use fibers to provide some electronic functions (fibertronics).
Clothing equipped with sensors that monitor vital functions such as breathing, heart rate, and body temperature increases the mobility of the patients while providing the confidence of being constantly monitored and increasing the standard of living for chronic patients and the disabled. High-performance active sportswear provides a performance increase by following the athletes’ body functions such as pulse, breath, body temperature, and activity-related values such as speed, distance, time, and calories.
Various applications are available in the field of medicine, sportswear, and protective clothing. Lifeshirt is an example of the protective use of intelligent electronic garments designed for pioneers, hazardous workers, firefighters, and industrial cleaning workers. Lifeshirt is a belt that contains sensors that detect indicators related to vital activities such as respiratory rate, heart rate, and body temperature and can transmit this information to a remote monitor via a modem. Through this belts, the health status of the wearer can be monitored continuously, and strategic decisions can be made by evaluating the general situation of the team.
The Cyberia Smart Coverall with wearable technology is designed to be worn in polar areas. The project was started with the aim of developing a garment displaying the health data of the wearer. The garment displaying health data also includes a global positioning system (GPS) for use in the event of a loss and a GSM module that can automatically send the coordinates and health information to a predetermined number in the event of an abnormal condition [2, 5, 13].
The next generation of waterproof smart fabrics will be laser printed and made in minutes. That is the future imagined by the researchers behind new e-textile technology. Scientists from RMIT University in Melbourne, Australia, have developed a cost-efficient and scalable method for rapidly fabricating textiles that are embedded with energy storage devices. In just 3 min, the method can produce a 10 × 10 cm smart textile patch that is waterproof, stretchable, and readily integrated with energy harvesting technologies. The technology enables graphene supercapacitors—powerful and long-lasting energy storage devices that are easily combined with solar or other sources of power—to be laser printed directly onto textiles (Figure 2).
Laser-printed waterproof and stretchable e-fabric.
A conductive textile can be defined as a fabric which is made from the strands of a metal that are woven, blended, or coated during the creation of the textile. Conductive metals such as silver, titanium, gold, nickel, and carbon are utilized by the textile. Conductive textiles inhabit the property that it can conduct electricity and thus is used in several applications by different end-use industries. The primary function of the conductive textile is controlling the static electricity and protecting from the electromagnetic interference. Based on type, the woven textile segment has significant growth during the forecast period. Woven textiles are widely utilized by various end-use industries such as military and defense, healthcare, and sports and fitness. As these textiles offer high standard performance in shielding and conductivity, they are considered to be the preferred type of conductive textiles utilized across the globe, thereby boosting the growth of the woven textile segment [14].
Knitted and woven fabrics are being used as a cardiac supporting device. An innovative medical device has been made by using the knitted and woven fabrics, which corrects the life-threatening conditions of the heart and vascular system. Implantation of the new devices requires less invasive surgical procedures and involves less risk than traditional procedures, while also causing fewer complications in hospital days. Heart failure is a chronic syndrome that occurs when the heart is not getting enough amount of blood. Generally, valve leakage is reliable for this. The treatment of heart failure is only the drug therapies and surgical, but they are temporary treatment. The only permanent treatment is a heart transplant. But most of the patients cannot qualify for heart transplantation. So they have to do the surgical treatment or drug therapy.
So the scientists have developed a device named as a cardiac support device (CSD), which is intended to halt the progression of heart failure. The cardiac support device (CSD) research was conducted to determine the best material, yarn configuration, knit pattern, and processing to use to produce CSD fabric. It is a mesh-like warp knitted fabric. The fabric is fabricated from the multifilament texture (Figure 3).
Medical textiles working as a cardiac support device.
Polyester fabric is used for it. Polyester fabric has biological tissue response and it has the compatibility for the epicardial surface of the heart. The polyester yarns are warp knitted into a mesh configuration using a variation of an atlas stitch. After knitting, the fabric is conditioned to ease its handling during the processing to manufacture the CSD [9].
Temperature is a major challenge in numerous professions—thermal comfort and occupational safety. For example, in emergency missions of fire and rescue services as well as in mines and construction sites, the working conditions often cause extreme physical strain (Figure 4).
Smart clothing, adjusting the heating control autonomously.
Working in hot situations without wearing appropriate protective clothing and equipment often causes high heat stress. It will be perfect if the amount of such stress could be monitored in real time during the performance of different work tasks. To solve this, researchers and companies together developed a wearable technology solution for firefighters. It allows the real-time monitoring of heat stress, thus improving the occupational health and safety in challenging temperatures.
The new method has been tested at the Finnish Institute of Occupational Health in Oulu and at the Emergency Services College in Kuopio. Based on the first tests, it would seem to offer a very promising tool for commanding rescue missions and enhancing the occupational health and safety of firefighters [10, 11, 12].
Graphene has already made a huge blast in the next step of wearable technology. Due to the thermal conductive properties of graphene, the warmth produced by the human body is preserved and distributed evenly in cold climates and allows an even body temperature during physical activity.
A renowned company Directa Plus, a producer and supplier of graphene-based products, teamed up with Colmar, the high-end sportswear company, has launched a new collection of SKI jackets containing graphene-based products. The new technology SKI jacket contains graphene Plus (G+) and is worn by the French national SKI team for multiple successful tournaments. It was explained that the key benefit of incorporating G+ is that it enables the fabric to act as a filter between the body and the external environment, ensuring the ideal temperature for the wearer (Figure 5).
Graphene-based jacket.
A Chinese company called Shanghai Kyorene New Material Technology has also developed a graphene fiber that has been used to produce clothes, sportswear, and underwear products.
Recently, researchers have designed a low-cost, sustainable, and environmentally friendly method for making conductive cotton fabrics using graphene. These fabrics could lead to smart textiles and interactive clothes that will find applications in healthcare, wearable, and more. Functionalization of these conductive cotton fabrics was done by thermal reduction of graphene oxide (GO) adsorbed on cotton. Besides, researchers have created two ways to apply thin graphene sheets that either make the fabric super-hydrophobic or super-hydrophilic.
A team of scientists in Korea also announced the successful development of a technology to make a washable, flexible, and highly sensitive textile-type gas sensor. This technology is based on coating graphene using molecular adhesives to fiber like nylon, cotton, or polyester so that the fabric can check whether or not gas exists in the air.
Graphene has also strong cytotoxicity toward bacteria. So, this can be highlighted for maternity clothes to create coatings that prevent the growth of bacteria on the surface of the fabrics, thus protecting the pregnant against the possible diseases transmitted by bacteria. This type of protection will be very useful in gynecologists, nurses, and midwives clothing who assist the birthing woman in order to avoid the spreading of bacterial infections in newborns [6].
The smart denim jacket designed by Levi’s turns a portion of the fabric on the sleeve into a touch-sensitive remote control for phones to be helpful in everyday life. This is a second version of their Jacquard smart jacket first introduced in 2017. The iconic jacket merges style with innovative Jacquard technology and allows the wearer to answer calls, play music, and take photos right from the sleeve. With the Jacquard technology, the jacket lets you access digital services right from your cuff, wherever you go. Get updates about your day, take a remote selfie, get notified if you leave your phone or jacket behind, and more, so you can stay focused on what is important (Figure 6).
Smart denim jacket.
The technology allows to use touch gestures, like swiping and tapping, on the left cuff of the jacket to issue commands. The new and improved Jacquard Tag wirelessly connects your Trucker jacket to your smartphone. Jacquard also provides you helpful alerts, like when you have left your phone behind, using lights on the Tag and vibrations in the cuff to get your attention [5].
DuPont Intexar is a revolutionary electronic ink and film that seamlessly transforms fabric into smart clothing for multiple applications. The technology is embedded directly onto fabric using standard apparel manufacturing processes, offering both ease of integration and ease of design. It is currently leveraged for three applications: fitness, heat, and shealth (Figure 7).
Smart film fabric.
The technology for fitness and health function similarly with key components that monitor and transmit biometric signals. A thin layer of carbon or silver serves as a sensor, sensing electrical signals, while a conductor, made of a layer of silver, transmits currents throughout. Other films are integrated onto the textiles to shield the technology from water and additional exposure. The data received is captured and monitored via a third-party app. The heat application utilizes a battery-powered technology that includes a resistor, a thin layer of carbon that radiates heat, a conductor, a thin layer of silver that transmits the electrical currents, and additional films for protection.
Intexar is engineered and tested to perform as designed each and every time, with durability to outlast any alternative and offer unmatched comfort with its seamless stretchability. Intexar also offers a powered heating solution in a thin and safe application. The battery-operated technology enables clothing to generate heat, creating actively controlled on-body warming. This technology is particularly well-suited for outdoor activity and industry professionals within the utility, construction, military, forestry, mining, and infrastructure industries, among others. This technology also delivers advanced wearable health care through the sense and transmission of biometric signals. Primary uses include monitoring of pregnancy, telemetry and respiratory disorders as well as heat and electro-stimulation therapies.
Current developments in textile technologies, new materials, nanotechnology and miniature electronics, and wearable makes systems more convenient, but the most important parameter for users to accept wearable devices is comfort is sufficient. This is recognized as a challenging environment for the human body and the environment, mechanics resistance, and durability. In addition, the circuit design of the development of intelligent textiles, the knowledge of intelligent materials, microelectronics, and chemistry is basically integrated with a deep understanding of textile production. It requires a multidisciplinary approach.
