World barley yield (t/ha) and production (t) in 2016.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"2270",leadTitle:null,fullTitle:"Fourier Transform - Materials Analysis",title:"Fourier Transform",subtitle:"Materials Analysis",reviewType:"peer-reviewed",abstract:"The field of material analysis has seen explosive growth during the past decades. Almost all the textbooks on materials analysis have a section devoted to the Fourier transform theory. For this reason, the book focuses on the material analysis based on Fourier transform theory. The book chapters are related to FTIR and the other methods used for analyzing different types of materials. It is hoped that this book will provide the background, reference and incentive to encourage further research and results in this area as well as provide tools for practical applications. It provides an applications-oriented approach to materials analysis written primarily for physicist, Chemists, Agriculturalists, Electrical Engineers, Mechanical Engineers, Signal Processing Engineers, and the Academic Researchers and for the Graduate Students who will also find it useful as a reference for their research activities.",isbn:null,printIsbn:"978-953-51-0594-7",pdfIsbn:"978-953-51-4293-5",doi:"10.5772/2659",price:119,priceEur:129,priceUsd:155,slug:"fourier-transform-materials-analysis",numberOfPages:274,isOpenForSubmission:!1,isInWos:1,hash:"5e094b066da527193e878e160b4772af",bookSignature:"Salih Mohammed Salih",publishedDate:"May 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",numberOfDownloads:40414,numberOfWosCitations:247,numberOfCrossrefCitations:122,numberOfDimensionsCitations:289,hasAltmetrics:1,numberOfTotalCitations:658,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 11th 2011",dateEndSecondStepPublish:"June 8th 2011",dateEndThirdStepPublish:"October 13th 2011",dateEndFourthStepPublish:"November 12th 2011",dateEndFifthStepPublish:"March 11th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",middleName:"Mohammed",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih",profilePictureURL:"https://mts.intechopen.com/storage/users/111691/images/system/111691.jpg",biography:"Salih Mohammed Salih (Member IEEE) was born in Babylon-1970, Iraq. He received the B.Sc. degree in Electrical Department from the University of Baghdad (1999)-Iraq, M.Sc. and Ph.D. degrees in Communication Engineering from the University of Technology-Iraq in 2003 and 2008 respectively, Since 2005, he has been with the University of Anbar-Iraq, where he is lecturer in Electrical Engineering Department. His research interests include: MC-CDMA, OFDM, MIMO-OFDM, CDMA, Modulation Techniques, Security, Wireless Communication, Radar, and Computer Networks, and renewable Energy Resources. He completed part of his Ph.D. research in MC-CDMA at the National Technical University of Athens.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Anbar",institutionURL:null,country:{name:"Iraq"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"943",title:"Mathematical Modeling",slug:"metals-and-nonmetals-mathematical-modeling"}],chapters:[{id:"37065",title:"Fourier Series and Fourier Transform with Applications in Nanomaterials Structure",doi:"10.5772/37890",slug:"fourier-series-and-fourier-transform-with-applications-in-nanomaterials-structure",totalDownloads:6073,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Florica Matei and Nicolae Aldea",downloadPdfUrl:"/chapter/pdf-download/37065",previewPdfUrl:"/chapter/pdf-preview/37065",authors:[{id:"114680",title:"Dr.",name:"Florica",surname:"Matei",slug:"florica-matei",fullName:"Florica Matei"},{id:"114681",title:"Dr.",name:"Nicolae",surname:"Aldea",slug:"nicolae-aldea",fullName:"Nicolae Aldea"}],corrections:null},{id:"37066",title:"High Resolution Mass Spectrometry Using FTICR and Orbitrap Instruments",doi:"10.5772/37423",slug:"high-resolution-mass-spectrometry-using-fticr-and-orbitrap-instruments",totalDownloads:3674,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Paulo J. Amorim Madeira, Pedro A. Alves and Carlos M. Borges",downloadPdfUrl:"/chapter/pdf-download/37066",previewPdfUrl:"/chapter/pdf-preview/37066",authors:[{id:"90296",title:"Dr.",name:"Paulo J.",surname:"Madeira",slug:"paulo-j.