Variational parameter μ(a) as a function of the zinc selenide QD radius a.
\r\n\t
",isbn:"978-1-83969-561-2",printIsbn:"978-1-83969-560-5",pdfIsbn:"978-1-83969-562-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",bookSignature:"Dr. Luis Loures",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",keywords:"Urban Processes, Urban Patterns, Redevelopment Strategies, Landscape, Land Transformation, Urban Models, Urban Evolution, Urban Organisation, Legislation, Sustainable Development, Green Infrastructure, Regional Planning",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 22nd 2021",dateEndThirdStepPublish:"May 21st 2021",dateEndFourthStepPublish:"August 9th 2021",dateEndFifthStepPublish:"October 8th 2021",remainingDaysToSecondStep:"14 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Loures has worked on pioneering research on circular planning applied to post-industrial landscape redevelopment. Since he graduated he has published several peer-reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA) and at the University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures",profilePictureURL:"https://mts.intechopen.com/storage/users/108118/images/system/108118.png",biography:"Luís Loures is a Landscape Architect and Agronomic Engineer, Vice-President of the Polytechnic Institute of Portalegre, who holds a Ph.D. in Planning and a Post-Doc in Agronomy. Since he graduated, he has published several peer reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA), and at University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).\nDuring his academic career he had taught in several courses in different Universities around the world, mainly regarding the fields of landscape architecture, urban and environmental planning and sustainability. Currently, he is a researcher both at VALORIZA - Research Centre for Endogenous Resource Valorization – Polytechnic Institute of Portalegre, and the CinTurs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve where he is a researcher on several financed research projects focusing several different investigation domains such as urban planning, landscape reclamation and urban redevelopment, and the use of urban planning as a tool for achieving sustainable development.",institutionString:"Polytechnic Institute of Portalegre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Polytechnic Institute of Portalegre",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48653",title:"Theory of Excitons and Excitonic Quasimolecules Formed from Spatially Separated Electrons and Holes in Quasi-Zero- Dimensional Nanostructures",doi:"10.5772/60591",slug:"theory-of-excitons-and-excitonic-quasimolecules-formed-from-spatially-separated-electrons-and-holes-",body:'Quasi-zero-dimensional semiconductor nanosystems consisting of spherical semiconductor nanocrystals, i.e., quantum dots with radii of a =1-10 nm and containing cadmium sulphide and selenide, gallium arsenide, germanium, silicon, and zinc selenide in their volume, and synthesized in a borosilicate glass matrix currently attract particular research attention due to their unique photoluminescent properties, i.e., the ability to efficiently emit light in the visible or near infrared ranges at room temperature [1-10]. The optical and electro-optical properties of such quasi-zero dimensional nanosystems are to a large extent controlled by the energy spectrum of the spatially confined electron-hole pair (exciton) [4-16].
In most theoretical models for calculating the energy spectra of quasiparticles in quantum dots (QDs), the effective mass approximation is used, which was considered applicable for QDs by analogy with bulk single crystals [11-13]. However, the problem concerning the applicability of the effective mass approximation to the description of semiconductor QDs remains unsolved [4-18].
In [14], a new modified effective mass method is proposed to describe the exciton energy spectrum in semiconductor QDs with radii of a ≈ aex (aex is the exciton Bohr radius in the semiconductor material contained in the QD volume). It was shown that, within a model in which the QD is represented as an infinitely deep potential well, the effective mass approximation can be applied to the description of an exciton in QDs with radii a comparable to the exciton Bohr radius aex, assuming that the reduced effective exciton mass is a function of the radius a, μ = μ(a).
In the adiabatic approximation and within the modified effective mass method [14], an expression for the binding energy of an exciton, whose electron and hole move within the semiconductor QD volume, was derived in [15]. In [15], the effect of significantly increasing the exciton binding energy in cadmium selenide and sulphide QDs with radii a, comparable to the exciton Bohr radii aex and relative to the exciton- binding energy in cadmium selenide and sulphide single crystals (by factors of 7.4 and 4.5, respectively) was also detected.
In the experimental study [7], it was found that excess electrons produced during interband excitation of the cadmium sulphide QD had a finite probability of overcoming the potential barrier and penetrating into the borosilicate glass matrix, into which the QD is immersed. In experimental studies [10, 19] (as well as in [7]) using glass samples with cadmium-sulphide and zinc selenide QDs, it was found that the electron can be localized in the polarization well near the outer QD surface, while the hole moves within the QD volume.
In [10, 19], the optical properties of borosilicate glass samples containing QD zinc selenide were experimentally studied. The average radii of such QDs were in the range a ≈ 2.0-4.8 nm. In this case, the values of a are comparable to the exciton Bohr radius aex ≈ 3.7 nm in a ZnSe single crystal. At low QD concentrations, when the optical properties of the samples are mainly controlled by those of individual QDs in the borosilicate glass matrix, a shift of the peak of the low temperature luminescence spectrum to the short wavelength region (with respect to the band gap Eg of the zinc selenide-single crystal) was observed. The authors of [10] assumed that this shift was caused by quantum confinement of the energy spectra of the electron and the hole localized near the spherical surface of the QD. In this case, the following problem remained open: the quantum confinement of the state of which electron and hole (the hole moving in the QD volume and the electron localized at the outer spherical QD-dielectric matrix interface or the electron and hole localized in the QD volume) caused such a shift in the luminescence spectrum peak?
The use of semiconductor nanosystems as the active region of nanolasers is prevented by the low binding energy of the QD exciton [8, 9, 13]. Therefore, studies directed at the search for nanostructures in which a significant increase in the binding energy of QD excitons can be observed are of importance.
Currently, the theory of exciton states in quasi- zero- dimensional semiconductor nanosystems has not been adequately studied. In particular, no theory exists for an exciton with a spatially separated electron and hole in quasi- zero- dimensional nanosystems. Therefore, in this study, we developed the theory of an exciton formed from a spatially separated electron and hole (the hole is in the semiconductor QD volume and the electron is localized at the outer spherical surface of the QD-dielectric matrix interface) [20-22]. It was shown that the short wavelength shift of the peak of the low temperature luminescence spectrum of samples containing zinc selenide QDs, observed under the experimental conditions of [10], was caused by quantum confinement of the ground state energy of the exciton with a spatially separated electron and hole. The effect of significantly increasing the binding energy of an exciton (with a spatially separated electron and hole) in a nanosystem containing zinc selenide QDs, compared with the binding energy of an exciton in a zinc selenide single crystal (by a factor of 4.1-72.6), was detected [20-22].
In [10, 19], a shift of the spectral peak of the low temperature luminescence was also observed for samples with a QD concentrations from x = 0.003-1%. It was noted [10, 19] that at such a QD content in the samples, the interaction between charge carriers localized above the QD surfaces must be taken into account. Therefore, in [23, 24], we develop the theory of excitonic quasimolecules (biexcitons) (formed from spatially separated electrons and holes) in a nanosystem, which consists of ZnSe QDs synthesized in a borosilicate glass matrix.