Nowadays, people are using water more efficiently due to environmental awareness, tariff policies and technological innovations. In Europe, for example, a decreasing trend in water abstraction is being observed in the last decades and water consumption is decoupling from economic growth, as water use efficiency has increased in the related water-dependent sectors, such as public water supply and tourism. However, as stated by the European Environment Report nr. 12/2021 [1] the issue of water stress continues to escalate as climate change exacerbates seasonal variations in water availability. The observed decreasing trend in water abstraction volumes has so far not translated into an improvement in the quantitative status of water bodies, and this may be partly due to the slow process of recovery and also to climate change, which can offset volumetric gains and aggravate local pressures. On the other hand, the urban population continues to grow, which leads to an increase in urban water demand. To continuously supply this demand, new storage systems, abstraction and networks are developed but with serious consequences to freshwater sources and ecosystems. Urbanization brings also soil sealing and flood situations, once the amount of naturally infiltrated stormwater is significantly reduced. The variability and pressure caused by climate change and seasonal variation in water supply tend to aggravate these problems. Thus, approaches focusing on valorizing unconventional resources (e.g., desalination, water reuse, rainwater harvesting) are already implemented in many Member states. Besides, several European Union policy initiatives support the use of Nature-based Solutions (NbS) to reduce Europe’s vulnerability to water stress [1].
NbS are systems inspired and supported by Nature, implemented in urban areas to restore vegetation and natural ecosystems. The Federal Emergency Management Agency (FEMA) of the USA describes them as sustainable planning, design, environmental management, and engineering practices that weave natural features or processes into the built environment to build more resilient communities [2]. On a neighborhood or site scale, they are defined as distributed stormwater management practices that manage rainwater where it falls. These practices can often be built into a site, a corridor, or a block without requiring additional space.
The use of NbS infrastructure can reduce the cost of stormwater management for new development because material costs and land disturbance are lower than traditional drainage [2]. The use of Nbs can also help to control stormwater that enters combined sewer systems, resulting in important savings in the amount of water treated in wastewater treatment plants and the consequence of flood occurrences. As referred by FEMA [2], New York City developed a plan to reduce combined sewer overflows using green and gray infrastructure and they predict that the NbS component will capture runoff from 10% of the impervious areas with a cost of about $1.5 billion, while the gray infrastructure option would cost about $3.9 billion.
The European Commission [3] states that implementing NbS on a larger scale would increase climate resilience while contributing to multiple Green Deal objectives. Buildings can contribute to large-scale adaptation, for example through local water retention and urban heat island effect reduction when incorporating green infrastructure.
NbS include green infrastructure technologies such as Green Roofs (GR), which are being implemented as part of a combined sewer overflow abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters [4]. The study made by Koc et al. [5] revealed the important contribution of GR to stormwater management in urban areas: among different solutions (bioretention cells, permeable pavement and infiltration trench, isolated or in combination), GR provided the highest improvement with approximately 40% in both peak discharge and volume reduction and has been found as the optimal practice among the stand-alone solutions. The main reason for those results is that GR provides the closest characteristic to a natural basin by capturing the rainfall and increasing the time that a water drop takes to reach the drainage system. The best-integrated evaluation showed that GR and bioretention cells can significantly reduce the impacts of urban flooding.
Transitions towards urban built environments that incorporate sustainable drainage systems encounter several barriers such as limited evidence on their performance or concerns about negative impacts that they might cause. Collective efforts from different stakeholders, are essential to highlight the important benefits provided by them [6].
This chapter intends to present the effects of GR in stormwater management. This NbS is being implemented worldwide and its effects on stormwater quality and quantity are being intensively investigated. These structures have an important impact on stormwater control and reduction, but they change the quality of the drained water. On the other hand, their efficiency is highly influenced by their characteristics and therefore, the more relevant design aspects should be carefully assessed. Intense literature research was made to analyze these questions. GR are characterized in detail in sub-chapter 2, and their effects on stormwater quantity and quality are detailed in sub-chapter 3, based on the main conclusions of experimental activities developed around the world.
The bibliographic research was made in two steps. In the first one, the “science direct” database was used, with four keywords: “green roof” stormwater quantity; “green roof” stormwater quality; “green roof” rainwater quantity; “green roof” rainwater quality. The advanced search (including title, abstract or author-specified keywords) was used and a total of 91 articles were found, 24 of them were duplicated. In the second step, the abstracts of the remaining 67 articles were analyzed and 24 of them were categorized as out of scope. Besides, 3 articles were not considered because two were extended abstracts from conferences and one was not available. The final result of the bibliographic research was 40 articles, published from 2007 to 2021. They were fully read to sustain the values and ideas presented in this chapter.
GR (also known as vegetated roofs) are defined as any type of soil–vegetation system established on building floors or roofs excluding the cases of pot vegetation [7]. In constructive terms, they are implemented in the building structure with the following components, from bottom to top: a high-quality waterproof membrane, a root barrier to protect the membrane, a drainage layer, a growing substrate and finally, the plants (Figure 1).
GR section (the irrigation system is optional) [
The GR vegetation most commonly used worldwide is Sedum, which has attributes of succulent plants such as a low growth rate and drought resistance that leads to low maintenance requirements [9]. Besides, using different plant species and creating diverse ecosystems, is generally more successful than planting single varieties of vegetation. Liu et al. [10] presented vegetation layers with three different plant species - Radix Ophiopogonis, Sedum Spectabile and Iris – with high resistance abilities to drought stress conditions and widely incorporated in local landscaping works and GR designs. Kuoppamäki [11] studied GR with two levels of establishment method: either by planting with seeds and plug plants or as pre-grown mats. The total thickness of the growing substrate of all meadow roofs was set to 10 cm. Meadow roofs established on-site with plantings are dynamic ecosystems, with wide temperature variation, which contribute to high evapotranspiration, resulting in lower moisture at the start of rain events. Although, this difference declined with time, as roof ecosystems evolved, the author considered plantings a better design than mats considering various factors. Guidelines were already developed by many countries to recommend the appropriate selection of plants to improve the benefits and to overcome difficult conditions prevailing on the rooftop, such as water scarcity and extreme climatic conditions [12].
Growing medium (also referred to as the substrate layer) is an essential component of GR that directly influences plant growth and also benefits GR regarding stormwater management, rainwater buffering, building energy savings, and sound insulation [12]. Substrates for GR are typically a mix of inorganic sand, organic soil, and fertilizers, which differ depending on the vegetation used. Sand, white charcoal debris mixed with sand, organic matter mixed with soil, and burned reservoir sludge mixed with rice hulls are examples of substrate constituents, that can also include the use of recycled materials [9]. Different ratios of organic and inorganic constituents result in GR substrate with distinct characteristics, appropriate for different applications.
The drainage layer maintains a non-water-logged and aerated condition for the substrate to support healthy plant growth. It plays a vital role in a GR, also by storing water between the substrate and the drainage material (or in the compartments of drainage plastic modules) that is used by plants in dry periods [12].
The root-barrier is optional for extensive GR but highly recommended in intensive ones once it protects the waterproof membrane from the roots of large plants. When necessary, an insulation layer might also be considered, as it prevents the water retained in the GR from extracting heat in the winter or cooling the air in the summer.
The waterproofing membrane will prevent the moisture of the substrate and drainage layer to pass into the structural deck, so its high quality and well execution are fundamental to keep the roof in good conditions and to avoid humidity problems inside the buildings.
GR systems may be modular, with drainage layers, filter cloth, growing medium, and plants already prepared in movable, often interlocking grids, or loose laid/built-up whereby each component of the system may be installed separately [8]. As referred, they present distinctive characteristics in terms of growing medium and plants but are usually categorized due to their intensive or extensive planting as stated by Berndtsson [7]:
Intensive GR have deep soil layers and can support large plants and bushes. Typically, they require maintenance in the form of watering, fertilizing, and weeding;
Extensive GR have thinner soil layers and smaller plants which in the final stage are expected to provide full coverage of the roof. These GR are more commonly used because they can be implemented in existing buildings and are generally maintenance-free. Some fertilization is often recommended especially in the first years.
It should be noted that distinct authors differ in the limits of substrate layer thickness defined for intensive and extensive systems, but the majority defines the 0.15 m as the frontier. Table 1 resumes the main characteristics of both types of GR.
Intensive GR | Extensive GR | |
---|---|---|
>15 cm | <15 cm | |
Heavy; require concrete support | Low; used with concrete, steel and/or timber support | |
Perennials, lawn, shrubs, small trees and rooftop farming | Grass, herbs, mosses, sedums and other succulents | |
Constant irrigation using an automated sprayer | Required only in dry periods | |
High | Low | |
Required trough the GR lifetime | Not required (except in the first years) | |
High-end | Low-end | |
Required | Not required | |
Higher | Lower |
Characteristics of different GR (adapted from Vijayaraghavan et al. [12]).
