\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5440",leadTitle:null,fullTitle:"Composites from Renewable and Sustainable Materials",title:"Composites from Renewable and Sustainable Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"Composites from Renewable and Sustainable Materials consists of 16 chapters written by international subject matter experts investigating the characteristic and current application of materials from renewable and sustainable sources. The reader will develop a deeper understanding about the concepts related to renewable materials, biomaterials, natural fibers, biodegradable composites, starch, and recycled materials. This book will serve as the starting point for materials science researchers, engineers, and technologists from the diverse backgrounds in physics, chemistry, biology, materials science, and engineering who want to know and better understand the fundamental aspects and current applications of renewable and sustainable materials in several applications.",isbn:"978-953-51-2794-9",printIsbn:"978-953-51-2793-2",pdfIsbn:"978-953-51-4145-7",doi:"10.5772/62936",price:139,priceEur:155,priceUsd:179,slug:"composites-from-renewable-and-sustainable-materials",numberOfPages:344,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"73daa2bb2ab6395c43f1a830aa6223ad",bookSignature:"Matheus Poletto",publishedDate:"November 30th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5440.jpg",numberOfDownloads:31694,numberOfWosCitations:74,numberOfCrossrefCitations:55,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:127,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:256,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2016",dateEndSecondStepPublish:"April 28th 2016",dateEndThirdStepPublish:"August 2nd 2016",dateEndFourthStepPublish:"October 31st 2016",dateEndFifthStepPublish:"November 30th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"140017",title:"Dr.",name:"Matheus",middleName:null,surname:"Poletto",slug:"matheus-poletto",fullName:"Matheus Poletto",profilePictureURL:"https://mts.intechopen.com/storage/users/140017/images/4423_n.jpg",biography:"Matheus Poletto is professor and researcher at Universidade de Caxias do Sul. He is an expert in composite science, working with thermoplastic composites and cellulosic materials. He has published over 80 scientific articles and conference papers and several book chapters. He obtained his bachelor’s degree in Chemical Engineering and master’s degree in Materials Science and Engineering from Universidade de Caxias do Sul, Brazil, and his PhD in Materials Engineering from Universidade Federal do Rio Grande do Sul, Brazil. Professor Poletto currently works with cellulosic and lignocellulosic materials, studying the effect of fiber composition on the thermal and mechanical properties of polymer composite materials. He is also member of the Polymer Laboratory Research Group at Universidade de Caxias do Sul.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Caxias Do Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"771",title:"Sustainability Science",slug:"sustainability-science"}],chapters:[{id:"52329",title:"Polyolefine Composites Reinforced by Rice Husk and Saw Dust",doi:"10.5772/65264",slug:"polyolefine-composites-reinforced-by-rice-husk-and-saw-dust",totalDownloads:2164,totalCrossrefCites:6,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Due to the global demand for fibrous light-weight materials, research on composites reinforced with plant materials has increased. Natural fiber reinforced composites offer several advantages: light weight, competitive specific mechanical properties, easy processing, large volume availability, low cost, and low environmental footprint. Especially, using agricultural wastes such as rice husk, saw dust etc. as fillers/fibres in composites provides the chance to improve material properties while improving their sustainability. In the present work, rice husk and saw dust were chosen as fillers for their differing morphology, aspect ratios, and difference of structure. As matrices, polyethylene (PE) and polypropylene (PP) were studied, either neat or modified with maleic anhydride grafted PP/PE as coupling agent or compatibilizer between hydrophobic matrices and hydrophilic bio-fillers. The bending modulus is improved due to filler addition. In presence of compatibilizer, the improved interfacial interaction leads to improved bending and tensile strength as well as toughness. Furthermore, the influence of the filler and compatibilizer on composite properties such as hardness, dynamic mechanical behaviour, thermal expansion, thermal degradation, melting and crystallisation behaviour are presented.",signatures:"Thi Thu Loan Doan, Hanna M. Brodowsky and Edith Mäder",downloadPdfUrl:"/chapter/pdf-download/52329",previewPdfUrl:"/chapter/pdf-preview/52329",authors:[{id:"20844",title:"Dr.",name:"Edith",surname:"Mäder",slug:"edith-mader",fullName:"Edith Mäder"},{id:"190690",title:"Dr.",name:"Hanna",surname:"Brodowsky",slug:"hanna-brodowsky",fullName:"Hanna Brodowsky"},{id:"194930",title:"Prof.",name:"Thi Thu Loan",surname:"Doan",slug:"thi-thu-loan-doan",fullName:"Thi Thu Loan Doan"}],corrections:null},{id:"52181",title:"Characterization of Rice Husk Biofibre-Reinforced Recycled Thermoplastic Blend Biocomposite",doi:"10.5772/65026",slug:"characterization-of-rice-husk-biofibre-reinforced-recycled-thermoplastic-blend-biocomposite",totalDownloads:1640,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"In this century, the developing country has a high potential towards the growth of green composites, and therefore there is significant achievement in green technology especially in the field of building constructions and automotive because of the environment and sustainability issues. The market for development of advanced biocomposite materials produced from biomass and recyclable post-consumer plastics is increasing. Natural fibre-reinforced biocomposites based on rice husk biofibre (RHB), recycled high-density polyethylene (rHDPE) and recycled polyethylene terephthalate (rPET) were prepared through a two-step extrusion and hot pressing. The influence of thermoplastic blend (TPB) matrix types (uncompatibilized and compatibilized with 5 parts per hundred compound (phc) ethylene-glycidyl methacrylate (E-GMA) copolymer) and high fibre contents of 50, 60, 70 and 80 wt% RHB on the composite properties was studied. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to enhance the interfacial adhesion of the fibre-matrix phases. Results showed that water absorption, thickness swelling (TS) and tensile and flexural properties enhanced tremendously with the increase of rice husk filler loadings. Biocomposites based on compatibilized blend matrix exhibited higher mechanical properties and dimensional stability than those based on uncompatibilized ones. Thermal analysis results from thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated the notable improvement in thermal stability as the added rice husk (RH) fibre content increased. From these results, we can conclude that RHF can work well with rHDPE/rPET thermoplastic blend for manufacturing high loading biocomposite products.",signatures:"Ruey Shan Chen and Sahrim Ahmad",downloadPdfUrl:"/chapter/pdf-download/52181",previewPdfUrl:"/chapter/pdf-preview/52181",authors:[{id:"189661",title:"Dr.",name:"Ruey Shan",surname:"Chen",slug:"ruey-shan-chen",fullName:"Ruey Shan Chen"},{id:"189904",title:"Prof.",name:"Sahrim",surname:"Ahmad",slug:"sahrim-ahmad",fullName:"Sahrim Ahmad"}],corrections:null},{id:"52671",title:"High-Content Lignocellulosic Fibers Reinforcing Starch-Based Biodegradable Composites: Properties and Applications",doi:"10.5772/65262",slug:"high-content-lignocellulosic-fibers-reinforcing-starch-based-biodegradable-composites-properties-and",totalDownloads:2082,totalCrossrefCites:5,totalDimensionsCites:12,hasAltmetrics:0,abstract:"Natural source-based composites became promising substitutes and synthetic petrochemical-based counterparts. So far, thermoplastic starch and lignocellulosic fibers are the most common materials for making such eco-friendly ?green? materials. Low cost, abundance, and renewability are the factors that lead to deploying these two types of materials. In this chapter, we are conducting further analysis for previously published results of six types of high-content natural fiber-reinforced starch-based composites. All composites were prepared by compression molding under pressure from 5 to 20 MPa and temperature from 130 to 160°C. Composites exhibited highest tensile strength and modulus of elasticity at fiber weight content from 50 to 70%, and then mechanical properties deteriorated significantly at 80% fiber content due to the insufficient starch resin. For instance, the tensile strength was boosted up from 2-12 MPa for thermoplastic starch to reach 55, 45, 32, 28, 44, 365 MPa for flax, bagasse, date palm fiber (DPF), banana, bamboo, and hemp composites, when fiber content was increased from 0% to the optimum fiber content (50-70%). Kelly-Tyson (random 2d) was the optimum model to predict random fiber composite. Increasing the fiber content and choosing a fiber with high cellulose content significantly improve the moisture resistance of the composites. Fick’s law of diffusion predicted the water uptake property successfully. The thermal stability of composites was improved with increasing the fiber weight content as well. This is attributed to the high thermal stability of cellulose when compared to starch. Properties exhibited by starch-based high-content natural fiber composite are promising for many industrial and biomedical applications.",signatures:"Sherif Mehanny, Lamis Darwish, Hamdy Ibrahim, Mohamed Tarek\nEl-Wakad and Mahmoud Farag",downloadPdfUrl:"/chapter/pdf-download/52671",previewPdfUrl:"/chapter/pdf-preview/52671",authors:[{id:"189039",title:"Mr.",name:"Sherif",surname:"Mehanny",slug:"sherif-mehanny",fullName:"Sherif Mehanny"}],corrections:null},{id:"52400",title:"Polysaccharides as Composite Biomaterials",doi:"10.5772/65263",slug:"polysaccharides-as-composite-biomaterials",totalDownloads:2405,totalCrossrefCites:5,totalDimensionsCites:17,hasAltmetrics:0,abstract:"Polysaccharide‐based composite materials have been the recent research focus in the field of material science and engineering because of their biocompatibility, renewability, and sustainability. In this chapter, the authors attempt to review and discuss recent works in developing polysaccharide‐based composites in applications of tissue engineering, drug delivery, and biopolymer‐based film packaging. This chapter focuses on carrageenan, alginate, chitosan, starch, and cellulose composites. Introduction on these types of polysaccharides used as biomaterials is briefly discussed.",signatures:"Izzati Fatimah Wahab and Saiful Izwan Abd Razak",downloadPdfUrl:"/chapter/pdf-download/52400",previewPdfUrl:"/chapter/pdf-preview/52400",authors:[{id:"181477",title:"Dr.",name:"Saiful Izwan Abd",surname:"Razak",slug:"saiful-izwan-abd-razak",fullName:"Saiful Izwan Abd Razak"},{id:"183953",title:"MSc.",name:"Izzati Fatimah",surname:"Wahab",slug:"izzati-fatimah-wahab",fullName:"Izzati Fatimah Wahab"}],corrections:null},{id:"52594",title:"Thermoplastic Starch (TPS)‐Cellulosic Fibers Composites: Mechanical Properties and Water Vapor Barrier: A Review",doi:"10.5772/65397",slug:"thermoplastic-starch-tps-cellulosic-fibers-composites-mechanical-properties-and-water-vapor-barrier-",totalDownloads:2642,totalCrossrefCites:12,totalDimensionsCites:22,hasAltmetrics:0,abstract:"Current research studies have been focusing on the procurement of environmentally friendly materials, with the aim of resolving the problems created by materials derived from petroleum. Starch is a promising biopolymer for producing biocomposite materials because it is renewable, completely biodegradable, and easily available at a low cost. Thermoplastic starch (TPS), by itself, exhibits poor mechanical properties such as low tensile strength and severe deformations, which limits its application in packaging or films. In addition, TPS presents high hygroscopicity. The use of reinforcing agents in the starch matrix is an effective means to overcome these drawbacks and several types of biodegradable reinforcements, such as cellulosic fibers, whiskers, and nanofibers, have been utilized to develop new and inexpensive starch biocomposites. This chapter provides the latest advances in green composite materials based on TPS and cellulose fibers and includes information on compositions, preparations, and the properties of “green” composite materials elaborated from TPS and cellulose fibers, with the focus on using undervalued natural resources.",signatures:"Emilio Pérez‐Pacheco, Jorge Carlos Canto‐Pinto, Víctor Manuel\nMoo‐Huchin, Iván Alfredo Estrada‐Mota, Raciel Javier Estrada‐León\nand Luis Chel‐Guerrero",downloadPdfUrl:"/chapter/pdf-download/52594",previewPdfUrl:"/chapter/pdf-preview/52594",authors:[{id:"106588",title:"Dr.",name:"Luis",surname:"Chel-Guerrero",slug:"luis-chel-guerrero",fullName:"Luis Chel-Guerrero"},{id:"189289",title:"Dr.",name:"Emilio",surname:"Pérez-Pacheco",slug:"emilio-perez-pacheco",fullName:"Emilio Pérez-Pacheco"},{id:"189295",title:"MSc.",name:"Jorge Carlos",surname:"Canto Pinto",slug:"jorge-carlos-canto-pinto",fullName:"Jorge Carlos Canto Pinto"},{id:"189296",title:"Dr.",name:"Víctor Manuel",surname:"Moo Huchin",slug:"victor-manuel-moo-huchin",fullName:"Víctor Manuel Moo Huchin"},{id:"189297",title:"Dr.",name:"Iván Alfredo",surname:"Estrada Mota",slug:"ivan-alfredo-estrada-mota",fullName:"Iván Alfredo Estrada Mota"},{id:"189298",title:"Dr.",name:"Raciel Javier",surname:"Estrada León",slug:"raciel-javier-estrada-leon",fullName:"Raciel Javier Estrada León"}],corrections:null},{id:"52360",title:"Composite Coatings Based on Renewable Resources Synthesized by Advanced Laser Techniques",doi:"10.5772/65260",slug:"composite-coatings-based-on-renewable-resources-synthesized-by-advanced-laser-techniques",totalDownloads:1757,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter reviews the progress and perspectives of composite materials in the form of thin films based on renewable resources for biofabrication of a new generation of medical implants with antibacterial properties. The chapter starts with an overview of the types of renewable materials that were currently studied and of the unique properties which make them perfect candidates for numerous bio‐related applications. A briefing of recent progresses in the field of advanced laser synthesis of composites from renewable and sustainable materials, as well as the relevant results in our researches is made. The discussion spans composite coatings based on renewable resources, [e.g., chitosan (CHT) and lignin (Lig)] as biomaterials intended for metallic implants. A particular attention is given to lignin synthesis in the form of thin films due to its ability to functionalize the medical implant surface while preserving the similar composition and the structural properties of the raw, renewable biomaterial. We focused on recent technological advancements (e.g., matrix‐assisted pulsed laser evaporation (MAPLE) and Combinatorial‐MAPLE) which have brought the spotlight onto renewable biomaterials, by detailing the relevant engineering data of processing. This chapter concludes that the extensions of advanced laser techniques are viable fabrication methods of a new generation of metallic implants.",signatures:"Anita‐Ioana Visan, Carmen‐Georgeta Ristoscu and Ion N. Mihailescu",downloadPdfUrl:"/chapter/pdf-download/52360",previewPdfUrl:"/chapter/pdf-preview/52360",authors:[{id:"17636",title:"Prof.",name:"Ion N.",surname:"Mihailescu",slug:"ion-n.