Let us consider the simple model of a quasi-zero-dimensional system, i.e., a neutral spherical semiconductor QD of the radius a, which contains semiconductor material with the permittivity ε2 in its volume, surrounded by a dielectric matrix with permittivity ε1. A hole h with the effective mass mh moves in the QD volume, while an electron e with the effective mass mе(1) lies in the matrix (re and rh are the distances from the QD centre to the electron and hole). Let us assume that the QD valence band is parabolic. Let us also assume that there is an infinitely high potential barrier at the spherical QD-dielectric matrix interface; therefore, the hole h cannot leave the QD volume and the electron e cannot penetrate into the QD volume in the model under study [20-22].
The characteristic dimensions of the problem are the quantities:
where ah and aex are the hole and exciton Bohr radii in the semiconductor with the permittivity ε2, e is the elementary charge, µ= mе(2)\n\t\t\t\tmh\n\t\t\t\t/(mе(2)+ mh) is the reduced effective mass of the exciton, mе(2) is the effective mass of an electron in the semiconductor with permittivity ε2 and ae is the electron Bohr radius in the dielectric matrix with the permittivity ε1. The fact that all characteristic dimensions of the problem are significantly larger than the interatomic distances a0,
allows us to consider the electron and hole motion in the quasi-zero-dimensional nanosystem in the effective mass approximation [11-13].
We analysed the conditions of carrier localization in the vicinity of a spherical dielectric particle of the radius a with the permittivity ε2 in [25-27]. In this instance, the problem of the field induced by the carrier near a dielectric particle immersed in a dielectric medium with the permittivity ε1 was solved in a final analytical form and analytical expressions for the potential energy of the interaction of the carrier with the spherical interface of two media are presented.
Solving the Poisson equation with usual electrostatic boundary conditions
the potential
where θ(x) is the Heaviside unit-step function,
Using expressions (3)-(3d), the energy
where
In the studied simple model of a quasi-zero-dimensional nanostructure within the above approximations and in the effective mass approximation using the triangular coordinate system [14-16], re = |re|, rh = |rh|, r = |re – rh|, with the origin at the centre of the QD, the exciton Hamiltonian (with a spatially separated hole moving within the QD volume and an electron in the dielectric matrix) takes the following form [20-22, 29-32]:
where the first three terms are the operators of the electron, hole and exciton kinetic energy, Eg is the band gap in the semiconductor with the permittivity ε2 and μ0 =
In the exciton Hamiltonian (10), the potentials
describe the quasiparticle motion using the models of an infinitely deep potential well.
As the QD radius a increases (so that a\n\t\t\t\t
The primary contribution to the potential energy of the Hamiltonian (10) describing exciton motion in a nanosystem containing a large-radius QD, a\n\t\t\t\t
where n = 0, 1, 2... is the principal quantum number of the exciton and Ry0 = 13.606 eV is the Rydberg constant. The Bohr radius of such a two-dimensional exciton is described by the following formula:
and the binding energy of the ground state of such a two-dimensional exciton, according to (13), is written as:
The binding energy (15) of the exciton ground state is understood as the energy required for bound electron and hole state decay (in a state where n = 0).
To determine the ground-state energy of an exciton (with a spatially separated electron and hole) in a nanosystem containing QDs of the radius a, we applied the variational method. When choosing the variational exciton wave function, we used an approach similar to that developed in [14]. Let us write the variational radial wave function of the exciton ground-state (1s electron state and 1s hole state) in the nanosystem under study in the following form [20-22]:
Here, the coefficient A is determined from the condition of normalization of the exciton wave function (16):
and the effectively reduced exciton mass μ(a) is the variational parameter.
As the QD radius a increases (so that a\n\t\t\t\t
To determine the exciton ground-state energy E0(a, ε) in the nanosystem under study using the variational method, we wrote the average value of the exciton Hamiltonian (10) in wave functions (16) as follows:
The dependence of the energy E0(a) of the exciton ground state (ne = 1, le = me =0; пh = 1, lh\n\t\t\t\t= тh= 0) (пе, lе, те and пh, lh, тh are the principal, orbital and magnetic quantum numbers of the electron and hole, respectively) on the QD radius, a is calculated by minimizing the functional E0(a, μ(a)) (17):
Without writing cumbersome expressions for the first derivative of the functional ∂E0(a, μ(a))/∂μ(a) =F(μ(a), a), we present the numerical solution to the equation F(μ(a), a) = 0 (18) in tabulated form. This follows from the table that the solution to this equation is the function μ(a), which monotonically varies weakly within the limits [20-22]:
as the QD radius a varies within the range
(m0 is the electron mass in a vacuum). In this case, the reduced exciton effective mass μ(a) (19) in the nanosystem differs slightly from the effective mass of an exciton (with a spatially separated hole and electron) μ = 0.304m0 by the value (μ(a) – μ0)/μ0 ≤ 0.18 when the QD radii vary within the range (20).
Simultaneously substituting the values of the variational parameter μ(a) (19) from Table 1 with the corresponding QD radii from the range (20) into the functional E0(a, μ(a)) (17), we obtain the exciton ground-state energy E0(a, ε) (17) as a function of the QD radius a [20-22].
\n\t\t\t\t\n\t\t\t\t\ta, nm\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\t\n\t\t\t\t\tμ(a)/m0\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t | \n\t\t
2.0 3.0 4.0 5.0 6.0 8.0 10.0 15.0 20.0 29.8 \n\t\t\t | \n\t\t\t0.359 0.352 0.345 0.338 0.331 0.325 0.319 0.313 0.308 0.304 \n\t\t\t | \n\t\t
Variational parameter μ(a) as a function of the zinc selenide QD radius a.
The results of the variational calculation of the energy of the ground state of an exciton E0(a, ε) (17) in the nanosystem under study containing zinc selenide QDs of the radius a (20) are shown in the Figure 1 [20-22]. Here, the values of function μ(a) (19) and the results of the variational calculation of the exciton ground-state energy E0(a, ε) (17) are obtained for a nanosystem containing zinc selenide QDs, synthesized in a borosilicate glass matrix, as studied in the experimental works [10, 19].
In the experimental work [10], borosilicate glass samples doped with zinc selenide with concentrations ranging from x = 0.003-1%, obtained by the sol-gel method, were studied. According to X-ray diffraction measurements, the average radii a of ZnSe QDs formed in the samples were within a ≈ 2.0-4.8 nm. In this case, the values of
Dependences of the exciton ground state-energy (E0(a,ε) –Eg) (17) (solid curve) and the binding energy of the exciton ground state (Eex(a, ε) – Eg) (21) (dashed curve) on the zinc selenide QD radius a in the model of an exciton with a spatially separated electron and hole. The dash-dotted curve is the dependence of the exciton ground-state energy (E0(a, ε) – Eg) on the zinc selenide QD radius a in the exciton model, in which the electron and hole move within the zinc selenide QD volume [16]. Eg = 2.823 eV is the band gap in a zinc selenide single crystal; Eex0 = 1.5296 eV (15) and aex0, = 0.573 nm (14) are, respectively, the binding energy of the ground state and the Bohr radius of a two-dimensional exciton with a spatially separated electron and hole.