Existing full-scale GR, reported in the literature, present the following general characteristics:
In Helsinki and Espoo, Finland: nine thin-layered (2–12 cm of the substrate) Sedum/moss roofs, and two meadow roofs with substrate depths of 21 and 23 cm [13];
In New York, USA: a GR composed by six types of native sedum located over 10.2 cm of lightweight growth media. Above the growth, media is a drainage composite, with a water retention capacity of 7.9 mm of water, underlain by an adhered, waterproof, single-ply, thermoplastic polyolefin membrane. The membrane was installed over moisture-resistant gypsum board, tapered roof insulation, vapor barrier, and concrete deck [14];
In Manchester, UK: a 43-year-old intensive GR with an average depth of 170 mm. It has standard construction with the vegetation and substrate layers divided from the ‘egg box’ design plastic drainage layer by a fibrous membrane. The roof itself is protected by a tough geotextile membrane. It has a mineral soil substrate rather than the more usual, prefabricated, lightweight aggregate (LWA) based substrate [15];
In Alberta, Canada: an extensive GR planted with nine different vegetation species including three sedum varieties, two types of grass and four different flowering forbs. The GR growing medium are composed of recycled materials and minerals, and enhanced with compost, presenting a depth of 150 mm. On the bottom, the GR includes a Floradrain FD 25-E drainage board (with holes facing up) with a separate filter sheet [16].
In a conventional GR, such as the one represented in Figure 1, part of the rainfall is stored in the substrate layer and consumed by plants, another part returns to the atmosphere by evapotranspiration and the remaining rainfall is discharged as runoff. The amount of rainfall that is not released as runoff is affected interacts with the components of the GR and their physical environment and is defined as retention [11]. The dual-substrate-layer GR presented by Wang et al. [17], consisting of an upper organic nutrition layer for plant growth and a lower inorganic adsorption layer for water retention and pollutant reduction. This new generation of multilayer GR also present an additional layer to store rainwater which, if properly treated, can be reused for different purposes [18]. Cost analysis proved the practicability of dual-substrate-layer GR in retaining rainwater, but their long-term rainwater runoff quantity and quality performance in urban environments merit further investigation [17]. Xu et al. [19] studied a hydroponic GR system, developed to reduce urban stormwater runoff and to collect, treat and reuse greywater and rainwater onsite in green buildings. According to the authors, this system has a greater potential to reduce urban flooding relative to traditional GR and ensures the long-term effectiveness and stability of water reuse by intercepting rainwater and achieving long-term collection and treatment of greywater.
The most relevant benefits associated with GR, are: (1) regulation of the urban thermal climate (minimizing urban heat island effect) and reduction of the energy consumption in buildings, (2) retention, reduction and quality improvement of stormwater, (3) enhancement of air quality, (4) creation of habitat for flora and fauna, (5) and supporting elements related to physical and mental well-being and (6) esthetic improvement of the urban environment [20, 21]. GR can also contribute to the food supply in urban areas, specifically the intensive ones, if they were used as rooftop farming. Apart from the great influence on the esthetics of the buildings, the study reported by Karteris et al. [22] showed that spices and aromatic plants achieve high CO2 sequestration rates in extensive GR. They also showed their potential of reducing CO2 emissions due to energy conservation and CO2 absorption by GR. The energy conservation rates are strongly connected to the date of construction of the buildings, the available roof area and the number of floors and the use of the building. Large-scale implementation of GR can improve the mean rainwater retention rate in cities and thus contribute to the reduction of rainwater runoff and flood occurrence.
The survey made by Chen [9] in Taiwan revealed that the major concerns in selecting the type of GR, were the drainage performance and potential damages on the roof structure. People worried about litter clogging the drainage pipes and causing overflows on the roofs, and about water leakage on the ceilings due to the intrusion of the plant’s roots into the roof construction materials. Thus, the most existing GR in Taiwan were the extensive type. The spatial distribution of GR benefits is dependent on the spatial distribution of suitable roof areas and environmental stressors. For example, the case study of the inner-city area of Braunschweig (Germany), presented by Grunwald, et al. [23], had great potential, with a higher percentage of benefits in comparison to residential areas. This is very relevant for this type of green infrastructure, that can be implemented on already existing roof areas (usually called as retrofit). GR is a highly sustainable and efficient solution to introduce additional vegetated areas within densely built cities where the impact of environmental stressors is usually high.
Despite the benefits of GR in managing urban stormwater quantity and quality, several studies have demonstrated that GR can pose negative impacts on the urban environment due to chemical leaching, in particular in their early age [16]. They are a living system with many components, so understanding its dynamics is necessary to predict potential environmental impacts. Also, a significant challenge in their widespread implementation is the execution costs, which are higher when compared to traditional roofs. However, the difference can be attenuated if the benefits are well investigated and documented. As referred above, besides the improvement in stormwater control and thermodynamic performance, the vegetative cover of GR also brings an extra source of CO2 capture into the cities, and provides habitats for wildlife.
As urban areas continue to expand, stormwater negative consequences are increasing, and climate change will worsen this situation. In this scope, particular focus should be given to cities with combined sewer systems where stormwater and wastewater are conveyed to the same pipes. In such cases, additional costs are allocated to the treatment plants and, when heavy rain events occur, the affluent volume can exceed the capacity of the system and raw untreated sewage might flow out of relief points into water resources.
A GR changes stormwater runoff, when compared with that from a traditional hard roof, through lowering and delaying the peak runoff. For the same rain event, the peak from the traditional hard roof occurs sooner because a certain water volume is detained in the GR multilayer system and a part of it is retained, as explained previously. The retained water is evaporated and transpired by the plants, and this explains the observed runoff volume reduction [7]. Besides, while flowing through the GR, the water interacts wilt the different organic and inorganic elements and changes its quality. Thus, GR have a direct influence on the stormwater runoff, mainly due to the characteristics of their components. The magnitude of this influence and the factors that contribute the most, both to the quantity and to the quality of the runoff, are described in the following subchapters.
For retaining water, the GR substrate texture and porosity act as a series of pipelines that store water and control the flow rate at which water runs through the growing medium. Before reaching its peak capacity, the runoff from a GR is lower than the runoff from a traditional roof. While water flows through the substrate, it is partially consumed by plants or retained in the substrate porous, so the total runoff volume at the end of rainfall events is also lower for GR than for traditional roofs. The retention capacity of a GR is the difference between the runoff volume of a conventional and GR and that difference is bigger in small-intensity rain events, considering that the substrate is not saturated. After reaching the peak capacity or if the antecedent dry weather days (ADWD) are not enough to restore the retaining capacity of the substrate, the benefits of the GR concerning stormwater control are minimized.
The reduction in GR runoff generally ranges from 50–100% depending on the distinct factors described below [24]. Once the runoff is released over a longer period of time, these structures decrease the flooding risk and improve the performance of the networks downstream.
Kuoppamaki [11] quantified the capacity of Meadow roofs to retain and detain runoff in a field experiment in southern Finland, with varying weather conditions over 4 years. The meadow roofs showed a 40–70% annual cumulative retention of rainfall. Three main factors influenced this retention: (1) the seasonal variability, as the highest retention was measured in the rainiest season, (2) the evapotranspiration, because the retention capacity declined for their study with the development of plant cover and (3) the establishment of root systems that may have created preferential flow paths that reduced storage capacity.
Vegetation plays an important role in the retention and detention capacity of a GR. Despite the 100% vegetation cover of the mat’s treatment studied by Kuoppamaki [11], these roofs retained less rainfall annually (40–60%) than less densely vegetated plantings (50–70%). According to Liu et al. [25], trees and shrubs, when compared to grasses, have a higher capacity to retain stormwater, due to: (1) creation of a denser canopy and trunk layers, which increases the evaporation area and trunk flow; (2) establishment of a thicker litter layer on the substrate surface, with excellent water-holding capacity, that extends infiltration time and reduces surface runoff; and (3) more abundant roots with a higher water-retention capacity. Also, the nine-month GR pilot study performed by Harper et al. [26] showed an approx. 40% reduction in runoff from the unplanted growing medium and an approx. 60% reduction in runoff from the planted growing medium. They highlighted the seasonal impact of plant evapotranspiration as the reduction in runoff was dependent on the season. Plants were a statistically significant factor in fall and spring, but not in winter once in wet seasons a reduced overall impact of growing medium and planting on total flow was registered. Authors stated that plants had a 20% additional reduction in stormwater runoff in the fall, despite relatively recent establishment, and when the plants were dormant over winter, less variation between the planted and unplanted trays was observed, as would be expected under low evapotranspiration conditions.
Due to the dynamic of water flowing through the GR, the depth of the substrate and its initial moisture have a major influence on precipitation retention. Lee et al. [27] showed that a GR with a soil depth of 200 mm (intensive GR) reduced runoff by 42.8–60.8% compared to a 13.8–34.4% reduction of a GR with a soil depth of 150 mm. Viola et al. [28] also explored the retention performance of GR as a function of their depth and in different climate regimes, using both an intensive and an extensive GR. The amount of retained water increased in higher substrate depth, because more water was allowed to be stored in the active layer and consequently evaporate from the system. These results lead to the need to focus on real, intensive GR to characterize their benefits. In that scope, the aged intensive GR studied by Speak et al. [15] in Manchester, UK, achieved average retention of 65.7%. A comprehensive soil classification revealed that the growing substrate, a mineral soil used, was in good general conditions and also high in organic matter content which can increase the water-holding capacity of the soil.