-mihailescu",fullName:"Ion N. Mihailescu"},{id:"60531",title:"Dr.",name:"Carmen-Georgeta",surname:"Ristoscu",slug:"carmen-georgeta-ristoscu",fullName:"Carmen-Georgeta Ristoscu"},{id:"190158",title:"Dr.",name:"Anita-Ioana",surname:"Visan",slug:"anita-ioana-visan",fullName:"Anita-Ioana Visan"}],corrections:null},{id:"52418",title:"Biodegradable Polylactide‐Based Composites",doi:"10.5772/65468",slug:"biodegradable-polylactide-based-composites",totalDownloads:1858,totalCrossrefCites:0,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The aim of this chapter is to introduce to the use and possible applications of polylactide‐based composites. Polylactides are biodegradable aliphatic polyesters, which are widely used in medical and ecological‐friendly fields. First of all, a deep description of main characteristics of polylactides is shown. This chapter summarizes many concepts, which comprehend a general view of polylactide biopolymers such as synthesis and structures, physical‐chemical and mechanical characterization and possible applications of final products. Then, an overview of composites based on polylactides and their benefits compared with bare polylactides are described.",signatures:"Ester Zuza, Emilio Meaurio and Jose‐Ramon Sarasua",downloadPdfUrl:"/chapter/pdf-download/52418",previewPdfUrl:"/chapter/pdf-preview/52418",authors:[{id:"189683",title:"Dr.",name:"Ester",surname:"Zuza",slug:"ester-zuza",fullName:"Ester Zuza"},{id:"190249",title:"Dr.",name:"Emilio",surname:"Meaurio",slug:"emilio-meaurio",fullName:"Emilio Meaurio"},{id:"190250",title:"Dr.",name:"Jose-Ramon",surname:"Sarasua",slug:"jose-ramon-sarasua",fullName:"Jose-Ramon Sarasua"}],corrections:null},{id:"52350",title:"The Role of Biopolymers in Obtaining Environmentally Friendly Materials",doi:"10.5772/65265",slug:"the-role-of-biopolymers-in-obtaining-environmentally-friendly-materials",totalDownloads:2015,totalCrossrefCites:12,totalDimensionsCites:27,hasAltmetrics:1,abstract:"Polymeric materials have had a boom in the global industry over the past two decades, because of its adaptability, durability, and price so much so that now we cannot imagine a product that does not contain it. However, many synthetic polymers that have been developed are mainly derived from petroleum and coal as raw material, which make them incompatible with the environment, since they cannot be included in what is a natural recycling system. Aware of the environmental impacts that produce synthetic polymers, a solution could be the mixtures with different types and sources of biological materials, called biopolymers, such as starch, cellulose, chitosan, zein, gelatin among others and that gradually replace synthetic polymers to address and resolve these problems. The development of new applications, such as composite materials by incorporation of alternative materials, found in nature that has similar properties to oil‐based polymers, but its main feature is its biodegradability and offering competitive to current material costs. In this sense, various investigations are aimed at decreasing the amounts of plastic waste and to manufacture products with less aggressive environment since the synthetic plastics are difficult to recycle and can remain in nature for over a century.",signatures:"Rodolfo Rendón‐Villalobos, Amanda Ortíz‐Sánchez, Efraín Tovar‐\nSánchez and Emmanuel Flores‐Huicochea",downloadPdfUrl:"/chapter/pdf-download/52350",previewPdfUrl:"/chapter/pdf-preview/52350",authors:[{id:"190298",title:"Dr.",name:"Rodolfo",surname:"Rendon",slug:"rodolfo-rendon",fullName:"Rodolfo Rendon"},{id:"194874",title:"Dr.",name:"Amanda",surname:"Ortiz",slug:"amanda-ortiz",fullName:"Amanda Ortiz"},{id:"194875",title:"Dr.",name:"Efrain",surname:"Tovar-Sánchez",slug:"efrain-tovar-sanchez",fullName:"Efrain Tovar-Sánchez"},{id:"206705",title:"Dr.",name:"Emmanuel",surname:"Flores Huicochea",slug:"emmanuel-flores-huicochea",fullName:"Emmanuel Flores Huicochea"}],corrections:null},{id:"52585",title:"Waste and Recycled Materials and their Impact on the Mechanical Properties of Construction Composite Materials",doi:"10.5772/65433",slug:"waste-and-recycled-materials-and-their-impact-on-the-mechanical-properties-of-construction-composite",totalDownloads:1918,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"In a world increasingly fixated on the demands of sustainable development, too much attention has been focused on the widely used building materials, mainly on those tools and strategies for their reuse and those characteristics for considering them as environmental-friendly materials. Among the strategies are the following: (a) increased reliability on waste and recycled materials—such action will have to incorporate the substitution of recycled for virgin materials; (b) improved durability through reduction of materials needed for their replacement; and (c) improved mechanical properties, which reduces the use of raw materials. Extensive research and development activities in recycling composite materials have been conducted, and various technologies have been developed: (a) mechanical recycling, (b) thermal recycling, and (c) chemical recycling. However, gamma radiation is an innovative and clean technology, alternative to conventional recycling procedures. Gamma irradiation has proved to be an adequate tool for modifications of the physicochemical properties of polymers, through different effects: (a) scission, branching as well as cross-linking of polymer chains and (b) oxidative degradation. Moreover, the reuse and recycling of waste materials and the use of gamma radiation are useful tools for improving the mechanical properties of concrete. In this chapter, we show results of the effects of gamma irradiation on the physicochemical properties of waste and recycled materials and their reuse to enhance the properties of construction composite materials.",signatures:"Gonzalo Martínez-Barrera, Nelly González-Rivas, Enrique Vigueras-\nSantiago, Ángel Martínez-López, Jorge A. Tello-González and\nCarmina Menchaca-Campos",downloadPdfUrl:"/chapter/pdf-download/52585",previewPdfUrl:"/chapter/pdf-preview/52585",authors:[{id:"102080",title:"Dr.",name:"Gonzalo",surname:"Martínez-Barrera",slug:"gonzalo-martinez-barrera",fullName:"Gonzalo Martínez-Barrera"},{id:"110213",title:"Dr.",name:"Carmina",surname:"Menchaca-Campos",slug:"carmina-menchaca-campos",fullName:"Carmina Menchaca-Campos"},{id:"177867",title:"Dr.",name:"Enrique",surname:"Vigueras-Santiago",slug:"enrique-vigueras-santiago",fullName:"Enrique Vigueras-Santiago"},{id:"177869",title:"Dr.",name:"Nelly",surname:"González-Rivas",slug:"nelly-gonzalez-rivas",fullName:"Nelly González-Rivas"},{id:"194855",title:"MSc.",name:"Angel",surname:"Martínez-López",slug:"angel-martinez-lopez",fullName:"Angel Martínez-López"},{id:"194856",title:"MSc.",name:"Jorge A.",surname:"Tello-González",slug:"jorge-a.-tello-gonzalez",fullName:"Jorge A. Tello-González"}],corrections:null},{id:"52780",title:"Renewable Biocomposite Properties and their Applications",doi:"10.5772/65475",slug:"renewable-biocomposite-properties-and-their-applications",totalDownloads:2667,totalCrossrefCites:7,totalDimensionsCites:13,hasAltmetrics:0,abstract:"Recently, with increasing environmental awareness and expanding global waste problems, eco-friendly biofillers have been recognized as a promising alternative to inorganic fillers in the reinforcement of thermoplastic and biodegradable plastics. Therefore, many industries are seeking more eco-friendly materials that will decrease the level of environmental contamination and economic cost. Bacteria cellulose, rice straw, rice husk, natural fiber, lignocellulose, cellulose, and paper sludge are renewable resources owing many beneficial properties; these materials were used to manufacture composite products such as sound absorbing wooden construction materials, interior of bathrooms, wood decks, window frames, decorative trim, automotive panels, and industrial and consumer applications. This chapter elucidates the different renewable biocomposite properties and their applications.",signatures:"Thimmapuram Ranjeth Kumar Reddy, Hyun‑Joong Kim and Ji-Won\nPark",downloadPdfUrl:"/chapter/pdf-download/52780",previewPdfUrl:"/chapter/pdf-preview/52780",authors:[{id:"189738",title:"Prof.",name:"Hyun-Joong",surname:"Kim",slug:"hyun-joong-kim",fullName:"Hyun-Joong Kim"},{id:"194661",title:"Dr.",name:"Ranjeth Kumar Reddy",surname:"T",slug:"ranjeth-kumar-reddy-t",fullName:"Ranjeth Kumar Reddy T"},{id:"194662",title:"Dr.",name:"Ji-Won",surname:"Park",slug:"ji-won-park",fullName:"Ji-Won Park"}],corrections:null},{id:"52529",title:"Epoxy Composites Using Wood Pulp Components as Fillers",doi:"10.5772/65261",slug:"epoxy-composites-using-wood-pulp-components-as-fillers",totalDownloads:1974,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The components of wood, especially lignin and cellulose, have great potential for improving the properties of polymer composites. In this chapter, we discuss some of the latest developments from our lab on incorporating wood-based materials into epoxy composites. Lignosulfonate was used as a flame retardant and cellulose nanocrystals were used as reinforcing materials. Lignosulfonate will disperse well in epoxy, but phase separates during curing. An epoxidation reaction was developed to immobilize the lignosulfonate during curing. The lignosulfonate–epoxy composites were characterized using microcombustion and cone calorimetry tests. Cellulose also has poor interfacial adhesion to hydrophobic polymer matrices. Cellulose fibers and nanocrystals aggregate when placed in epoxy resin, resulting in very poor dispersion. The cellulose nanocrystal surface was modified with phenyl containing materials to disrupt cellulose interchain hydrogen bonding and improve dispersion in the epoxy resin. The cellulose nanocrystal – epoxy composites were characterized for mechanical strength using tensile tests, water barrier properties using standardized water absorption, glass transition temperatures using differential calorimetry, and aggregation and dispersion using microscopic techniques.",signatures:"Douglas M. Fox, Noy Kaufman, Jeremiah Woodcock, Chelsea S.\nDavis, Jeffrey W. Gilman, John R. Shields, Rick D. Davis, Szabolcs\nMatko and Mauro Zammarano",downloadPdfUrl:"/chapter/pdf-download/52529",previewPdfUrl:"/chapter/pdf-preview/52529",authors:[{id:"189306",title:"Prof.",name:"Douglas",surname:"Fox",slug:"douglas-fox",fullName:"Douglas Fox"},{id:"190091",title:"Dr.",name:"Jeremiah",surname:"Woodcock",slug:"jeremiah-woodcock",fullName:"Jeremiah Woodcock"},{id:"190092",title:"Dr.",name:"Jeffrey",surname:"Gilman",slug:"jeffrey-gilman",fullName:"Jeffrey Gilman"},{id:"190093",title:"Dr.",name:"John",surname:"Shields",slug:"john-shields",fullName:"John Shields"},{id:"190094",title:"Dr.",name:"Mauro",surname:"Zammarano",slug:"mauro-zammarano",fullName:"Mauro Zammarano"},{id:"194831",title:"Dr.",name:"Chelsea",surname:"Davis",slug:"chelsea-davis",fullName:"Chelsea Davis"},{id:"194832",title:"Dr.",name:"Rick",surname:"Davis",slug:"rick-davis",fullName:"Rick Davis"},{id:"194833",title:"Dr.",name:"Sbazolcs",surname:"Matko",slug:"sbazolcs-matko",fullName:"Sbazolcs Matko"},{id:"194834",title:"Ms.",name:"Noy",surname:"Kaufman",slug:"noy-kaufman",fullName:"Noy Kaufman"}],corrections:null},{id:"52543",title:"Bio-Based Composites for Sound Absorption",doi:"10.5772/65360",slug:"bio-based-composites-for-sound-absorption",totalDownloads:1499,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The acoustic thermoplastic composites and a method for their production with the participation of the bio-components were presented. To form composite matrix polylactide fibres (PLA) were used. Natural fibres (flax (LI) and cotton (CO)), straw and cellulose ultra-short/ultra-fine fibres obtained from biomass were used as a reinforcement. Cellulose ultra-short/ultra-fine fibres were obtained from the flax fibres or straw by enzymatic treatment and optionally modified by silane. The tensile stress at maximum load of composites with the sub-microfibres obtained from waste flax fibres after silane modification is twice higher than that of the composite with the sub-microfibres without the silane modification.",signatures:"Eulalia Gliścińska, Izabella Krucińska, Marina Michalak, Michał\nPuchalski, Danuta Ciechańska, Janusz Kazimierczak and Arkadiusz\nBloda",downloadPdfUrl:"/chapter/pdf-download/52543",previewPdfUrl:"/chapter/pdf-preview/52543",authors:[{id:"175893",title:"Dr.",name:"Izabella",surname:"Krucinska",slug:"izabella-krucinska",fullName:"Izabella Krucinska"},{id:"194703",title:"Dr.",name:"Eulalia",surname:"Gliścińska",slug:"eulalia-gliscinska",fullName:"Eulalia Gliścińska"},{id:"194704",title:"Dr.",name:"Marina",surname:"Michalak",slug:"marina-michalak",fullName:"Marina Michalak"},{id:"194705",title:"Dr.",name:"Michał",surname:"Puchalski",slug:"michal-puchalski",fullName:"Michał