In [10, 19], a peak in the low-temperature luminescence spectrum at an energy of E1 ≈ 2.66 eV was observed at the temperature T = 4.5 K in samples with x = 0.06%; this energy is lower than the band gap of a zinc selenide single crystal (Eg = 2.823 eV). The shift of the peak of the low-temperature luminescence spectrum with respect to the band gap of the ZnSe single crystal to the short-wavelength region is ΔE1 = (E1–Eg) ≈ –165 meV. The authors of [10] assumed that the shift ΔE1 was caused by quantum confinement of the energy spectra of electrons and holes localized near the spherical surface of individual QDs, and that it was associated with a decrease in the average radii a of zinc-selenide QDs at low concentrations (x = 0.06%). In this case, the problem of the quantum confinement of which electron and hole states (the hole moving within the QD volume and the electron localized at the outer spherical QD-dielectric matrix interface or the electron and hole localized in the QD volume) caused such a shift of the luminescence-spectrum peak remained open.
Comparing the exciton ground-state energy (E0(a,ε) – Eg) (17) with the energy of the shift in the luminescence-spectrum peak ΔE1 ≈ –165 meV, we obtained the average zinc selenide QD radius a1 ≈ 4.22 nm (see Figure 1) [20-22]. The QD radius a1 may be slightly overestimated, since the variational calculation of the exciton ground-state energy can yield slightly overestimated energies [33, 34]. The determined average QD radius a1 was found to be within the range of the average radii of zinc selenide QDs (
It should be noted that the average Coulomb interaction energy
yielded a significantly smaller contribution to the exciton ground-state energy (17),
Thus, the short-wavelength shift ΔE1 of the low temperature luminescence spectrum peak is caused by renormalization of the electron-hole Coulomb interaction energy Veh(r) (11), as well as renormalization of the energy U(re, rh, r, a, ε) (5) of the polarization interaction of the electron and hole with the spherical QD-dielectric matrix interface, which is associated with spatial confinement of the quantization region by the QD volume. In this case, the hole moves within the QD volume and the electron is localized at the outer spherical QD-dielectric matrix interface.
The binding energy of the ground state of an exciton (with a spatially separated electron and hole) Eex(a, ε) in a nanosystem containing zinc selenide QDs of the radius a is the solution to the radial Schrodinger equation with a Hamiltonian containing, in contrast to Hamiltonian (10), only the terms Vhe\'(re,rh, a, ε) (8) and Veh\'(re, rh, a, ε) (9) in the polarization interaction energy U(re, rh, a, ε) (5), which describe the energies of the hole and electron interaction with “foreign” images, respectively [15, 27, 28]. Therefore, the exciton ground-state binding energy Eex(a, ε) is defined by the expression [20-22]:
where the term
Since the average energies of the interaction of the hole with its image and the average energies of the interaction of the electron with its image deliver contributions that take opposing signs to expression (21), they significantly compensate for each other. Therefore, the binding energies of the exciton ground state Eex(a, ε) (21) slightly differs from the corresponding total energies of the exciton ground state E0(a, ε) (17). This difference,
varies within Δ ≤ 4%, as QD radii a varies within the range 3.84 ≤ a ≤ 8.2 nm (see Figure 1) [20-22].
Figure 1 shows the dependences of the total energy E0(a, ε) (17) and the binding energy Eex(a, ε) (21) of the ground state of the exciton with a spatially separated electron and hole on the QD size for a nanosystem containing zinc selenide QDs of the radius a. We can see that the bound states of electron-hole pairs arise near the spherical surface of the QD, starting from the QD critical radius a ≥ ac(1) ≈ 3.84 nm. In this case, the hole is localized near the QD inner surface and the electron is localized at the outer spherical QD-dielectric matrix interface. Starting from the QD radius a ≥ ac(1), the electron-hole pair states are in the region of negative energies (counted from the top of the band gap Eg for a zinc selenide single crystal), which corresponds to the electron-hole bound state [20-22, 29-23]. In this case, the electron-hole Coulomb interaction energy Veh(r) (11) and the energy U(re, rh, r, a, ε) (5) of the polarization interaction of the electron and hole with the spherical QD-dielectric matrix interface dominate the energy of the quantum confinement of the electron and hole in the nanosystem under study.
The total energy |E0(a, ε)| (17) and the binding energy |Eex(a, ε)| (21) of the ground state of the exciton with a spatially separated electron and hole increases with QD radius a. In the range of radii
the binding energy |Eex(a, ε)| (21) of the exciton ground state significantly (by a factor of 4.1-76.2) exceeds the exciton binding energy in a zinc selenide single crystal,
The obtained values of the total energy E0(a, ε) (17) of the exciton ground state in the nanosystem satisfy the inequality
where ΔV(a) is the potential-well depth for the QD electron. For a large class of II-VI semiconductors in the region of QD sizes, a ≥
The effect of a significant increase in the binding energy |Eex(a, ε)| (21) of the exciton ground state in the nanosystem under study, according to formulas (5) to (9), (11), (13) to (15), (17) and (21) is controlled by two factors [20-22, 29-32]: (i) a significant increase in the energy of the electron-hole Coulomb interaction |Veh(r)| (11) and an increase in the energy of the interaction of the electron and hole with “foreign” images |Veh\'(re, rh, r, a, ε)| (9), |Vhe\'(re, rh, r, a, ε)| (8) (the “dielectric enhancement” effect [34]); (ii) spatial confinement of the quantization region by the QD volume. In this case, as the QD radius a increases, starting from a\n\t\t\t\t
The “dielectric enhancement” effect is caused by the following factor. When the matrix permittivity ε1 is significantly smaller than the QD permittivity ε2, the most important role in the electron-hole interaction in the nanosystem under study is fulfilled by the field induced by these quasiparticles in the matrix. In this case, electron-hole interaction in the nanosystem appears to be significantly stronger than in an infinite semiconductor with the permittivity ε2 [34].
In [16], in the nanosystem experimentally studied in [10], an exciton model in which the electron and hole move within the zinc selenide QD volume was studied. Using the variational method, within the modified effective mass method, the dependence of the exciton ground-state energy E0(a, ε) on the QD radius a in the range (20) was obtained in [16] (see Figure 1). It was shown that, as the QD radius increased, starting from a ≥ ac = 3.90
was 21.07 meV (μ = 0.132m0 and
Thus, using the exciton model, in which an electron and hole move in the QD volume, it is impossible to interpret the mechanism of the appearance of the nanosystem luminescence-spectrum peak with the shift ΔE1 ≈ –165 meV, obtained in [10, 19].
A comparison of the dependences of the exciton ground-state energy E0(a) in the nanosystem [10], obtained using two-exciton models (see Figure 1) (the electron and hole move within the zinc selenide QD volume [16]) (model I); the hole moves within the zinc selenide QD volume and the electron is localized in the boron silicate glass matrix near the QD spherical surface (model II), allowing for the following conclusion. In model I, as the QD radius a increases, starting from a ≥ ac ≈ 14.5 nm, the exciton ground- state energy E0(a) asymptotically follows the binding energy of the bulk exciton
We considered a model nanosystem [23, 24] that consisted of two spherical semiconductor QDs, A and B, synthesized in a borosilicate glass matrix with the permittivity
In the context of the adiabatic approximation and effective mass approximation, using the variational method, we obtained the total energy
Here, the binding energy
The results of the variational calculation of the binding energy
The binding energy
As follows from the results of variational calculation [23, 24], the binding energy of an exciton (formed from an electron and a hole spatially separated from the electron) localized above the surface of the QD(A) (or a QD(B)) with an average radius of
From the results of variational calculation [23, 24], of the biexciton (exciton quasimolecule) binding energy
The major contribution to the exchange is interaction energy, created by the energy of the exchange interaction of the electron е(1) with the holes h (B), as well as of the electron е(2) with the holes h (B), and of the electron е(2) with the holes h (A). The major contribution to the Coulomb is interaction energy, created by the energy of the Coulomb interaction of the electron е(1) with the holes h (B), as well as of the electron е(2) with the holes h (A) [23, 24].