Another factor that can influence the water retention and detention performance of GR is the irrigation. Perales-Momparler et al. [6] highlighted the importance of planting with vegetation with low water needs: during the start-up period of the green roof, irrigation was carried out to ensure the proper establishment and development of the plants, which significantly reduced its hydraulic efficiency to volumetric efficiencies of up to 50%. When irrigation operations were less frequent (in winter and spring seasons), the volumetric efficiency raise. In general, their study showed significantly different hydraulic behavior between GR and a conventional roof: during a typical short torrential shower (total rainfall volume of 29 mm and the maximum 10-min intensity of 43 mm/h) showed only 26% of the rainfall volume detained by the conventional roof whereas 86% efficiency was achieved in the green roof. The peak flow reduction was also substantial: conventional runoff was seven times greater than that from the green roof.
The hydrological performance of the dual-substrate-layer referred above (with a lower inorganic adsorption layer for water retention and pollutant reduction, studied by Wang et al. [17]) was relatively good because of the porous structure and large specific surface area of the adsorption materials employed, which could help to absorb and hold the water in the GR structure. The rainfall retention values observed for the six dual-substrate layer GR in their study varied from 21.1% to 81.9% with an average of 48%. The different compositions of them explain the distinct retention values. The dual-substrate-layer GR, which used the mixture of activated charcoal with perlite and vermiculite as the adsorption substrate, possessed better rainfall retention performance.
Due to the limited retain capacity of GR, the size of the rain events also influences significantly the hydrological performance of all types of GR. Carpenter et al. [4] made a study based on rainfall events to evaluate annual retention during the growing and nongrowing seasons of an existing extensive GR, composed of six types of native sedum. No differences in water retention of the GR for the growing and nongrowing seasons were found but it was inversely dependent on the size of the rainfall. Under low rainfall inputs, the GR was partially saturated and retained high amounts of rainwater (between 98% and 100% of the incoming precipitation). Inversely, high-intensity rain events and a decrease in the antecedent dry period, promoted saturation of the roof, which decreased its retention capability to only 88%. The 150 mm of soil layer GR studied by Zhang et al. [29] (with retention capacities ranging from 35.5–100%) showed a significant negative relationship between the depths of rainfall and the runoff retention rates. However, there was no correlation between the runoff retention and the antecedent dry period. The size (or depth) of the rainfall is a major factor also reported by other authors, that presented lower retention for high rainfall events [11] and a high retention efficiency for small magnitude rainfall events [26, 27].
Viola et al. [28] add that the performance of a GR increases when rainfall and potential evapotranspiration exhibit the same seasonality during the hydrological year happens, such as in humid subtropical climates. Conversely, the GR presents the minimum efficiency when rainfall and potential evapotranspiration are in counter-phase, as is found in a Mediterranean climate.
Figure 2 resumes the main aspects that influence the hydraulic performance of GR, from internal and external point of view.
Hydraulic performance of GR: intrinsic and extrinsic influencing factors.
GR also change the qualitative characteristics of stormwater runoff, due to the interaction between water and the different structural components. Both plants and substrate are expected to have a direct influence on the runoff quality, but it can be positive or negative, as they can filter or eventually be a source of contaminants. Besides, considering that rainwater is relatively pure (apart from being acidic and containing traces of nutrients and metals) the magnitude of the pollution caused by the GR can be very high [12]. The quality of the drained water flowing from GR has been carefully investigated in the last decade which is extremely important as cities are becoming greener. However, if the impacts on stormwater quality are not well known while GR are being promoted and spread over cities, there is a risk of providing contaminated water to the receiving watercourses.
It must be taken into account that GR vegetation may trap airborne particles and dust, thus eliminating them from the rainwater, which is beneficial. Also, the substrate material can act as an ion-exchange filter for pollutants, nutrients, and trace metals present in rainwater. If the ion concentration of the rainwater is high the GR components may act as a sink, decreasing the ion concentration in the GR runoff. Otherwise, if the concentration is significantly lower than the substrate one, some ions will seep into the rainwater from the substrate resulting in a higher ion concentration in the drained rainwater [12, 30].
Gregoire and Clausen [31] studied the runoff quantity and quality of a 248 m2 extensive GR and a control roof in Connecticut, USA, using a paired watershed study. The mean concentrations of TP (total phosphorus) and PO4–P (orthophosphate as phosphorus) in GR runoff were higher than in rainwater, but lower than in the runoff from the control roof. They concluded that the GR was a sink for NH3–N (ammonia-nitrogen), Zn (zinc), and Pb (lead), but not for TP, PO4–P, and total Cu (copper). The GR also reduced a load of Total Nitrogen (TN), Total Kjeldahl Nitrogen (TKN), nitrate and nitrite nitrogen (NO3 + NO2 –N), Mercury (Hg), and dissolved Cu due mainly to the reduction of the stormwater volume. The growing medium and slow-release fertilizer were the probable sources of P and Cu in GR runoff, pointed by the authors. Berndtsson et al. [32] also investigated the influence on runoff water quality from two full-scale GR located at two distinct climate regions (Japan and Sweden). Both had similar performance and were a sink of NO3–N and NH3–N. They also release dissolved organic carbon and potassium. The intensive GR was a sink of TN and Phosphorus was released from the extensive one. They were generally not a significant source of metal pollutants. In general, the concentrations of nitrogen and phosphorus compounds, as well as heavy metals, studied in the runoff from the GR were in a similar range or below the corresponding concentrations in the urban runoff. The authors concluded that GR did not provide the benefit of rainwater treatment (with exception to nitrate nitrogen) but neither would other urban impermeable surfaces.
The most common contaminants of urban stormwater runoff are heavy metals, petroleum hydrocarbons, pesticides, suspended solids, nutrients, and pathogenic microorganisms. Pollutants studied in GR runoff are most often some forms of phosphorus and nitrogen, and heavy metals. The factors that most influence GR runoff quality can be listed as follows [7] and described in the following paragraphs:
type of material used (composition of the growing substrate, drainage material and/or underlying hard roof material, rain pipes material);
type of vegetation, season (biomass using nutrients);
soil high;
type of drainage;
maintenance/fertilizers used;
dynamics of precipitation;
wind direction;
local pollution sources;
physico-chemical properties of pollutants.
Liu et al. [30] studied GR with different substrate material compositions, substrate depths, vegetation types and slope gradients, and concluded that they acted as a source of most of the studied water quality parameters. Substrate materials and vegetation types contributed notably to water quality and the ones with the less organic materials in the substrate showed better water quality. The influences of substrate depths and slope gradients on runoff water quality were small. They noted that the mean electrical conductivity (EC) increased from 295.17 μs/cm in rainwater to 418.33 μs/cm in GR runoff, due to the increase in dissolved ion content. The substrate composition was the pointed cause of the elevated concentration of anions and cations in the runoff. Still, the majority of water quality parameters of GR outflows were partly considered to be good. Previously, the same authors had studied the influence of substrate and vegetation on the water quality of GR outflows, by designing a scale-based runoff plot of extensive GR with different substrate and vegetation types [10]. The results showed that the TSS (total suspended solids), TN (total nitrogen), and TP average concentrations of the GR runoff were all significantly higher than that of the conventional roof runoff. The TN and TP concentrations of 5 cm substrate depth were significantly lower than that in the 15 cm substrate depth. This result could be explained due not to the depth of substrate but the higher content of organic matter in its substrate, thus the nutrition was more prone to being leached out from the system. In this specific case, significant differences were observed in TN concentrations between the vegetation species Sedum Spectabile and Radix Ophiopogonis, but no significant differences were observed about TP concentrations. These results imply that the phosphorus in the substrate might not be used efficiently by plants and can be leached out by stormwater runoff. Beecham and Razzaghmanesh [33] also highlighted the importance of vegetation in enhancing pollutant removal in GR systems. In the study comprising sixteen, low-maintenance and unfertilized intensive and extensive GR testing beds (100 mm and 300 mm depth media, respectively), the intensive GR performed better than the extensive ones about outflow water quality, while in the non-vegetated beds, the extensive beds performed better than intensive systems. In addition, growing medium with less organic matter had better water quality performance. Generally, the pollutant concentrations were higher in runoff from non-vegetated beds. This was believed to be partly due to leaching from the growing medium and partly due to plant uptake in the vegetated beds.
However, the results reported by Akther et al. [34] pointed in the opposite direction, because vegetation played a secondary or minor role when compared to growing substrate in the nutrient leaching of the GR outflow. They characterized and modeled the temporal behavior of nutrient leaching from GR in both laboratory and field settings and concluded that the leaching behavior was very similar in both locations: the degree of nutrient leaching declined temporally, and the growing medium was proved to be the primary source for nutrients being gradually washed off by infiltrated water. In addition, they showed that nitrogen (N) leach quicker than phosphorus (P) from the GR, which is consistent with the higher mobility in the soil of N compared to P. The degree of nutrient leaching in their study was associated with the chemical properties (e.g., the nutrient content) of the growing medium.
