Measurement condition in simulations.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"5252",leadTitle:null,fullTitle:"Integrated Pest Management (IPM): Environmentally Sound Pest Management",title:"Integrated Pest Management (IPM)",subtitle:"Environmentally Sound Pest Management",reviewType:"peer-reviewed",abstract:"This book is an update on environmentally sound pest management practices under the umbrella of integrated pest management (IPM). It consists of seven contributions from different authors providing information on pest management approaches as chemical alternatives. The book chapters detail about historical review of IPM concepts; strategies and some experiences in applications of IPM in Latin America; pest control in organic agricultural system; and the use of entomopathogenic and molluscoparasitic nematodes, insect pheromones, semiochemicals, detergents, and soaps as a part of IPM scheme. The goal of this book is to provide the most up-to-date review on information available around chemical alternatives in IPM. Therefore, this book will equip academia and industry with adequate basic concepts and applications of IPM as eco-friendly pest management option.",isbn:"978-953-51-2613-3",printIsbn:"978-953-51-2612-6",pdfIsbn:"978-953-51-5450-1",doi:"10.5772/61693",price:119,priceEur:129,priceUsd:155,slug:"integrated-pest-management-ipm-environmentally-sound-pest-management",numberOfPages:200,isOpenForSubmission:!1,isInWos:1,hash:"8f2c00d77debd573ce98ad0af592512a",bookSignature:"Harsimran Kaur Gill and Gaurav Goyal",publishedDate:"August 31st 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5252.jpg",numberOfDownloads:11509,numberOfWosCitations:4,numberOfCrossrefCitations:18,numberOfDimensionsCitations:24,hasAltmetrics:1,numberOfTotalCitations:46,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 20th 2015",dateEndSecondStepPublish:"November 10th 2015",dateEndThirdStepPublish:"February 14th 2016",dateEndFourthStepPublish:"May 14th 2016",dateEndFifthStepPublish:"June 13th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"169846",title:"Dr.",name:"Harsimran",middleName:null,surname:"Gill",slug:"harsimran-gill",fullName:"Harsimran Gill",profilePictureURL:"https://mts.intechopen.com/storage/users/169846/images/4774_n.jpg",biography:"Harsimran Gill has a PhD in Entomology from University of Florida, USA. She has published 53 articles that include 16 peer-reviewed research articles, 7 non refereed articles, 5 book chapters, 19 extension articles, and 6 newspaper and magazine articles and has delivered 26 local, national, and international oral and poster presentations. She has reviewed more than 70 articles from renowned national and international journals and served as an editor for many national and international journals. She won several research and travel awards and has won awards from the university for being the best student and from the Entomological Society of America for active participation. She has been working on pest management research, extension, and teaching for the last 15 years. Currently, she is working as a freelance editor and researcher at Cornell University, USA.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"194154",title:"Dr.",name:null,middleName:"Gaurav",surname:"Goyal",slug:"goyal",fullName:"Goyal",profilePictureURL:"https://mts.intechopen.com/storage/users/194154/images/4985_n.jpg",biography:"Gaurav earned his PhD in Entomology at University of Florida, USA, and has authored many refereed and non refereed publications throughout his career. He has worked on various components of IPM in his career including cultural, chemical, molecular, and behavioral control methods of insect control and has presented his research at local, national, and international conferences. Currently, he is working as an agronomist with Monsanto and supporting farmers in handling crop issues related to pest management, nutrient deficiencies, and other crop issues throughout the season and therefore growing better corn and soybean crops.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"318",title:"Pestology",slug:"animal-biology-pestology"}],chapters:[{id:"51387",title:"Implementation and Adoption of Integrated Pest Management Approaches in Latin America: Challenges and Potential",doi:"10.5772/64098",slug:"implementation-and-adoption-of-integrated-pest-management-approaches-in-latin-america-challenges-and",totalDownloads:1477,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Yelitza Colmenárez, Carlos Vásquez, Natália Corniani and Javier\nFranco",downloadPdfUrl:"/chapter/pdf-download/51387",previewPdfUrl:"/chapter/pdf-preview/51387",authors:[{id:"172855",title:"Dr.",name:"Yelitza",surname:"Colmenarez",slug:"yelitza-colmenarez",fullName:"Yelitza Colmenarez"},{id:"188350",title:"Dr.",name:"Carlos",surname:"Vásquez",slug:"carlos-vasquez",fullName:"Carlos Vásquez"},{id:"188351",title:"Dr.",name:"Natália",surname:"Corniani",slug:"natalia-corniani",fullName:"Natália Corniani"},{id:"188352",title:"Dr.",name:"Javier",surname:"Franco",slug:"javier-franco",fullName:"Javier Franco"}],corrections:null},{id:"51826",title:"Pest Control in Organic Systems",doi:"10.5772/64457",slug:"pest-control-in-organic-systems",totalDownloads:1777,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Vasile Stoleru and Vicenzo Michele Sellitto",downloadPdfUrl:"/chapter/pdf-download/51826",previewPdfUrl:"/chapter/pdf-preview/51826",authors:[{id:"180782",title:"Dr.",name:"Vasile",surname:"Stoleru",slug:"vasile-stoleru",fullName:"Vasile Stoleru"},{id:"182213",title:"Dr.",name:"Vicenzo Michele",surname:"Sellitto",slug:"vicenzo-michele-sellitto",fullName:"Vicenzo Michele Sellitto"}],corrections:null},{id:"50885",title:"Entomopathogenic Nematodes in Pest Management",doi:"10.5772/63894",slug:"entomopathogenic-nematodes-in-pest-management",totalDownloads:2075,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Ugur Gozel and Cigdem Gozel",downloadPdfUrl:"/chapter/pdf-download/50885",previewPdfUrl:"/chapter/pdf-preview/50885",authors:[{id:"179861",title:"Prof.",name:"Ugur",surname:"Gozel",slug:"ugur-gozel",fullName:"Ugur Gozel"},{id:"181569",title:"Dr.",name:"Cigdem",surname:"Gozel",slug:"cigdem-gozel",fullName:"Cigdem Gozel"}],corrections:null},{id:"51787",title:"Novelties in Pest Control by Entomopathogenic and Mollusc- Parasitic Nematodes",doi:"10.5772/64578",slug:"novelties-in-pest-control-by-entomopathogenic-and-mollusc-parasitic-nematodes",totalDownloads:1384,totalCrossrefCites:4,totalDimensionsCites:8,signatures:"Vladimír Půža, Zdeněk Mráček and Jiří Nermuť",downloadPdfUrl:"/chapter/pdf-download/51787",previewPdfUrl:"/chapter/pdf-preview/51787",authors:[{id:"180977",title:"Dr.",name:"Zdenek",surname:"Mracek",slug:"zdenek-mracek",fullName:"Zdenek Mracek"},{id:"181812",title:"Dr.",name:"Vladimir",surname:"Puza",slug:"vladimir-puza",fullName:"Vladimir Puza"},{id:"186301",title:"Dr.",name:"Jiří",surname:"Nermuť",slug:"jiri-nermut",fullName:"Jiří Nermuť"}],corrections:null},{id:"51120",title:"Synthesis and Application of Pheromones for Integrated Pest Management in Vietnam",doi:"10.5772/63768",slug:"synthesis-and-application-of-pheromones-for-integrated-pest-management-in-vietnam",totalDownloads:1499,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Chi-Hien Dang, Cong-Hao Nguyen, Chan Im and Thanh-Danh\nNguyen",downloadPdfUrl:"/chapter/pdf-download/51120",previewPdfUrl:"/chapter/pdf-preview/51120",authors:[{id:"179972",title:"Dr.",name:"Thanh-Danh",surname:"Nguyen",slug:"thanh-danh-nguyen",fullName:"Thanh-Danh Nguyen"},{id:"179973",title:"Dr.",name:"Chi-Hien",surname:"Dang",slug:"chi-hien-dang",fullName:"Chi-Hien Dang"},{id:"179974",title:"Prof.",name:"Cong-Hao",surname:"Nguyen",slug:"cong-hao-nguyen",fullName:"Cong-Hao Nguyen"},{id:"185032",title:"Prof.",name:"Chan",surname:"Im",slug:"chan-im",fullName:"Chan Im"}],corrections:null},{id:"51810",title:"Using Semiochemicals for Coleopterean Pests in Sustainable Plant Protection",doi:"10.5772/64278",slug:"using-semiochemicals-for-coleopterean-pests-in-sustainable-plant-protection",totalDownloads:1238,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Maria Pojar-Fenesan and Ana Balea",downloadPdfUrl:"/chapter/pdf-download/51810",previewPdfUrl:"/chapter/pdf-preview/51810",authors:[{id:"179873",title:"Dr.",name:"Maria",surname:"Pojar-Fenesan",slug:"maria-pojar-fenesan",fullName:"Maria Pojar-Fenesan"},{id:"181696",title:"Dr.",name:"Ana",surname:"Balea",slug:"ana-balea",fullName:"Ana Balea"}],corrections:null},{id:"51590",title:"Detergents and Soaps as Tools for IPM in Agriculture",doi:"10.5772/64343",slug:"detergents-and-soaps-as-tools-for-ipm-in-agriculture",totalDownloads:2061,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Tomislav Curkovic S.",downloadPdfUrl:"/chapter/pdf-download/51590",previewPdfUrl:"/chapter/pdf-preview/51590",authors:[{id:"181636",title:"Ph.D.",name:"Tomislav",surname:"Curkovic",slug:"tomislav-curkovic",fullName:"Tomislav Curkovic"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5606",title:"Citrus Pathology",subtitle:null,isOpenForSubmission:!1,hash:"99254ddaa61bea53d3c328233a4f6c15",slug:"citrus-pathology",bookSignature:"Harsimran Gill and Harsh Garg",coverURL:"https://cdn.intechopen.com/books/images_new/5606.jpg",editedByType:"Edited by",editors:[{id:"169846",title:"Dr.",name:"Harsimran",surname:"Gill",slug:"harsimran-gill",fullName:"Harsimran Gill"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2036",title:"Insecticides",subtitle:"Advances in Integrated Pest Management",isOpenForSubmission:!1,hash:"42dc69ce20386f76845e38275b0e54e8",slug:"insecticides-advances-in-integrated-pest-management",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/2036.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3055",title:"Insecticides",subtitle:"Development of Safer and More Effective Technologies",isOpenForSubmission:!1,hash:"adb06e05715aa4d3ec42f707d1626158",slug:"insecticides-development-of-safer-and-more-effective-technologies",bookSignature:"Stanislav Trdan",coverURL:"https://cdn.intechopen.com/books/images_new/3055.jpg",editedByType:"Edited by",editors:[{id:"78285",title:"Prof.",name:"Stanislav",surname:"Trdan",slug:"stanislav-trdan",fullName:"Stanislav Trdan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5067",title:"Insecticides Resistance",subtitle:null,isOpenForSubmission:!1,hash:"e0c89a15887b47c513a572364c7d9336",slug:"insecticides-resistance",bookSignature:"Stanislav Trdan",coverURL:"https://cdn.intechopen.com/books/images_new/5067.jpg",editedByType:"Edited by",editors:[{id:"78285",title:"Prof.",name:"Stanislav",surname:"Trdan",slug:"stanislav-trdan",fullName:"Stanislav Trdan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65667",slug:"erratum-the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",title:"Erratum - The Roll of the Entrepreneur in the Establishment of Economic Equilibria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65667.pdf",downloadPdfUrl:"/chapter/pdf-download/65667",previewPdfUrl:"/chapter/pdf-preview/65667",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65667",risUrl:"/chapter/ris/65667",chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]}},chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]},book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9878",leadTitle:null,title:"Electromagnetic Wave Propagation for Industry and Biomedical Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tElectromagnetic imaging is an emerging biomedical imaging modality, which when matured, might present an effective supplement to current imaging technologies for non-invasive assessment of functional and pathological conditions of tissues. This book aims to provide a state-of-art for the most relevant advancements in the development of electromagnetic sensing and imaging for non-invasive detection, by covering all aspects related to the design, modeling, and experimentation. The authors are welcome to submit original research and review articles reporting recent advances in the application of electromagnetic waves technologies in industry and bioengineering.