Puchalski"},{id:"194706",title:"Dr.",name:"Danuta",surname:"Ciechańska",slug:"danuta-ciechanska",fullName:"Danuta Ciechańska"},{id:"194709",title:"MSc.",name:"Janusz",surname:"Kazimierczak",slug:"janusz-kazimierczak",fullName:"Janusz Kazimierczak"},{id:"194710",title:"MSc.",name:"Arkadiusz",surname:"Bloda",slug:"arkadiusz-bloda",fullName:"Arkadiusz Bloda"}],corrections:null},{id:"52162",title:"Nano-Rheological Behaviour of Cassava Starch-Zinc Nanocomposite Film under Dynamic Loading for High Speed Transportation of Packaged Food",doi:"10.5772/64984",slug:"nano-rheological-behaviour-of-cassava-starch-zinc-nanocomposite-film-under-dynamic-loading-for-high-",totalDownloads:1508,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This research was undertaken to determine the nano–rheological behaviours of cassava starch–zinc–nanocomposite films under dynamic loading for assessing their suitability as food packaging materials in high speed transportation. The films, with thickness ranging between 15 ± 0.22–17 ± 0.13 µm, were prepared by casting mixtures of 24 g cassava starch, 45–55% (w/w) glycerol and 0–2% (w/w) zinc nanoparticles in plastic moulds of 8–12 mm depths. The effects of the nanoparticles, thickness and glycerol on the rheological properties of the films, including the Young’s modulus, creep, hardness and plasticity index were determined using nanoindentation technique. The results show that the Young’s modulus and hardness of the films varied inconsistently with glycerol concentration and nanoparticles due probably to their isotropic nature and sensitivity to slight change in load. The plasticity index was lower for 15 µm film, which absorbed 40 pNm and dissipated 0.5 pNm during loading and unloading stages, respectively. The response of the 15 µm film to creep was higher than 16 µm and 17 µm films, and this may be consequence of lower wear at higher loads. This implies that the nanocomposite film might be suitable for high speed transportation of packaged food.",signatures:"Adeshina Fadeyibi, Zinash D. Osunde, Gbabo Agidi, Evans C. Egwim\nand Peter A. Idah",downloadPdfUrl:"/chapter/pdf-download/52162",previewPdfUrl:"/chapter/pdf-preview/52162",authors:[{id:"156271",title:"Dr.",name:"Evans",surname:"Egwim",slug:"evans-egwim",fullName:"Evans Egwim"},{id:"189861",title:"Dr.",name:"Adeshina",surname:"Fadeyibi",slug:"adeshina-fadeyibi",fullName:"Adeshina Fadeyibi"},{id:"194440",title:"Prof.",name:"Zinash",surname:"Delebo Osunde",slug:"zinash-delebo-osunde",fullName:"Zinash Delebo Osunde"},{id:"194441",title:"Dr.",name:"Gbabo",surname:"Agidi",slug:"gbabo-agidi",fullName:"Gbabo Agidi"},{id:"194442",title:"Prof.",name:"Peter",surname:"Aba Idah",slug:"peter-aba-idah",fullName:"Peter Aba Idah"}],corrections:null},{id:"52473",title:"Multifunctional Wound‐Dressing Composites Consisting of Polyvinyl Alcohol, Aloe Extracts and Quaternary Ammonium Chitosan Salt",doi:"10.5772/65476",slug:"multifunctional-wound-dressing-composites-consisting-of-polyvinyl-alcohol-aloe-extracts-and-quaterna",totalDownloads:1450,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Wound dressings are materials generally made of gauze, synthetic, and natural polymers that are able to protect wound from microorganism, absorb exudates, and provide compression to minimize edema as well as a temporary substrate for tissue cells to grow. The multifunction of wound dressing exhibiting antibacterial and anti‐inflammatory properties and conducive to skin‐tissue regeneration is highly desired. In this study, we developed such a multifunctional wound‐dressing composite consisting of polyvinyl alcohol, aloe extracts, and quaternary ammonium chitosan salt (PVA/AE/QCS, PAQ). The mass ratio of PAQ composites was controlled at three different levels of 6:3:1, 7:2:1, and 8:1:1. The as‐prepared PAQ composites exhibited a porous profile on both surface and cross‐section areas with 3–60‐μm pore size and a three‐dimensional (3D) porous network inside. Such a porous structure could effectively prevent the invasion of microorganism, as well as readily absorb extrudes from wound. The PAQ composites exhibited a good competency of moisture maintenance, excellent antibacterial characteristics, and a good biocompatibility of fibroblasts, and they would become a competitive multifunctional wound dressing.",signatures:"Yang Hu, Yongjun Zhu and Xin Zhou",downloadPdfUrl:"/chapter/pdf-download/52473",previewPdfUrl:"/chapter/pdf-preview/52473",authors:[{id:"190163",title:"Dr.",name:"Yang",surname:"Hu",slug:"yang-hu",fullName:"Yang Hu"},{id:"195031",title:"Mr.",name:"Yongjun",surname:"Zhu",slug:"yongjun-zhu",fullName:"Yongjun Zhu"},{id:"195032",title:"Mr.",name:"Xin",surname:"Zhou",slug:"xin-zhou",fullName:"Xin Zhou"}],corrections:null},{id:"52320",title:"Production and Characterization of Hybrid Polymer Composites Based on Natural Fibers",doi:"10.5772/64995",slug:"production-and-characterization-of-hybrid-polymer-composites-based-on-natural-fibers",totalDownloads:2115,totalCrossrefCites:3,totalDimensionsCites:7,hasAltmetrics:0,abstract:"In this chapter, a review is made on the processing and properties of hybrid composites based on a polymer matrix and a blend of different natural (lignocellulosic) fibers. In particular, the processing methods are described and comparisons are made between the general properties with a focus on physical, mechanical and thermal properties. A discussion is presented on the effect of the polymer and fiber types, as well as reinforcement content. Properties improvement is also discussed using fiber surface treatment or the addition of coupling agents. Finally, auto‐hybrid composites are presented with conditions leading to a positive deviation from the rule of hybrid mixture (RoHM) model.",signatures:"Wendy Rodriguez‐Castellanos and Denis Rodrigue",downloadPdfUrl:"/chapter/pdf-download/52320",previewPdfUrl:"/chapter/pdf-preview/52320",authors:[{id:"190270",title:"Prof.",name:"Denis",surname:"Rodrigue",slug:"denis-rodrigue",fullName:"Denis Rodrigue"}],corrections:null},{id:"53102",title:"Viscoelastic Performance of Biocomposites",doi:"10.5772/66148",slug:"viscoelastic-performance-of-biocomposites",totalDownloads:2007,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The viscoelastic behavior and performance to creep of biocomposites made from fique natural fiber and low-density polyethylene-aluminum (LDPE–Al) obtained from recycled long-life packages were studied. A relationship was observed between the creep mechanical responses of biocomposites with respect to natural fibers. Additionally, the four and six parameters of the mathematical model were calculated from the creep curves. A very good agreement between the experimental data and the theoretical curves was obtained in the fluency region. The relationship between interfacial fiber or filler and the polymer matrix is an indicator of mechanical performance of biocomposite, regardless of the application that you want to give. It is known that the mechanical and viscoelastic properties depend on the application time of loading, the type of load, temperature, micromechanics relationship between the natural fiber and the matrix, the type of anchor prevailing for the transfer effort to micro- and nano-levels and cannot be treated mathematically only by the laws of solids or fluids, viscoelastic behavior of biocomposites. It is possible to obtain mathematical models that fit different rheological phenomena; for example, creep and stress relaxation can be modeled and correlated with biocomposite experiment using dynamic mechanical analysis (DMA).",signatures:"Miguel Ángel Hidalgo Salazar",downloadPdfUrl:"/chapter/pdf-download/53102",previewPdfUrl:"/chapter/pdf-preview/53102",authors:[{id:"191032",title:"Dr.",name:"Miguel Angel",surname:"Hidalgo-Salazar",slug:"miguel-angel-hidalgo-salazar",fullName:"Miguel Angel Hidalgo-Salazar"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"4785",title:"Cellulose",subtitle:"Fundamental Aspects and Current Trends",isOpenForSubmission:!1,hash:"e1dcc6cb2bc929641d711f320ac52970",slug:"cellulose-fundamental-aspects-and-current-trends",bookSignature:"Matheus Poletto and Heitor Luiz Ornaghi Junior",coverURL:"https://cdn.intechopen.com/books/images_new/4785.jpg",editedByType:"Edited by",editors:[{id:"140017",title:"Dr.",name:"Matheus",surname:"Poletto",slug:"matheus-poletto",fullName:"Matheus Poletto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6185",title:"Lignin",subtitle:"Trends and Applications",isOpenForSubmission:!1,hash:"3c0b9e64cd29f76f5de2dc06531633ce",slug:"lignin-trends-and-applications",bookSignature:"Matheus Poletto",coverURL:"https://cdn.intechopen.com/books/images_new/6185.jpg",editedByType:"Edited by",editors:[{id:"140017",title:"Dr.",name:"Matheus",surname:"Poletto",slug:"matheus-poletto",fullName:"Matheus Poletto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"205",title:"Fundamental and Advanced Topics in Wind Power",subtitle:null,isOpenForSubmission:!1,hash:"b8b5955addb75d98a6bba1c94e3e7a74",slug:"fundamental-and-advanced-topics-in-wind-power",bookSignature:"Rupp Carriveau",coverURL:"https://cdn.intechopen.com/books/images_new/205.jpg",editedByType:"Edited by",editors:[{id:"22234",title:"Dr.",name:"Rupp",surname:"Carriveau",slug:"rupp-carriveau",fullName:"Rupp Carriveau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2706",title:"Small-Scale Energy Harvesting",subtitle:null,isOpenForSubmission:!1,hash:"63bc4c27bdf9ec1e00aa20ff6f1d804f",slug:"small-scale-energy-harvesting",bookSignature:"Mickael Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/2706.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"115",title:"Wind Turbines",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"wind-turbines",bookSignature:"Ibrahim Al-Bahadly",coverURL:"https://cdn.intechopen.com/books/images_new/115.jpg",editedByType:"Edited by",editors:[{id:"19588",title:"Dr.",name:"Ibrahim H.",surname:"Al-Bahadly",slug:"ibrahim-h.-al-bahadly",fullName:"Ibrahim H. Al-Bahadly"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"427",title:"Sustainable Energy Harvesting Technologies",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"61a870ec0f3bf63739132a7cf4465ca7",slug:"sustainable-energy-harvesting-technologies-past-present-and-future",bookSignature:"Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/427.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"13",title:"Paths to Sustainable Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"paths-to-sustainable-energy",bookSignature:"Jatin Nathwani and Artie Ng",coverURL:"https://cdn.intechopen.com/books/images_new/13.jpg",editedByType:"Edited by",editors:[{id:"13730",title:"Dr.",name:"Artie",surname:"Ng",slug:"artie-ng",fullName:"Artie Ng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"212",title:"Energy Storage in the Emerging Era of Smart Grids",subtitle:null,isOpenForSubmission:!1,hash:"8cd6021285906516c727802d02ce0954",slug:"energy-storage-in-the-emerging-era-of-smart-grids",bookSignature:"Rosario Carbone",coverURL:"https://cdn.intechopen.com/books/images_new/212.jpg",editedByType:"Edited by",editors:[{id:"11592",title:"Prof.",name:"Rosario",surname:"Carbone",slug:"rosario-carbone",fullName:"Rosario Carbone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2763",title:"Gasification for Practical Applications",subtitle:null,isOpenForSubmission:!1,hash:"e576b2a136c1c20c784302344c65448e",slug:"gasification-for-practical-applications",bookSignature:"Yongseung Yun",coverURL:"https://cdn.intechopen.com/books/images_new/2763.jpg",editedByType:"Edited by",editors:[{id:"144925",title:"Dr.",name:"Yongseung",surname:"Yun",slug:"yongseung-yun",fullName:"Yongseung Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"148",title:"Wind Farm",subtitle:"Technical Regulations, Potential Estimation and Siting Assessment",isOpenForSubmission:!1,hash:"f7a3aafd9530aba9911c69ec17d31673",slug:"wind-farm-technical-regulations-potential-estimation-and-siting-assessment",bookSignature:"Gastón O. Suvire",coverURL:"https://cdn.intechopen.com/books/images_new/148.jpg",editedByType:"Edited by",editors:[{id:"12698",title:"Dr.",name:"Gastón Orlando",surname:"Suvire",slug:"gaston-orlando-suvire",fullName:"Gastón Orlando Suvire"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",title:"Corrigendum to: Many-Core Algorithm of the Embedded Zerotree Wavelet Encoder",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74512.pdf",downloadPdfUrl:"/chapter/pdf-download/74512",previewPdfUrl:"/chapter/pdf-preview/74512",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74512",risUrl:"/chapter/ris/74512",chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]}},chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]},book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11984",leadTitle:null,title:"Current Advances in Nanomedicine",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tIn the last two decades, an impeccable advancement in nanotechnology encouraged global scientific intellect for constant contemplation of its ramifications in biomedical applications. Nanomedicine, a medical specialty that uses the advances in nanotechnology, is mostly explored to prevent, detect and treat many diseases, cancer is the most pernicious among them. A wide range of engineered nanomaterials is used for a wide variety of biomedical applications, especially disease diagnostic, drug delivery, physiological state sensing or alteration of actuation functions in a living body, etc. Organic and inorganic nanomaterials are emerging as promising cancer therapeutic and diagnostic techniques. To target specific tumor tissues, polymeric micelles, liposomes, dendrimers, and other nanoparticles have been explored for their potential to assemble in leaky tumor circulatory networks. Further, targeting cancer at the cellular and molecular level has also been achieved by various surface-modified nanomaterials carrying specific cargo. Moreover, image and diagnostic-based nanometric multimodal therapeutic modalities will be explored as flexible theranostics having a dual potential to treat and diagnose cancer. Biogenic nanomaterials for cancer therapy and imaging will also be explored in this book. This book will concentrate on the use of nanotechnology in biomedical diagnostics, treatments, drug delivery systems, and other possible clinical applications.