As the spacing D between the QD(A) and QD(B) surfaces is increased, starting from
The idea of superatoms (or artificial atoms) is essential for the development of mesoscopic physics and chemistry [20-22, 29, 30]. Superatoms are nanosized quasi-atomic nanostructures formed from spatially separated electrons and holes (the hole in the volume of the QD and the electron is localized on the outer spherical quantum dot matrix dielectric interface) [20-22, 29, 30]. This terminology can be accepted as correct, given the similarities between the spectra of discrete electronic states of atoms and superatomic atoms, and the similarities in terms of their chemical activities [20-22, 29, 30].
In [20-22], within the framework of the modified effective mass method [14], the theory of artificial atoms formed from spatially separated electrons and holes (holes moving in the volume of a semiconductor (dielectric) QD and an electron localized on the outer spherical interface between the QD and a dielectric matrix) is developed. The energy spectrum of superatoms (excitons of spatially separated electrons and holes) from QD radius a ≥ ac (about 4 nm) is fully discrete [20-22, 29, 30]. This is referred to as a hydrogen-superatom and is localized on the surface of a valence electron QD. The energy spectrum of the superatom consists of a quantum-dimension of discrete energy levels in the band gap of the dielectric matrix. Electrons in superatoms are localized in the vicinity of the nucleus (QD). The electrons move in well-defined atomic orbitals and serve as the nucleus of QD, containing in its volume semiconductors and insulators. Ionization energy superatoms take on large values (of the order of 2.5 eV), which is almost three orders of magnitude higher than the binding energy of the excitons in semiconductors [20-22, 29, 30].
We will briefly discuss the possible physical and chemical effects that are relevant for the results of this paper. In our proposed [20-22, 29, 30] model of a hydrogen superatom localized on the surface of the QD is a valence electron. In quasi-atomic structures of the outer valence, electrons can participate in a variety of physical and chemical processes, similar to the atomic valence electrons in atomic structures. Artificial atoms have the ability to connect to the electron orbitals of electrons N (where N can vary from one to several tens). At the same time, the number of electrons N can take values of the order of a few tens or even surpass the serial numbers of all the known elements found in Mendeleev\'s table [20-22, 29, 30]. This new effect allows for attaching to the electronic orbitals of artificial atoms N electrons, causing a high reactivity and opening up new possibilities for superatoms related to their strong oxidizing properties, increasing the possibility of substantial intensity in photochemical reactions during catalysis and adsorption, as well as their ability to form many new compounds with unique properties (in particular, the quasi-molecule and quasicrystals) [24, 29, 30]. Therefore, studies aimed at the theoretical prediction of the possible existence of artificial new atoms (not listed in the Mendeleev table) and to their study in terms of experimental conditions are very relevant.
Quantum discrete states of the individual atoms of alkali metals are determined by the movement of only one, i.e., the outermost valence electron, around a symmetric atomic core (containing the nucleus and the remaining electrons) [35]. In the hydrogen superatom formed quantum-energy spectra of discrete energy levels of the valence electron [20-22, 29, 30]. Thus, the observed similarity of the spectra of discrete electronic states and individual superatoms alkali metal atoms, as well as the similarity of their chemical activity [20-22, 29, 30, 35].
In Section 4, on the basis of a spectroscopic analogy of electronic states of artificial atoms and individual alkali metal atoms, a new artificial atom is theoretically predicted, which is similar to the new alkali metal atom.
In [20-22, 29, 30], a new model of an superatom is proposed, which is a quasi-zero-dimensional nanosystem consisting of a spherical QD (nucleus superatom) with radius a and which is included within its scope as a semiconductor (dielectric) with a dielectric constant ε2, surrounded by a dielectric matrix with a dielectric constant ε1. A hole h with the effective mass mh moves in the QD volume, while an electron e with the effective mass mе(1) lies in the dielectric matrix. In such a nanostructure, the lowest electronic level is situated in the matrix and the humble hole level is the volume QD. Large shift of the valence band (about 700 meV) is the localization of holes in the volume QD. A large shift of the conduction band (about 400 meV) is a potential barrier for electrons (electrons move in the matrix and do not penetrate into the volume QD). The Coulomb interaction energy of an electron and a hole, and the energy of the electron polarization interaction with the surface section (QD-matrix) (since the permittivity ε2 is far superior to QD permittivity ε1 matrix) cause localization of the electron in the potential well above the surface of QD [20-22, 29, 30].
With increasing radius a QD, so that а >> аех0 (where аех0 (14) two-dimensional Bohr radius of the electron) spherical surface section (QD- matrix) transforms into a flat surface section. In this artificial atom, electrons localized on the surface (QD-matrix) become two-dimensional. In this case, the potential energy in the Hamiltonian describing the motion of an electron in a superatom, the main contribution to the energy of the Coulomb interaction Veh(r) (11) between an electron and a hole [20-22]. Polarization interaction energy of the electron and the hole with a spherical surface section (QD-matrix) delivers a much smaller contribution to the potential energy of the Hamiltonian and thus, contributions to a first approximation can be neglected [20-22]. In this regard, the two-dimensional electron energy spectrum En in the artificial atom takes the form (13).
Depending on the binding energy Еех(a,ε) of an electron in the ground state superatom (QD containing zinc-selenide radius a and surrounded by a matrix of borosilicate glass [10]) as obtained in [20-22] by the variational method, it follows that the bound state of an electron occurs near the spherical interface (QD-matrix), starting with the value of the critical radius QD a ≥ ac(1) = 3.84 nm, when this hole moves in the volume QD and the electron is localized on the surface of the spherical section (QD-matrix). In this case, the Coulomb interaction energy Veh(r) (11) between the electron and the hole, and the energy of the polarization interaction of electrons and holes with a spherical surface section (QD-matrix) prevail over the size quantization of the energy of electrons and holes in the artificial atom. Thus, [20-22] found that the occurrence of superatoms had a threshold and was only possible if the radius of QD КТ а ≥ ас(1) = 3.84 nm.
With the increasing radius of a QD scan, an increase in the binding energy of the electron in the ground state superatom was observed. In the range of radii 4.0 ≤ а ≤ 29.8 nm, the binding energy of the electron in the ground state superatom significantly exceeded (in (4,1-76,2) times) the value of the exciton binding energy Ẽ0ex ≈ 21.07 meV in a single crystal of zinc-selenide [20-22]. Beginning with a radius QD а ≥ ас(2) = 29.8 nm, the energy of the ground state of an electron in a superatom asymptotically follow the value E0ex = -1.5296 eV, which characterized the energy of the ground state of two-dimensional electrons in an artificial atom (15) [20-22].