\r\n\r\n\tThe scope of this book will be the collection of new and/or review results exploring the use of electromagnetic waves for industrial and biomedical applications with particular focus on inclusion detection and medical treatment as well as a diagnostic tool for disease detection. Potential topics include but are not limited to the following: Electromagnetic sensing and imaging for industry applications, Electromagnetic sensing and imaging for biomedical applications, Microwave sensing and imaging , Non-invasive electromagnetic diagnostic tools, Usage of electromagnetic waves for probing organs and advanced MRI techniques, Theoretical modeling of electromagnetic wave propagation, Application of electromagnetic waves in advanced MRI techniques, RF sensors and coils, Biomaterials for wearable sensors, In vitro and in vivo testing.
",isbn:"978-1-83968-582-8",printIsbn:"978-1-83968-581-1",pdfIsbn:"978-1-83968-583-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e57ef4b5bada0d966637cd303d76278f",bookSignature:"Distinguished Prof. Lulu Wang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9878.jpg",keywords:"Electromagnetic Sensing, Imaging, Biomedical Applications, Electromagnetic Measurements, Conductivity, Electromagnetic Induction Tomography, Electric Impedance Imaging, Microwave Imaging, Biomaterials, RF Coils, Electromagnetic Scattering Problems, Integral Equations",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"November 3rd 2020",dateEndThirdStepPublish:"January 2nd 2021",dateEndFourthStepPublish:"March 23rd 2021",dateEndFifthStepPublish:"May 22nd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"With an M.E. (Hons.) and a Ph.D. degree from the Auckland University of Technology, New Zealand, Dr. Wang is the first author of over 60 peer-reviewed publications, received multiple national and international awards from various professional societies and organizations she is a member of (ASME, IEEE, AAAS, PSNZ, and IPENZ ).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/257388/images/system/257388.jpg",biography:"Lulu Wang is a Full Professor of Biomedical Engineering at Shenzhen Technology University in China. She received the M.E. (First class Hons.) and Ph.D. degrees from the Auckland University of Technology, New Zealand, in 2009 and 2013, respectively. From 2013 to 2015, she was a Research Fellow with the Institute of Biomedical Technologies, Auckland University of Technology, New Zealand. In 2015, Dr. Wang became an Associate Professor of biomedical engineering with the Hefei University of Technology. In 2019, she became a Full Professor of biomedical engineering with the College of Health Science and Environmental Engineering, Shenzhen Technology University. Her research interests include medical devices, electromagnetic sensing and imaging, and computational mechanics. Over the past five years, Dr. Wang is the first author of 60 peer-reviewed publications, 2 ASME books, 7 book chapters, and 12 innovation patents. She has edited three books and two special issues of international journals. Dr. Wang is a member of ASME, IEEE, AAAS, PSNZ, and IPENZ. She has been an active scientific reviewer for numerous journals and international conferences. She received multiple National and International Awards from various professional societies and organizations.",institutionString:"Shenzhen Technology University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59947",title:"Compensation of Frequency-Dependent Attenuation for Tissue Harmonic Pulse Compression Imaging",doi:"10.5772/intechopen.74577",slug:"compensation-of-frequency-dependent-attenuation-for-tissue-harmonic-pulse-compression-imaging",body:'\nThe ultimate goal of our study is to perform high-resolution and high signal-to-noise ratio (SNR) ultrasound imaging required for high-quality diagnosis. Such imaging is strongly demanded particularly in the deep part of a living body. On the other hand, we are developing a puncture ultrasound microscope [1, 2, 3], in which echo is very weak and cell-level resolution is required, so high-definite imaging technique is absolutely important. A pulse compression technique (PCT) is effective for improving SNR while maintaining safety to the living body [4, 5, 6].
\nIn PCTs, broadband modulation is necessary to improve the range resolution. The bandwidth that is used efficiently for transmission and reception is limited by the resonance characteristics of the transducer that utilizes thickness resonance vibration. In order to widen the bandwidth of the transducer, a layered-type transducer has been developed in which two piezoelectric oscillators having different thicknesses are longitudinally bonded and one of a pair of electrodes is inserted between two oscillators [7]. In addition, we are proposing the concept of a new transducer based on a PMUT structure with a thicker diaphragm than conventional PMUT and by which the bandwidth can be greatly widened [8]. In general, the wide bandwidth of the transmitted pulses is a prerequisite for sharp pulses. Therefore, broadband transmission in PCTs improves range resolution. On the other hand, in order to improve the SNR by PCTs, it is necessary to increase energy inflow into the body by transmitting a signal with a wide pulse width. Namely, a PCT using pulses having a wideband and a wide pulse width is suitable for our objective.
\nDue to its high resolution, tissue harmonic imaging (THI) is useful, and many studies have been done [9, 10]. THI uses harmonic components generated as nonlinear distortion caused by ultrasonic propagation in living tissue for imaging. In a commercial implement, the second harmonic component is generally used since its amplitude is drastically greater than the amplitude of the higher-order harmonic components. The advantages of THI can be summarized as follows: (i) THI has high-resolution characteristics along the range direction compared to fundamental imaging due to the broadband characteristics of the harmonic components, (ii) THI has high-resolution characteristics along the azimuth direction since the nonlinear effect strongly occurs at the center of the transmitted beam with high sound pressure, and (iii) there are almost no artifacts such as multiple reflection and side lobes in THI since the sound pressure of the echo reflected from the scatterer is low and hence the sound pressure of the multiple reflected echo is further low, and the amplitude of the side lobes of harmonics is 60–80 dB smaller than that of the main lobe. On the other hand, in THI the amplitude of the harmonic components is significantly smaller than the amplitude of the fundamental component. In order to solve this problem, we proposed a method based on the Bayesian estimation using the prior information of the second harmonic echoes introduced from fundamental echoes [11].
\nApplying a PCT to THI is expected to improve the SNR while maintaining high-resolution characteristics, but frequency-dependent attenuation (FDA) must be strongly aware. FDA causes severe distortion of echo signals, when the broadband pulse propagates through the soft tissue in the living body. Since the high-frequency component attenuates more than the low-frequency component, particularly large distortion occurs in harmonic components. Figure 1 shows the FDA in the time domain and Figure 2 shows it in the frequency domain. The distortion of the echo caused by FDA makes exact pulse compression impossible, and, hence, image blurring occurs [10]. In order to prevent the SNR degradation and of the range resolution degradation due to the echo distortion caused by FDA, we have proposed an FDA compensation method [12, 13, 14]. In the methods, an amplitude-modulated FM chirp pulse is transmitted, the echo for which is distorted by FDA and, as a result, is received as an ideal waveform. The proper amplitude modification (AM) of the transmission is determined using the FDA characteristic measured by transmitting a reference pulse toward a region of interest (ROI) and receiving the corresponding echo. Since the methods proposed [12, 13] have been constructed for fundamental imaging, this study aims to extend them for THI imaging. The method [13] was constructed for harmonic imaging, but the compensation of the transducer characteristics was insufficient, which will be solved in this study to propose an FDA compensation method with high completeness. Typical purposes of AM of an FM chirp signal are side-lobe suppression and compensation of the resonance characteristics of a transducer [15]. The techniques for these purposes can be also integrated into our method. The effectiveness of our method on the harmonic FDA compensation is confirmed through numerical simulations by finite element method (FEM) and simple experiments.