Razzaghmanesh et al. [35] also studied the growing medium influence in the water quality of the outflow from intensive and extensive full-scale GR located on the roof top of a 22-storey building in the Adelaide CBD, South Australia. the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive GR outflows were higher than in the outflows from the extensive GR, (except for some events and EC, TDS (total dissolved solids) and chloride). Generally, the performance of the extensive GR was better than the intensive systems in terms of pollutant removal, which may be related to the reduced volume of substrate that can leach pollutants. A very interesting aspect highlighted by the authors was that the contaminant concentrations in runoff from both intensive and extensive GR generally decreased during the study period: the concentrations at the start of the investigation were higher than towards the end of the nine months for most of the studied pollutants. This was an expected result once the systems settle down and the chemicals within the growing medium leach out over time. Table 2 presents a resume of GR and traditional roofs runoff values.
Water quality parameter | Experimental data | ||
---|---|---|---|
Asphalt roof (average, mg/L) | Aluminum roof (average, mg/L) | Green roofs range (mg/L) | |
pH | 7.13 | 7.58 | 6.72-8.45 b |
Turbidity (NTU)a | 2.98 | 1.26 | 4.0-300 b |
EC (μS/cm) | 75.00 | 23.00 | <100 b |
Chloride (mg/L) | 1.25 | 1.03 | <30 b |
Total dissolved solids (mg/L) | 37.00 | 31.00 | 385.77 |
Nitrate (mg/L)a | 2.62 | 1.90 | 2.20-39.20 |
Phosphorous (mg/L)a | 0.14 | 0.16 | 0.20-2.20 |
Potassium (mg/L)a | 9.60 | 3.00 | 38.37 |
Water quality of outflows from green roofs and control roofs (adapted from Razzaghmanesh, et al. [35]).
Pollutant level is above the potable standard level.
USEPA. Guidelines for water reuse (2012) EPA/600/R-12/618.
To understand the influence of roof age and hydro-meteorological variables on the temporal evolution of chemical leaching in GR, Akther et al. [16] monitored in 2015–2018 a full-scale extensive GR and a reference roof located in a cold and semi-arid climate region. During the study period, their GR also leached nutrients (N and P) and constituents represented by EC, whereas it removed metals (Zn, Cu, and Pb). The degree of chemical leaching declined temporally: the leaching of N appeared to cease, whereas P leaching was still ongoing at the end of the study period. Also focusing on the GR age, Todorov et al. [37] presented a four-year study of water quality in runoff from an extensive vegetated roof, sedum covered, initiating with the first growing season. The GR also proved to be a sink of N, TP and chloride (Cl), and a source of phosphate and dissolved inorganic and organic carbon. Once the roof growing medium is designed to sustain plant growth, it is supposed to be rich in N and P. Both NO3− and NH4+ are essential nutrients for the plants and their retention in the vegetated roof was possibly a result of assimilation by the sedum species. In general, the water drained from the vegetated and impermeable roofs presented good quality, meeting the United States Environmental Protection Agency freshwater standards for all parameters, except for TP.
The studies presented so far, might suggest that GR are bad solutions regarding stormwater quality, at first sight. The work presented by Perales-Mompaler et al. [6] is no exception, once the resulting values of chemical oxygen demand (COD), TSS, TN and TP were higher than the non-vegetated roof, except for TSS which was usually below 20 mg/L. Nutrients (TN and TP) and organic matter (COD) were notably higher in runoff from the GR showing the washing of dissolved substances. However, despite presenting higher concentrations of COD and nutrients, the total loads drained by the GR were lower than that drained by the non-vegetated roof, due to the higher volumetric efficiency of the green roof. Also in this study, the reported washing effect declined after some time: COD concentrations decreased from values higher than 350 mg/L to 50 mg/L and similar trends were observed for TN and TP. After 17 rainfall events (total volume drained 9.0 m3), TN and TP concentrations were reduced by approximately one-half. Carpenter et al. [4] examined a GR in Syracuse, NY and also reported that overall, nutrient losses were low because of the strong retention of water. They reported seasonal variabilities, as runoff waters exhibited a high concentration of nutrients during the warm temperature growing season, particularly TN and dissolved organic carbon (DOC). There was marked variation in the retention of nutrients by season shown by the variation in roof runoff concentrations. The GR served as a sink for wet deposition inputs of TN and TP for the majority of rain events. In contrast, the roof was a source of DOC during the growing season and a sink of DOC during the non-growing season. Overall, the experiment also revealed that nutrient retention is dependent on water retention. Although, nutrient concentrations and fluxes in roof drainage were greater than in the incoming precipitation, the total loading of TN and TP was attenuated because precipitation quantity was strongly retained. According to the authors, the elevated concentrations of those nutrients in GR drainage are not an issue of concern as the strong retention of water results in limited mass loss of nutrients from the GR to the sewer system.
A direct correlation exists between the magnitude of the rain events and the number of solids in the GR runoff. During small rain events, nutrients and sediment that are washed off from traditional roofs are retained on the GR because there was no runoff. This would lead to misleading higher concentrations from the GR in future larger rain events. New GR tend to be a source of pollutants, due to the initial nutrient load that comes from the decomposition of organic matter that was incorporated into the original substrate mix. On the opposite perspective, established vegetation and substrates can improve the water quality of runoff by absorbing and filtering pollutants [24]. These findings lead to more diligent use of fertilizers to minimize the adverse impact on stormwater runoff. Even though, if nutrient loading remains a problem on implemented GR a possible solution is to couple them with other green infrastructures, such as rain gardens and bioswales.
Buffam et al. [38] analyzed the runoff from more than 80 rain events over 2 years, in the extensive GR in Cincinnati, USA referred previously. Strong seasonal patterns were observed in bioactive elements. Carbon, nitrogen, phosphorus, and base cation concentrations were highest in the summer, and were positively correlated with temperature. They concluded that temperature-mediated processes, rather than plant uptake or hydrologic variation among storms, were major controlling mechanisms for the GR runoff water quality. The seasonal variation in GR runoff water quality, according to the authors, might be due to:
The plant-mediated nutrient cycling being altered during the growing season, either through direct plant uptake, or by the release of soil exudates;
The chemical dissolution of minerals or ion desorption in the GR substrate, that are more rapid at higher temperatures;
The increase of the microbial mineralization rates of the substrate organic matter with temperature, releasing dissolved inorganic nitrogen and phosphorous and solubilizing dissolved oxygen carbon;
The season variability of GR hydrodynamics: evapotranspiration rates and rainfall event size and duration change with the season. Rapid drying occurs in the summer because of higher evapotranspiration rates, and short-duration high-intensity thunderstorms are more common in the warmer months, leading to a more rapid, episodic flow-through dynamic than in winter.
Zhang et al. [39] examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with a 15 cm substrate and plants GR and concluded that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. The water quality of the roof runoff was closely related to the roofing material and the season when rainwater is harvested. Seasonal trends were verified in the water quality parameters of this study, which showed lower pollutants in roof runoff in summer and autumn, than those in winter and spring. The main pollutants of roof runoff from the four roofs studied, which exceeded the drinking water standard, were TN and COD. The effect of conventional roofing materials (asphalt fiberglass shingle, Galvalume-metal, and concrete tile) and alternative ones (cool and green) on harvested rainwater quality was also studied by Mendez et al. [36]. They demonstrated that if the consumer wanted to meet primary and secondary drinking water standards or non-potable water reuse guidelines, the rainwater harvested from any of these roofing materials would require treatment. The shingle roof and the GR drained water with very high concentrations of dissolved organic carbon, which might result in high concentrations of disinfection by-products after chlorination. Moreover, based on the concentrations of some metals (e.g., arsenic) in the harvested rainwater, the authors stated that the quality of the commercial growing medium should be carefully examined when the harvested rainwater is considered for domestic use.
As referred previously, the dual-substrate-layer extensive GR presented by Wang et al. [17] used porous inert materials (activated charcoal, zeolite, pumice, lava, vermiculite and expanded perlite) as the adsorption substrate, both to retain rainwater and to reduce pollutant leaching. Its performance, regarding runoff quality was assessed with six pilot-scale units (with different adsorption substrate) compared to a traditional single-substrate-layer extensive green roof. Results showed that dual-substrate-layer GR supported better natural vegetation growth, with coverage exceeding 90%, while the coverage in single substrate-layer GR was over 80%. All pilot-scale units acted as sinks for organics, heavy metals and all forms of nitrogen in all cases. They also showed that the dual-substrate-layer extensive GR performed better than the single-substrate-layer GR in retaining nitrogen, phosphorus, organics and turbidity.
When GR are enlarged to rooftop vegetable farms, the use of fertilizers might be a cause of concern. The example presented by Harada et al. [40] had atmospheric deposition of Pb and Mn exceeding the drainage output, which indicates that it is a net sink for these metals. Whittinghill et al. [14] also studied the impact of rooftop farming on stormwater runoff comparing a suite of extensive, sedum GR, located in New York City. Results indicate that the pH of runoff from the rooftop farm was slightly lower than that of the extensive GR, but the EC, apparent color, and TSS concentrations were higher, as well as the concentrations of nitrate-N, phosphorus, potassium, calcium, and magnesium. However, changes in nutrient management practices would help reduce these values.