-madeira",fullName:"Paulo J. Madeira"},{id:"112689",title:"Prof.",name:"Carlos",surname:"Borges",slug:"carlos-borges",fullName:"Carlos Borges"}],corrections:null},{id:"37067",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",doi:"10.5772/35482",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:8205,totalCrossrefCites:113,totalDimensionsCites:274,signatures:"Mizi Fan, Dasong Dai and Biao Huang",downloadPdfUrl:"/chapter/pdf-download/37067",previewPdfUrl:"/chapter/pdf-preview/37067",authors:[{id:"104647",title:"Prof.",name:"Mizi",surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}],corrections:null},{id:"37068",title:"Fourier Transform Infrared Spectroscopy for the Measurement of Spectral Line Profiles",doi:"10.5772/36120",slug:"fourier-transform-infrared-spectroscopy-for-the-measurement-of-spectral-line-profiles",totalDownloads:2773,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hassen Aroui, Johannes Orphal and Fridolin Kwabia Tchana",downloadPdfUrl:"/chapter/pdf-download/37068",previewPdfUrl:"/chapter/pdf-preview/37068",authors:[{id:"107138",title:"Prof.",name:"Hassen",surname:"Aroui",slug:"hassen-aroui",fullName:"Hassen Aroui"},{id:"114671",title:"Dr.",name:"Johannes",surname:"Orphal",slug:"johannes-orphal",fullName:"Johannes Orphal"},{id:"114906",title:"Dr.",name:"Fridolin",surname:"Kwabia",slug:"fridolin-kwabia",fullName:"Fridolin Kwabia"}],corrections:null},{id:"37069",title:"Fourier Transform Spectroscopy of Cotton and Cotton Trash",doi:"10.5772/37349",slug:"fourier-transform-spectroscopy-of-cotton-and-cotton-trash",totalDownloads:3850,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chanel Fortier",downloadPdfUrl:"/chapter/pdf-download/37069",previewPdfUrl:"/chapter/pdf-preview/37069",authors:[{id:"112342",title:"Dr.",name:"Chanel",surname:"Fortier",slug:"chanel-fortier",fullName:"Chanel Fortier"}],corrections:null},{id:"37070",title:"Fourier Transformation Method for Computing NMR Integrals over Exponential Type Functions",doi:"10.5772/35721",slug:"fourier-transformation-method-for-computing-nmr-integrals-over-exponential-type-functions",totalDownloads:1758,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hassan Safouhi",downloadPdfUrl:"/chapter/pdf-download/37070",previewPdfUrl:"/chapter/pdf-preview/37070",authors:[{id:"105608",title:"Prof.",name:"Hassan",surname:"Safouhi",slug:"hassan-safouhi",fullName:"Hassan Safouhi"}],corrections:null},{id:"37071",title:"Molecular Simulation with Discrete Fast Fourier Transform",doi:"10.5772/35470",slug:"molecular-simulation-with-discrete-fast-fourier-transform",totalDownloads:1616,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Xiongwu Wu and Bernard R. Brooks",downloadPdfUrl:"/chapter/pdf-download/37071",previewPdfUrl:"/chapter/pdf-preview/37071",authors:[{id:"104593",title:"Dr.",name:"Xiongwu",surname:"Wu",slug:"xiongwu-wu",fullName:"Xiongwu Wu"},{id:"111719",title:"Dr.",name:"Bernard",surname:"Brooks",slug:"bernard-brooks",fullName:"Bernard Brooks"}],corrections:null},{id:"37072",title:"Charaterization of Pore Structure and Surface Chemistry of Activated Carbons – A Review",doi:"10.5772/37460",slug:"charaterization-of-pore-structure-and-surface-chemistry-of-activated-carbons-a-review",totalDownloads:3660,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Bingzheng Li",downloadPdfUrl:"/chapter/pdf-download/37072",previewPdfUrl:"/chapter/pdf-preview/37072",authors:[{id:"112845",title:"Dr.",name:"Bingzheng",surname:"Li",slug:"bingzheng-li",fullName:"Bingzheng Li"}],corrections:null},{id:"37073",title:"Bioleaching of Galena (PbS)",doi:"10.5772/35434",slug:"bioleaching-of-galena-pbs-",totalDownloads:2569,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"E. R. Mejia, J. D. Ospina, M. A. Marquez and A. L. Morales",downloadPdfUrl:"/chapter/pdf-download/37073",previewPdfUrl:"/chapter/pdf-preview/37073",authors:[{id:"104393",title:"MSc.",name:"Erica",surname:"Mejia",slug:"erica-mejia",fullName:"Erica Mejia"},{id:"104409",title:"Dr.",name:"Marco",surname:"Marquez",slug:"marco-marquez",fullName:"Marco Marquez"},{id:"104411",title:"MSc.",name:"Juan",surname:"Ospina",slug:"juan-ospina",fullName:"Juan Ospina"},{id:"104414",title:"Dr.",name:"Alvaro",surname:"Morales",slug:"alvaro-morales",fullName:"Alvaro Morales"}],corrections:null},{id:"37074",title:"Application of Hankel Transform for Solving a Fracture Problem of a Cracked Piezoelectric Strip Under Thermal Loading",doi:"10.5772/36776",slug:"application-of-hankel-transform-for-solving-a-fracture-problem-of-a-cracked-piezoelectric-strip-unde",totalDownloads:1934,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Sei Ueda",downloadPdfUrl:"/chapter/pdf-download/37074",previewPdfUrl:"/chapter/pdf-preview/37074",authors:[{id:"109764",title:"Prof.",name:"Sei",surname:"Ueda",slug:"sei-ueda",fullName:"Sei Ueda"}],corrections:null},{id:"37075",title:"Eliminating the Undamaging Fatigue Cycles Using the Frequency Spectrum Filtering Techniques",doi:"10.5772/36169",slug:"eliminating-the-undamaging-fatigue-cycles-using-the-frequency-spectrum-filtering-techniques",totalDownloads:2563,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"S. Abdullah, T. E. Putra and M. Z. Nuawi",downloadPdfUrl:"/chapter/pdf-download/37075",previewPdfUrl:"/chapter/pdf-preview/37075",authors:[{id:"107331",title:"MSc.",name:"Teuku Edisah",surname:"Putra",slug:"teuku-edisah-putra",fullName:"Teuku Edisah Putra"},{id:"137085",title:"Prof.",name:"Shahrum",surname:"Abdullah",slug:"shahrum-abdullah",fullName:"Shahrum Abdullah"},{id:"137086",title:"Dr.",name:"Mohd. Zaki",surname:"Nuawi",slug:"mohd.