\nTemporal distortion caused by FDA: (a) transmitted signal, (b) fundamental echo, and (c) second harmonic echo.
FDA represented in frequency domain: (a) without FDA and (b) after FDA distortion. Green boxes indicate fundamental band and second harmonic band.
Before considering FDA compensation, it is necessary to correct the frequency characteristic of the transducer, which must be done only once for each transducer. For fundamental imaging, the transmission and reception characteristics of the transducer are simply compensated for both amplitude and phase. To evaluate the characteristic, any arbitrary FM chirp signal f(t) covering the entire frequency band used for imaging is applied as a voltage to the transducer, and the corresponding echo g(t) is received. Their frequency representations are denoted as F(ω) and G(ω), respectively. The complex distortion function R(ω) is defined as follows:
\nIn this equation, H(ω) is the frequency representation of the ideal FM chirp signal and should have spectrum amplitude with a window function suitable for reducing side lobes.
\nS(ω) defined by the following equation can be adopted as a transmission pulse for compensating transducer characteristics and observing an appropriate FM chirp echo:
\nThe simulation confirmed that beam focusing has little effect on measuring transducer characteristics.
\nFor tissue harmonic imaging, the transmission characteristic in the fundamental frequency band and the reception characteristic in the harmonic frequency band must be corrected at the same time. That is, the harmonic echo is distorted due to the fundamental transmission characteristic and the harmonic reception characteristic. Hereafter, attention is focused only on the second harmonic component. The fundamental transmission characteristic can be evaluated by experimentally measuring the transmitted pressure by a hydrophone. We represent an arbitral FM chirp transmission signal fF(t) and the corresponding pressure gF(t) measured in the propagation medium and define the fundamental transmission distortion as RF(ω) = HF(ω)/GF(ω), where HF(ω) is a frequency representation of an ideal fundamental FM chirp signal. The harmonic reception distortion is defined as RH(ω) = HH(ω)/GH(ω), where HH(ω) is a frequency representation of an ideal second harmonic FM chirp signal. The harmonic reception characteristic can be evaluated by measuring the transmitted pressure fH(t) and the received echo voltage gH(t) in the transmission/reception experiment using the frequency band corresponding to the second harmonic frequency under the condition that FDA can be neglected. Furthermore, the mapping from the fundamental component CF(ω) to the second harmonic component CH(ω) in the frequency domain is defined as follows:
\nIn addition, the inverse mapping is also defined as follows:
\nThese mapping functions can simply be determined by scaling and shifting the corresponding components on the frequency axis. The scale factor between CF(ω) and CH(ω) is not important, as it is only intended to reduce the distortion of the spectral shape.
\nUsing these definition and the harmonic pressure fH(t) generated in the tissue and returned to the transducer, the transmission signal that compensates for the transducer characteristic signal SH(ω) can be generated as follows:
\nAs the transmitted fundamental pulse propagates toward the ROI, harmonics are gradually generated, and such a detailed process is ignored in the derivation of the above equation. To generate the time signal sH(t) corresponding to SH(ω), it is necessary to perform somewhat complicated experiments. Instead of the experiments, it is realistic to calculate transducer characteristics by simulating exactly the material and structure of the transducer. In this study, we determine the distortion functions RF(ω) and RH(ω) by simulations. Details of the simulation procedure are described in Section 3. Figure 3 shows the results of the transducer characteristic compensation. By comparing Figure 3(b) and (d), it can be confirmed that the transducer characteristics are almost corrected.
\nSimulation results of transducer characteristic compensation. Ideal FM chirp signal shown in (a) is applied to transducer, and second harmonic echo in (b) is received without attenuation in water. Signal that compensates for transducer characteristic which is determined by Eq. (5) is shown in (c), and corresponding second harmonic echo is shown in (d).
FDA compensation can be performed basically in the same way as compensating the characteristics of the transducer. However, it is noted that the FDA compensation should be carried out for each region of interest (ROI) that is required to be finely imaged. To estimate the distortion characteristics caused by FDA in the propagation medium, as a reference transmission for investigation, we transmit sF(t) defined by Eq. (2) representing a frequency representation, which already compensates for the characteristics of the transducer in the fundamental band, with focusing on the ROI, and we receive the echo signal eF(t) as voltage. In this study, we assume that the FDA affects the amplitude of the echo signal and that the phase is unaffected. Therefore, the fundamental distortion function of the FDA for the fundamental component RFFDA(ω) is defined as.
\nBy using this, the transmission signal SFcmp(ω) suitable for compensating the FDA in the fundamental band can be determined as follows:
\nThe definition of RFFDA(ω) in Eq. (6) is an ideal formation, and its actual estimate is described in Section 3.4. Therefore, in our previous study [12], the generation of SFcmp(ω) is iteratively done, but we confirmed that the FDA can be compensated almost at once [13]. In the following simulations and experiments, the compensation is done with only one reference transmission/reception.
\nWe transmit sH(t) corresponding to Eq. (5) and receive the corresponding second harmonic echo eH(t); the second harmonic distortion function of FDA is defined in the same way as in Eq. (6):
\nTherefore, the transmission signal SHcmp(ω) that compensates for the FDA in the second harmonic band can be determined as follows:
\nIt should be noted that the FDA within the fundamental band only occurs in the outbound path from the transducer to the reflective target. However, since the scale factor as a constant independent of the frequency does not affect the distortion of the waveform, |RFFDA(ω) can be used in Eq. (10) without reducing it to half.
\nThe amplitude-modulated FM chirp pulse sHcmp(t) corresponding to sHcmp(ω) is transmitted, and then its echo that is expected to have no FDA distortion is used for imaging. Instead of the proposed modification of the transmission pulse, you can amplify the echo and easily reduce the FDA distortion. However, in this case, the SNR is drastically lowered particularly at the high-frequency portion, and the imaging quality is lowered.
\nThe simulations in this study were performed using PZFlex (Weidlinger Associates, Inc.), which is a standard finite element method (FEM) simulator for ultrasound propagation and piezoelectric analysis. A two-dimensional simulation model for determining a transmission signal that compensates transducer characteristics is shown in Figure 4. A linear array transducer having 64 oscillating elements of PZT was assumed, and an iron plate was used as a reflector. Parameters of the transmission signal is shown in Table 1. To evaluate the characteristics of the transducer purely, FDA should not occur, so the attenuation coefficient of water is set to 0 dB/cm/MHz. The transmission pulse is focused on the front face of the iron plate. The characteristics of the transducer and the signal compensating for it can be confirmed from the simulation results already shown in Figure 3 in Section 2.1.2.
\nSimulation model for compensating transducer characteristics.
In the PZFlex, the definition of FDA is represented as
\nwhere d is the in vivo attenuation coefficient, fc is the center frequency, fd is the measurement frequency, and n is the exponent of FDA. Through the simulations assuming tissue with FDA modeled by logarithmic linear characteristic, namely, n = 1, we confirmed that this model is effective [12]. However, a living body generally has logarithmic nonlinear characteristics. Therefore, we experimentally measured the value of n for a phantom mimicking living tissue, and as a result, n = 1.6 was obtained, and this value is used in the following simulations.
\nIt is necessary to confirm the effectiveness of our method under medical usage condition assuming a living body. Since it is difficult to verify such effectiveness from the beginning through experiments, two-dimensional FEM simulations were performed using a model shown in Figure 5 in which the propagation medium imitates the liver and the object corresponds to a tumor. Transmission pulses are formed in the same way as the simulations in Section 3.1 and are focused on 30 mm away from the transducer, i.e., on the front of the target object. Parameters of the transmission signal are also the same as in Table 1 in Section 3.1. The medium in Figure 5 consists of scatterers that can mimic the speckle patterns of the liver. Sound speed, density, and attenuation coefficient of each scatterer are randomly defined within the range of Table 2. The blue object shown in Figure 5 mimics the tumor, and its properties are also shown in Table 2. We simulate the echoes reflected from the front of the object and analyze them.
\nSimulation model for FDA compensation.
Type of transmission signal | \nFM chirp with Hanning window | \n
---|---|
Center frequency [MHz] | \n10 | \n
Frequency bandwidth [MHz] | \n4 | \n
Pulse duration [μm] | \n5 | \n
Focus of transducer [mm] | \n15 | \n
Sampling frequency [MHz] | \n500 | \n
Transmission voltage [V] | \n40 | \n
Number of oscillator elements | \n64 | \n
Measurement condition in simulations.
Medium | \nSound speed [m/s] | \nDensity [kg/m3] | \nAttenuation coefficient [dB/cm/MHz] | \nNonlinear parameter [B/A] | \n
---|---|---|---|---|
Liver | \n1560–1590 | \n1050–1070 | \n0.75–0.95 | \n6.75 | \n
Tumor | \n1900 | \n2500 | \n0.6 | \n7.00 | \n
Various parameters in simulation model mimicking the liver and tumor.