The possible negative effects of fertilization o stormwater runoff have to be taken seriously in order not to damage the positive environmental image of GR. Emilsson et al. [41] investigated nutrient runoff, substrate nutrient storage and plant uptake following fertilization of vegetation mats, shoot-established vegetation systems and unvegetated substrate using three levels of fertilizer applied as either controlled-release fertilizer (CRF), or as a combination of CRF and conventional fertilizer. Their study clearly shows that conventional fertilizers should be avoided unless the water is either recycled or reused on the roofs or other vegetated surfaces in the first weeks following fertilization. Fertilization of old vegetation mats reduced the risk for nutrient leaching compared to fertilization of newly established roofs. They associated these results with temporary storage in the substrate and increased uptake by vegetation, however, the temporary storage of nutrients following fertilization indicated that there might be a risk for prolonged leaching. The aspects that influence the establishment of GR must be considered when designing a GR substrate and the vegetation cover. The maintenance requirements depend on the defined characteristics. Flowering and lush vegetation are not the most adequate types of plants, and fertilization might not be needed at all [41].
In summary, the runoff quality of GR is influenced by inherent and external factors of the GR, as presented in Table 3.
Pollutant source | Pollutant sinks | |
---|---|---|
Inherent factors | The substrate, including component materials and depth, may contain heavy metals and nutrients that could contribute to leachate. Structural layers may contribute to heavy metal accumulation due to metal, plastic, and polymer materials used in construction. Plants are ambiguous. On one hand, they can act as an uptake of contaminants, on the other, they can be a pollutant source. | Plants behave as an uptake of contaminants by physiological metabolism of plant tissue and rhizospheric microorganisms Natural or artificial substrate added components that have the capacity of nutrient retention. |
External factors | Irrigation, if supply water is contaminated (especially reclaimed water), with diverse nutrients such as N and P. Fertilizer and pesticides, including organic and chemical fertilizers and organic phosphor, chlorine, and nitrogen. Atmospheric deposition, including dry and wet deposition resulting from gravity and rainfall respectively. Age, as over time the plant biomass and ecological functions of the GR as well as levels of metal pollutants will increase, and substrate nutrients will decrease | The age of GR, can influence water conductivity and substrate pollutant retention. The age of the vegetation mat will affect the nutrient content of runoff. Newly-built GR have temporarily high nutrient levels that are steadily assimilated and degraded over time. |
Potential of different factors, to be source or sink of pollutants (adapted from Vijayaraghavan, et al. [12]).
In terms of the potential for recycling of outflow water from GR, national and international standards indicate that such water can be reused for urban landscape irrigation and non-potable purposes such as toilet flushing. Nevertheless, treatment is required if the consumer wants to meet primary and secondary drinking water standards or demands requirement for non-potable water reuse guidelines [33, 35, 36, 39].
Stormwater control is critical to the continuous development and sustainability of urban areas, once the soil sealing caused by the increase of urbanization, together with the occurrence of more frequent extreme events due to climate change, will keep worsen the consequences of urban flood and the degeneration of water resources. GR are a type or NbS with several benefits that can help to minimize these problems.
Studies as the ones made by Karteris et al. [22] and by Hoeben and Posh [20] show the potential of implementing GR in cites (in new or existing buildings), making them more environmentally friendly, even with lack of available areas at the ground level. The majority of roof tops are unused spaces that might be transformed in a green space and a new ecosystem. The benefits of such transformation are well documented in the previous subchapters, being the most relevant the high potential of reducing CO2 emissions (both due to the energy conservation and the CO2absorption), the increase of the rainwater retention rate and the delay of peak flow, which can reduce flood occurrence and negative environmental consequences to cities and its population.
Values resulting from the presented publications show GR retention rates of rainwater above 50%, reaching 100% in many cases, specifically when small-intensity rainfall events occur. Many factors were studied to understand the retention performance of GR, but it seems that the more relevant ones are the depth of substrates (intensive GR have higher retention rates than extensive ones) and the rainfalls characteristics. The retain capacity of the GR are limited and once the substrate becomes saturated, stormwater retention volume decreases significantly. However, even in those worst cases, the GR plants absorb part of the infiltrated water and extend the path taken by the water, leading to the decrease of the amount of runoff and the delay of the flood peak. Future investigations will continue to develop and search for more hydraulic-efficient GR and to understand the real effects of the large-scale implementation of GR. Long-term assessments must be made to consider variable weather conditions between years and seasons. There have been several attempts to create mathematical models to predict the runoff coefficient for distinct configurations of GR [16, 28], but the complex characteristics of these living systems, with specific dynamics and very dependent on the climatic conditions, make generalizations difficult.
Another important aspect that has been attracting the attention of investigators is the changes that GR cause on stormwater runoff quality. Plants, substrates, soil insects and microorganisms are expected to remove pollutants from rainwater in GR systems. However, the majority of the presented studies reveal that GR are a sink for heavy metals and all forms of nitrogen, but are generally a source of phosphate and dissolved inorganic and organic carbon in the growing seasons, as presented by Carpenter et al. [4], because the concentration of these parameters is higher in the runoff than in the precipitation water. This reveals significant concern about the effects of GR in urban water resources. Higher concentrations of pollutants were found in the deeper substrates and the performance of the extensive GR is, in most cases, better than the intensive systems. Intensive GR usually need fertilizers that remain in the substrates and are continuously leaching in the runoff. Since nutrients are essential for the plants especially in the first establishment years and in the growing seasons, it is not a surprise that the age of the GR has a beneficial effect in the chemical leaching of GR, as presented by the long-term studies [16, 37]. However, once that the runoff volume from GR is smaller than runoff from traditional roofs, the total discharged loads of these pollutants are smaller too. Most of the referred authors compared the GR runoff to the freshwater standards and concluded that, in general, it presents good quality and meets those standards, being also suitable for some non-potable uses. Another beneficial effect of GR reported by some authors [29, 32] is that acid deposition is neutralized by vegetation and the growing medium, revealing the potential of GR to mitigate acid rain runoff in densely populated urban areas.
Each GR is a unique system, thus differing from each other. Their nature-based characteristics make them develop and interact with the surrounding environment on their terms. The leaching problem is already defined, and solutions will be developed to minimize its consequences. First, the use of fertilizers must be very controlled and mostly avoided. Then, the implementation of layers that retain nutrients is also being considered. Also, the control of the discharged GR water may avoid the contamination of watercourses: first-flush systems might be considered, or drainage pipes can lead to gardens and/or to infiltration trenches to dispose of the nutrients in the soil. In that scope, combined solutions of GR with other LID structures must be considered when implementing GR in a neighborhood or site scale.