-zaki-nuawi",fullName:"Mohd. Zaki Nuawi"}],corrections:null},{id:"37076",title:"Fourier Transform Sound Radiation",doi:"10.5772/36035",slug:"fourier-transform-sound-radiation",totalDownloads:1739,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"F. X. Xin and T. J. Lu",downloadPdfUrl:"/chapter/pdf-download/37076",previewPdfUrl:"/chapter/pdf-preview/37076",authors:[{id:"106866",title:"Dr.",name:"Fengxian",surname:"Xin",slug:"fengxian-xin",fullName:"Fengxian Xin"},{id:"132539",title:"Prof.",name:"Tianjian",surname:"Lu",slug:"tianjian-lu",fullName:"Tianjian Lu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"2269",title:"Fourier Transform",subtitle:"Applications",isOpenForSubmission:!1,hash:"eef6992c6b1a91e721958aad15dd33c7",slug:"fourier-transform-applications",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2269.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1860",title:"Fourier Transform",subtitle:"Signal Processing",isOpenForSubmission:!1,hash:"b8f6c94b687a4f0351f2e8d961e35275",slug:"fourier-transform-signal-processing",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/1860.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4538",title:"Fourier Transform",subtitle:"Signal Processing and Physical Sciences",isOpenForSubmission:!1,hash:"4dfc78ab6a3abc41b6136a4a9e2b8afa",slug:"fourier-transform-signal-processing-and-physical-sciences",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/4538.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9371",title:"Atomistic Simulation of Anistropic Crystal Structures at Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"5f2d16d47501934bf1f4a1e1e948bca8",slug:"atomistic-simulation-of-anistropic-crystal-structures-at-nanoscale",bookSignature:"Jia Fu",coverURL:"https://cdn.intechopen.com/books/images_new/9371.jpg",editedByType:"Authored by",editors:[{id:"292569",title:"Dr.",name:"Jia",surname:"Fu",slug:"jia-fu",fullName:"Jia Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8807",leadTitle:null,title:"Organic Synthesis",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tOrganic synthesis has always been one of the central topics of research for the scientific community in the academic laboratories and industrial world. Many striking journal articles and remarkable reviews and books have been published in the past year describing the practicability and applications of the subject demonstrating the importance of organic synthesis. In the present book, we will be putting together the topics in organic synthesis which may include but not limited to, (1) the basic terms and concepts, (2) various organic reactions including reduction, oxidation, addition, elimination, rearrangements, and cycloadditions, (3) Total Synthesis of Natural products, (4) transition metal catalysts, organocatalysts, enzymes and biotransformations, (5) applications in medicinal chemistry and drug design and development, (6) purification methods and characterization techniques, etc. To set a limit and to increase the scope of the book, author(s) are encouraged to send the chapters that include selected examples with practical applications and good yielding reactions reported within the past decade. Older topics with significant findings or their essence to prepare the foundation may be included in the chapter are welcomed as well.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f3bbbd989d0896f142d317ccb8abcc35",bookSignature:"Dr. Prashant S Deore",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8807.jpg",keywords:"Natural Product Synthesis, Organic Reaction Mechanism, Stereoselective synthesis, Chirality, C-H Functionalization, Cross-Coupling Reactions, Heterogeneous Catalysis, Homogeneous Catalysis, Green Synthesis, Green Solvents and Reagents, Bioorganic synthesis, Click Chemistry",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 10th 2018",dateEndSecondStepPublish:"January 14th 2019",dateEndThirdStepPublish:"March 15th 2019",dateEndFourthStepPublish:"May 20th 2019",dateEndFifthStepPublish:"July 19th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"251769",title:"Dr.",name:"Prashant",middleName:"S",surname:"Deore",slug:"prashant-deore",fullName:"Prashant