The absolute values of RFFDA in Eq. (6) and RHFDA in Eq. (8) must be estimated from the reference echo received by transmitting the FM chirp pulse in Eq. (5) that compensates for the transducer characteristics in order to generate the transmission signal sHcmp(t) corresponding to Eq. (6), which can compensate for the FDA in the second harmonic band. The dashed line in Figure 6 is an example of the logarithm of |RFFDA| that was measured by the simulation. From the figure we can know that |RFFDA| is distorted at the high-frequency part and there are several small ripple patterns, which may not be FDA characteristics and may indicate the characteristics of the reflection process and the propagation medium. Therefore, in the actual procedure, the observed |RFFDA| should be approximated by function fitting as a smooth function |RFFDA|*. Figure 6(a) shows a linear approximation by line fitting of the log of |RFFDA|, and Figure 6(b) shows a nonlinear approximation by fifth-order polynomial curve fitting. In actual use, the optimal order of the polynomial function should be determined using appropriate criteria, but in the following simulations and experiments, we compare the performance of line fitting and fifth-order polynomial function fitting. Similarly, the results of RHFDA are shown in Figure 7. Comparing Figures 6 and 7, it is obvious that the frequency dependence of FDA is larger in the second harmonic band than in the fundamental band, which means that the distortion of the pulse compression echo is large in the second harmonic band, and hence the influence of FDA is very serious for harmonic imaging compared to fundamental imaging.
\nLogarithm of |RFFDA| measured by simulations (dashed line) and its approximations |RFFDA|* with (a) line fitting and with (b) fifth-order polynomial function fitting (solid line).
Logarithm of |RHFDA| measured by simulations (dashed line) and its approximations |RHFDA|* with (a) line fitting and with (b) fifth-order polynomial function fitting (solid line).
Figure 8(a) shows the second harmonic component of the echo from the object in Figure 5 without FDA compensation, i.e., the echo corresponds to sH(t) which compensates only the transducer characteristics. The spectrum amplitude corresponding to Figure 8(a) is shown by the solid line in Figure 8(b). It can be seen that the high-frequency band is greatly attenuated. Figure 9(a) is a harmonic echo obtained by transmitting sHcmp(t) corresponding to Eq. (9) using |RFFDA|* and |RHFDA|* approximated by line fitting. The spectrum amplitude is shown in Figure 9(b). Figure 10 shows the results corresponding to the approximation by fifth-order polynomial function fitting of |RFFDA|* and |RHFDA|*. From Figures 9 and 10, it is confirmed that our compensation method based on amplitude-modulated transmission can effectively avoid FDA especially for high-frequency parts. Figure 11 shows the normalized envelope signals of compressed second harmonic echoes corresponding to Figures 9(a) and 10(a) respectively. The −3 dB pulse width before FDA compensation is 0.442 μs and the −3 dB pulse width after FDA compensation is 0.378 μs with linear approximation and 0.374 μs with nonlinear approximation. The envelope signals of the fundamental echo corresponding to the same transmission of sHcmp(t) are shown in Figure 12. The optimal transmission for compensating FDA in the fundamental band is sFcmp(t) defined in Eq. (7), but sHcmp(t) is sufficiently effective against the fundamental FDA compensation.
\nSecond harmonic echo obtained by simulation without FDA compensation is shown in (a), and its spectrum amplitude is shown in (b) as solid line with ideal amplitude as dashed line.
Second harmonic echo obtained by simulation with linear FDA approximation is shown in (a), and its spectrum amplitude is shown in (b) as solid line with ideal amplitude as dashed line.
Second harmonic echo obtained by simulation with nonlinear FDA approximation is shown in (a), and its spectrum amplitude is shown in (b) as solid line with ideal amplitude as dashed line.
Normalized envelope signal of compressed second harmonic echo obtained by simulation before FDA compensation (dashed line) and after FDA compensation (solid line): (a) with linear FDA approximation and (b) with nonlinear FDA approximation.
Normalized envelope signal of compressed fundamental echo obtained by simulation before FDA compensation (dashed line) and after FDA compensation (solid line): (a) with linear FDA approximation and (b) with nonlinear FDA approximation.
In order to confirm the actual effectiveness of our FDA compensation, we conducted simple experiments using the experimental system shown in Figure 13(a). The transducer used in the experiments shown in Figure 13(b) is SONIX ISI506R having a center frequency of 5 MHz. The amplifier is Amplifier Research 50A15, the function generator is Tektronix APG3102, and the oscilloscope is IWATSU DS-5552. A linear FM chirp signal was transmitted toward the iron plate placed 15 cm away from the transducer, and the echo reflected from the iron plate was observed. The measurement conditions are shown in Table 3. Experimental verification of the characteristics of the transducer can be realized by measurement of transmitted sound pressure in water by a hydrophone. In this issue, we focused on confirming the effect of FDA compensation and conducted experiments using frequency bands with relatively flat transducer characteristics. Hence, in the experiments, the characteristics of the transducer were not taken into account, and only the FDA of water was compensated. That is, instead of SH(ω) in Eq. (10), an ideal FM chirp was used to generate a signal to be transmitted.
\nExperimental system is constructed as (a), and (b) indicates probe used in this system.
Type of transmission signal | \nFM chirp with Hanning window | \n
---|---|
Center frequency [MHz] | \n7.5 | \n
Frequency bandwidth [MHz] | \n3 | \n
Pulse duration [μm] | \n10 | \n
Focus of transducer [mm] | \n15 | \n
Sampling frequency [MHz] | \n500 | \n
Transmission voltage [V] | \n40 | \n
Measurement condition in experiments.
In this section, the experimental results of our method for compensating FDA in the second harmonic band caused by water corresponding to a sufficient propagating distance are shown. Figure 14(a) shows the experimentally measured echo reflected from the iron plate without FDA compensation. Figure 14(b) shows the second harmonic echo extracted from the whole echo of Figure 14(a), and its spectrum amplitude is shown in Figure 14(c). In the high-frequency part in Figure 14(c), the FDA of the second harmonic component is seen. By transmitting a reference signal and estimating |RFFDA|* and |RHFDA|* using nonlinear polynomial function fitting, the FDA in the second harmonic band can be compensated. Figure 15(a) shows the entire echo with FDA compensation, and the harmonic component and its spectrum amplitude are shown in Figure 15(b) and (c), respectively. By comparing Figures 14(c) and 15(c), the FDA compensation at the high-frequency part can be confirmed, although the FDA is not so large in this experiment. The reason why the FDA is smaller in the experiment than in the simulation is that the water attenuation is considered to be smaller than that in the living body. Therefore, in the future study, we need to use a more attenuated propagation medium that imitates living tissue for experiments. Figure 16 shows the normalized envelopes of the compressed echo signals before and after FDA compensation. In addition to the second harmonic component in Figure 16(a), the fundamental one is also shown in Figure 16(b). For both the second harmonic component and the fundamental component, the FDA compensation is actually effective.
\nExperimentally received echo without FDA compensation: (a) whole echo, (b) harmonic echo extracted from (a), and (c) spectrum amplitude shown as solid line (ideal amplitude is indicated as dashed line).
Experimentally received echo with FDA compensation using nonlinear approximation: (a) whole echo, (b) harmonic echo extracted from (a), and (c) spectrum amplitude shown as solid line (ideal amplitude is indicated as dashed line).
Experimentally obtained envelope signal of compressed echo before FDA compensation (dashed line) and after FDA compensation (solid line): (a) second harmonic one and (b) fundamental one.
In this study, we proposed a novel and simple method for FDA compensation to realize the fine THI, which can also compensate transducer characteristics. Its effectiveness was confirmed by two-dimensional simulations using a model imitating liver and tumor and by simple experiments. Our method is based on FM chirp pulse compression to realize high SNR, and we expect that fine imaging is effectively performed in a local manner by setting a ROI determined by preimaging by conventional B-mode imaging. In this study, investigation of FDA characteristics is assumed to be performed locally by transmitting a reference signal and receiving its echo position to be finely imaged. However, it can be considered that such FDA characteristics are invariant in the tissue region having uniform characteristics. This indicates that it is possible to reduce the number of transmission and reception for reference and it becomes easy to obtain the whole high-definition imaging. In the future, we will examine such an extended method and conduct the experiments using a phantom that imitates a living body and also the experiments on living tissue.
\nIn the research field of ultrasound harmonic imaging, mainly the method of extracting the harmonic component appropriately from the echo [16] and the technique to increase the noise resistance of the harmonic component [11] are extensively examined. As sound pressure is higher, large harmonic components are generated, so sharp transmission pulses are generally used in many studies in general. In our study, from the viewpoint of using more energy, we aim to improve the SNR of the harmonic components by using FM chirp pulses, and FDA compensation is important for PCT in order to avoid deterioration of the waveform after compression processing. We are studying a method to enable super resolution by multiple transmission and reception with different carrier frequencies [17], and FDA compensation is also important for applying this method to harmonic components.
\nA part of this work was supported by JSPS KAKENHI Grant Number 25350569.
\nClimate change and increasing energy demand have emphasized research on sustainable energy source [1, 2]. Day-by-day increase of human population and global requirements has compelled researchers to develop new renewable sustainable energy sources in replacement of hydrocarbon deposits [3]. Renewable sources such as solar power, wind, and water, storage of these energies for on-demand utilization, and transportation are the major challenges for researchers. To develop a clean and eco-friendly environment, splitting of water into hydrogen and oxygen is a tremendous way to produce sustainable energy. Hydrogen gas emerged as a green energy fuel due to its high-energy density and zero carbon dioxide (CO2) emission [4, 5, 6]. In this regard, electrocatalytic and photocatalytic H2 generation from water has been considered as one of the most striking approaches [7, 8, 9]. In recent years, a substantial number of artificial photosynthesis have been developed, exploited solar power as electron and proton source to make a clean renewable fuel [10, 11, 12, 13, 14]. Light-induced splitting of water is a suitable process because the production of hydrogen is used as green fuel in future and even used for the synthesis of other chemicals [15, 16, 17, 18].