The effect of significantly increasing the energy of the ground state of an electron in a superatom was primarily determined by two factors [20-22]: 1) a significant increase in the Coulomb interaction energy |Veh(r)| (2) electron-hole (the "dielectric enhancement" [34]); 2) the spatial limitations on the quantization volume QD, while with an increasing radius of a QD, since the radius of QD a ≥ ac(2) = 52a0ex = 29.8 nm, superatoms became two-dimensional with a binding energy of the ground state E0ex (15), the value of which exceeded the exciton binding energy in a single crystal of zinc-selenide by two orders. The effect of "dielectric enhancement" as a result of the dielectric constant ε1 of the matrix was much lower than the dielectric constant of QD ε2, which played an essential role in the interaction between the electron and the hole in the superatom playing field produced by these quasi-particles in a matrix. Thus, the interaction between the electron and the hole in the superatom was significantly larger than in a semiconductor permittivity ε2 [34].
Quantum discrete states of the individual atoms of alkali metals were determined by the movement of only one, the outermost valence electron, around a symmetric atomic core (containing the nucleus and the remaining electrons) [35]. Where large distances were the case between r electron and the nucleus (so that r >> a0, where a0 = 0.053 nm – the Bohr radius of the electron in a hydrogen atom), the field of the atomic core was described by the Coulomb field [35]:
determining the interaction of the valence electron with the atomic core (Z – serial number of the atom in the periodic table of Mendeleev). The energy spectrum of a single atom of an alkali metal hydrogen-described spectrum [35] is given as follows:
where n * = (n + y) and effective quantum number (n = 1, 2, 3,... the principal quantum number); the amendment y depended on the orbital quantum number l. Amendments to y were due to the fact that the valence electron moved in the Coulomb field of the atomic core, where the nuclear charge was screened by core electrons. Amendment y corrections were determined by comparing the spectrum of (6) with its experimental values. The value of y < 0 and was numerically closer to the atomic core suitable valence electron orbit. The number of possible orbits of the valence electron in a single alkali metal atom such as a hydrogen atom, and [35].
The similarity of the individual series of neutral alkali metal atoms with the hydrogen Balmer series suggests that the energy spectra of neutral alkali metal atoms can be labelled valence electron radiation in transition from higher levels to the level of principal quantum number n = 2 [35].
In a single atom of an alkali metal valence electron moving in the Coulomb field of the atomic core (26) having the same functional dependence on r as the Coulomb field (11), in which the valence electron in hydrogen-like model of artificial atom. This leads to the fact that the energy spectra of the valence electron in a single atom of an alkali metal (27) and in the artificial atom (13) describe the spectrum of hydrogen-type. At the same time, the number of possible quantum states of valence electrons in a hydrogen-like artificial atom model is the same as the number of quantum states of discrete valence electrons in a single atom of an alkali metal [20-22, 29, 30].
Table 2 shows the position of the valence electron energy levels in the atoms of alkali metals (K, Rb, Sc) [35] and the new artificial atom X, as well as the level shifts of the valence electron (
\n\t\t\t\tAlkali metal atoms selected\n\t\t\t | \n\t\t\t\n\t\t\t\tValence electron energy levels (meV)\n\t\t\t | \n\t\t\t\n\t\t\t\tLevel shifts of the valence electron (meV)\n\t\t\t | \n\t\t
K | \n\t\t\t- 7 21.1 | \n\t\t\t\n\t\t |
Rb | \n\t\t\t- 7 11.2 | \n\t\t\t1 0 | \n\t\t
Sc | \n\t\t\t- 652 | \n\t\t\t5 9 | \n\t\t
X | \n\t\t\t- 5 93 | \n\t\t\t5 9 | \n\t\t
Position of energy levels of the valence electron in some alkali metal atoms (K, Rb, Sc) and a new artificial atom, X. Level shifts of the valence electron (
Thus, we propose a new model of an artificial atom that is a quasi-atomic heterostructure consisting of a spherical QD (nucleus superatom) radius a and which contains in its scope, zinc- selenide, surrounded by a matrix of borosilicate glass (in volume QD, h hole effectively moves mass mh, e and the electron effective mass mв(1) is located in the matrix), thus allowing for finding a new artificial atom X (absent in the Mendeleev periodic system), which is similar to a new single alkali metal atom. This new artificial atom of a valence electron can participate in various physical [20-22, 29, 30] and chemical [30, 35] processes that are analogous to atomic valence electrons in atomic systems (in particular, the selected alkali metal atoms [35]). Such processes are unique as a result of the new properties of artificial atoms: strong oxidizing properties that increases the possibility of substantial intensity in photochemical reactions during catalysis and adsorption, as well as their ability to form a plurality of the novel compounds with unique properties (in particular, the quasi-molecule and the quasicrystals [23, 24]).
The application of semiconductor nanoheterostructures as the active region nanolasers prevents small exciton binding energy in QD. Therefore, studies aimed at finding nanoheterostructures, which will yield a significant increase in the binding energy of the local electronic states in QDs, are relevant [20-22]. The effect of significantly increasing the energy of the electron in a hydrogen superatom [20-22, 29, 30] allows for better experimental detection of the existence of such superatoms at room temperatures and will stimulate experimental studies of nanoheterostructures containing superatoms, which can be used as active region nanolasers when working with optical transitions.
The theory of an exciton with a spatially separated electron and hole was developed within the framework of the modified effective mass method [14], in which the reduced effective exciton mass is a function of the semiconductor QD radius a. The average zinc-selenide QD radius was determined by comparing the dependence of the exciton ground-state energy (17) on the QD radius, obtained by the variational method within the modified effective mass method [14] and using the experimental peak of the low-temperature luminescence spectrum [10, 19]. It was shown that the short-wavelength shift of the peak of the low-temperature luminescence spectrum of the samples containing zinc selenide QDs, which was observed under the experimental conditions noted in [10, 19], was caused by renormalization of the electron-hole Coulomb interaction energy (11), as well as the energy created by the polarization interaction (5) of the electron and hole with the spherical QD-dielectric matrix interface, related to spatial confinement of the quantization region by the QD volume. In this case, the hole moves in the QD volume and the electron is localized at the outer spherical QD-dielectric matrix interface [20-22, 29-32].
To apply semiconductor nanosystems containing zinc-selenide QDs as the active region of lasers, it is required that the exciton binding energy |Eex(a, ε)| (21) in the nanosystem be at the order of several kT0 and at room temperature T0 (k is the Boltzmann constant) [13]. Nanosystems consisting of zinc-selenide QDs grown in a borosilicate glass matrix can be used as the active region of semiconductor QD lasers. In the range of zinc selenide QD radii a (22), the parameter |Eex(a, ε)/kT0| take on significant values ranging from 3.1 to 56 [20-22, 29-32].