Deore",profilePictureURL:"https://mts.intechopen.com/storage/users/251769/images/system/251769.png",biography:"Dr. Prashant S. Deore was born in India. He received a Master’s degree in organic chemistry from Pune University in 2007. In the same year, he qualified with the SET and CSIR-NET (JRF) and joined in the group of Prof. Narshinha P. Argade for the doctoral studies in National Chemical Laboratory, India. In 2014, he awarded with a Ph. D. in Chemistry and was a recipient of the 2nd prize in “2014 Eli Lilly and Company Asia Outstanding Thesis Awards”. In July 2014 he moved to Canada and joined as a postdoctoral researcher in the group of Prof. Richard Manderville at the University of Guelph, Canada. Presently, Dr. Deore is working on the collaborative project between the University of Guelph and Aterica health Inc., and providing consulting to the company. His research interest includes organic synthesis, fluorescent probes development, nucleic acid synthesis and modifications, and aptasensor development for proteins and food toxins.",institutionString:"University of Guelph",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270935",firstName:"Rozmari",lastName:"Marijan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270935/images/7974_n.png",email:"rozmari@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62190",title:"Economic Analysis of the Barley Market and Related Uses",doi:"10.5772/intechopen.78967",slug:"economic-analysis-of-the-barley-market-and-related-uses",body:'\nBarley (Hordeum vulgare L.) is one of the ancient grain crops cultivated and used worldwide [1, 2]. Its botanic origin is still well unknown although some studies affirm that the region were barley born could be identified in South-Eastern Asia, including China, Tibet, and Nepal [3, 4]. Also, the pathways for its domestication have some points in doubt. However, the first examples of barley cultivation date back to about 10,000 years ago [5]. In fact, several archeological discoveries occur in South-Western Asia in the Fertile Crescent area (also known as the “cradle of civilization”), which indicate that the crop was domesticated about 8000 BC. At later times, barley has been widely cultivated all over the world principally due to the commercial traffics. Thus, it grew in 5000 BC in Egypt, and successively, in 3500 BC, it diffused in Mesopotamia, then in 3000 BC in North-Western Europe, and 2000 BC in China. This plant was used to prepare the bread for the Hebrews, Greeks, and Romans and until the sixteenth century much throughout Europe. The introduction of other cereals in the human nutrition such as wheat, rice, and maize has led to a severe decrease of barley uses and cultivation [6].
\nCurrently, barley is one of the fourth most important cereals in the world in terms of both quantity produced and cultivated areas. On average, the annual world harvest of barley is more that 140 million tons (Mt) obtained from nearly 50 million hectares (Mha) [7]. Moreover, barley is one of the most versatile cereals known to be well adapted to the different global climates through its genetic evolution [8, 9]. In fact, this plant grows outside the regions where the other cereals live (i.e., maize, wheat, and rice) such as arctic and subarctic zone to subtropical region. The barley’s ability to adapt to the diverse conditions is supported by a rich genetic diversity being studied in order to identify new characters that can help improve the sustainability of the crop. This feature is mainly linked to the presence of genetic factors that allow synchronizing the vegetative cycle of the plant with the environment. This allowed to have early spring varieties suitable for environments with a prolonged cold weather and short spring-summer seasons and tardive winter varieties able to fully exploit all the productive potential of temperate climates. The good resistance to drought has also allowed the species to adapt to environments such as those of North Africa and the Middle East. In fact, the barley has a vast area of cultivation, from the humid regions of Europe to South America and the arid areas of Africa and Asia [10, 11]. Depending on climate conditions, soil characteristics, agricultural practices (i.e., irrigation), but also a variety of cultivated and technological innovations, barley’s yield has changed during the time starting from 1.39 (in 1960) to 2.99 t/ha (in 2017). At present, the best yields are recorded in Zimbabwe, New Zealand, Chile, and Switzerland with about 7.5, 7.05, 6.50 and 6.17 t/ha, respectively [12].