Literature reports suggested more than 500 billion cubic meters (44.5 million tons) of hydrogen gas is produce yearly worldwide [19, 20]. In the current scenario, steam methane refining, coal gasification, and water electrolysis are the major way for hydrogen production. Nowadays 95% hydrogen gas is produced from steam methane reforming and coal gasification, however only 4% hydrogen from water electrolysis. Steam methane is a high-energy-intensive process maintained at high temperature with the formation of carbon dioxide and carbon monoxide: (i) CH4 + H2O = CO + 3H2 (ii) CO + H2O = CO2 + H2. Hence, it is not an eco-friendly method for hydrogen production. Water electrolysis is the most sustainable and clean approach for hydrogen production because its source is abundant. Since the most suitable way of light-driven energy conversion is water electrolysis, artificial photosynthesis (PS II) has been considered as primary goal to produce electron and proton [21, 22]. Water splitting is a redox reaction in which aqueous protons are reduced into H2 at cathode and water is oxidized to O2 at anode [23]. Both H2 (HER) and O2 (OER) reactions are rigorously coupled, which may lead to the formation of explosive H2/O2 mixtures due to gas crossover [24, 25, 26]. By far, only a few stable metal complexes as catalysts are achieved that can decompose water into H2 and O2 [27, 28, 29, 30, 31]. Water-splitting reactions are split into two half-reactions: water oxidation to O2 evolution and water reduction to H2 production:
The limitation of OER is that it takes place after the successive accumulation of four oxidized electrons and protons in Kok cycle (catalytic cycle of the water oxidation in PS II) that require much higher overpotential input than that of HER [32]. Thermodynamic potential is different for H+/H2 (0 V vs. NHE) and OH-/O2 (1.23 V vs. NHE), and the overall solar energy conversion efficiency is only ∼15% in OER [33]. The hydrogen evolution reaction (HER, 2H+ + 2e- = H2) is the cathodic reaction with the two-electron transfer in one catalytic intermediate and offers the potential to hydrogen production. However, hydrogen production technology requires proficient electrocatalysts and photocatalysts which support two key electrode reactions (OER and HER) at lower overpotentials.
Moreover discussion on the mechanism of HER, H+ adsorption on the hydrogen evolution catalyst surface is the first step, known as Volmer step, followed by Heyrovsky or Tafel steps shown in Figure 1. A suitable HER catalyst always binds H+ very fast and releases the product. Hence, electrochemical hydrogen evolution reaction (HER) facilitates for H2 production on large-scale.
The inside mechanism of H2 evolution of electrocatalyst in acidic solution.
Afterwards, H2 evolution may occur via two different reaction mechanisms depending on the action of catalyst [34]. Hydronium cation (H3O+) is the proton source in acidic solution, and in alkaline condition H2O is the proton source. In Volmer-Tafel mechanism, two protons absorbed on the catalytic surface can combine to form H-H bond to yield H2. In Heyrovsky reaction route, a second electron and another proton from the solution are transferred to the catalyst surface which reacts with the absorbed H atom and generate H2. This is an electrochemical desorption pathway. Precious metal like Pt-based electrocatalysts is highly reactive for HER and is usually pursuing Volmer-Tafel mechanism. Lately few literatures [35, 36, 37] have been reported on Ni-based electrocatalysts which follows Volmer-Heyrovsky path.
Electrocatalytic water splitting is driven by passing the electric current through the water; conversion of electrical energy to chemical energy takes place at electrode through charge transfer process. During this process, water reacts at the anode form O2 and hydrogen (proton) produce at the cathode as we mentioned earlier. Suitable electrocatalysts can maximally reduce the overpotential which is highly desirable for driving a specific electrochemical reaction. However, the process of surface catalytic reactions in electrocatalysis is very similar to photocatalysis [38]. Photocatalytic is a simple water-splitting reaction in which H2 and O2 are produced from water by utilizing the energy of sunlight. Figure 2(a) shows the process of photocatalysis in which a metal catalyst contains chromophores that immersed solar energy and triggered the electron transfer reaction. The most important criteria for the solar-driven water-splitting reaction are electronic band gap matching of the photosensitive material to the redox potential of water [39]. Metal complexes act as chromophore associated with mainly three types of electron transfer: metal center (MC), ligand center (LC), and metal–ligand center transition (MLCT). The MLCT state of the metal complex plays a crucial role in photocatalytic reactions. In octahedral complexes with conjugated ligand system, the highest occupied molecular orbital (HOMO) corresponds to the metal-localized t2g-orbitals, and the lowest unoccupied molecular orbital (LUMO) is associated with anti-bonding π*-orbital localized on the ligands. On the absorption of UV–visible light, an electron is promoted from one of the metal-centered t2g orbitals to a ligand-centered π* orbital, resulting in the MLCT state shown in Figure 2(b). As a result, the redox properties of the metal complexes are dramatically changed. The excited metal complexes behave as better oxidants and better reductants than their electronic ground state and can hold more thermodynamic driving force for the charge transfer reactions. Based on the photo-induced redox potential changes and the long-lived lifetime of the excited state, many metal complexes have been intensively investigated as chromophores for this photocatalytic H2 production purpose [40]. Zou and coworkers have described various photocatalytic systems for H2 production, which exposed that most of the photocatalytic systems suffer photodecomposition and instability [40]. Hence, for long-term use, it is imperative to build up highly proficient H2 generation systems with long lifetimes and high durability. Many reviews have been published on solar H2 evolution systems based on photocatalysts [41, 42, 43, 44].
(a) Photocatalyst system for water splitting. (b) Molecular orbital diagram for d6 metal complex chromophores.
So far, extensive theoretical study has been revealed, the possible mechanistic process of proton reduction to hydrogen evolution through transition metal molecular catalyst. A generalized mechanistic scheme depicting the homolytic and heterolytic path is shown in Figure 3. The homolytic mechanism involves bimetallic route, where a metal hydride species ([Mn+–H]) react with another metal hydride to release one H2 via reductive elimination. Instead, heterolytic is a monometallic pathway, where the metal hydride [Mn+–H] is further reduce and protonated for H2 evolution [45]. Both pathways function simultaneously, two protons and two electrons are delivered to the metal center, and in few cases, the pH, catalytic concentration, and proton source decide the dominant route [46]. During the past decade, a number of review articles emphases on the structural property relationship and mechanistic study [45, 47, 48, 49]. Among all research on catalyzed H2 evolution, the mechanistic investigation on proton reduction catalysis is essential because it can give us a significant idea to design better molecular catalysts in the future [49].
Proposed homolytic and heterolytic mechanisms for H2 evolution via the formation of a metal hydride (M-H) intermediate.
Here we start by describing the fundamental concept of metal and organic ligand system which gives a strong influence on the performance of H2 evolution. Transition metal cations with partial filled d-electronic configurations are considered as catalyst. The characteristic feature of this type of catalyst is that the metal ions can exist in higher oxidation state [44]. There are several literatures reported with partially filled d-orbital which show high stability toward water-splitting reactions [50, 51, 52, 53]. However, the most catalytic system requires very high temperature and precious metal at the active site; therefore, it will be a challenge for researchers to develop a photocatalytic and electrocatalytic system at low temperature with low-cost metal [54, 55, 56, 57]. Indeed, first-row transition metal complexes (Co, Ni, Cu, Zn) have been exploited in the last few decades for this purpose. Beyond the reactivity of metal, the redox activity of organic ligands has also received continuous attention. The redox-active ligand works as electron sink in the complexes and maintains the metal in its original oxidation state. Redox-active ligands convey a novel reactivity to the complex by loss or gain of electrons [58]. In addition, the redox-active property of the ligand can also be influenced by the modification of the substituents by σ and π donating ability, π accepting ability, and conjugation [59]. A highly conjugated system such as bpy, porphyries, and ortho-phenylenediamine (opda) having anti-bonding π*-orbital localized on the ligands is considered for hydrogen production due to its multielectron or multiproton pooling ability which is responsible for dramatically changing the potential of redox properties [60, 61]. Substituents attached to redox-active ligands, electron density, and charge on the metal ions also effect the standard electrode potential.
So far, considerable advancement has been done in the field of electrocatalytic and photocatalytic water-splitting reaction for hydrogen production, and several advance review papers have been reported by scientists [40, 51, 62, 63, 64]. However, very limited comprehensive tutorial has published on only first-row transition metal-based catalysts. This chapter describes electrocatalytic as well photocatalytic properties of inorganic catalysts and their structural and mechanistic features. Here we put an effort elucidate the direction of fundamental mechanistic aspects during electrocatalytic and photocatalytic hydrogen (H2) production reaction (HER).
Masaki Yoshida et al. [65] developed a series of 3D-transition metal complexes with o- phenylenediamine (opda) ligands for hydrogen production due to the following properties: (a) aromatic amine undergoes homolytic N-H bond cleavage by photoexcitation [66] which is applicable for hydrogen production under mild condition, and (b) opda complexes have extensively been obsessed as reversible multielectron or multiproton pooling ability because of its multistep redox processes between o-phenylenediamine(opda), semibenzoquinodiamine (s-bqdi), and o-benzoquinodiimine (bqdi) which is useful for reversible hydrogen production. [M(opda)3], M = Mn2+, Fe2+, Co2+, Ni2+, and Zn+2 complexes (1–5) shown in Table 1 have photochemical hydrogen production ability.
Photochemistry of aromatic amine (opda)
Redox properties of opda complex
Structure of redox-active ligands, electrocatalysts, and photocatalysts.
In the past M. Yoshida and coworkers proposed [Fe-opda] for photochemical HER mechanism at photoirradiation of λ = 298 nm; ππ* excitation occurred in complex with N-H bond homolysis process, followed by H2 elimination [67]. After this process, the opda ligands in the complex were partially oxidized to bqdi or s-bqdi ligands. This mechanism is based on the deep-rooted photochemical N-H bond activation of aromatic amines. Theoretical study and ultrafast spectroscopic studies of amino benzene support that the photochemical N-H fission occurs by the photoexcitation to higher-lying ππ* level which leads to the formation of the πσ* state [68]. Photochemical mechanism for HER of all complexes is shown in Figure 4.