",isbn:"978-1-83768-349-9",printIsbn:"978-1-83768-348-2",pdfIsbn:"978-1-83768-350-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"3d98881cc9e323438670710d3aaaf71d",bookSignature:"Assistant Prof. Manash K. Paul, Dr. Jyotirmoi Aich, Prof. Soumya Basu and Dr. Anubhab Mukherjee",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11984.jpg",keywords:"Polymeric Nanoparticles, Lipoidal Nanoparticles, Therapy, Carbon Nanotube, Bioavailability, Theranostics, Nanobiotechnology, Nanoelectronics, Tumour Imaging, Novel Biomaterials, Regenerative Medicine, Stem Cell Therapy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 8th 2022",dateEndSecondStepPublish:"July 6th 2022",dateEndThirdStepPublish:"September 4th 2022",dateEndFourthStepPublish:"November 23rd 2022",dateEndFifthStepPublish:"January 22nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Paul is the recipient of many awards, including the prestigious UCLA Vice Chancellor’s Award, and was nominated for Paul Boyer’s award. He is a member of multiple editorial boards and has one registered patent. Dr. Paul is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and also a member of many esteemed societies, including the Royal Society of Biology (MRCB), the American Association for Cancer Research (AACR), and the International Society of Biotechnology (ISBT).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a scientist and Principal Investigator at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering the lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via artificial intelligence-based analyses of exosomal Raman signatures. Dr. Paul also works on spatial multiplex immunofluorescence-based tissue mapping to understand the immune repertoire in lung cancer. Dr. Paul has published in more than sixty-five peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award and the 2022 AAISCR-R Vijayalaxmi Award for Innovative Cancer Research. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of California Los Angeles",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",institutionURL:null,country:{name:"India"}}},coeditorThree:{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38387",title:"Friction and Wear of Polymer and Composites",doi:"10.5772/48246",slug:"friction-and-wear-of-polymer-and-composites",body:'Polymer and its composites are finding ever increasing usage for numerous industrial applications in sliding/rolling components such as bearings, rollers, seals, gears, cams, wheels, piston rings, transmission belts, grinding mills and clutches where their self lubricating properties are exploited to avoid the need for oil or grease lubrication with its attendant problems of contamination [1]. However, when the contact between sliding pairs is present, there is the problem of friction and wear. Yamaguchi [2], Hooke et al. [3] and Lawrence and Stolarski [4] reported that the friction coefficient can, generally, be reduced and the wear resistance increased by selecting the right material combinations.
Several researchers [5-7] observed that the friction force and wear rate depend on roughness of the rubbing surfaces, relative motion, type of material, temperature, normal force, stick slip, relative humidity, lubrication and vibration. The parameters that dictate the tribological performance of polymer and its composites also include polymer molecular structure, processing and treatment, properties, viscoelastic behavior, surface texture etc. [8-11].There have been also a number of investigations exploring the influence of test conditions, contact geometry and environment on the friction and wear behavior of polymers and composites. Watanabe [12], Tanaka [13] and Bahadur and Tabor [14] reported that the tribologicalbehavior of polyamide, high density polyethylene (HDPE) and their composites is greatly affected by normal load, sliding speed and temperature. Pihtili and Tosun [15,16] showed that applied load and sliding speed play significant role on the wear behavior of polymer and composites. They also showed that applied load has more effect on the wear than the speed for composites.Several authors [17-22] observed that the friction coefficient of polymers and its composites rubbing against metals decreases with the increase in load though some other researchers have different views.Stuart [23] and other researchers [24-26] showed that value of friction coefficient increases with the increase in load. Friction coefficient and specific wear rate values for different combinations of polymer and its composite were obtained and compared [27].For all material combinations, it was observed that the coefficient of friction decreases linearly with the increase in applied pressure values. Unal et al. [28,29] reported that the applied load exerts greater influence on the sliding wear of polymer and its composite than the sliding velocity.
Friction and wear behavior of glass fiber reinforced polyster composite were studied and results showed that in general, friction and wear are strongly influenced by all the test parameters such as applied load, sliding speed, sliding distance and fiber orientations [30]. Moreover, it was found that applied normal load, sliding speed and fiber orientations have more pronounced effect on wear rate than sliding distance.Wang and Li [31] observed that the sliding velocity has more significant effect on the sliding wear as compared to the applied load and variations of wear rate with operating time can be distinguished by three distinct periods. These periods are running-in period, steady-state period and severe wear period, respectively.Tsukizoeand Ohmae [32] showed that reinforcement of fiber or filler significantly improve the tribologicalbehavior of polymeric material but this is not necessarily true for all cases.Suresha et al. [33] showed that there is a strong inter-dependence on the friction coefficient and wear loss with respect to the applied loads for steel-composites contact.
Friction process with vibration is an important practical phenomenon because the influence of vibration can cause significant change in this process. It is known that vibration and friction are dependent on each other. Friction generates vibration in various forms, while vibration affects friction in turns. Some explanations [34-38] are given in order to justify the decrease in the friction coefficient under vibration condition though some of the researchers have different views. Skare and Stahl [39] claimed that mean friction force increases as well as decreases depending on the vibration parameters.
Friction may be increased or decreased depending on the sliding pairs and operating parameters. In this chapter, friction coefficient and wear rate of different types of polymer and composite materials sliding against steel counterface are described. Effects of duration of rubbing, normal load, sliding speed, vertical vibration, horizontal vibration, natural frequency of vibration on friction coefficient are discussed. Some correlations of friction coefficient and wear rate are also incorporated in this chapter.
In sliding contacts, friction coefficient varies with duration of rubbing and these variations are different at different normal loads and sliding velocities. Research works were carried out to investigate the friction coefficient with duration of rubbing for different types of composite and polymer materials. Figure 1 shows the variation of friction coefficient with the duration of rubbing at different normal loads for gear fiber [40]. For normal load 10 N, curve 1 shows that during initial stage of rubbing, friction coefficient is low which remains constant for few minutes then increases very steadily up to a maximum value over a certain duration of rubbing and after that it remains constant for the rest of the experimental time [40].
At initial stage of rubbing, friction force is low due to contact between superficial layer of pin and disc and then, friction coefficient increases due to ploughing effect which causes roughening of the test disc surface. For normal load 12.5 N, curve 2 shows similar trend as that of curve 1. For normal loads 15, 17.5 and 20 N, curves 3, 4 and 5 show the friction results respectively. The increase in friction coefficient with the increase in normal load is due to the detachment and removal of worn materials and more contact with reinforced cloth fibers and the higher the normal load, time to reach constant friction is less [40]. This is due to the fact that the surface roughness and other parameters attain a steady level at shorter period with the increase in normal load [40].
Friction coefficient as a function of duration of rubbing at different normal load, sliding velocity: 1 m/s, relative humidity: 70%, test sample: gear fiber.
Figure 2 shows the effect of the duration of rubbing on the value of friction coefficient at different normal loads for glass fiber. For normal load 10 N, curve 1 shows that during initial stage of rubbing, friction coefficient rises for few minutes and then decreases very steadily up to a certain value over some duration of rubbing and then it becomes steady for the rest of the experimental time. Almost similar trends of variation are observed for loads 12.5, 15, 17.5 and 20 N respectively and these results show that friction coefficient decreases with the increase in applied load [40]. It is known that tribologicalbehavior of polymers and polymer composites can be associated with their viscoelastic and temperature-related properties. Sliding contact of two materials results in heat generation at the asperities and hence increases in temperature at the frictional surfaces of the two materials which influences the viscoelastic property in the response of materials stress, adhesion and transferring behaviors [27]. From these results, it can also be seen that time to reach constant friction is different for different normal loads and higher the normal load, glass fiber takes less time to stabilize [40].Figure 3 shows the variation of friction coefficient with the duration of rubbing at different normal loads for nylon. For 10 N load, curve 1 indicates that during starting of the rubbing, the value of friction coefficient is low which increases for few minutes to a certain value and then decreases almost linearly over some duration of rubbing and after that it remains constant for the rest of the experimental time. Similar trends of variation are observed for normal loads 12.5, 15, 17.5 and 20 N.In these cases, transfer film formed on the stainless steel couterface and the transfer film has important effects on the tribologicalbehavior of a material [22, 40-42]. Friction and wear behavior of polymer sliding against a metal is strongly influenced by its ability to form a transfer film on the counterface [42]. The transfer film formed on a non-polymer counterface is controlled by the counterface material, roughness, and sliding conditions [2].
Friction coefficient as a function of duration of rubbing at different normal load, sliding velocity: 1 m/s, relative humidity: 70%, test sample: glass fiber.
Friction coefficient as a function of duration of rubbing at different normal load, sliding velocity: 1 m/s, relative humidity: 70%, test sample: nylon.
Friction coefficient as a function of duration of rubbing at different normal load, sliding velocity: 1 m/s, relative humidity: 70%, test sample: PTFE.
Figure 4 for PTFE shows that friction coefficient decreases almost linearly up to certain value over some duration of rubbing and after that it remains constant for the rest of the experimental time. It can be noted that transfer film of PTFE formed on the steel counterface due to the strong adhesion across the interface [40,43].
Friction coefficient varies with duration of rubbing at different sliding speeds for different composite and polymer materials [44]. These results are presented in Figs. 5-8.
Friction coefficient as a function of duration of rubbing at different sliding speeds, normal load: 15 N, relative humidity: 70%, test sample: gear fiber.
Friction coefficient as a function of duration of rubbing at different sliding speeds, normal load: 15 N, relative humidity: 70%, test sample: glass fiber.
Friction coefficient as a function of duration of rubbing at different sliding speeds, normal load: 15 N, relative humidity: 70%, test sample: nylon.
Friction coefficient as a function of duration of rubbing at different sliding speeds, normal load: 15 N, relative humidity: 70%, test sample: PTFE.
In this section, a comparison of the variation of friction coefficient with normal load for different materials has been discussed. Wear rates of different materials are also compared. Results of Fig. 9 show that friction coefficient decreases with the increase in normal load for glass fiber, PTFE and nylon. Different behavior is observed for gear fiber that is, friction coefficient of gear fiber increases with the increase in normal load. Some factors such as high ploughing, surface damage and breakage of reinforced fibers are responsible for higher friction with higher normal load [40]. Variations of wear rate with normal load for gear fiber, glass fiber, nylon and PTFE are shown in Fig. 10. This figure indicates that wear rate increases with the increase in normal load for all types of materials investigated. The shear force and frictional thrust are increased with the increase in applied load and these increments accelerate the wear rate. Figure 10 also shows the comparison of the variation of wear rate with normal load for gear fiber, glass fiber, nylon and PTFE. The highest values of wear rate for PTFE and lowest values for nylon are obtained among these materials. In case of composite materials, the values of wear rate are higher for gear fiber compared to that of glass fiber. For plastic materials, higher values are observed for PTFE compared to nylon [40].
Friction coefficient as a function of normal load for different materials, sliding velocity: 1 m/s, relative humidity: 70%.
Wear rate as a function of normal load for different materials, sliding velocity: 1 m/s, relative humidity: 70%.
In sliding contacts, sliding speed has an important role on friction and wear of different polymer and composite materials. Figure 11 shows the comparison of the variation offriction coefficient with sliding speed for different materials. Results show that friction coefficient increase almost linearly with sliding speed [44]. These findings are in agreement with the findings of Mimaroglu et al. [27] and Unal et al. [45]. With the increase in slidingspeed, the frictional heat may decrease the strength of the materials and high temperature results in stronger or increased adhesion with pin [27,43]. The increase of friction coefficient with sliding speed can be explained by the more adhesion of counterface pin material on disc. Figure 11 indicates that nylon shows the highest friction coefficient within the observed range of sliding speed. Results also reveal that PTFE shows the lowest friction coefficient among these four materials except at sliding speed 1 m/s. At sliding speed 1 m/s, glass fiber shows slightly lower friction coefficient than PTFE but at a sliding speed 3 m/s, glass fiber exhibits much higher friction coefficient than PTFE. This may be due to the breakage of reinforced glass fibers with the increase in sliding speed. Results also show that friction coefficient of gear fiber is higher than that of glass fiber and PTFE. This is due to ploughing effect and breakage of the exposed reinforced cloth fiber of the fracture material [44]. Variations of wear rate with sliding speed for gear fiber, glass fiber, nylon and PTFE are presented in Fig. 12. This figure shows that wear rate increases with the increase in sliding speed for all types of materials investigated. These findings are in agreement with the findings of Mimaroglu et al. [27] and Suresha et al. [33]. The shear force, frictional heat and frictional thrust are increased with the increase in sliding speed and these increments accelerate the wear rate. Figure 12 also shows the comparison of the variation of wear ratewith sliding speed for gear fiber, glass fiber, nylon and PTFE. From this figure it is observed that PTFE has the highest wear rate among these four materials within the observed range of sliding speed. It is also observed that nylon has the lowest wear rate among these four materials except at sliding speed 3 m/s. At sliding speed 3 m/s, wear rate of nylon is higher than that of gear fiber and glass fiber. Because of higher sliding speed, loss of strength is higher for nylon [43] compared to that of other materials. In case of composite materials, the values of wear rate are higher for gear fiber compared to that of glass fiber [44].
Friction coefficient as a function of sliding speed for different materials, normal load: 15 N, relative humidity: 70%.
Wear rate as a function of sliding speed for different materials, normal load: 15 N, relative humidity: 70%.
Figure 13 shows the pin-on-disc set-up with vertical vibration arrangement [46]. For generating vertical vibration, there are two circular plates near the bottom end of the shaft. The upper circular plate fitted with the bottom end of the shaft has a spherical ball in such a way that the ball is extended from the lower surface of this plate. On the top surface of the lower circular plate there are a number of slots. When the shaft rotates, the ball of the upper circular plate slides on the slotted surface of the lower circular plate and due to the spring action, the shaft along with the rotating plate vibrates. The direction of vibration is vertical, i.e. perpendicular to the sliding direction of the pin. By varying the shaft rotation and the number of slots of the lower circular vibration generating plate, the frequency of vibration is varied. By adjusting the height of this slotted plate, the amplitude of the vibration is varied.
Schematic diagram of the experimental set-up for vertical vibration(1) Load arm holder (2) Load arm (3) Normal load (4) Horizontal load(5) Pin sample (6) Test disc with rotating
The presence of external vertical vibration affects the friction force of different materials considerably which is discussed in this section. Figures 14–17 show the variation of friction coefficient with the duration of rubbing and amplitude of vibration for different types of material. Variations of friction coefficient with time of rubbing for glass fiber reinforced plastic (glass fiber), cloth reinforced ebonite (gear fiber), PTFE and rubber are presented in Figs. 14–17, respectively. These figures indicate that time to reach steady-state value is different for different materials.