\nBarley (Hordeum vulgare L.) is one of the most important cereals used, preceded only by wheat, rice, and maize. Barley is a versatile crop. Since ancient times, it has been used as food or for the production of beverages, and currently, it is mainly intended for the feeding of livestock [13]. Most probably, in the past, the first use was as food which then evolved into a feed, malting, and brewing, and its uses have changed throughout history and in different geographical area [14]. Currently, it is used in industrialized countries as a fodder and as a staple food in developing countries; however, the most significant use from an economic point of view is represented by malt and beer. It represents an important crop subsistence in the Andean and Himalayan regions and in Ethiopia. In Canada, instead, it is used for swine feed [10].
\nAccording to the FAO data, nowadays, about 70% of barley crop has been used for feed; 21% has been intended to malting, brewing, and distilling industries; 6% has been consumed as human food; in addition, a growing interest in renewable energy has led to the modest use of barley grain for the production of biofuels [15]. In 2017, the world production is around 141 Mt. Europe is the largest producer followed by Asia.
\nBarley is considered one of the most adaptable cereals; it is cultivated and used worldwide. It is used in different economic sectors such as animal feed, alcoholic beverage, food, and recently and particularly in Europe in biofuels production [16]. This ancient crop is the fourth most important cereal in the world; in 2017, its production was approximately equal to 141 Mt after corn (1060 Mt), wheat (749 Mt), and rice (741 Mt) (\nFigure 1\n) [1, 2, 7, 14]. During the last 50 years, although the harvesting area is decreased, the production was increased owing to the yields improving from about 1.4 in 1960 to 3 t/ha in 2017.
\nTrend of world production of barley, maize, rice, and wheat from 1960 to 2017 (source: elaborated from [7, 12]).
Moreover, European Union (EU) and Russia still represent the best world barley producers, reaching more than 58 and 20 Mt, respectively, in 2017. However, United States of America and Canada during the time have decreased their production probably due to the low income deriving from this culture with respect to others such as maize. On the contrary, Australia, Turkey, and Argentina have highly increased barley productions, reaching more than two to eight times than in 1960s. For instance, Australia showed one of the most significant increases in the total cropping area, from less than 1 in 1960s to 8 Mha in 2017 [12] (\nFigure 2\n).
\nTrend of world barley production (including major barley production countries) (source: [12]).
In 2017, the total area harvested was around 50 Mha and ranked fourth after wheat (~220 Mha), maize (~183 Mha), and rice (~162 Mha) [7, 12] (\nFigure 3\n).
\nTrend of world harvested area of barley, maize, rice, and wheat from 1960 to 2017 (source: elaborated from [7, 12]).
From 1960 to the end of the 1970s, barley harvested area has shown a substantially increasing discontinuous trend. In the last 30 years, the harvesting area has been declining from almost 80 million ha to around 47 million ha. This trend is principally due to the significant decrease in barley cropping area of the major barley production countries such as Russia (including all the countries from former USSR), United States, India, and China (\nFigure 4\n).
\nTrend of world barley harvested area (including major production countries) (source: elaborated from [7, 12]).
In terms of annual yield, the period considered, from 1960 to 2017, is characterized by an increasing discontinuous trend, and it has increased in the last six decades from 1.3 in 1961 to 3.01 t/ha in 2017 [12]. As this discrepancy is underlined already between the increase in barley production and the reduction in harvested area, it is due to the improvement of yields. Furthermore, this trend is similar to the other cereals, since maize yield is raised, in the last six decades, from 1.9 (in 1961) to 5.65 t/ha (in 2017), rice from 1.9 to 4.6 t/ha, and wheat from 1 to 3.46 t/ha [12]. This enhancement is mainly due to the introduction of technological innovations such as irrigation, no tillage soil management, or the introduction of new varieties much more productive than in the past.
\nIn 2016, among the 106 barley country producers, only 10 contribute for the 65% (91.8 Mt) of the global production (141 Mt) and the 60% (28.6 Mha) of the total barley harvested area (\nTable 1\n).
\nAs shown in \nTable 1\n, the leader, in terms of production and area dedicated, is EU. In 2017, EU barley production was about equal to 59 Mt, which accounts for more than 40% of the global one, 25% (11.5 Mha) of global barley harvested area (47 Mha) and with an average yield approximately equal to 4.5 t/ha. In particular, Germany and France are the first and second European barley producers with 1.07 and 1.03 Mt, respectively, harvested approximately 1.6 and 1.8 Mha with an annual yield equal to 6.7 and 5.4 t/ha. These countries are followed by other important producers such as Spain (7.9 Mt cultivated in 2.8 Mha) and United Kingdom (6.6 Mt cultivated in 1.1 Mha). These four European countries, together, contribute more than 35% of the total EU production, and each of them is included in the top 10 world barley producers [7, 14].