To pursuit circular economies, the adequacy of recycled materials in the GR substrate is also being studied which require new approaches in the study of the GR runoff quality and quantity. The use of alternative sources of water (such as greywater from the building) to irrigate might also be considered but their impacts on the runoff should be carefully assessed. Innovations will also focus on customizable low-cost and innovative GR designs, increasing the number of possible configurations, and hopefully leading to multi-perspective assessments.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22423},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33699}],offset:12,limit:12,total:135705},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11817",title:"Next Generation Fiber-Reinforced Composites - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"bdff63f3c5e98fc95d76217516cb1420",slug:null,bookSignature:"Dr. Longbiao Li",coverURL:"https://cdn.intechopen.com/books/images_new/11817.jpg",editedByType:null,editors:[{id:"302409",title:"Dr.",name:"Longbiao",surname:"Li",slug:"longbiao-li",fullName:"Longbiao Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11556",title:"Numerical Simulation",subtitle:null,isOpenForSubmission:!0,hash:"0a68fbeb303684344bda285aa06769af",slug:null,bookSignature:"Dr. Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/11556.jpg",editedByType:null,editors:[{id:"257455",title:"Dr.",name:"Ali",surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11766",title:"Cast Iron - Production, Properties, Characterization, and Casting Defects Analysis",subtitle:null,isOpenForSubmission:!0,hash:"821766a37d38da743321864be6b2334a",slug:null,bookSignature:"Prof. Thoguluva Raghavan Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/11766.jpg",editedByType:null,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11933",title:"Geothermal Energy - Impacts and Improvements",subtitle:null,isOpenForSubmission:!0,hash:"339e74c3bcb3c7725a830d8b41278ca1",slug:null,bookSignature:"D.Sc. Zayre Ivonne González Acevedo and Dr. Marco Antonio García Zarate",coverURL:"https://cdn.intechopen.com/books/images_new/11933.jpg",editedByType:null,editors:[{id:"260177",title:"D.Sc.",name:"Zayre Ivonne",surname:"González Acevedo",slug:"zayre-ivonne-gonzalez-acevedo",fullName:"Zayre Ivonne González Acevedo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11923",title:"Updates on Image Segmentation",subtitle:null,isOpenForSubmission:!0,hash:"687a58dfbb2e544237cda3807153ff2c",slug:null,bookSignature:"Dr. Paulo Eduardo Ambrosio",coverURL:"https://cdn.intechopen.com/books/images_new/11923.jpg",editedByType:null,editors:[{id:"256064",title:"Dr.",name:"Paulo",surname:"Ambrosio",slug:"paulo-ambrosio",fullName:"Paulo Ambrosio"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11758",title:"Glass-Ceramics - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e03ff7760e0aaea457f259ab63153846",slug:null,bookSignature:" Uday M. Basheer",coverURL:"https://cdn.intechopen.com/books/images_new/11758.jpg",editedByType:null,editors:[{id:"182041",title:null,name:"Uday",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11865",title:"Operator Theory - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"acb2875b3bfc189c9881a9b44b6a5184",slug:null,bookSignature:"Dr. Abdo Abou Jaoudé",coverURL:"https://cdn.intechopen.com/books/images_new/11865.jpg",editedByType:null,editors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11563",title:"A Comprehensive Review of the Versatile Dehydration Processes",subtitle:null,isOpenForSubmission:!0,hash:"91d7853d4e74d161d7a8f5913626cf94",slug:null,bookSignature:"Ph.D. Jelena Jovanovic",coverURL:"https://cdn.intechopen.com/books/images_new/11563.jpg",editedByType:null,editors:[{id:"447810",title:"Ph.D.",name:"Jelena",surname:"Jovanovic",slug:"jelena-jovanovic",fullName:"Jelena Jovanovic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:108},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"968",title:"Mathematical Modeling",slug:"applied-mathematics-mathematical-modeling",parent:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:31,numberOfWosCitations:6,numberOfCrossrefCitations:20,numberOfDimensionsCitations:36,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"968",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7751",title:"Fault Detection, Diagnosis and Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"d54796f7da58f58fa679b94a2b83af00",slug:"fault-detection-diagnosis-and-prognosis",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/7751.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"70649",doi:"10.5772/intechopen.90158",title:"Real-Time Fault Detection and Diagnosis Using Intelligent Monitoring and Supervision Systems",slug:"real-time-fault-detection-and-diagnosis-using-intelligent-monitoring-and-supervision-systems",totalDownloads:1116,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"In monitoring and supervision schemes, fault detection and diagnosis characterize high efficiency and quality production systems. To achieve such properties, these structures are based on techniques that allow detection and diagnosis of failures in real time. Detection signals faults and diagnostics provide the root cause and location. Fault detection is based on signal and process mathematical models, while fault diagnosis is focused on systems theory and process modeling. Monitoring and supervision complement each other in fault management, thus enabling normal and continuous operation. Its application avoids stopping productive processes by early detection of failures and by applying real-time actions to eliminate them, such as predictive and proactive maintenance based on process conditions. The integration of all these methodologies enables intelligent monitoring and supervision systems, enabling real-time fault detection and diagnosis. Their high performance is associated with statistical decision-making techniques, expert systems, artificial neural networks, fuzzy logic and computational procedures, making them efficient and fully autonomous in making decisions in the real-time operation of a production system.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Gustavo Pérez Alvarez",authors:[{id:"216192",title:"Dr.",name:"Gustavo",middleName:"Pérez",surname:"Alvarez",slug:"gustavo-alvarez",fullName:"Gustavo Alvarez"}]},{id:"65244",doi:"10.5772/intechopen.83810",title:"Fault Diagnosis Techniques for a Wind Turbine System",slug:"fault-diagnosis-techniques-for-a-wind-turbine-system",totalDownloads:1283,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"The fault diagnosis and prognosis of wind turbine systems represent a challenging issue, thus justifying the research topics developed in this work with application to safety-critical systems. Therefore, this chapter addresses these research issues and demonstrates viable techniques of fault diagnosis and condition monitoring. To this aim, the design of the so-called fault detector relies on its estimate, which involves data-driven methods, as they result effective methods for managing partial information of the system dynamics, together with errors, model-reality mismatch and disturbance effects. In particular, the considered data-driven strategies use fuzzy systems and neural networks, which are employed to establish non-linear dynamic links between measurements and faults. The selected prototypes are based on non-linear autoregressive with exogenous input descriptions, since they are able to approximate non-linear dynamic functions with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis schemes are verified via a high-fidelity simulator, which describes the normal and the faulty behaviour of a wind turbine plant. Finally, the robustness and the reliability features of the proposed methods are validated in the presence of uncertainty and disturbance implemented in the wind turbine simulator.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Silvio Simani and Paolo Castaldi",authors:[{id:"209626",title:"Prof.",name:"Silvio",middleName:null,surname:"Simani",slug:"silvio-simani",fullName:"Silvio Simani"},{id:"209627",title:"Dr.",name:"Paolo",middleName:null,surname:"Castaldi",slug:"paolo-castaldi",fullName:"Paolo Castaldi"}]},{id:"70067",doi:"10.5772/intechopen.90157",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:2880,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that define the concept of mathematical probability. This system can be developed to include the set of imaginary numbers by adding a supplementary three original axioms. Therefore, any experiment can be performed in the set \n\nC\n\n of complex probabilities which is the summation of the set \n\nR\n\n of real probabilities and the set \n\nM\n\n of imaginary probabilities. The purpose here is to include additional imaginary dimensions to the experiment taking place in the “real” laboratory in \n\nR\n\n and hence to evaluate all the probabilities. Consequently, the probability in the entire set \n\nC\n=\nR\n+\nM\n\n is permanently equal to one no matter what the stochastic distribution of the input random variable in \n\nR\n\n is; therefore the outcome of the probabilistic experiment in \n\nC\n\n can be determined perfectly. This is due to the fact that the probability in \n\nC\n\n is calculated after subtracting from the degree of our knowledge the chaotic factor of the random experiment. Consequently, the purpose in this chapter is to join my complex probability paradigm to the analytic prognostic of buried petrochemical pipelines in the case of linear damage accumulation. Accordingly, after the calculation of the novel prognostic model parameters, we will be able to evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex probability, the probabilities of the system failure and survival, and the probability of the remaining useful lifetime; after that a pressure time t has been applied to the pipeline, which are all functions of the system degradation subject to random and stochastic influences.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}]},{id:"65747",doi:"10.5772/intechopen.82781",title:"Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB",slug:"prognostics-102-efficient-bayesian-based-prognostics-algorithm-in-matlab",totalDownloads:1359,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"An efficient Bayesian-based algorithm is presented for physics-based prognostics, which combines a physical model with observed health monitoring data. Unknown model parameters are estimated using the observed data, from which the remaining useful life (RUL) of the system is predicted. This paper focuses on the Bayesian method for parameter estimation of a damage degradation model where epistemic uncertainty in model parameters is reduced with the observed data. Markov-chain Monte Carlo sampling is used to generate samples from the posterior distribution, which are then propagated through the physical model to estimate the distribution of the RUL. A MATLAB script of 76 lines is included in this paper with detailed explanations. A battery degradation model and crack growth model are used to explain the process of parameter estimation, the evolution of degradation and RUL prediction. The code presented in this paper can easily be altered for different applications. This code may help beginners to understand and use Bayesian method-based prognostics.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Ting Dong, Dawn An and Nam H. Kim",authors:[{id:"278745",title:"Prof.",name:"Nam-Ho",middleName:null,surname:"Kim",slug:"nam-ho-kim",fullName:"Nam-Ho Kim"},{id:"285438",title:"Ms.",name:"Ting",middleName:null,surname:"Dong",slug:"ting-dong",fullName:"Ting Dong"},{id:"285439",title:"Dr.",name:"Dawn",middleName:null,surname:"An",slug:"dawn-an",fullName:"Dawn An"}]},{id:"68233",doi:"10.5772/intechopen.88217",title:"Fault Detection of Single and Interval Valued Data Using Statistical Process Monitoring Techniques",slug:"fault-detection-of-single-and-interval-valued-data-using-statistical-process-monitoring-techniques",totalDownloads:731,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Principal component analysis (PCA) is a linear data analysis technique widely used for fault detection and isolation, data modeling, and noise filtration. PCA may be combined with statistical hypothesis testing methods, such as the generalized likelihood ratio (GLR) technique in order to detect faults. GLR functions by using the concept of maximum likelihood estimation (MLE) in order to maximize the detection rate for a fixed false alarm rate. The benchmark Tennessee Eastman Process (TEP) is used to examine the performance of the different techniques, and the results show that for processes that experience both shifts in the mean and/or variance, the best performance is achieved by independently monitoring the mean and variance using two separate GLR charts, rather than simultaneously monitoring them using a single chart. Moreover, single-valued data can be aggregated into interval form in order to provide a more robust model with improved fault detection performance using PCA and GLR. The TEP example is used once more in order to demonstrate the effectiveness of using of interval-valued data over single-valued data.