Plausible mechanism for photochemical HER with [M-opda] complexes.
All opda-based metal complexes display photochemical HER activities with the formation of almost one equivalent of H2 gas. However, the HER was not observed at all in the dark in all complexes, which suggests that the HER was obsessed by photochemical reaction. Moreover, they observed remarkable decrease in hydrogen evolution reaction, while the ligand is replaced with aromatic amines. This experiment suggested that the photo-induced HER activities of the complexes in this case are weakly dependent on the central metal ion and strongly dependent on the redox-active ligand. Further to check the metal ion dependency, examine the catalytic hydrogen production in the presence of hydroquinone (HQ; 10 equiv) as a sacrificial electron-proton donor. The photochemical H2 production from [M-opda] (7.98 × 10−2 mmol) with HQ (7.98 × 10−1 mmol) in THF (4 mL) under an N2 atmosphere at 20°C for 190 h turns over the number for all the complexes given in Table 2. Difference in TON may be caused by the stability of each complexes.
Catalysts | Redox-active organic ligands | Catalytic potential (Ep) | Solvent | TON(H2 mol cat−1) | Ref. |
---|---|---|---|---|---|
[1]a | o-Phenylenediamine | ---- | THF | 5.5 | [65] |
[2] | o-Phenylenediamine | ---- | THF | 2.9 | [67] |
[3] | o-Phenylenediamine | ---- | THF | 0.99 | [65] |
[4] | o-Phenylenediamine | ---- | THF | 0.51 | [65] |
[5] | o-Phenylenediamine | ---- | THF | 0.73 | [65] |
[6]b | Diimine-dioxime | −0.68 V vs. Fc+/0 | H2O/CH3CN | 300 | [70] |
[7] | Diimine-dioxime | −0.96 V vs. Fc+/0 | H2O/CH3CN | 50 | [70] |
[8] | Bis(thiosemicarbazone) | −1.7 V vs. Fc/Fc+ | CH3CN | 37 | [74] |
[9] | Bis(thiosemicarbazone) | −1.7 V vs. Fc/Fc+ | CH3CN | 73 | [75] |
[10]c | Diamine-tripyridine | −0.90 V vs. Fc+/0 | acidic-H2O | 1.4x 104 | [70] |
[11]d | TMPA | −1.81 V vs. SCE | CH3CN/H2O | 6180 | [76] |
[12] | Cl-TMPA | −1.72 V vs. SCE | CH3CN/H2O | 10,014 | [76] |
[13] | Bis(benzenedithiolate) | −2.25 V vs. SCE | CH3CN | 0 | [77] |
[14] | o-Aminobenzenethiolate | −1.64 V vs. SCE | CH3CN | 6190 | [77] |
[15] | o-Aminobenzene | −2.03 V vs. SCE | CH3CN | 900 | [77] |
[16] | 2-Mercaptophenolate | −1.62 V vs. SCE | CH3CN | 5600 | [77] |
Electrochemical data and catalytic efficiency of metal complexes for water-splitting hydrogen evolution reaction.
a = photochemical H2 production from [M-opda 1–5] (7.98 × 10−2 mmol) with HQ (7.98 × 10−1 mmol) in (4 mL) under an N2 atmosphere at
V. Artero and coworker synthesized cobalt diimine-dioxime complexes as molecular catalysts for H2 evolution [69, 70]. This synthesized ligand (N2, N2−propanediylbis-butan-2-imine-3-oxime) has emerged many years ago through Schiff base condensation of butanedione-monoximeon diamine compounds but not widely used for HER. Cobalt diimine-dioxime catalysts are active for H2 evolution in aqueous solution, both after immobilization on electrode materials and in light-driven homogeneous conditions. The electrocatalytic activity of complexes (6) and (7) for hydrogen evolution was supported gas chromatography and by cyclic voltammetry study illustrated in Figure 5 with the appearance of an irreversible wave. In the case of the BF2-associated complex (7), the electrcatalytic wave which developed toward negative potentials corresponds to the CoII/CoI couple in contrast to the H-bridged complex (6), electrocatalytic H2 evolution occurs at potentials positively shifted with regard to the CoII/CoI couple.
Cyclic voltammograms of (6) Br2 and (7) Br2 (1 mM, black traces) recorded in CH3CN at a glassy carbon electrode at a speed of 100 mV·s−1 (the figure is reproduced from Ref. [69], with permission from the publisher).
In the electrocatalytic cycle, V. Artero and coworker observed that in acetonitrile medium, halide ligands are banished with reduced oxidation state from CoII to CoI. Upon reduction, the coordination in number decreases from six in CoII state to five in CoI state; this characteristic was supported by DFT calculations [71]. In the catalytic cycle (Figure 6), the first step is the transfer of electron and proton by proton-coupled electron transfer (PCET) process. PCET is a chemical reaction that involves the transfer of electron and proton in which the oxidation number changes by CoII to CoI. In the second steps, further electron and proton transfer takes place by PCET process, and the oxidation number changes from CoI to CoII. In the last step, H2 is produced in dihydrogen bond through an intramolecular mechanism. The authors also confirmed cobalt diimine-dioxime catalysts 6 and 7 active for H2 evolution under light-driven conditions in the presence of photosensitizers, associated with Ru, Ir, or Re derivatives. The photocatalytic activity of 6-Br2 was observed in mixed H2O/CH3CN solvent in the presence of TEA and cyclometalated iridium-based photosensitizer [72]. Turnover numbers (TON) determined after continuous 4 h UV–visible light irradiation 6-Br2 showed 300 (H2 mol cat−1), whereas 7-Br2 complex shows only 50 (H2 mol cat−1) as shown in Table 2.
Possible pathway for catalytic hydrogen evolution, involving PCET processes.
Similarly, cobalt bis(iminopyridine) complex 8 was prepared for electrocatalytic water-splitting reaction [73]. The ligand-centered redox activity was observed during the cyclic voltammetry, suggesting the considerable role of redox-active ligand which is completely involved to stabilize the cobalt metal in higher oxidation state. The two reduction potentials were observed for the CoIII/CoII (quasi reversible) and CoII/CoI (reversible) couples at −0.34 V and −0.86 V (vs. Ag/AgC), respectively. The improved water reduction was attributed to the assimilation of a redox-active-ligand to cobalt which facile reduction of [Co-H]n+ species.
Grapperhaus et al. [74] recently reported two homogeneous electrocatalysts for H2 production. They derived bis(thiosemicarbazones) ligand from 1,2-diones, considered as a kind of multitalented redox non-innocent system. Tetra-coordinated N2S2 is able to bind with low-valent transition metals centered and formed to stable neutral complexes (9, 10) (Table 1). ZnII complex 9 containing a redox-active moiety diacetyl-bis (N-4 methyl-3-thiosemicarbazide) exhibits the homogeneous catalysis of electro-driven H2 evolution through proton reduction with a maximum of TOF 1170 s−1 in CH3OH and 11,700 s−1 in CH3CN at an overpotential of 0.756 V and 1.074 V, CH3COOH used as proton source. Bulk electrolysis showed that the TON of H2 evolution of ZnII is 37 in over 2.5 h experiments. To make this more comparative, Grapperhaus and coworker synthesized another CuII complex with similar ligand diacetyl-bis(N-4-methyl-3-thiosemicarbazide) and examined H2 evolution reaction. CuII complex 10 exhibits a maximum TOF of 10,000 s−1 in CH3CN and 5100 s−1 in DMF at an overpotential of 0.80 and 0.76 V, respectively. Controlled potential electrolysis confirmed CuII complex act as an excellent electrocatalyst to produce H2 with a minimum faradic efficiency of 81% and TON as high as 73 during experiment over 23 h. They examined HER mechanism of complex 10 through DFT computational studies. In the proposed mechanism, initially the protonation occurs at the hydrazino nitrogen ligand. This was followed by an electrochemical step as a formation of reduced CuI species [CuI(HL)]. The second protonolysis occurs at the opposite hydrazine nitrogen of the ligand to yield [CuI(H2L)]+. Further one-electron reduction of [CuI(H2L)]+ leads to the formation of the H2 evolution illustrated in Figure 7. Hence, here it is worth to mention that the identity of metal ions at the active site affects the HER mechanism.
Plausible mechanism for proton reduction in complex [CuL].
Professor Wang and group proposed [75] a significant homogeneous mononuclear copper electrocatalyst for H2 production attributed to diamine-tripyridine ligand; complex 11 attains trigonal bipyramidal geometry. According to the author, this ionic copper complex [Cu(bztpen)]2+with a five coordinating nitrogen atom shows a Jahn-Teller effect. Electrochemical and spectroscopic studies supported that the H2 generation reaction takes place by two successive proton-coupled reduction processes. On the experimental observations of DPV, CV, UV–vis, and 1H-NMR spectroscopic study, the authors proposed two possible pathways: path(A), protonation takes place at the CuI centered in the first step (Eqs. (4) and (5)), and path(B), protonation occurs at one of the nitrogen atoms of the ligand (Eqs. (6), (7), and (8)). H2 generation reaction in path B takes place by two successive proton-coupled reduction processes. Protonation occurs at the ligand centered in the first reduction step, followed by the CuI centered in the second step. This provides [(bztpenH)CuII(H)]2+copper hydride species, which release H2 and regenerate CuII catalyst.