The effect of significantly increasing the binding energy (21) of the exciton ground state in a nanosystem containing zinc selenide QDs with radii a (22) was detected; compared to the exciton binding energy in a zinc selenide single crystal, the increase factor was 4.1-72.6. [20-22, 29-32]. It was shown that the effect of significantly increasing the binding energy (21) of the exciton ground state in the nanosystem under study was controlled by two factors [20-22, 29-32]: (i) a substantial increase in the electron-hole Coulomb interaction energy (11) and an increase in the energy of the interaction of the electron and hole with “foreign” images (8), (9) (the “dielectric enhancement” effect [34]); (ii) spatial confinement of the quantization region by the QD volume; in this case, as the QD radius a increased, starting from a ≥
A review devoted to the theory of excitonic quasimolecules (biexciton) (made up of spatially separated electrons and holes) in a nanosystem that consists of ZnSe QDs synthesized in a borosilicate glass matrix was developed within the context of the modified effective mass approximation. Using the variational method, we obtained the total energy and the binding energy of the biexciton singlet ground state in such a system as functions of the spacing between the QD surfaces and the QD radius. It was established that, in a nanosystem composed of ZnSe QDs with the average radii
Thus, we propose a new model of an artificial atom, which is a quasi-atomic heterostructure consisting of a spherical QD (nucleus superatom) with radius a and which contains in its scope zinc selenide, surrounded by a matrix of borosilicate glass (in volume QD moves h hole effective mass mh, e and the electron effective mass me(1) is located in the matrix), and which is allowed to find a new artificial atom X (absent in the Mendeleev periodic system), which is similar to a new single alkali metal atom. This new artificial atom of valence electron can participate in various physical [20-22, 29, 30] and chemical [30, 35] processes that are analogous to atomic valence electrons in atomic systems (in particular, the selected alkali metal atoms [35]). Such processes are unique due to the new properties of artificial atoms: strong oxidizing properties that increase the possibility of substantial intensity in photochemical reactions during catalysis and adsorption, as well as their ability to form plurality among novel compounds with unique properties (in particular, the quasi-molecule and the quasicrystals [23, 24]).
The Duffy blood group system, ISBT number 008/symbol (FY), was published for the first time in 1950 when anti-Fya was identified in a suspected hemolytic transfusion reaction in a 43-year-old patient with hemophilia who received 3 packed red blood cell (PRBC) units for treatment of spontaneous bleeding and who developed jaundice 1 day after transfusion [1, 2]. Approximately, 1 year later, anti-Fyb was discovered in a postpartum blood sample from a patient who gave birth to her third child [3].
\nChromosome 1 has both FY and RH gene loci. The FY locus is located on the long arm at position 1q22-q23 where it consists of two exons distributed over 1.5 kbp of gDNA, whereas RH resides on the short arm. The Duffy system is N-glycosylated multi-pass transmembrane glycoprotein (Figure 1) [4] also known as the atypical chemokine receptor 1 (ACKR1, CD234). The protein is composed of 336 amino acids. There are two possible Duffy mRNAs which are translated from the Duffy antigen gene, a less abundant α form (338 amino acids) and a major β form (336 amino acids) which differ by 2 amino acids in the N-terminus. Approximately 6000–13,000 copies of the Duffy protein are found on the surface of RBCs [5].
\nThe predicted seven-transmembrane domain structure of the Duffy protein. The amino acid change responsible for Fya/Fyb polymorphism, the mutation responsible for Fyx, and the glycosylation sites and the regions where Fy3 (and Fy6) map are indicated (reproduced with permission).
The Duffy blood group includes six known antigens that differ by amino acid sequence. The Duffy antigen prevalence varies between racial groups.
\nACKR1 (previously known as DARC) is a receptor for a variety of chemokines, including interleukin-8, monocyte chemotactic protein-1, and melanoma growth stimulatory activity. Also, this glycoprotein is a receptor for Plasmodium vivax and Plasmodium knowlesi; thus red cells with Fy(a-b-) phenotype are resistant to invasion by these malarial species. Antibodies formed against the Duffy antigens show a dosage effect and are a cause of both hemolytic transfusion reactions and hemolytic disease of fetus and newborn. The Duffy protein is also found on the endothelial cells of capillary and postcapillary venules, the epithelial cells of kidney collecting ducts, lung alveoli, and Purkinje cells of cerebellum [6].
\nThere are six known antigens with four main phenotypes; Fy(a+b+), Fy(a−b+), Fy(a+b−), and Fy(a−b−) (Table 1) [5]. The most common antigens are, two polymorphic and antithetical, Fya (FY1) and Fyb (FY2) which differ by one amino acid at position 42 on the extracellular domain, with glycine resulting in Fya expression and aspartic acid resulting in Fyb expression [5, 7]. They are sensitive to destruction when RBCs are treated with proteolytic enzymes such as papain or ficin, whereas, there is no RBCs destruction with trypsin treatment [8].
\nRed cell phenotype | \nPrevalence (%) | \nAllele | \n|
---|---|---|---|
Caucasians | \nBlacks | \n||
Fy (a+b−) | \n17 | \n9 | \nFY*01/FY*01 or FY*A/FY*A | \n
Fy (a−b+) | \n34 | \n22 | \nFY*02/FY*02 or FY*B/FY*B | \n
Fy (a+b+) | \n49 | \n1 | \nFY*A/FY*B | \n
Fy (a−b−) | \nRare | \n68 | \nFY*/N.01–05, FY*/N.01–02\n‡\n\n | \n
Fy3\n | \n100 | \n32 | \n\n |
Fy5\n | \n99.9 | \n32 | \n\n |
Fy6\n | \n100 | \n32 | \n\n |
Duffy blood group system phenotypes and prevalence. Reproduced with permission and modification.
Nomenclature pending approval by the ISBT working party on terminology for red cell surface antigens.
Fya antigen has a prevalence of 66% in Caucasians, 10% in Blacks, and 99% in Asians. It has been identified on fetal RBCs as early as 6 weeks gestation and reaches adult levels in approximately 12 weeks after birth. Fyb has a prevalence of 83% in Caucasians, 23% in Blacks, and 18.5% in Asians. It is expressed on cord blood cells. Fy3 antigen is expressed in 100% of Caucasians, 32% of Blacks, and 99.9% of Asians. It is also expressed on cord cells and demonstrates increased expression after birth. Fy5 antigen is expressed on 32% of Blacks and 99.9% of Caucasians and Asians. It is not expressed on Rh null RBCs. Fy6 is expressed in 100% of most populations and 32% of Blacks. The Fy(a–b–) phenotype is the major phenotype in approximately 70% Blacks, but is very rarely found in other populations. This phenotype is characterized by the absence of the Fyb antigen on RBCs and its presence on non-erythroid cells. Duffy mRNA is not detected in the bone marrow of Fy(a–b–) individuals; however, it is detected in other tissues including the colon, lung, and spleen. This unique phenotype is caused by a single amino acid substitution at position 46 in the Duffy (Fyb) gene. This mutation impairs the promotor activity in erythroid cells by disrupting the binding site for GATA1 erythroid transcription factor. Furthermore, some individuals with this phenotype do not make anti-Fyb. This is believed to be due to a mutation in the, erythroid promoter, GATA-1 binding motif. Interestingly, the same Fy(a–b–) phenotype rarely found in Caucasians is characterized by absence of Duffy antigens expression in both erythroid and non-erythroid tissues due to possibly presence of mutations which prevent formation of Duffy protein. These individuals can form anti-Fy3. The have high prevalence antigens; Fy3, Fy5, and Fy6 are conformational epitopes as opposed to specific sequence epitopes with Fy5 hypothesized to be a combined conformational epitope of Duffy and Rh protein [9, 10, 11, 12].