\nRussian Federation is the second world barley producer with 17 Mt (12% of global production) and 8 Mha (17% of total harvested area) recorded a low average yield equal to 2.1 t/ha. Following the main barley producers list are Ukraine and Australia with their barley production, respectively, equal to 9.4 and 8.9 Mt. Different are their annual yields (3.3 and 2.19 t/ha, respectively) and consequently the total dedicated area (2.8 and 4.1 Mha, respectively). As concerning the other producers, United State of America, Canada, Argentina, and China recorded higher world average yields (4.19–3.72–3.80–4.31 t/ha, respectively); on the contrary, those in Kazakhstan, Iran, and Ethiopia are below the world average one (1.71–1.8–2.1 t/ha, respectively).
\nRegarding the import and export trade of the data available, more update is referred to 2016. So, the international barley trade accounts for less than 34% of global production, corresponding to a value of more than 9 million of US dollars (M US$). The global barley trade has passed from 20 Mt in 1990 to current 47 Mt. Leading barley exporters are EU (16 Mt), Australia (5.8 Mt), Argentina (3.2 Mt), and Russian Federation (2.8 Mt); together, they represent less than 92.5% (28 Mt) of the total barley exported (\nTable 2\n).
\nEU exports approximately are equal to 9 Mt, representing 15% of its whole production (58 Mt) with a trade value of less than 1.7 M US$. Among EU exporter countries, Netherlands, Belgium, and Germany are the principal ones totalizing the amount of 5 Mt equal to the 56% of the global European exportation and approximately 1% of world one. Germany, in 2016, was the second barley producer, the second importer and the third exporter (\nTable 3\n).
\nA long period trend of barley exports is shown in \nFigure 5\n. EU has modified its role in the international barley trade, since until 1975, it was one of the main importers, whereas after 1980, it became one of the principal exporters. Moreover, Ukraine, Russia, and Kazakhstan (former Union of Soviet Socialist Republic) and Australia have increased in the last two decades, their barley exportation becoming one of the largest world exporter countries after EU. Finally, Canada and USA have highly reduced their exportation activities starting from 2000s (\nFigure 5\n).
\nTrend of world barley exports (including the major country importer) (source: [12]).
On import side, in 2016, 17 Mt are traded, with a corresponding value equal to 3.7 M US$. A long period trend of barley imports is recorded in \nFigure 6\n. China and Saudi Arabia are the main barley importer with 8.1 Mt each, contributing to the total imported barley less than 50%. The demand of Saudi Arabia barley is almost totally satisfied by import due to the country’s scarce water reserves. This policy is supported by government subsidizing barley and based on the consideration that 100% of domestic barley (and wheat) cultivation is irrigated. The main quota of Saudi Arabia imported barley (more than 80%) is principally utilized as feed for livestock, mostly sheep, camels, and goats. Its use in the place of forage depends on its price and competitiveness [17]. Moreover, barley is also used to prepare specialty and traditional Saudi dishes during Ramadan fasting time and as feed ingredients.
\nTrend of world barley imports (including the major country importer) (source: [12]).
The price of barley has always been lower than the other grains (\nFigure 7\n). Starting from 1980s to the middle of 1990s, it has been under 100 $/t, whereas later, it increased reaching a quotation more than 200 $/t in the year 2012. In the first 6 months of 2017, barley quotation was 146 $/t, which started to increase again. This is due to different reasons such as (1) China’s and Saudi Arabia’s rise demand, (2) the reduction of global barley production, and (3) the projections of barley stock down in all major exporting countries [18].
\nTrend of barley, maize, rice, and wheat price from 1980 to 2017 (source: [19]). *2017 is considered the first 6 months from January to June.
The trend of world barley consumption is similar to the production (\nFigure 8\n). However, in the last years, the robust global demand linked to a low world production has led to a decrease of stocks and consequently an increase of the barley price [18] in all major exporting countries. In 2017, the total barley consumption has been about 147 Mt of which 70% is used for animal feed and 30% for manufacturing of malt (primarily used in beer production) and other human food applications.
\nTrend of world barley feed and FSI consumption (source: [12]).
Cultivated barley is one of 31 Hordeum species, belonging to the tribe Triticeae, of the grass family Poaceae also known Gramineae. It is an annual, self-pollinating, diploid species [10, 20].