Research works carried out for different materials at different frequencies of vibration and these results show that time to reach constant friction is same for these materials [46]. Results also reveal that friction coefficient decrease with the increase in amplitude of vibration. This is due to the fact that the greater the amplitude of vibration, the higher the actual rubbing time, because there is always more separation between the rubbing surfaces due to reduction in the mean contact area of the two sliding objects for vibration [38]. Therefore, the reduction of friction coefficient for the increase in amplitude of vibration is due to the separation of contact surfaces as the higher the amplitude the higher the separation of rubbing surfaces. In fact the higher the separation, the higher the time of contact between the rubbing surfaces is required. As the amplitude increases, keeping the frequency of vibration constant, the acceleration of vibration will also increase that might cause momentary vertical load reduction, which causes the reduction of effective normal force resulting reduction of friction coefficient with the increase of amplitude of vibration. The factors responsible for this momentarily load reduction are: (i) superposition of static and dynamic force generated during vibration, (ii) reversal of the friction vector, (iii) local transformation of vibration energy into heat energy, and (iv) approaching excitation frequency to resonance frequency, etc.
Variation of friction coefficient with the variation of duration of rubbing at different amplitude of vibration (sliding velocity: 0.785 m/s, normal load: 10 N, frequency of vibration: 500 Hz, roughness: 0.2 m (RMS), relative humidity: 50%, test sample: glass fiber reinforced plastic).
Variation of friction coefficient with the variation of duration of rubbing at different amplitude of vibration (sliding velocity: 0.785 m/s, normal load: 10 N, frequency of vibration: 500 Hz, roughness: 0.2 m (RMS), relative humidity: 50%, test sample: cloth reinforced ebonite).
Variation of friction coefficient with the variation of duration of rubbing at different amplitude of vibration (sliding velocity: 0.785 m/s, normal load: 10 N, frequency of vibration: 150 Hz, roughness: 1.5m (RMS), relative humidity: 50%, test sample: PTFE).
Variation of friction coefficient with the variation of duration of rubbing at different amplitude of vibration (sliding velocity: 0.0393 m/s, normal load: 10 N, frequency of vibration: 50 Hz, roughness: 1.5m (RMS), relative humidity: 50%, test sample: rubber).
Amplitude and frequency of vibration have a major role on friction coefficient which is discussed in this section.The effects of amplitude of vibration on the friction coefficient at different frequencies for different materials are shown in Figs. 18–21. Results represent that friction coefficient decreases with the increase in amplitude of vibration at different frequencies of vibration at different rates for different materials. This decrease in friction coefficient is nearly linear for glass fiber, gear fiber and rubber but that for PTFE is nonlinearand its rate is increasing with higher amplitude of vibration [46]. Results also reveal that friction coefficient decreases with the increase in frequency of vibration. These findings are in agreement the findings for mild steel [7].
Variation of friction coefficient with the variation of amplitude of vibration at different frequency of vibration (sliding velocity: 1.17m/s, normal load: 10 N, roughness:0.2 m (RMS), relative humidity: 50%, test sample: glass fiber reinforced plastic).
Variation of friction coefficient with the variation of amplitude of vibration at different frequency of vibration (sliding velocity: 1.17m/s, normal load: 10 N, roughness:0.2 m (RMS), relative humidity: 50%, test sample: cloth reinforced ebonite).
Variation of friction coefficient with the variation of amplitude of vibration at different frequency of vibration (sliding velocity: 1.17m/s, normal load: 10 N, roughness: 1.5m (RMS), relative humidity: 50%, test sample: PTFE).
Variation of friction coefficient with the variation of amplitude of vibration at different frequency of vibration (sliding velocity: 0.0393 m/s, normal load: 10 N, roughness: 1.5m (RMS), relative humidity: 50%, test sample: rubber).
Friction coefficients of GFRP, mild steel and ebonite are compared for different conditions of vibration (frequency: 100 to 500 Hz and amplitude: 0 to 200 m) of similar hardness range [47]. These results are presented in Figs. 22-26.Results show that the magnitude and the slope of line of friction coefficient of mild steel are higher than that of GFRP and ebonite. This might be due to the lack of rigidity and strength of the asperities of ebonite and GFRP than mild steel. The variation of friction coefficient with the variation of materials also depends on different physical properties of mating materials and adhesion which depends on inter-atomic force, surface free energy, van der Waals forces, interface condition and chemical interaction due to different types of bonding [43]. It can be noted that at lower frequency (100 Hz), the magnitude of friction coefficient of mild steel is varied significantly than GFRP and ebonite. This variation decreases with the increase in frequency of vibration and at higher frequency (500 Hz), the values friction coefficient of mild steel are almost similar to the friction values of GFRP and ebonite. Under similar conditions, the values of friction coefficient of GFRP are higher than that of ebonite.
Variation of friction coefficient with the variation of amplitude of vertical vibration
Variation of friction coefficient with the variation of amplitude of vertical vibration
Variation of friction coefficient with the variation of amplitude of vertical vibration
Variation of friction coefficient with the variation of amplitude of vertical vibration
Variation of friction coefficient with the variation of amplitude of vertical vibration
The pin-on-disc set-up (Fig. 27) used for generating horizontal vibration [48] in which one end of a coil spring is fixed with the rotating shaft and other end of the spring is fixed with the V-slotted rotating table. An adjusting rigid barrier with spherical tip is fixedwith the basic structure of the set-up. Owing to spring action and rotation, the table vibrates horizontally. The direction of vibration is either longitudinal (along the direction of sliding velocity) or transverse (along perpendicular to the direction of sliding velocity) depending on the position of sliding pin on the rotating vibrating table. By varying rotation of the shaft and the number of slots of the rotating table, the frequency of vibration is varied. By adjusting the depth of penetration of the adjustable barrier, the amplitude of the vibration is varied.
The frictional behavior of composite materials under external horizontal vibration is presented in this section. Friction coefficients of GFRP, mild steel and ebonite under longitudinal horizontal vibration are shown in Figs. 28-32. Results show that the friction coefficient increases almost linearly with the increase in amplitude of horizontal vibration for these materials. The increase of friction coefficient might be due to the increase of length of rubbing with the increase of amplitude of vibration. In addition to this the increase of friction coefficient [39,43] is also associated with: (i) Fluctuation of inertia force along the direction of friction force (positive and negative). (ii) More sliding causes more abrasion resistance. Higher abrasion results more shearing due to penetration and ploughing of the asperities between contacting surfaces that might have some effect on the increment of friction force. (iii) Micro-welding, reversal of friction vector, and mechanical interlocking. (iv) Formation and enhance an electrically charge layer at the interface. (v) Increase of solubility due to high temperature.
Block diagram of the experimental set-up for horizontal vibration
Variation of friction coefficient with the variation of amplitude of longitudinal vibration for frequency 100 Hz
Variation of friction coefficient with the variation of amplitude of longitudinal vibration for frequency 200 Hz
Variation of friction coefficient with the variation of amplitude of longitudinal vibration for frequency 300 Hz
Variation of friction coefficient with the variation of amplitude of longitudinal vibration for frequency 400 Hz
Variation of friction coefficient with the variation of amplitude of longitudinal vibration for frequency 500 Hz
Results indicate that the magnitude and the slope of line of friction coefficient of mild steel under vibration condition are higher than that of GFRP and ebonite. It can be noted that the values of friction coefficient of mild steel are almost twice the values of ebonite and GFRP within the observed range of frequency of horizontal vibration. Under similar vibration conditions, the values of friction coefficient of GFRP are higher than that of ebonite [48]. Results also show that the friction coefficients obtained under transverse vibration are slightly higher than those of longitudinal vibrations. Changing of direction of inertia forces of the vibrating body and the effect of length of sliding path may be responsible for higher friction under transverse vibration [48].
The effects of natural frequency of the experimental set-up on the friction and wear of glass fiber are presented in this section. Figure 33 shows the variation of friction coefficient with the duration of rubbing at different natural frequencies of vibration for glass fiber.Results in Fig. 34 show that friction coefficient increases with the increase in natural frequency of vibration. If a body (either static or dynamic) is in contact with another moving (either rotation or translation) body, where the second body is vibrating, the contact of those two bodies takes place at some particular points of the second body instead of continuous contact. When the natural frequency of vibration of second body is more, for a constant length of contact, the contact points as well as the area of contact between two bodies will be more (Figure 35 (b)) compared to the situation when the natural frequency of second body is less (Figure 35 (a)). As the area of contact or the points of contact between two bodies are more, they experience more frictional resistance for a constant length of contact. Hence, the friction factor between the two bodies will increase with increased natural frequency [49].
The variation of wear and corresponding friction coefficient with the variation of natural frequency of the experimental set-up for glass fiber is presented in Fig. 36. Results show that wear rate as well as friction coefficient increases with the increase in natural frequency of vibration. The shear force and frictional thrust is increased with the increase in natural frequency of vibration and these increased values may accelerate the wear rate. The other possible causes are (i)high ploughing; and (ii) surface damage and breakage of reinforced fibers [50].
Variation of friction coefficient with the variation of natural frequency of the experimental set-up
Variation of friction coefficient with the variation of natural frequency of the experimental set-up for GFRP
a) The points of contact of a body with low natural frequency; (b) the points ofcontact of a body with high natural frequency for constant length of contact (L)
The variation of wear and corresponding friction coefficient with the variation of natural frequency of the experimental set-up for GFRP
The empirical formula of friction coefficient is derived from the dimensionless analysis to correlate the friction coefficient with sliding velocity, frequency and amplitude of vibrationis expressed as [47]:
Where,
µf = Friction coefficient
A = Amplitude
V = Sliding velocity
f = Frequency
‘a’ and ‘k’ are arbitrary constants
The dimensional friction parameter
Figures 37 and 38 show the plot of friction coefficient µf versus Zn no. for glass fiber and ebonite, respectively. Figures show that µf decreases linearly with the increase of Zn no. and are represented by the equations[47]:
Friction coefficient as a function of Zn no. for GFRP
Friction coefficient as a function of Zn no. for ebonite
The maximum percentage variation between experimental and theoretical results for GFRP and ebonite are almost ±5% within the observed range of Zn no. The coefficient of determination of GFRP and ebonite are 72% and 75% respectively. This indicates that experimental results are in good agreement with the theoretical calculations.
Figures 39 and 40 show the plot of friction coefficient µf versus Zn no. for GFRP and ebonite, respectively. Results show that µf increases linearly with the increase of Zn no. and are expressed by the equations for external horizontal vibration [48]:
Friction coefficient as a function of Zn no. for GFRP
Friction coefficient as a function of Zn no. for ebonite
The empirical formula of wear rate is derived from the dimensional analysis to correlate wear rate with natural frequency, roughness and sliding velocityis expressed as [50]:
Where,
Wr = Wear rate = Mt -1
fn = Natural frequency = t -1
V = Sliding velocity = Lt -1
N = Normal load = MLt-2
R= Root mean square roughness of the tested surface = L
‘b’ and ‘k’ are arbitrary constants
The dimensional wear parameter
Figure 41 shows the plot of wear rate Wr versus Ad No.Results indicate that Wr increases linearly with the increase of Ad. No. and is represented by the equation:
Wear rate as a function of Asad number
The coefficient of determination for the relationship between wear rate and Ad No. is almost 99%. That is, trend line or Ad. No. can explain 99% of the variation in wear rate. This means that experimental results are in good agreement with the theoretical calculations [50].
Friction and wear of polymer and composites are significantly influenced bynormal load, sliding velocity, amplitude of vibration, frequency of vibration, direction of vibration and natural frequency.Friction coefficient also depends on duration of rubbing and it is different for different materials. Friction coefficient can be increased or decreased depending on sliding pairs and operating parameters. There are also some correlations between friction/wear and other influencing parameters. The current trends of these experimental and analytical results can be used in future to design different tribological and mechanical components. The researchers can use these results to innovate some design strategies for improving different concerned mechanical processes. It is expected that the research findings of tribologicalbehavior of polymer and composites discussed in this chapter will also be used for future research and development.
Fruits and vegetables are appreciated as “healthy foods” compared with beef or pork meat. Many epidemiological studies as well as clinical investigations have suggested that a vegetable-based diet is beneficial in preventing chronic diseases including cancer, coronary heart disease, stroke and hypertension [1, 2]. Meanwhile, traditional herbal medicines have used specific plant species that contain phytochemicals exhibiting pharmacological activities [3]. Novel compounds have been isolated from such plants and they have been chemically synthesized for pharmaceutical production [4]. Nobody doubts that edible plants are beneficial in human health.
In “western” medicine, a disease can be defined as dysfunction of a physiological mechanism. Based on this concept, a drug in general is presumed to act on a specific component of a physiological mechanism. In many cases, these are inhibitors of enzymes or transporters, showing the “one-to-one” relationship between drug and target molecule. While recent drug designs have drastically changed due to a rapid development of computer technology [5] as well as gene therapy [6], the hunt for novel bioactive compounds contained in plants is still active for new drug discovery.
The “one-to-one” philosophy in medicine and pharmacology works well, if the cause of a disease is ascribed to a single component such as a protein or an enzyme. However, most diseases that are difficult to prevent and cure are “syndromes” that are governed by multiple components with complicated interactions. Whatever the cause of such diseases, overproduction of harmful reactive oxygen species (ROS) can often be observed in progression of the disease. Under such conditions, the cells may be challenged by “oxidative stress” due to excessively generated oxidants. The oxidative stress potentially impairs cellular functions eventually leading to death [7, 8]. This is a common biological feature that can be seen in all living organisms including bacteria, fungi, plants and animals. Living organisms have evolved to cope with the oxidative stress induced by biotic (pathogen attack or biological interactions) and abiotic (or environmental) stresses. Thus, under stress conditions, living organisms need to control cellular ROS levels for their survival. In this context, antioxidant systems are essential in any living organisms. This is a biological rationale for the importance of antioxidants in prevention and cure of diseases in humans.
Plant antioxidant research shows a history of twists and turns. Some early studies had suggested concepts opposite to the present recognition. Plant antioxidants had sometimes even been considered to be toxic or carcinogenic to animals. Contradictory reports in the old literatures may lead non-specialists to a state of confusion. Thus, to follow the current state of research advances in phytochemical antioxidants, understanding its historical background is of help for non-specialists and new researchers. Highlighting the research progress of plant pigments flavonoids and betalains, here, we provide an overview of phytochemical antioxidants with some prospects for future research.