\nAnti-Fya and -Fyb are clinically significant RBC alloantibodies which can cause immediate and delayed hemolytic transfusion reactions (HTRs) as well as hemolytic disease of the fetus and newborn (HDFN). They often result from previous exposure such as after transfusion or pregnancy. They are not usually naturally occurring. The Duffy antibodies are predominantly of the IgG subclass whereas the IgM form is rare.
\nThe mechanism of extravascular hemolysis (EH) in both HDFN and HTR is similar. In HDFN, the mother lacks a certain red cell antigen which the fetus is positive for, thus the mother is allo-immunized (i.e., made a new antibody) during the first pregnancy. If she gets exposed to the same antigen in subsequent pregnancy (ies), the fetus (es) is/are at risk of HDFN. Similarly, if a patient lacks a certain red cell antigen but receives red cell transfusion with a unit that has such antigen, the patient is at risk for allo-immunziation after the transfusion and HTR in subsequent transfusion (s). EH is typically induced by IgG red cell antibodies. EH consists of consumption of antibody and/or C3b-bound red cells by phagocytes in the reticuloendothelial system (RES) causing a delayed hemolytic transfusion reaction (DHTR). DHTRs can be clinically significant leading to morbidity and possibly mortality. To avoid DHTR, patients with known clinically significant antibodies, receive red cell units that lack antigen (s) to their the cognate antibody (ies). The Duffy antibodies are usually associated with a moderate DHTR and mild HDFN [13].
\nAnti-Fya is identified more than anti-Fy3, anti-Fy5, or anti-Fyb. Fya is 20 times more immunogenic than Fyb. Some of anti-Fya can bind and activate complements [14]. Anti-Fy3 is also clinically significant antibody which can cause mild HDFN and HTRs. Serologically, it can react with enzyme treated Fy(a+) or Fy(b+) RBCs, but fails to react with Fy(a−b−) RBCs [15]. Anti-Fy4 shows lack of consistent test results. It was found to be reactive with Fy(a−b−), some Fy(a+b−), some Fy(a−b+) RBCs but shows no reaction with Fy(a+b+) RBCs [16]. Anti-Fy5 reacts with enzyme treated Fy(a+) or Fy(b+) RBCs with no reaction with Fy(a−b−) RBCs or Rh null RBCS. It has been reported in sickle cell patients with delayed HTRs in the presence of other clinically significant alloantibodies [17]. A human anti-Fy6 has not been identified [18].
\nThe Duffy glycoprotein can bind to a variety of chemokines and is known commonly as the Duffy antigen receptor for chemokines (DARC) or more recently atypical chemokine receptor 1 (ACKR1). Chemokines are proteins secreted by immune cells as a mean to communicate signals to guide their interactions. The exact function of DARC is not fully clear. One postulated function is that DARC permits erythrocyte to act a chemokine scavenger to limit leukocyte activation. The importance of this function in inflammatory diseases is not well established [6, 19].
\nThe Duffy glycoprotein plays an important role in malaria transmission by acting as the erythroid receptor for Plasmodium vivax through binding to the Fy6 epitope (previously known as P. vivax Duffy-binding protein (PvDbp)) and for Plasmodium knowlesi. Individuals with Fy(a−b−) phenotype were resistant to parasitic invasion in a study performed on 11 volunteers, whereas those who contracted malaria were Fy(a+) or Fy(b+). Fy6 is present on all erythroid cells with an Fy(a+) or Fy(b+) phenotype. Thus it is absent on red cells with Fy(a−b−) phenotype. In west Africa, individuals with Fy(a−b−) phenotype are found in greater frequency than in areas where P. vivax is absent. The protective effect of Fy(a−b−) phenotype does not extend to P. falciparum which can infect red cells of all Duffy phenotype [20].
\nI want to thank the department of Pathology at the University of Chicago, Chicago, IL, United States.
\nThe author declares no conflict of interest.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"11,24"},books:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10769",title:"Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:null,bookSignature:"Associate Prof. Daisuke Tashima",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:null,editors:[{id:"254915",title:"Associate Prof.",name:"Daisuke",surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Dr. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Hydropower",subtitle:null,isOpenForSubmission:!0,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:null,bookSignature:"Dr. Yizi Shang, Dr. Ling Shang and Dr. Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:null,editors:[{id:"349630",title:"Dr.",name:"Yizi",surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10810",title:"Modern Ship Engineering, Design and Operations",subtitle:null,isOpenForSubmission:!0,hash:"579a9da63aca2172c0f0584328ae91c1",slug:null,bookSignature:"Dr. Carlos Alberto Reusser",coverURL:"https://cdn.intechopen.com/books/images_new/10810.jpg",editedByType:null,editors:[{id:"209816",title:"Dr.",name:"Carlos",surname:"Reusser",slug:"carlos-reusser",fullName:"Carlos Reusser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil - New Technologies and Recent Approaches",subtitle:null,isOpenForSubmission:!0,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:null,bookSignature:"Prof. Manar El-Sayed Abdel-Raouf and Dr. Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:null,editors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10854",title:"Remote Sensing",subtitle:null,isOpenForSubmission:!0,hash:"c77f99db5569e8d0325b856cb7d75b17",slug:null,bookSignature:"Prof. Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/10854.jpg",editedByType:null,editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:21},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1247",title:"Alcoholism",slug:"alcoholism",parent:{title:"Toxicology",slug:"psychology-toxicology"},numberOfBooks:1,numberOfAuthorsAndEditors:29,numberOfWosCitations:38,numberOfCrossrefCitations:25,numberOfDimensionsCitations:44,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"alcoholism",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1997",title:"Psychology",subtitle:"Selected Papers",isOpenForSubmission:!1,hash:"9d6f315f89132d42a1bc20c9c92d733f",slug:"psychology-selected-papers",bookSignature:"Gina Rossi",coverURL:"https://cdn.intechopen.com/books/images_new/1997.jpg",editedByType:"Edited by",editors:[{id:"95626",title:"Dr.",name:"Gina",middleName:null,surname:"Rossi",slug:"gina-rossi",fullName:"Gina Rossi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"36452",doi:"10.5772/38931",title:"Qualitative Research Methods in Psychology",slug:"qualitative-research-methods-in-psychology",totalDownloads:35131,totalCrossrefCites:11,totalDimensionsCites:17,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Deborah