\nBarley is differentiated into couplet and polistic. The former is characterized by larger, higher-quality seeds, used above all in the production of beer, while the latter are distinguished in tetrastic barriers (four rows) and exquisite bars (six rows).
\nDepending on the variety, it is also possible to distinguish hulled barley that preserve the glume adhering to the caryopsis, from hull-less barley (or naked barley) that lose the glumes after the threshing. Generally, hulled barley is intended for the production of malt while the hull-less one is used for feed, food, fermented, and unfermented beverages. For this type of barley, there is a particular interest also in new applications: as a whole-grain ingredient in value-added products, as bran and flour in several food applications [21].
\nAll parts of the plant are generally used: fruit kernels, spike, whole plant for ensilage, and straw.
\nBarley grains are larger and more tapered than wheat, generally bright, light yellow, and the color can vary with purple, violet, blue, and black shades due to the different level of anthocyanins [21].
\nIn the caryopsis, the main parts of the kernel are husk, pericarp, testa, aleurone layer, endosperm, and embryo. Husk and pericarp consist primarily of cellulose, hemicellulose, lignin, and lignan, the major constituents of insoluble fibers but also of minerals. The testa is composed of cellulose while the aleurone layer consists of protein-rich cells. The endosperm is a starchy mass in a protein matrix and the embryo is rich in proteins, lipids, and ash [22].
\nGrain barley chemical composition is strongly influenced by environmental and genetic factors. This last aspect mainly concerns the hulled and hull-less varieties which also have different uses.
\nIn general, the composition of wholegrain barley consists of approximately 70% starch, 10–20% protein, 5–10% β-glucan (with values up to 20% for some cultivars), 2–3% free lipids, and approximately 2.5% minerals, with the total dietary fiber ranging from 11 to 34% and soluble dietary fiber being within 3–20% [1]. Barley kernels naturally contain many bioactive compounds localized in different parts of the kernel, including β-glucans, lignans, tocotrienols, folate, fructans, phytosterols, polyphenols, policosanol, phytates, pentosans, and arabinoxylans, which play numerous biological activities (prebiotic, probiotic, antioxidant, hypoglycemic, hypocholesterolemic, a reduction of cardiovascular disease, colon cancer, and neural tube defects), and with growing awareness of the need for healthy eating, they can be used as ingredients for the development of functional foods [23]. The last decade saw an increasing interest for this plant mainly due to its health and nutritional benefits [24]. In fact, consumers are even more conscious that food may contribute to also improve their psychophysical well-being [25, 26] Therefore, the food production and market have to be oriented to this type of products, contributing to the customer satisfaction. It is in this context that consumers increasingly appreciate functional food, a food intending to affect one or more functions of the body in a positive way, in a way that is relevant and to improve the health and well-being and/or reduce the risk of a disease [27, 28]. There are different types of functional foods and diverse approaches to obtain them. A functional food can be a natural food (e.g., food grains, cereals, wholemeal flours, etc.) or it can be obtained by processing a food utilizing different chemical or biological technologies [29]. Among these different possibilities, cereals are ideal to be used in transmitting compounds and substances with bioactive and dietary properties because, meeting consumer’s favor, they are widely and frequently included in our dairy diet. In particular, barley (H. vulgare L.) is an excellent source of dietary fiber and a functional food ingredient such as beta-glucan [1, 2].
\nAs currently mentioned above, approximately 75–80% of global barley production is used as animal feed, 20–25% as malting, 2–5% for human food, and the remaining part in biofuel industry (bioethanol production) [1, 30].
\nIn 2017, EU was the main utilizer of barley feed with 40.5 Mt followed by Russia (12.3 Mt), Canada (8.8 Mt), and Turkey (6.5 Mt) and Saudi Arabia (6.3 Mt, almost totally imported) [12] (\nTable 4\n).
\nThe main reason of its large use in feed industry is essentially due to its great adaptability to a large variety of pedo-climatic conditions, making it available where other cereals are not and its nutritional value. The use of barley as feed depends on its chemical composition which is strongly influenced by cultivar and where and how it is harvested. Barley protein content, for instance, is very much dependent on the harvest practices and differs with growth conditions, particularly with the rate and timing of nitrogen fertilization [6, 32]. Furthermore, the good content of starch and protein in the grain (respectively, equal to 50–70% and 10–20% on dry matter base) makes barley a suitable energy source in ruminant and non-ruminant livestock, poultry, and fish [33].