Path A:
Path B:
According to the author’s studies on the mechanism of this process, the controlled potential electrolysis of complex 11 was measured at pH 2.5 in phosphate buffer at −0.90 V, over 2 h in a glassy carbon electrode. TON 1.4 × 104 mol H2 (mol cat−1) cm−2 was calculated on a faradic efficiency of approximately 96%, which corresponds to a TOF of 2.0 molH2 (mol cat−1)s−1cm−2of [(bztpen)Cu](BF4)2.
Moreover, Wang et al. [76] fabricated and examined two Cu complexes with TMPA = tris(2-pyridyl)methylamine and Cl-TMPA 1-(6-chloropyridin-2-yl)methyl-N,N-bis(pyridin-2-ylmethyl)methaneamine for photocatalytic H2 evolution behavior. They observed both in Cu(II) complexes [Cu(TMPA)Cl]Cl (12) and [Cu(Cl-TMPA)Cl2](13) that (13) is far efficient for photocatalytic H2 production than (12), due to the presence of more labile Cl ligand with longer Cu-Cl bond length and a dangling Cl-substituted pyridyl unit in the second coordination sphere, which both contribute to a higher photocatalytic activity of complex (13). TMPA acts as a tetradentate ligand and coordinate with Cu(II) in a distorted trigonal manner; Cl-TMPA acts as a tridentate ligand coordinate to Cu(II) with two chloride ions in a distorted square pyramidal manner, leaving one Cl-substituted pyridyl group in the second coordination sphere structure which is given in Table 1. ESI-Ms data favor the formation of Cu-hydride intermediate for hydrogen evolution. The authors investigated the photocatalytic H2 production activities in the presence of a multicomponent [Ir(ppy)2(dtbpy)]Cl (ppy = 2-phenylpyridine, dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine) and triethylamine (TEA) photosystems as sacrificial reductant (SR) under optimal condition upon 6 h of irradiation of UV–visible light, the turnover number (TON) of which is calculated as 6108 for complex (12) and 10,014 for complex (13).
Based on the control potential electrolysis experimental data, the authors proposed photocatalytic hydrogen evolution mechanism. In the first step, excited PS system takes out one electron from TEA and donates to CuII center of complex (13). The protonated Cl-substituted pyridyl unit accepts that electron and kicks out the Cu-Cl center for the dissociation of Cl ligand which is substituted at the apical position which is more labile (longest bond length Cu-Cl). After that, the CuI species accept one e− and one H+ from the reduced Cl-substituted pyridinium moiety; CuII-H center is formed as a key intermediate which lead to H2 evolution. This executive mechanism provides us guidelines to design more efficient Cu-based catalysts for WRCs in the near future (Figure 8).
Photocatalytic H2 evolution mechanism for complex [Cu(Cl-TMPA)Cl2] 12.
Professor Richard Eisenberg and coworker [77] synthesized a sequence of nickel bis(chelate) complexes; all complexes attained square planar geometry and examined photocatalytic as well as electrocatalytic behavior for hydrogen evolution. Fluorescein (Fl) as the photosensitizer along with triethanolamine (TEOA) as the sacrificial electron donor was used in water under basic medium (pH = 9.8). Bis(chelate) complexes (14–17) contain bdt(bisdithiolate) and their derivatives having S, O, or N as donors for coordination to the Ni center. The photochemical study reveals that only complexes 15 and 17 exhibited similar activity of hydrogen production in terms of TON (6000 mol of H2 per mole of catalyst in 100 h). In contrast, the TON for the sample complex 16 was much lower (∼900). Complex 14 was observed to be inactive for hydrogen generation. To understand the better significant result, the authors pursued electrochemical experiments under a fixed potential to examine the catalytic activity of complexes. In the absence of acid, both monoanionic complexes 14 and 17 exhibit only one reversible redox couple at −0.56 and −0.45 V, respectively, which is attributed to the [NiL2]−/[NiL2]2−ligand-based reductions. The neutral complexes 15 and 16 exhibit two reversible reduction waves at −0.11 and −0.94 V and at −0.89 and −1.53 V, respectively. However, on increasing the concentration of acetic acid to these solutions, more negative catalytic waves were observed in cyclic voltammetry study. Complex 14 shows much more negative reduction potential (−2.25) which suggested this system is inactive for H2 generation (as we discussed earlier). As is the case for complex 14, complex 16 exhibits a catalytic wave potential at −2.03 V which showed poor activity for H2 generation as a consequence of not favorable electron transfer step from Fl− to the catalyst. Moreover, complexes 15 and 17 show activity for light-driven H2 generation; these two complexes display electrocatalytic wave potential at significantly less negative at −1.64 and −1.62 V, respectively.
Here we present a recent development of molecular catalysts toward clean and renewable fuels using earth-abundant metals. We have highlighted a series of Co-, Ni-, Cu-, Zn-based complexes for HER. We have recapitulated the fundamental principles of hydrogen and oxygen evolution reactions with molecular complexes. The designing and fabrication of the molecular complexes with redox-active ligands have been discussed in details; HER activity of the complexes strongly dependent on redox-active ligands as well the central metal ions are discussed in detail. A mechanistic approach and transfer of electron and proton during the homogeneous electrocatalyst and photocatalysts cycle are given in point. Although reasonable progress has been made in the development of metal complexes based electrocatalysts and chromospheres for photocatalytic hydrogen production, still several issues exist which need further improvement: (i) some photocatalytic systems suffer from low activities and short life times which is manifested in the instability of catalytic systems and so concern on the systems with modest water splitting activity and poor stability of the complexes. (ii) most of the complexes are not soluble in water leading to the use of organic solvent or mixture of organic- water solvent. From the future prospective, it is required to develop redox-active ligands with substituted functional group to increase the solubility of complexes in water. More experimental, spectroscopic, magnetic, and theoretical investigations is still needed to be carried out in order to understand the ligand- and metal-centered electron transfer processes. (iii) In addition, the overpotential requirements for most of the organic ligands are still very high, a chelating ligands giving much lower thermodynamic potentials and much smaller oxidation potential that should be utilized in future. (iv) In the regard of future growth in this field, with the need to design molecular complexes that can be immobilized on the surface of the electrode, for this purpose addition of suitable functional group in the ligand is necessity. These complexes can also be supported by the development of surface of the solid photocatalyst, like TiO2, BiVO4, etc. to demonstrate efficient photoelectrochemical cell.
The authors acknowledges the helps received from Ms. Priyadarshini Sahu and Mr. Abhineet Verma during the manuscript preparation.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"qngrRaqGuveqFgrcChoyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1178",title:"Electrophysiology",slug:"electrophysiology",parent:{title:"Neurophysiology",slug:"neurophysiology"},numberOfBooks:2,numberOfAuthorsAndEditors:108,numberOfWosCitations:84,numberOfCrossrefCitations:34,numberOfDimensionsCitations:106,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electrophysiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"543",title:"Amyotrophic Lateral Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"1a986185a49802e1e3beaf6cdc6dde8d",slug:"amyotrophic-lateral-sclerosis",bookSignature:"Martin H. Maurer",coverURL:"https://cdn.intechopen.com/books/images_new/543.jpg",editedByType:"Edited by",editors:[{id:"95060",title:"Prof.",name:"Martin Henrik",middleName:"H.",surname:"Maurer",slug:"martin-henrik-maurer",fullName:"Martin Henrik Maurer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"26540",doi:"10.5772/30897",title:"Protein Aggregates in Pathological Inclusions of Amyotrophic Lateral Sclerosis",slug:"protein-aggregates-in-pathological-inclusions-of-amyotrophic-lateral-sclerosis",totalDownloads:2190,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Yoshiaki Furukawa",authors:[{id:"84665",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Furukawa",slug:"yoshiaki-furukawa",fullName:"Yoshiaki Furukawa"}]},{id:"26529",doi:"10.5772/32384",title:"Dynamic Meta-Analysis as a Therapeutic Prediction Tool for Amyotrophic Lateral Sclerosis",slug:"dynamic-meta-analysis-as-a-therapeutic-prediction-tool-for-amyotrophic-lateral-sclerosis",totalDownloads:1851,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Cassie S. Mitchell and Robert H. Lee",authors:[{id:"91289",title:"Dr.",name:"Cassie",middleName:null,surname:"Mitchell",slug:"cassie-mitchell",fullName:"Cassie Mitchell"}]},{id:"26543",doi:"10.5772/30341",title:"Innate Immunity in