A retrospective of the history of research on plant antioxidants needs to go back to the age of discovery. When voyagers such as Magellan, Columbus, Vasco da Gam and Cook were sailing over the world’s oceans, more than three times as many sailors died due to the mysterious disease “scurvy” as soldiers died in the American Civil War [9]. For hundreds of years, the cause of the disease had not been clarified and there had been no cure for this disease of sailors [10]. In 1747, James Lind working as a naval surgeon at sea on the HMS
Historically, antioxidant and vitamin studies have developed independently in chemistry and health science, respectively. In chemistry, antioxidants were defined as chemical compounds that can suppress oxidation reactions. In early studies, oxidation was observed as absorption of molecular oxygen in a reaction such as polymerization reaction of natural rubber. On the other hand, a vitamin (the name “vitamine, vital + amine” was the original proposal and it was later renamed to “vitamin”) was defined as an organic nutrient that is essential for human health care. The major recognized vitamins are vitamin A, B1, B2, B3, B5, B6, B7, B9, B12, C, D, E, and K. The biochemical requirements of these vitamins were revealed after their chemical identifications. Among these vitamins, vitamin A, C and E have been highlighted again in the late 20th century due to their antioxidant activities that potentially reduce the oxygen toxicity.
Although molecular oxygen (O2) is required for respiration in animals, a high concentration or high partial pressure of oxygen often damages the central nervous and pulmonary systems, which leads to disease or death. Oxygen toxicity in the central nervous system and that in pulmonary system had been referred to as the Paul Bert effect and the Lorrain Smith effect, respectively [12]. Although the toxicity of oxygen itself was implied by Joseph Priestley in 1774 (dephlogisticated air at that time) [13], the modern style of experimental science has been opened up by Bert (1833–1886), the Father of Aviation of Medicine [14, 15]. In his
The biochemical basis of the oxygen toxicity is ascribed to overproduction of reactive oxygen species (ROS) in cells. The ROS firstly produced in cells is mostly superoxide radical (O2−), which is the reaction product of the one electron reduction of molecular oxygen (O2) [17]. Whereas chemists have known the inorganic reaction that produces O2− from O2, the biological relevance of the reaction had not been considered in biochemistry. At that time most biochemists were fascinated by the oxidative phosphorylation that is the final step of ATP synthesis in aerobic respiration. For mitochondrial ATP synthesis, the presence of O2 is prerequisite to drive the respiratory electron transport. Therefore, the toxicity of O2 had been overlooked. The discovery of the enzyme superoxide dismutase (SOD) that destroys O2− is a landmark in the research history of oxygen toxicity [18]. The discovery of the antioxidant enzyme SOD has drastically changed our recognition: O2 might be toxic for living organisms.
To prevent oxygen toxicity, it has been revealed that antioxidant enzyme systems are essential for the survival of all living organisms, including humans. The ROS O2− and H2O2 can be removed by the enzymatic reactions of SOD and peroxidases, but other unstable ROS molecules, hydroxyl radicals (•OH) for example, cannot be destroyed by those enzymatic reactions. These molecules are scavenged by antioxidants. Vitamin A or carotenoid can scavenge singlet oxygen (1O2) that could be produced in the eyes or skin under ultraviolet (UV) light [19]. Vitamin E, or 𝛼- tocopherol, can react with the ROS radicals produced in lipophilic environments such as in lipid membranes. Vitamin C (ascorbate) serves as a universal reducing power to the antioxidant enzyme systems while the ascorbate molecule itself scavenges various types of ROS (except H2O2) by its spontaneous reactions [20]. It is important to note that humans need to acquire these essential antioxidant vitamins (A, C, E) from dietary foods, largely from fruits and vegetables.
Historically, there was a short-lived Vitamin P concept. Albert Szent-Györgyi, a Nobel prize winner who isolated ascorbate, demonstrated that flavonoid glycosides rich in citrus fruits can behave similar to ascorbate in maintaining capillary permeability [21]. Based on his observations, Szent-Györgyi proposed that the plant flavonoids, as a group of plant pigments, are also essential nutrients and referred to them as vitamin P (permeability) [22]. However, this vitamin P concept did not gain broad acceptance due to the chemical diversity of flavonoids. More recently, his idea that flavonoids can complement the function of ascorbate has been renewed with the development of the antioxidant hypothesis.
Plant fruits and flowers display beautiful colorations ranging from blue to red. These plant colorations are produced with three major pigments i.e., chlorophylls, carotenoids and flavonoids. In plants, biological functions of chlorophylls and carotenoids have been known as the photosynthetic pigments that absorb light energy to drive photosynthesis. In contrast, only the visual attraction for flower pollinators such as bees or butterflies had been proposed as a biological function of colored flavonoids for a long time [23]. The chemical diversity of flavonoids found across plant species had made it difficult to consider common physiological or biochemical functions. Conversely, the huge chemical diversity of flavonoids was useful for plant taxonomy until amino acid or DNA sequence information available.
In 1990s, red anthocyanin, a flavonoid subgroup, was highlighted to account for the paradoxical epidemiological observation termed the “French paradox”. French people have a relatively low incidence of coronary heart disease even though they consume a diet relatively rich in saturated fats [24]. Researchers were interested in anthocyanins and polyphenols contained in red wine that may suppress heart disease through their antioxidant activities [24]. Similarly, the longevity of Japanese people was explained by their daily consumption of green tea rich in catechin, another subgroup of flavonoid [25, 26]. These epidemiological reports have stimulated biochemical screening of natural antioxidants contained in plants.
To date, health science, biochemistry, botany and other different field of studies have been integrated into antioxidant research. A timeline for antioxidant research of phytochemicals is summarized in Figure 1.
A timeline of antioxidant research of phytochemicals. Flavonoids are major plant pigments that are widely appreciated as natural antioxidants. Historically, antioxidant studies, vitamin studies and flavonoid studies have independently progressed in health science, biochemistry and botany, respectively. These different lines of studies have been integrated into the present plant antioxidant studies.
Flavonoids are representative secondary metabolites of land plants. The pigments commonly accumulate in epidermal cells of the organs such as in flowers, leaves, stems, roots, seeds and fruits [27, 28]. Flavonoids are found as glycosidic forms (glycosides) and non-glycosidic forms (aglycones). Subcellular localization of the glycosides is largely confined to hydrophilic regions such as vacuoles and apoplasts. The aglycones are localized in lipophilic regions e.g., oil glands and waxy layers.
The term “flavonoid” originated from its yellow color (the
Chemical structures of flavonoids. Chemical structures of flavonoids include a C6-C3-C6 carbon skeleton with two phenyl rings (A- and B-rings) and a heterocyclic ring (C-ring). Left, the basic structures of a flavone, isoflavone and flavonol. Right, the basic structures of anthocyanin. The –R on the rings can be replaced by other molecules including sugars to make a huge variety of chemical structures of flavonoids.
Representative flavonoid subgroups. Based on the aglycone structures, flavonoids can be classified into flavone, isoflacone, flavonol, chalcone and anthocyanidin. Representative flavonoids with parenthesis along with apparent visual colorations are shown.
Common glycosylation positions are the 7-hydroxyl in flavones, isoflavones and dihydroflavones; the 3- and 7- hydroxyl in flavonols and dihydroflavones; the 3- and 5-hydroxyl in anthocyanidins [30]. The typical sugars involved in glycoside formation are glucose, galactose, rhamnose, xylose and arabinose. In addition to the glycosylation, methylation, isoprenylation and dimerization occur at those positions [30]. These modifications produce a huge structural diversity of flavonoids. More than 9,000 chemical structures of flavonoids have been reported to date [31].
Enzymes and genes involved in flavonoid biosynthesis have been identified [27, 32, 33, 34, 35]. Figure 4 shows an outline of biosynthetic pathways of the major subclasses of flavonoids. Flavonoids are synthesized from phenylalanine, an aromatic amino acid produced in the shikimate pathway. Phenylalanine is sequentially metabolized by phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, and 4-coumarate CoA ligase to 4-coumaroyl CoA. This 4-coumaroyl CoA and 3 molecules of malonyl CoA are condensed by chalcone synthase to form the flavonoid chalcone (yellow). Chalcone is isomerized to the flavanone naringenin (colorless) by chalcone isomerase. Naringenin is further converted to flavones (pale yellow) and isoflavone (pale yellow) catalyzed by flavone synthase and isoflavone synthase, respectively. Naringenin is hydroxylated to dihydroflavonol by flavanone 3-hydroxylase and further metabolized to flavonol (yellow) by flavonoid synthetase. Dihydroflavonol is converted to anthocyanidin (red, red-violet or blue-violet), an aglycone of anthocyanin, by dihydroflavonol 4-reductase and anthocyanidin synthase. Anthocyanidin is glycosylated by UDP-glycose-dependent glycosyltransferase. Manipulation of those genes has been challenged to change of flower or fruits coloration [28].
An outline of flavonoid biosynthesis pathways in plants. The synthesis of the flower pigment anthocyanins requires multiple steps including the shikimate pathway, phenylpropanoid pathway, via chalone and flavanone. The number of required enzymatic steps reflects the evolutional order of the pigments.
Antioxidant activity or antioxidant capacity of flavonoids has been experimentally evaluated with either assays based on hydrogen atom transfer (HAT) reaction or assays based on electron transfer [36]. There are several protocols or assays that have been proposed. The ORAC (oxygen radical absorbance capacity), TRAP (total radical trapping antioxidant parameter) and crocin bleaching assays are based on HAT. TEAC (Torolox equivalent antioxidant capacity), ABTS (2,2′-azino-bis-(3-ethyl-benzthiazoline-6-sulfonic acid)) and DPPH (1,1-diphenyl-2-picryl-hydrazyl) assays are based on the electron transfer activity. Among these protocols, the DPPH assay has been widely used for plant materials because it is an easy and accurate method suitable for measuring antioxidant activity of fruits, vegetable juices or plant extracts [36]. Inhibition of the lipid peroxidation reaction is also a measure to assess the antioxidant activity of plant polyphenols [37].
In addition to the reactions with model radical substrates, it has been demonstrated that flavonoids can directly react with a various type of ROS. The flavonol quercetin was demonstrated to show quenching activity for the singlet oxygen (1O2), a non-radical ROS molecule [38]. The flavonol kaempferol [39] and the anthocyanidin cyanidin [40]
In principle, the OH groups on the aromatic rings of flavonoids are responsible for the antioxidant or free radical scavenging activity. Most antioxidant flavonoids share the catechol structure with two hydroxy groups (-OH) and/or the double bond between C2-C3 and carbonyl structure [44, 45]. Antioxidant flavonoids satisfying such criteria bear multiple hydroxy groups in a molecule, thereby the name of “polyphenols” being synonymously used for plant antioxidants by the public. It should be noted that polyphenol structure can be found not only in flavonoids but also in other plant phenolic compounds such as hydroxycinnamic acid [35].
When polyphenols scavenge ROS, either through a direct chemical reaction or as an electron donor for an enzymatic reaction, polyphenolic compounds are oxidized and phenoxyl radicals are generated [46]. The phenoxyl radicals are unstable, forming dimers or polymers as a result of spontaneous reaction. Tannin and lignin are the polymerization products of such phenoxyl radical reactions. In the presence of reductant such as ascorbate, the phenoxyl radicals produced are rapidly regenerated into their parent compounds [46]. The enzyme monodehydroascorbate reductase (MDAR) was demonstrated to regenerate flavonoids from their phenoxyl radicals, a possible recycling system of antioxidants [47]. In plants, it has been proposed that flavonoids complement the ascorbate antioxidant system [35].
Plant coloration can be mostly attributed to spectral property of the colored flavonoids, i.e., anthocyanidins. The plant pigment betalains are exceptional. The term “betalain” comes from the
Betalains are immonium derivatives of betalamic acid [4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-dicarboxylic acid] [48]. Betalains are classified into two groups: betacyanin (red-violet) and betaxanthin (yellow) as shown in Figure 5. Betacyanin is a conjugate with
Structures and biosynthesis pathways of betalains. Betalains are synthesized from L-tyrosine via L-dopa. The intermediate betalamic acid is condensed with cyclo-dopa glycoside or amino acid/amine to betacyanin and betaxanthin, respectively.
In contrast with flavonoids, biosynthetic pathway of betalains in plants has not been fully clarified [32, 50, 51]. Hydroxylation of tyrosine by tyrosinase or polyphenol oxidase produces L-dopa, which is catalyzed by 4,5-dopa dioxygenase to form betalamic acid, the basic common skeleton of betalains.
Similar to flavonoids, betalains exhibit antioxidant or radical scavenging activity [55, 56]. In contrast with flavonoids, however, the chemistry of the antioxidant mechanism of betalains is less understood. It has been suggested that the common skeleton betalamic acid may contribute to their antioxidant activities [57, 58, 59]. Phenolic hydroxy group in
It is now evident that plant antioxidants remove ROS and free radicals that increase under oxidative stress conditions within cells. In addition to ROS, new players behaving similar to ROS have recently been identified, namely, reactive nitrogen species (RNS) and reactive sulfur species (RSS) [61]. As ROS refers to a group of reactive molecular species originating from molecular oxygen (O2), RNS and RSS are named for the groups of reactive molecular species derived from nitric oxide (NO) and hydrogen sulfide (H2S), respectively. Both NO and H2S are simple gaseous molecules that had initially been appreciated within the life sciences only for their toxicity [62]. Recent investigations have confirmed that NO and H2S are essential biomolecules synthesized in plants and animals. RNS and RSS are involved in the regulation of a variety of physiological processes. Along with carbon monoxide (CO), NO and H2S are categorized as “gasotransmitters” [62]. Until recently, many enzymes that produce NO and H2S have been identified in plants, animals and bacteria.
It is important to note that NO and H2S are involved not only in physiological regulations (positive effect) but also in dysfunctions or disorders (negative effect). Similar to ROS, unregulated RNS and/or RSS production potentially causes dysfunction of metabolism under biotic as well as abiotic stress conditions, leading to sickness or death in humans [17]. Although a limited number of studies are available on anti-RNS and anti-RSS functions of phytochemicals, it has been reported that flavonoids and betalains could remove RNS and possibly RSS too.
NO reacts rapidly with O2− to produce the RNS peroxynitrite (ONOO−) following the reaction:
ONOO− at physiological pH is unstable and is in rapid equilibrium with its conjugate acid, peroxynitrous acid (ONOOH,
H2S is synthesized in plants and animals by multiple enzyme systems [62]. Biogenic H2S production is involved in various physiological mechanisms as a signaling molecule [62]. Analogous to ROS and RNS, H2S (or HS−) produces many reactive molecular species such as persulfide, polysulfide, polysulfane and others [65]. These RSS modify thiol (-SH) groups of the cysteine residue of proteins and change enzymatic activities, resulting in both positive regulation and negative inhibition. Uncontrolled overproduction of RSS is a potential risk to damage the cells. Although there is yet little evidence to confirm that flavonoids and betalains scavenge RSS, results of epidemiological studies imply that dietary phytoantioxidants also contribute to reduce the cytotoxicity of RSS in humans [66].