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Mohammed Ziyan Sheriff, Nour Basha, Muhammad Nazmul Karim, Hazem Nounou and Mohamed Nounou",authors:[{id:"21281",title:"Prof.",name:"Hazem",middleName:"Numan",surname:"Nounou",slug:"hazem-nounou",fullName:"Hazem Nounou"},{id:"21282",title:"Prof.",name:"Mohamed N.",middleName:null,surname:"Nounou",slug:"mohamed-n.-nounou",fullName:"Mohamed N. Nounou"},{id:"191340",title:"Mr.",name:"M. Ziyan",middleName:null,surname:"Sheriff",slug:"m.-ziyan-sheriff",fullName:"M. Ziyan Sheriff"},{id:"191345",title:"Prof.",name:"M. Nazmul",middleName:null,surname:"Karim",slug:"m.-nazmul-karim",fullName:"M. Nazmul Karim"},{id:"253580",title:"Mr.",name:"Nour",middleName:null,surname:"Basha",slug:"nour-basha",fullName:"Nour Basha"}]}],mostDownloadedChaptersLast30Days:[{id:"70067",title:"Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines and the Complex Probability Paradigm",slug:"analytic-prognostic-in-the-linear-damage-case-applied-to-buried-petrochemical-pipelines-and-the-comp",totalDownloads:2906,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that define the concept of mathematical probability. This system can be developed to include the set of imaginary numbers by adding a supplementary three original axioms. Therefore, any experiment can be performed in the set \n\nC\n\n of complex probabilities which is the summation of the set \n\nR\n\n of real probabilities and the set \n\nM\n\n of imaginary probabilities. The purpose here is to include additional imaginary dimensions to the experiment taking place in the “real” laboratory in \n\nR\n\n and hence to evaluate all the probabilities. Consequently, the probability in the entire set \n\nC\n=\nR\n+\nM\n\n is permanently equal to one no matter what the stochastic distribution of the input random variable in \n\nR\n\n is; therefore the outcome of the probabilistic experiment in \n\nC\n\n can be determined perfectly. This is due to the fact that the probability in \n\nC\n\n is calculated after subtracting from the degree of our knowledge the chaotic factor of the random experiment. Consequently, the purpose in this chapter is to join my complex probability paradigm to the analytic prognostic of buried petrochemical pipelines in the case of linear damage accumulation. Accordingly, after the calculation of the novel prognostic model parameters, we will be able to evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex probability, the probabilities of the system failure and survival, and the probability of the remaining useful lifetime; after that a pressure time t has been applied to the pipeline, which are all functions of the system degradation subject to random and stochastic influences.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Abdo Abou Jaoude",authors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}]},{id:"65244",title:"Fault Diagnosis Techniques for a Wind Turbine System",slug:"fault-diagnosis-techniques-for-a-wind-turbine-system",totalDownloads:1286,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"The fault diagnosis and prognosis of wind turbine systems represent a challenging issue, thus justifying the research topics developed in this work with application to safety-critical systems. Therefore, this chapter addresses these research issues and demonstrates viable techniques of fault diagnosis and condition monitoring. To this aim, the design of the so-called fault detector relies on its estimate, which involves data-driven methods, as they result effective methods for managing partial information of the system dynamics, together with errors, model-reality mismatch and disturbance effects. In particular, the considered data-driven strategies use fuzzy systems and neural networks, which are employed to establish non-linear dynamic links between measurements and faults. The selected prototypes are based on non-linear autoregressive with exogenous input descriptions, since they are able to approximate non-linear dynamic functions with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis schemes are verified via a high-fidelity simulator, which describes the normal and the faulty behaviour of a wind turbine plant. Finally, the robustness and the reliability features of the proposed methods are validated in the presence of uncertainty and disturbance implemented in the wind turbine simulator.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Silvio Simani and Paolo Castaldi",authors:[{id:"209626",title:"Prof.",name:"Silvio",middleName:null,surname:"Simani",slug:"silvio-simani",fullName:"Silvio Simani"},{id:"209627",title:"Dr.",name:"Paolo",middleName:null,surname:"Castaldi",slug:"paolo-castaldi",fullName:"Paolo Castaldi"}]},{id:"65747",title:"Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB",slug:"prognostics-102-efficient-bayesian-based-prognostics-algorithm-in-matlab",totalDownloads:1363,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"An efficient Bayesian-based algorithm is presented for physics-based prognostics, which combines a physical model with observed health monitoring data. Unknown model parameters are estimated using the observed data, from which the remaining useful life (RUL) of the system is predicted. This paper focuses on the Bayesian method for parameter estimation of a damage degradation model where epistemic uncertainty in model parameters is reduced with the observed data. Markov-chain Monte Carlo sampling is used to generate samples from the posterior distribution, which are then propagated through the physical model to estimate the distribution of the RUL. A MATLAB script of 76 lines is included in this paper with detailed explanations. A battery degradation model and crack growth model are used to explain the process of parameter estimation, the evolution of degradation and RUL prediction. The code presented in this paper can easily be altered for different applications. This code may help beginners to understand and use Bayesian method-based prognostics.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Ting Dong, Dawn An and Nam H. Kim",authors:[{id:"278745",title:"Prof.",name:"Nam-Ho",middleName:null,surname:"Kim",slug:"nam-ho-kim",fullName:"Nam-Ho Kim"},{id:"285438",title:"Ms.",name:"Ting",middleName:null,surname:"Dong",slug:"ting-dong",fullName:"Ting Dong"},{id:"285439",title:"Dr.",name:"Dawn",middleName:null,surname:"An",slug:"dawn-an",fullName:"Dawn An"}]},{id:"70649",title:"Real-Time Fault Detection and Diagnosis Using Intelligent Monitoring and Supervision Systems",slug:"real-time-fault-detection-and-diagnosis-using-intelligent-monitoring-and-supervision-systems",totalDownloads:1119,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"In monitoring and supervision schemes, fault detection and diagnosis characterize high efficiency and quality production systems. To achieve such properties, these structures are based on techniques that allow detection and diagnosis of failures in real time. Detection signals faults and diagnostics provide the root cause and location. Fault detection is based on signal and process mathematical models, while fault diagnosis is focused on systems theory and process modeling. Monitoring and supervision complement each other in fault management, thus enabling normal and continuous operation. Its application avoids stopping productive processes by early detection of failures and by applying real-time actions to eliminate them, such as predictive and proactive maintenance based on process conditions. The integration of all these methodologies enables intelligent monitoring and supervision systems, enabling real-time fault detection and diagnosis. Their high performance is associated with statistical decision-making techniques, expert systems, artificial neural networks, fuzzy logic and computational procedures, making them efficient and fully autonomous in making decisions in the real-time operation of a production system.",book:{id:"7751",slug:"fault-detection-diagnosis-and-prognosis",title:"Fault Detection, Diagnosis and Prognosis",fullTitle:"Fault Detection, Diagnosis and Prognosis"},signatures:"Gustavo Pérez Alvarez",authors:[{id:"216192",title:"Dr.",name:"Gustavo",middleName:"Pérez",surname:"Alvarez",slug:"gustavo-alvarez",fullName:"Gustavo Alvarez"}]},{id:"69286",title:"Probabilistic Methods for Cognitive Solving of Some Problems in Artificial Intelligence Systems",slug:"probabilistic-methods-for-cognitive-solving-of-some-problems-in-artificial-intelligence-systems",totalDownloads:816,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"As a result of the analysis of dispatcher intelligence centers and aerial, land, underground, underwater, universal, and functionally focused artificial intelligence robotics systems, the problems of rational control, due to be performed under specific conditions of uncertainties, are chosen for probabilistic study. The choice covers the problems of planning the possibilities of functions performance on the base of monitored information about events and conditions and the problem of robot route optimization under limitations on risk of “failure” in conditions of uncertainties. These problems are resolved with a use of the proposed probabilistic approach. The proposed methods are based on selected probabilistic models (for “black box” and complex systems), which are implemented effectively in wide application areas. The cognitive solving of problems consists in improvements, accumulation, analysis, and use of appearing knowledge. The described analytical solutions are demonstrated by practical examples.",book:{id:"8656",slug:"probability-combinatorics-and-control",title:"Probability, Combinatorics and Control",fullTitle:"Probability, Combinatorics and Control"},signatures:"Andrey Kostogryzov and Victor Korolev",authors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"},{id:"298431",title:"Dr.",name:"Victor",middleName:null,surname:"Korolev",slug:"victor-korolev",fullName:"Victor Korolev"}]}],onlineFirstChaptersFilter:{topicId:"968",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"83129",title:"Airborne Transmission and Control of Influenza and Other Respiratory Pathogens",doi:"10.5772/intechopen.106446",signatures:"Jacob Bueno de Mesquita",slug:"airborne-transmission-and-control-of-influenza-and-other-respiratory-pathogens",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"83150",title:"Perspective Chapter: Tracking Trails of SARS CoV-2 - Variants to Therapy",doi:"10.5772/intechopen.106472",signatures:"Ankur Kumar, Manju O Pai, Gaurav Badoni, Arpana Singh, Ankit Agrawal and Balram Ji Omar",slug:"perspective-chapter-tracking-trails-of-sars-cov-2-variants-to-therapy",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Chemical Biology",value:15,count:4,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:18,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:755,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a scientist and Principal Investigator at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering the lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via artificial intelligence-based analyses of exosomal Raman signatures. Dr. Paul also works on spatial multiplex immunofluorescence-based tissue mapping to understand the immune repertoire in lung cancer. Dr. Paul has published in more than sixty-five peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award and the 2022 AAISCR-R Vijayalaxmi Award for Innovative Cancer Research. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:210,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:186,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:240,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:14,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:{name:"University of Macau",institutionURL:null,country:{name:"Macau"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"