ALS",slug:"innate-immunity-in-als",totalDownloads:1882,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"John D. Lee, Jia Y. Lee, Stephen M. Taylor, Peter G. Noakes and Trent M. Woodruff",authors:[{id:"82094",title:"Dr.",name:"Trent",middleName:null,surname:"Woodruff",slug:"trent-woodruff",fullName:"Trent Woodruff"},{id:"91937",title:"Mr.",name:"John",middleName:null,surname:"Lee",slug:"john-lee",fullName:"John Lee"},{id:"91938",title:"Ms.",name:"Jia",middleName:null,surname:"Lee",slug:"jia-lee",fullName:"Jia Lee"},{id:"91939",title:"Prof.",name:"Stephen",middleName:null,surname:"Taylor",slug:"stephen-taylor",fullName:"Stephen Taylor"},{id:"91941",title:"Dr.",name:"Peter",middleName:null,surname:"Noakes",slug:"peter-noakes",fullName:"Peter Noakes"}]}],mostDownloadedChaptersLast30Days:[{id:"26527",title:"Amyotrophic Lateral Sclerosis: An Introduction to Treatment and Trials",slug:"amyotrophic-lateral-sclerosis-an-introduction-to-treatment-and-trials",totalDownloads:5458,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Martin H. Maurer",authors:[{id:"95060",title:"Prof.",name:"Martin Henrik",middleName:"H.",surname:"Maurer",slug:"martin-henrik-maurer",fullName:"Martin Henrik Maurer"}]},{id:"26540",title:"Protein Aggregates in Pathological Inclusions of Amyotrophic Lateral Sclerosis",slug:"protein-aggregates-in-pathological-inclusions-of-amyotrophic-lateral-sclerosis",totalDownloads:2190,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Yoshiaki Furukawa",authors:[{id:"84665",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Furukawa",slug:"yoshiaki-furukawa",fullName:"Yoshiaki Furukawa"}]},{id:"26534",title:"Role of Mitochondrial Dysfunction in Motor Neuron Degeneration in ALS",slug:"role-of-mitochondrial-dysfunction-in-motor-neuron-degeneration-in-als",totalDownloads:2245,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Luz Diana Santa-Cruz, Uri Nimrod Ramírez-Jarquín and Ricardo Tapia",authors:[{id:"86426",title:"Prof.",name:"Ricardo",middleName:null,surname:"Tapia",slug:"ricardo-tapia",fullName:"Ricardo Tapia"}]},{id:"26548",title:"Genetics of Familial Amyotrophic Lateral Sclerosis",slug:"genetics-of-familial-als",totalDownloads:2666,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Emily F. Goodall, Joanna J. Bury, Johnathan Cooper-Knock, Pamela J. Shaw and Janine Kirby",authors:[{id:"90305",title:"Dr.",name:"Janine",middleName:null,surname:"Kirby",slug:"janine-kirby",fullName:"Janine Kirby"},{id:"91729",title:"Dr.",name:"Johnathan",middleName:null,surname:"Cooper-Knock",slug:"johnathan-cooper-knock",fullName:"Johnathan Cooper-Knock"},{id:"91731",title:"MSc.",name:"Joanna",middleName:null,surname:"Bury",slug:"joanna-bury",fullName:"Joanna Bury"},{id:"91733",title:"Dr.",name:"Emily",middleName:null,surname:"Goodall",slug:"emily-goodall",fullName:"Emily Goodall"},{id:"91737",title:"Prof.",name:"Pamela",middleName:null,surname:"Shaw",slug:"pamela-shaw",fullName:"Pamela Shaw"}]},{id:"68369",title:"Cerebral Spectral Perturbation during Upper Limb Diagonal Movements",slug:"cerebral-spectral-perturbation-during-upper-limb-diagonal-movements",totalDownloads:337,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Fabio Marson, Patrizio Paoletti, Stefano Lasaponara, Joseph Glicksohn, Antonio De Fano and Tal Dotan Ben-Soussan",authors:[{id:"191040",title:"Ph.D.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan"},{id:"195042",title:"Prof.",name:"Joseph",middleName:null,surname:"Glicksohn",slug:"joseph-glicksohn",fullName:"Joseph Glicksohn"},{id:"309442",title:"Dr.",name:"Fabio",middleName:null,surname:"Marson",slug:"fabio-marson",fullName:"Fabio Marson"},{id:"309443",title:"Dr.",name:"Patrizio",middleName:null,surname:"Paoletti",slug:"patrizio-paoletti",fullName:"Patrizio Paoletti"},{id:"309444",title:"Dr.",name:"Stefano",middleName:null,surname:"Lasaponara",slug:"stefano-lasaponara",fullName:"Stefano Lasaponara"},{id:"309445",title:"Dr.",name:"Antonio",middleName:null,surname:"De Fano",slug:"antonio-de-fano",fullName:"Antonio De Fano"}]},{id:"26535",title:"Role of Neuronal Mitochondrial Metabolic Phenotype in Pathogenesis of ALS",slug:"role-of-neuronal-mitochondrial-metabolic-phenotype-in-pathogenesis-of-als",totalDownloads:1852,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Alexander Panov, Nury Steuerwald, Valentin Vavilin, Svetlana Dambinova and Herbert L. Bonkovsky",authors:[{id:"82483",title:"Dr.",name:"Alexander",middleName:"V.",surname:"Panov",slug:"alexander-panov",fullName:"Alexander Panov"},{id:"127580",title:"Dr.",name:"Herbert",middleName:null,surname:"Bonkovsky",slug:"herbert-bonkovsky",fullName:"Herbert Bonkovsky"}]},{id:"68413",title:"Correlations of Gait Phase Kinematics and Cortical EEG: Modelling Human Gait with Data from Sensors",slug:"correlations-of-gait-phase-kinematics-and-cortical-eeg-modelling-human-gait-with-data-from-sensors",totalDownloads:148,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Chaitanya Nutakki, Sandeep Bodda and Shyam Diwakar",authors:[{id:"71863",title:"Dr.",name:"Shyam",middleName:null,surname:"Diwakar",slug:"shyam-diwakar",fullName:"Shyam Diwakar"},{id:"300655",title:"Mr.",name:"Chaitanya",middleName:null,surname:"Nutakki",slug:"chaitanya-nutakki",fullName:"Chaitanya Nutakki"},{id:"300656",title:"Mr.",name:"Sandeep",middleName:null,surname:"Bodda",slug:"sandeep-bodda",fullName:"Sandeep Bodda"}]},{id:"70077",title:"Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements",slug:"computer-simulations-of-hippocampal-mossy-fiber-cleft-zinc-movements",totalDownloads:159,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Johnattan C.S. Freitas, João N. Miraldo, Carlos Manuel M. Matias, Fernando D.S. Sampaio dos Aidos, Paulo J. Mendes, José C. Dionísio, Rosa M. Santos, Luís M. Rosário, Rosa M. Quinta-Ferreira and Emília Quinta-Ferreira",authors:[{id:"308359",title:"Dr.",name:"Emília",middleName:null,surname:"Quinta-Ferreira",slug:"emilia-quinta-ferreira",fullName:"Emília Quinta-Ferreira"},{id:"308361",title:"Dr.",name:"Carlos",middleName:null,surname:"Matias",slug:"carlos-matias",fullName:"Carlos Matias"},{id:"311289",title:"Mr.",name:"Johnattan C.S.",middleName:null,surname:"Freitas",slug:"johnattan-c.s.-freitas",fullName:"Johnattan C.S. Freitas"},{id:"311290",title:"Dr.",name:"Fernando D.S,",middleName:null,surname:"Sampaio Dos Aidos",slug:"fernando-d.s-sampaio-dos-aidos",fullName:"Fernando D.S, Sampaio Dos Aidos"},{id:"311291",title:"Dr.",name:"Paulo J.",middleName:null,surname:"Mendes",slug:"paulo-j.-mendes",fullName:"Paulo J. Mendes"},{id:"311292",title:"Dr.",name:"José C.",middleName:null,surname:"Dionísio",slug:"jose-c.-dionisio",fullName:"José C. Dionísio"},{id:"311293",title:"Dr.",name:"Rosa M.",middleName:null,surname:"Santos",slug:"rosa-m.-santos",fullName:"Rosa M. Santos"},{id:"311294",title:"Dr.",name:"Luís M.",middleName:null,surname:"Rosário",slug:"luis-m.-rosario",fullName:"Luís M. Rosário"},{id:"311295",title:"Dr.",name:"Rosa M.",middleName:null,surname:"Quinta-Ferreira",slug:"rosa-m.-quinta-ferreira",fullName:"Rosa M. Quinta-Ferreira"},{id:"311296",title:"Mr.",name:"João N.",middleName:null,surname:"Miraldo",slug:"joao-n.-miraldo",fullName:"João N. Miraldo"}]},{id:"26529",title:"Dynamic Meta-Analysis as a Therapeutic Prediction Tool for Amyotrophic Lateral Sclerosis",slug:"dynamic-meta-analysis-as-a-therapeutic-prediction-tool-for-amyotrophic-lateral-sclerosis",totalDownloads:1851,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Cassie S. Mitchell and Robert H. Lee",authors:[{id:"91289",title:"Dr.",name:"Cassie",middleName:null,surname:"Mitchell",slug:"cassie-mitchell",fullName:"Cassie Mitchell"}]},{id:"26531",title:"Advantages and Pitfalls in Experimental Models Of ALS",slug:"advantages-and-pitfalls-in-experimental-models-of-als",totalDownloads:1977,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Marina Boido, Elisa Buschini, Antonio Piras, Giada Spigolon, Valeria Valsecchi, Letizia Mazzini and Alessandro Vercelli",authors:[{id:"86826",title:"Prof.",name:"Alessandro",middleName:null,surname:"Vercelli",slug:"alessandro-vercelli",fullName:"Alessandro Vercelli"},{id:"91887",title:"MSc",name:"Marina",middleName:null,surname:"Boido",slug:"marina-boido",fullName:"Marina Boido"},{id:"91890",title:"Dr.",name:"Elisa",middleName:null,surname:"Buschini",slug:"elisa-buschini",fullName:"Elisa Buschini"},{id:"91891",title:"Dr.",name:"Giada",middleName:null,surname:"Spigolon",slug:"giada-spigolon",fullName:"Giada Spigolon"},{id:"91892",title:"Dr.",name:"Antonio",middleName:null,surname:"Piras",slug:"antonio-piras",fullName:"Antonio Piras"},{id:"91893",title:"Dr.",name:"Valeria",middleName:null,surname:"Valsecchi",slug:"valeria-valsecchi",fullName:"Valeria Valsecchi"},{id:"125841",title:"Dr.",name:"Letizia",middleName:null,surname:"Mazzini",slug:"letizia-mazzini",fullName:"Letizia Mazzini"}]}],onlineFirstChaptersFilter:{topicSlug:"electrophysiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/106607/fco-javier-rodriguez",hash:"",query:{},params:{id:"106607",slug:"fco-javier-rodriguez"},fullPath:"/profiles/106607/fco-javier-rodriguez",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()