Plant phenolic compounds, such as anthocyanin [67, 68] and
Reactions of the phytochemicals that contribute to reduce the toxicity of RSS are largely unknown. The plant phenolic hydroxycinnamic acids are known to be sulfated by sulfotransferases highly expressed in the human liver and intestine [66]. Flavonoids act as inhibitors of the human sulfotransferases (SULTs) [66]. In plants, sulfate esters of flavonoids are rare compounds [77, 78] that are found in species occurring coastal and swampy areas as well as arid habitats [78]. Functions of sulfated flavonoids in plants and animals are not clear [79]. Sulfated flavonoids, such as quercetin 3-sulfate or quercetin persulfate, have been demonstrated with animals to show antioxidant activity, anti-inflammatory activity, antitumor activity and anticoagulant activity [80, 81, 82, 83]. These different lines of studies may imply that sulfated phytochemicals might be associated with physiological regulations in stress tolerance or disease in plants and animals. Although, at present, it must be a speculation to consider specific reactions of flavonoids and betalains with RSS, it is promising that the future investigations of
In modern science, a great number of studies have suggested health benefits of vegetable-based diets for humans. Many compounds identified from plants have been tested to evaluate their biochemical or pharmacological actions in prevention, mitigation and cure of diseases. According to the “one-to-one” principle, researchers have searched for novel bioactive phytochemicals that interact with specific target enzymes or molecules associated with disorders or diseases. The pharmacokinetic action of antioxidants, however, does not follow the “one-to-one” principle. The actual target is not a specific enzyme or protein but ROS. Since production of ROS is exclusively involved in any types of diseases including cancer, antioxidant activity of phytochemicals has attracted attention not only from researchers but also from the public due to their perceived “cure-all” actions. Nowadays, the antioxidant hypothesis described above has been accepted as the most probable explanation for the health benefits of vegetable-based diets.
Recent progress in medical science has clarified that unregulated RNS and RSS production are observed in many disorders or diseases, echoing findings from ROS research. Although a little is known how plants and animals might regulate RNS and RSS in the cells to achieve a fine balance, there is accumulating evidence to support the hypothesis that phytochemical antioxidants, such as flavonoids and betalains, also reduce the toxicity of RNS and RSS. The occurrence of nitrated flavonoids as well as sulfated flavonoids may imply the possible associations of the phytochemical antioxidants with RNS and/or RSS metabolisms in plants and animals. In this context, the term “antioxidant” for phytochemicals may need to be given a new name to reflect the latest research findings.
In 2020, more than million people died due to the coronavirus disease 2019 (COVID-19) pandemic. There is no promising specific drug or treatment (as of December 2020) for the severe hospitalized patients. A “cytokine storm” occurs in severe cases of COVID-19 and the anti-inflammatory steroid dexamethasone has been applied to lower mortality [84]. COVID-19 and the common “cold” both present a syndrome of disease states. It seems unrealistic to rely on a single drug or chemical to cure the disease. In prevention of the infection, ascorbate and vegetables appears to be effective. The antioxidant flavonoids can reduce inorganic nitrite (NO2−) to generate NO in an acidic solution [85]. The vegetable diets and beverages such as the beet juice have been reported to prevent hypertension probably because of increase in NO bioavailability due to nitrite-dependent NO production [2, 86]. It is likely that vegetable-based foods and beverages could prevent or mitigate COVID-19 through their phytochemical antioxidant activities along with their provision of nitrate/nitrite supplementation [84, 87].
Oxygen toxicity can be attributed ultimately to the biological evolution of oxygenic photosynthesis. In the ancient earth, H2S and NO concentrations are considered to have been much higher than the present day due to active volcanism [62]. The concentration of these “old” gasses fell down following the evolutional development of oxygenic photosynthesis in cyanobacteria [62]. It is presumed that most living organisms that were dominant at that time went extinct but some of them successfully developed antioxidant systems to cope with new oxic environments. The survivors from the lethal environments are the ancestors of the present animals. Even for plants, a high partial pressure of O2 made by photosynthesis is yet a great risk. To protect the photosynthetic apparatus, green plants have developed their unique antioxidant systems along with creation of many types of antioxidant molecules [88]. The left panel of Figure 6 represents a conceptual illustration for ROS, RNS and RSS in biological evolution in the earth history from past to the present. The order (ROSRNSRSS) can be found in ecological niches from surface to deep such as in soils (Figure 6, right). In the case of plants grown in the field, leaves are in oxic environments and roots are in hypoxic environments where there exists a gradient of O2, NO and H2S. Taking into account that sulfated plant phenolic compounds are found in plants inhabiting harsh environments, we consider it plausible that novel bioactive phytochemicals associated with RNS and RSS metabolisms might be found in the roots grown in such hypoxic environments [89].
The ONS gradient in evolution and habitats. In plants, antioxidants can be found abundantly in leaves where oxygenic photosynthesis occurs, with a risk of overproduction of ROS. If oxidative stress is defined as a condition of disturbance of the fine-tuned redox balance, knowing the interplays among ROS, RNS and RSS is important for understanding cellular homeostasis. Oxygen tension would alter the best balance for each living organism in the field where there is the ONS (O2-NO-H2S) gradient from surface to the deep in soils, which also reflects the order of their evolutional development (from ancient to the present) [
Flavonoids and batalains are natural antioxidants that mitigate oxidative stress in plants and animals. In life sciences, oxidative stress can be defined as an imbalance of pro-oxidants and antioxidants in cells. Oxidative stress can be also defined as a disruption of redox signaling and control, emphasizing the importance of a dynamic but fine-tuned redox balance in cellular homeostasis [90]. According to this new definition, the ROS scavenging activity may be just a part of the pleiotropic functions of phytochemicals. Flavonoids and betalains could tune a fine redox balance through modulating the interplays among ROS, RNS and RSS. We are now entering into the next stage of plant “antioxidant” research.
We thank Dr. Michael Cohen at the Sonoma State University for his critical reading of the manuscript. This work was partly supported by JSPS KAKENHI Grant Number JP19K06339 to H.Y.
The authors declare no conflict of interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135704},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Dr.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"56e8be78a5a1aed62dbc6e8f3c1371f8",slug:null,bookSignature:"Prof. Juber Akhtar, Dr. Mohammad Ahmad, Dr. Mohammad Irfan Khan and Dr. Badruddeen",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:[{id:"345595",title:"Prof.",name:"Juber",surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12212",title:"Hypoxia",subtitle:null,isOpenForSubmission:!0,hash:"c7561177210ce5982b54d46a48666012",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12212.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12315",title:"Cosmetic Products and Industry",subtitle:null,isOpenForSubmission:!0,hash:"4730ab11e05d70d04ea88d87983a5cef",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12315.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12324",title:"Aspirin",subtitle:null,isOpenForSubmission:!0,hash:"9af8f557ac54627e386caa7cd6015d96",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12324.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12421",title:"Tuberculosis Treatment",subtitle:null,isOpenForSubmission:!0,hash:"31d5daa5b5230855e904363eecdf0fef",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12421.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:12},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:481,numberOfSeries:1,numberOfAuthorsAndEditors:10717,numberOfWosCitations:16340,numberOfCrossrefCitations:12193,numberOfDimensionsCitations:22464,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"9",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,isOpenForSubmission:!1,hash:"d13718b2d986d058d55cf91e69bf21c0",slug:"information-extraction-and-object-tracking-in-digital-video",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:"Edited by",editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10663",title:"Haptic Technology",subtitle:"Intelligent Approach to Future Man-Machine Interaction",isOpenForSubmission:!1,hash:"1171e71bef0a5ecd85b992971737ca97",slug:"haptic-technology-intelligent-approach-to-future-man-machine-interaction",bookSignature:"Ahmad Hoirul Basori, Sharaf J. Malebary and Omar M. Barukab",coverURL:"https://cdn.intechopen.com/books/images_new/10663.jpg",editedByType:"Edited by",editors:[{id:"13394",title:"Prof.",name:"Ahmad Hoirul",middleName:null,surname:"Basori",slug:"ahmad-hoirul-basori",fullName:"Ahmad Hoirul Basori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10991",title:"Digital Image Processing Applications",subtitle:null,isOpenForSubmission:!1,hash:"e7e57bea225c50ab5ac522627afc9d93",slug:"digital-image-processing-applications",bookSignature:"Paulo E. Ambrósio",coverURL:"https://cdn.intechopen.com/books/images_new/10991.jpg",editedByType:"Edited by",editors:[{id:"256064",title:"Dr.",name:"Paulo",middleName:"Eduardo",surname:"Ambrosio",slug:"paulo-ambrosio",fullName:"Paulo Ambrosio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10693",title:"Open Data",subtitle:null,isOpenForSubmission:!1,hash:"0da9c2560358c1bc738e737aeb28f6a2",slug:"open-data",bookSignature:"Vijayalakshmi Kakulapati",coverURL:"https://cdn.intechopen.com/books/images_new/10693.jpg",editedByType:"Edited by",editors:[{id:"355072",title:"Prof.",name:"Vijayalakshmi",middleName:null,surname:"Kakulapati",slug:"vijayalakshmi-kakulapati",fullName:"Vijayalakshmi Kakulapati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10961",title:"Computational Statistics and Applications",subtitle:null,isOpenForSubmission:!1,hash:"1c6b5b7c26b825d27383de72ec2e34f1",slug:"computational-statistics-and-applications",bookSignature:"Ricardo López-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/10961.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",isOpenForSubmission:!1,hash:"63a4e514e537d3962cf53ef1c6b9d5eb",slug:"data-mining-concepts-and-applications",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10857",title:"Augmented Reality and Its Application",subtitle:null,isOpenForSubmission:!1,hash:"5d66e2c09cddac7cc377ffb103aa7ef9",slug:"augmented-reality-and-its-application",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10857.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:481,seriesByTopicCollection:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0}],seriesByTopicTotal:1,mostCitedChapters:[{id:"14882",doi:"10.5772/16004",title:"Review of Input Variable Selection Methods for Artificial Neural Networks",slug:"review-of-input-variable-selection-methods-for-artificial-neural-networks",totalDownloads:9396,totalCrossrefCites:135,totalDimensionsCites:266,abstract:null,book:{id:"117",slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",title:"Artificial Neural Networks",fullTitle:"Artificial Neural Networks - Methodological Advances and Biomedical Applications"},signatures:"Robert May, Graeme Dandy and Holger Maier",authors:[{id:"22868",title:"Dr.",name:"Robert",middleName:"James",surname:"May",slug:"robert-may",fullName:"Robert May"},{id:"23014",title:"Dr.",name:"Holger",middleName:null,surname:"Maier",slug:"holger-maier",fullName:"Holger Maier"},{id:"26897",title:"Prof.",name:"Graeme",middleName:null,surname:"Dandy",slug:"graeme-dandy",fullName:"Graeme Dandy"}]},{id:"20889",doi:"10.5772/25097",title:"A Unifying Statistical Model for Atmospheric Optical Scintillation",slug:"a-unifying-statistical-model-for-atmospheric-optical-scintillation",totalDownloads:3709,totalCrossrefCites:150,totalDimensionsCites:208,abstract:null,book:{id:"1362",slug:"numerical-simulations-of-physical-and-engineering-processes",title:"Numerical Simulations of Physical and Engineering Processes",fullTitle:"Numerical Simulations of Physical and Engineering Processes"},signatures:"Antonio Jurado-Navas, José María Garrido-Balsells, José Francisco Paris and Antonio Puerta-Notario",authors:[{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas"},{id:"60012",title:"Dr.",name:"José María",middleName:null,surname:"Garrido-Balsells",slug:"jose-maria-garrido-balsells",fullName:"José María Garrido-Balsells"},{id:"60014",title:"Prof.",name:"Antonio",middleName:null,surname:"Puerta-Notario",slug:"antonio-puerta-notario",fullName:"Antonio Puerta-Notario"},{id:"61792",title:"Prof.",name:"José Francisco",middleName:null,surname:"Paris",slug:"jose-francisco-paris",fullName:"José Francisco Paris"}]},{id:"5781",doi:"10.5772/6237",title:"A Survey of Shape Feature Extraction Techniques",slug:"a_survey_of_shape_feature_extraction_techniques",totalDownloads:12962,totalCrossrefCites:98,totalDimensionsCites:187,abstract:null,book:{id:"5687",slug:"pattern_recognition_techniques_technology_and_applications",title:"Pattern Recognition",fullTitle:"Pattern Recognition Techniques, Technology and Applications"},signatures:"Yang Mingqiang, Kpalma Kidiyo and Ronsin Joseph",authors:null},{id:"211",doi:"10.5772/4847",title:"Machine Analysis of Facial Expressions",slug:"machine_analysis_of_facial_expressions",totalDownloads:5348,totalCrossrefCites:92,totalDimensionsCites:159,abstract:null,book:{id:"4816",slug:"face_recognition",title:"Face Recognition",fullTitle:"Face Recognition"},signatures:"Maja Pantic and Marian Stewart Bartlett",authors:null},{id:"497",doi:"10.5772/5101",title:"Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem",slug:"artificial_bee_colony_algorithm_and_its_application_to_generalized_assignment_problem",totalDownloads:24531,totalCrossrefCites:69,totalDimensionsCites:155,abstract:null,book:{id:"3794",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",title:"Swarm Intelligence",fullTitle:"Swarm Intelligence, Focus on Ant and Particle Swarm Optimization"},signatures:"Adil Baykasoğlu, Lale Özbakır and Pınar Tapkan",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:25181,totalCrossrefCites:9,totalDimensionsCites:18,abstract:"There are a number of approaches used in this research method design. The purpose of this chapter is to design the methodology of the research approach through mixed types of research techniques. The research approach also supports the researcher on how to come across the research result findings. In this chapter, the general design of the research and the methods used for data collection are explained in detail. It includes three main parts. The first part gives a highlight about the dissertation design. The second part discusses about qualitative and quantitative data collection methods. The last part illustrates the general research framework. The purpose of this section is to indicate how the research was conducted throughout the study periods.",book:{id:"8511",slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:[{id:"292841",title:"Ph.D.",name:"Kassu",middleName:null,surname:"Jilcha Sileyew",slug:"kassu-jilcha-sileyew",fullName:"Kassu Jilcha Sileyew"}]},{id:"77823",title:"Blockchain and AI Meet in the Metaverse",slug:"blockchain-and-ai-meet-in-the-metaverse",totalDownloads:1628,totalCrossrefCites:9,totalDimensionsCites:11,abstract:"With new technologies related to the development of computers, graphics, and hardware, the virtual world has become a reality. As COVID-19 spreads around the world, the demand for virtual reality