Biggerstaff",authors:[{id:"123274",title:"Dr.",name:"Deborah",middleName:null,surname:"Biggerstaff",slug:"deborah-biggerstaff",fullName:"Deborah Biggerstaff"}]},{id:"36458",doi:"10.5772/38102",title:"The Social Value of Persons: Theory and Applications",slug:"the-social-value-of-persons-theory-and-applications",totalDownloads:2285,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Nicole Dubois and Jean-Léon Beauvois",authors:[{id:"12875",title:"Prof.",name:"Jean-Léon",middleName:null,surname:"Beauvois",slug:"jean-leon-beauvois",fullName:"Jean-Léon Beauvois"},{id:"115567",title:"Prof.",name:"Nicole",middleName:null,surname:"Dubois",slug:"nicole-dubois",fullName:"Nicole Dubois"}]},{id:"36450",doi:"10.5772/39106",title:"Does Personality Affect Compulsive Buying? An Application of the Big Five Personality Model",slug:"does-personality-affect-compulsive-buying-an-application-of-the-big-five-personality-model",totalDownloads:7508,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Kalina Mikołajczak-Degrauwe, Malaika Brengman, Birgit Wauters and Gina Rossi",authors:[{id:"137248",title:"MA",name:"Kalina",middleName:null,surname:"Mikołajczak-Degrauwe",slug:"kalina-mikolajczak-degrauwe",fullName:"Kalina Mikołajczak-Degrauwe"},{id:"137250",title:"Prof.",name:"Gina",middleName:null,surname:"Rossi",slug:"gina-rossi",fullName:"Gina Rossi"},{id:"138454",title:"Prof.",name:"Malaika",middleName:null,surname:"Brengman",slug:"malaika-brengman",fullName:"Malaika Brengman"},{id:"138456",title:"MSc.",name:"Birgit",middleName:null,surname:"Wauters",slug:"birgit-wauters",fullName:"Birgit Wauters"}]}],mostDownloadedChaptersLast30Days:[{id:"36456",title:"Conformity, Obedience, Disobedience: The Power of the Situation",slug:"conformity-obedience-disobedience-the-power-of-the-situation",totalDownloads:35535,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Piero Bocchiaro and Adriano Zamperini",authors:[{id:"108515",title:"Dr.",name:"Piero",middleName:null,surname:"Bocchiaro",slug:"piero-bocchiaro",fullName:"Piero Bocchiaro"},{id:"116169",title:"Prof.",name:"Adriano",middleName:null,surname:"Zamperini",slug:"adriano-zamperini",fullName:"Adriano Zamperini"}]},{id:"36452",title:"Qualitative Research Methods in Psychology",slug:"qualitative-research-methods-in-psychology",totalDownloads:35128,totalCrossrefCites:11,totalDimensionsCites:17,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Deborah Biggerstaff",authors:[{id:"123274",title:"Dr.",name:"Deborah",middleName:null,surname:"Biggerstaff",slug:"deborah-biggerstaff",fullName:"Deborah Biggerstaff"}]},{id:"36448",title:"Non-Response to Initial Antidepressant Therapy",slug:"non-response-to-initial-antidepressant-therapy",totalDownloads:2799,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"J.P. Guilloux, D.J. David, B.A. Samuels, I. David, A.M. Gardier and B.P. Guiard",authors:[{id:"72315",title:"Dr.",name:"Bruno",middleName:null,surname:"Guiard",slug:"bruno-guiard",fullName:"Bruno Guiard"},{id:"114301",title:"Dr.",name:"Jean-Philippe",middleName:null,surname:"Guilloux",slug:"jean-philippe-guilloux",fullName:"Jean-Philippe Guilloux"},{id:"114302",title:"Dr.",name:"Denis",middleName:null,surname:"David",slug:"denis-david",fullName:"Denis David"}]},{id:"36455",title:"Minority and Majority Influence on Attitudes",slug:"minority-and-majority-influence-on-attitudes",totalDownloads:5269,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Nina Dickel and Gerd Bohner",authors:[{id:"108537",title:"Ms.",name:"Nina",middleName:"C.",surname:"Dickel",slug:"nina-dickel",fullName:"Nina Dickel"},{id:"108549",title:"Prof.",name:"Gerd",middleName:null,surname:"Bohner",slug:"gerd-bohner",fullName:"Gerd Bohner"}]},{id:"36453",title:"Issues of Information Exchange Efficiency in Long-Term Space Flights",slug:"issues-of-information-exchange-efficiency-in-long-term-space-flights",totalDownloads:1395,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"V. Gushin and A. Yusupova",authors:[{id:"43027",title:"Dr.",name:"Anna",middleName:null,surname:"Yusupova",slug:"anna-yusupova",fullName:"Anna Yusupova"},{id:"46665",title:"Dr.",name:"Vadim",middleName:null,surname:"Gushin",slug:"vadim-gushin",fullName:"Vadim Gushin"}]},{id:"36446",title:"Hypnosis in Cancer Patients: Can We Do Better?",slug:"hypnosis-in-cancer-patients-can-we-do-better",totalDownloads:2229,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Fabrice Kwiatkowski",authors:[{id:"113585",title:"MSc.",name:"Fabrice",middleName:null,surname:"Kwiatkowski",slug:"fabrice-kwiatkowski",fullName:"Fabrice Kwiatkowski"}]},{id:"36457",title:"Selected Social Psychological Phenomena's Effect on Educational Team Decision Making",slug:"understanding-the-role-of-social-psychological-phenomenon-on-parental-decision-making-in-educational",totalDownloads:4464,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Laurie McGary Klose and Jon S. Lasser",authors:[{id:"115948",title:"Dr.",name:"Laurie",middleName:null,surname:"Klose",slug:"laurie-klose",fullName:"Laurie Klose"},{id:"115949",title:"Dr.",name:"Jon",middleName:null,surname:"Lasser",slug:"jon-lasser",fullName:"Jon Lasser"}]},{id:"36454",title:"Group's Positions and Language Use: The Connection Between Themata and Topic Grounds (Lexical Worlds)",slug:"group-s-relations-and-language-use-themata-and-topic-grounds",totalDownloads:1804,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Laura Camara Lima",authors:[{id:"110071",title:"Dr.",name:"Laura",middleName:null,surname:"Lima",slug:"laura-lima",fullName:"Laura Lima"}]},{id:"36451",title:"The Bar-On Emotional Quotient Inventory (EQ-i): Evaluation of Psychometric Aspects in the Dutch Speaking Part of Belgium",slug:"the-bar-on-emotional-quotient-inventory-eq-i-evaluation-of-psychometric-aspects-in-a-flemish-populat",totalDownloads:21055,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Mercedes De Weerdt and Gina Rossi",authors:[{id:"95626",title:"Dr.",name:"Gina",middleName:null,surname:"Rossi",slug:"gina-rossi",fullName:"Gina Rossi"},{id:"120318",title:"MSc.",name:"Mercedes",middleName:null,surname:"De Weerdt",slug:"mercedes-de-weerdt",fullName:"Mercedes De Weerdt"}]},{id:"36444",title:"Alcoholism: An Impulsive/Disinhibition Disorder?",slug:"alcoholism-an-impulsive-disinhibition-disorder",totalDownloads:2185,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"psychology-selected-papers",title:"Psychology",fullTitle:"Psychology - Selected Papers"},signatures:"Xavier Noël",authors:[{id:"90814",title:"Dr.",name:"Xavier",middleName:null,surname:"Noel",slug:"xavier-noel",fullName:"Xavier Noel"}]}],onlineFirstChaptersFilter:{topicSlug:"alcoholism",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/105526/mouhamadou-bassir-diop",hash:"",query:{},params:{id:"105526",slug:"mouhamadou-bassir-diop"},fullPath:"/profiles/105526/mouhamadou-bassir-diop",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()