increases, and the industry represented by the Metaverse is developing. In the Metaverse, a virtual world that transcends reality, artificial intelligence and blockchain technology are being combined. This chapter explains how artificial intelligence and blockchain can affect the Metaverse.",book:{id:"10394",slug:"advances-in-the-convergence-of-blockchain-and-artificial-intelligence",title:"Advances in the Convergence of Blockchain and Artificial Intelligence",fullTitle:"Advances in the Convergence of Blockchain and Artificial Intelligence"},signatures:"Hyun-joo Jeon, Ho-chang Youn, Sang-mi Ko and Tae-heon Kim",authors:[{id:"342782",title:"M.A.",name:"Hyun-joo",middleName:null,surname:"Jeon",slug:"hyun-joo-jeon",fullName:"Hyun-joo Jeon"},{id:"343117",title:"BSc.",name:"Ho-chang",middleName:null,surname:"Youn",slug:"ho-chang-youn",fullName:"Ho-chang Youn"},{id:"425798",title:"Dr.",name:"Sang-mi",middleName:null,surname:"Ko",slug:"sang-mi-ko",fullName:"Sang-mi Ko"},{id:"425799",title:"Dr.",name:"Tae-heon",middleName:null,surname:"Kim",slug:"tae-heon-kim",fullName:"Tae-heon Kim"}]},{id:"65993",title:"Automatic Speech Emotion Recognition Using Machine Learning",slug:"automatic-speech-emotion-recognition-using-machine-learning",totalDownloads:4654,totalCrossrefCites:21,totalDimensionsCites:43,abstract:"This chapter presents a comparative study of speech emotion recognition (SER) systems. Theoretical definition, categorization of affective state and the modalities of emotion expression are presented. To achieve this study, an SER system, based on different classifiers and different methods for features extraction, is developed. Mel-frequency cepstrum coefficients (MFCC) and modulation spectral (MS) features are extracted from the speech signals and used to train different classifiers. Feature selection (FS) was applied in order to seek for the most relevant feature subset. Several machine learning paradigms were used for the emotion classification task. A recurrent neural network (RNN) classifier is used first to classify seven emotions. Their performances are compared later to multivariate linear regression (MLR) and support vector machines (SVM) techniques, which are widely used in the field of emotion recognition for spoken audio signals. Berlin and Spanish databases are used as the experimental data set. This study shows that for Berlin database all classifiers achieve an accuracy of 83% when a speaker normalization (SN) and a feature selection are applied to the features. For Spanish database, the best accuracy (94 %) is achieved by RNN classifier without SN and with FS.",book:{id:"8141",slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Leila Kerkeni, Youssef Serrestou, Mohamed Mbarki, Kosai Raoof, Mohamed Ali Mahjoub and Catherine Cleder",authors:[{id:"247090",title:"Ph.D. Student",name:"Leila",middleName:null,surname:"Kerkeni",slug:"leila-kerkeni",fullName:"Leila Kerkeni"}]},{id:"63164",title:"Introduction to Kalman Filter and Its Applications",slug:"introduction-to-kalman-filter-and-its-applications",totalDownloads:11162,totalCrossrefCites:29,totalDimensionsCites:72,abstract:"We provide a tutorial-like description of Kalman filter and extended Kalman filter. This chapter aims for those who need to teach Kalman filters to others, or for those who do not have a strong background in estimation theory. Following a problem definition of state estimation, filtering algorithms will be presented with supporting examples to help readers easily grasp how the Kalman filters work. Implementations on INS/GNSS navigation, target tracking, and terrain-referenced navigation (TRN) are given. In each example, we discuss how to choose, implement, tune, and modify the algorithms for real world practices. Source codes for implementing the examples are also provided. In conclusion, this chapter will become a prerequisite for other contents in the book.",book:{id:"7466",slug:"introduction-and-implementations-of-the-kalman-filter",title:"Introduction and Implementations of the Kalman Filter",fullTitle:"Introduction and Implementations of the Kalman Filter"},signatures:"Youngjoo Kim and Hyochoong Bang",authors:null},{id:"53334",title:"Cloud Computing for Next-Generation Sequencing Data Analysis",slug:"cloud-computing-for-next-generation-sequencing-data-analysis",totalDownloads:4446,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"High-throughput next-generation sequencing (NGS) technologies have evolved rapidly and are reshaping the scope of genomics research. The substantial decrease in the cost of NGS techniques in the past decade has led to its rapid adoption in biological research and drug development. Genomics studies of large populations are producing a huge amount of data, giving rise to computational issues around the storage, transfer, and analysis of the data. Fortunately, cloud computing has recently emerged as a viable option to quickly and easily acquire the computational resources for large-scale NGS data analyses. Some cloud-based applications and resources have been developed specifically to address the computational challenges of working with very large volumes of data generated by NGS technology. In this chapter, we will review some cloud-based systems and solutions for NGS data analysis, discuss the practical hurdles and limitations in cloud computing, including data transfer and security, and share the lessons we learned from the implementation of Rainbow, a cloud-based tool for large-scale genome sequencing data analysis.",book:{id:"5416",slug:"cloud-computing-architecture-and-applications",title:"Cloud Computing",fullTitle:"Cloud Computing - Architecture and Applications"},signatures:"Shanrong Zhao, Kirk Watrous, Chi Zhang and Baohong Zhang",authors:[{id:"176364",title:"Dr.",name:"Shanrong",middleName:null,surname:"Zhao",slug:"shanrong-zhao",fullName:"Shanrong Zhao"}]}],onlineFirstChaptersFilter:{topicId:"9",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82999",title:"Understanding the Artificial Intelligence Implementation for Allocating an Order to a Seller among Multiple Sellers Who Sell the Same Product",slug:"understanding-the-artificial-intelligence-implementation-for-allocating-an-order-to-a-seller-among-m",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105560",abstract:"E-commerce sectors are growing rapidly worldwide and it adopts the new technological innovation drastically, such as embracing artificial intelligence in e-commerce sectors. Machine learning adaptation in e-commerce sectors is the most and much news already published by giant e-commerce companies, such as Amazon and eBay. The aim of this paper is to find out how artificial intelligence helps the e-commerce platform to choose a seller from multiple sellers when the same products or listings are sold by multiple sellers. When a customer will place the order, then who will get the order of the customer as multiple sellers sell the item within the same product listings. In the research, it is figured out that machine learning techniques are normally used for the selection of the seller where the prior points used for finding the appropriate seller are feedback or ratings, seller products location or distance from the customer, advertising or PPC or campaign, discounts, etc.",book:{id:"11914",title:"E-service Digital Innovation",coverURL:"https://cdn.intechopen.com/books/images_new/11914.jpg"},signatures:"Md Imtiaz Ahmed"},{id:"83016",title:"Digitization of Traditional Higher Education Touchpoints",slug:"digitization-of-traditional-higher-education-touchpoints",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105926",abstract:"This chapter presents the possibilities of using e-services in the context of higher education. Modern technologies provide an opportunity to create a stronger bond between the higher education institution and its stakeholders, among whom students and employees are the most important and those who have the greatest needs in terms of the number and frequency of use of e-services. The main objective of this chapter is to explore the role of e-services in relationship management in the higher education complex ecosystem. There is a possibility to digitize a lot of traditional higher education touchpoints, such as everyday administration processes, admission, enrollment, relevant information sharing, e-learning, Q&A, and similar. The comprehensive e-services system was developed and implemented in one of the higher educational institutions. The upcoming generations of students are increasingly likely to have prominent previous experience with the major use of digital technologies as a part of their elementary and secondary level education. Higher education institutions should expand the portfolio of their e-services, given that the demands of students are expected to increase in the future.",book:{id:"11914",title:"E-service Digital Innovation",coverURL:"https://cdn.intechopen.com/books/images_new/11914.jpg"},signatures:"Adam Malešević"},{id:"82995",title:"A Hybrid Genetic, Differential Evolution Optimization Algorithm",slug:"a-hybrid-genetic-differential-evolution-optimization-algorithm",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.106204",abstract:"This chapter presents a heuristic evolutionary optimization algorithm that is loosely based on the principles of evolution and natural genetics. In particular, this chapter describes an evolutionary algorithm that is a hybrid of a genetic algorithm and a differential evolution algorithm. This algorithm uses an elitist, ranking, random selection method, several mutation methods and both two level and three level Taguchi crossover. This algorithm is applied to 13 commonly used global numerical optimization test functions, including a spherical, three hyper-ellipsoid, the sum of different powers, Rastrigin’s, Schwefel’s, Griewank’s, Rosenbrock’s valley, Styblinski-Tang, Ackley’s Path, Price-Rosenbrock, and Eggholder’s functions. This algorithm is applied 1000 times to each of the 13 test functions, and the results shows that this algorithm always converges to each of the 13 test function’s global minimum.",book:{id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg"},signatures:"Peter Stubberud"},{id:"82921",title:"A Survey of Lightweight Image Encryption for IoT",slug:"a-survey-of-lightweight-image-encryption-for-iot",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104431",abstract:"IoT networks serve as a way for various devices interconnected over the internet to exchange data with each other and with other services. Most smartphones, laptops, and other communication devices are connected to the cloud today, making data accessible to everyone. There are many applications for IoT, from smart IoT applications to industrial products. Encryption is one of the best ways to make IoT networks secure since so much data is being transferred. A lightweight block cipher is one of the most sophisticated means for overcoming the security problems inherent to IoT networks. Because of the limited resources available to nodes, classical cryptography methods are costly and inefficient. In this paper, we have compared the systems, we have found that these modifications were made to the original AES algorithm, while the original algorithm security remains robust, the modified AES algorithm remains lightweight and faster, providing more satisfaction for embedding in IoT devices and sensors that consume little power. Furthermore, this algorithm enhanced the AES-ECC hybrid encryption system, which has good flexibility and versatility, and optimized the design of the ECC function according to the characteristics of wireless sensor networks. Using Salsa20/12 stream cipher, the texture images can be encrypted using bit masking and permutation procedures and as part of a new scheme for encrypting 3D objects, which complements the existing methods for 3D object encryption. With PLIE implemented in Python, the encryption time was approximately 50% faster than that of AES using the throughput increase, faster encryption time, and minimal complexity.",book:{id:"11190",title:"Lightweight Cryptographic Techniques and Cybersecurity Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11190.jpg"},signatures:"Haneen Dweik and Mohammad Abutaha"},{id:"82098",title:"Perspective chapter: Internet of Things in Healthcare - New Trends, Challenges and Hurdles",slug:"perspective-chapter-internet-of-things-in-healthcare-new-trends-challenges-and-hurdles",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.104946",abstract:"Applied to health field, Internet of Things (IoT) systems provides continuous and ubiquitous monitoring and assistance, allowing the creation of valuable tools for diagnosis, health empowerment, and personalized treatment, among others. Advances in these systems follow different approaches, such as the integration of new protocols and standards, combination with artificial intelligence algorithms, application of big data processing methodologies, among others. These new systems and applications also should face different challenges when applying this kind of technology into health areas, such as the management of personal data sensed, integration with electronic health records, make sensing devices comfortable to wear, and achieve an accurate acquisition of the sensed data. The objective of this chapter is to present the state of the art, indicating the most current IoT trends applied to the health field, their contributions, technologies applied, and challenges faced.",book:{id:"11197",title:"Internet of Things - New Trends, Challenges and Hurdles",coverURL:"https://cdn.intechopen.com/books/images_new/11197.jpg"},signatures:"Luis Muñoz-Saavedra, Francisco Luna-Perejón, Javier Civit-Masot and Elena Escobar-Linero"},{id:"82742",title:"Activity Based Learning (ABL) Using Gamification (GBL) in Mechanical Engineering Design Education: A Studio-Based Case Study",slug:"activity-based-learning-abl-using-gamification-gbl-in-mechanical-engineering-design-education-a-stud",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.104773",abstract:"In our research, we aim to introduce Game-based learning (GBL) activity as part of a holistic approach to supporting knowledge acquisition within a Mechanical Design module. Our case study evaluates Activity Based Learning (ABL) by use of GBL as a tool to drive collaborative student learning. The activity described targets students’ ability to engage in hands-on practical collaborative learning, utilising existing skills in order to collectively share and reinforce knowledge. It relies on knowledge acquired from several subject topics thus consolidating applications through a studio-based activity in the form of a game bringing about its own benefits in teaching and learning. Widely used in a range of subjects, the application of GBL in Engineering and Technology and its effectiveness is less explored and reported as a learning tool in Engineering education. We present an approach to underpinning engineering education as part of a studio-based activity for Mechanical Engineering Design. We explore the options and potential for collaborative learning whilst offering students the opportunity to compete with peer teams for ranked positions on a leader board. We report on the level of student engagement and the extent to which learning outcomes were met through the introduction of such an activity.",book:{id:"11552",title:"Gamification - Analysis, Design and Development",coverURL:"https://cdn.intechopen.com/books/images_new/11552.jpg"},signatures:"Mike Mavromihales and Violeta Holmes"}],onlineFirstChaptersTotal:91},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:21,paginationItems:[{id:"83115",title:"Fungi and Oomycetes–Allies in Eliminating Environmental Pathogens",doi:"10.5772/intechopen.106498",signatures:"Iasmina Luca",slug:"fungi-and-oomycetes-allies-in-eliminating-environmental-pathogens",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"24",type:"subseries",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",slug:"information-extraction-and-object-tracking-in-digital-video",publishedDate:"August 17th 2022",editedByType:"Edited by",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",hash:"d13718b2d986d058d55cf91e69bf21c0",volumeInSeries:11,fullTitle:"Information Extraction and Object Tracking in Digital Video",editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"