\nBarley, compared with corn, shows an almost similar starch percentage but a higher content of total crude protein (respectively, equal to 10–20 and 8.8% on dry matter base), a higher value of essential amino acids such as lysine (respectively, equal to 0.43–0.21% on dry matter base), and almost double tryptophan amount. The average barley contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF) are equal to 18 and 6–7%, respectively. The latter values are higher than corn (NDF 10.8%, ADF 3%), wheat (NDF 11.8%, ADF 4%), and sorghum (NDF 16.1%, ADF 7–9%) [30, 34]. The evaluation of NDF and ADF is important because it is related to the animal ability to digest them and to the feed efficiency use. Fiber main fraction is in hull (13%); dehulling practice is not suitable for feed utilization because the seeds are fused to the hulls by a cementing substance hard and expensive to remove. Barley is rich in potassium (0.57%) and vitamin A but poor or without vitamin C and B12. Barley contains a relatively high concentration of β-glucans, compared with other grains ranging from 3.9 to 4.9% (reaching a concentration equal to 8–10% [35, 36]. β-glucan content is an important parameter to evaluate, mostly in monogastric animals diet, because they act as anti-nutritional factors, reducing feed compound digestibility. In poultry nutrition, for instance, they have negative effects in both growth and feed efficiency but, adding exogenous enzymes such as β-glucanase, an improvement in bird performance is recorded [37]. The main products utilized in barley feed animal diet are (1) whole or minimal processed barley grain, (2) whole plant forage, (3) malt-based alcoholic beverage by-products, and (4) and milling ones. The first is largely used in cattle diet but, to improve the feed efficiency, minimal mechanical treatments are required. The fibrous hull of barley grain makes the kernels no totally “broken” during the mastication, and mechanical processes are needed. Dry rolled or grounded barley are the most diffused and the less expensive ones. During this treatment, the particle size is important to control because smaller they are, higher the fermentation is in rumen, higher the decrease in feed efficiency. Of course, variation in cattle barley wholegrain feedlot nutritional values depends on the animal’s ability to masticate, digest, and adsorb them. There is no specific quality restriction to use barley grain in animal feed industry. Often, malting barley is destined to feed industry because there has been damage during agricultural phase or it has not met the quality level required by malting and brewing industries or due to market or price variations. Barley plants are used for forage, pasture, or hay, and their composition and quality mostly vary according to the harvested stage. Straw remaining after grain harvesting is a good fiber source for ruminant or can be used for animal bedding. On average, whole plant and straw ADF is equal to 345 g/kg on dry mass and 590 g/kg on dry mass, respectively, and NDF is 563–568 g/kg on dry mass and 725 g/kg on dry mass [30]. It has been a long time since byproducts of malting and brewing industries are used in animal feed. Their quantity and quality depend on technologies applied and barley varieties utilized. \nTable 5\n shows the chemical composition of main products (grain, whole plant, and straw) and by-products obtained from mainly brewer and milling industries useful and utilized in barley feed.
\n\nBarley’s versatility as food is well known across the world, and it is historically acknowledged. Although barley has remained a major food source for some geographical areas [14, 32], it may be considered relatively underutilized with regard to its potential use as an ingredient in processed human foods. The quantity of barley used for food (excluding the beverage sector) is still very small considering its high nutritional value. The barley grain has a chemical composition extremely useful for the organism: low fat, complex carbohydrates, balanced protein level, a good presence of vitamins, minerals, antioxidants, insoluble, and soluble fiber [2]. The current appreciation of barley as a food source is due quite to its potential health benefits. As a matter of fact, in the past, barley foods had been considered as health-promoting and strength-enhancing. Subsequently, as already underlined, the diffusion of wheat for producing bread and other baked foods has taken over barley’s use as food. However, recently, this grain has been reevaluated as having significant benefits in human health functions such as cholesterol-lowering, blood sugar control, and colon health [38, 39, 40, 1]. \nTable 6\n shows the major bioactive compounds, its localization in the kernel, and health benefits.
\nCompounds with biological activity in barley caryopsis.
According to [14] the quite high content of β-glucan found almost exclusively in oats and barley contributes to heart disease prevention for people who regularly eat these cereals. In fact, numerous clinical trials show barley’s equal or superior value as a hypocholesterolemic food compared to oats contributing to reducing the risk of coronary heart diseases. This compound has also a positive action to the bowel function. β-glucan with the resistance starch fermenting in the large intestine produces short-chain fatty acids especially butyrate and propionate. These fatty acids provide many benefits to the intestine such as energy for epithelial cells that contribute to produce a healthy colonic mucosa [41].
\nMoreover, the typology of carbohydrates present in the barley seed can contribute to reducing or stabilizing the progression of diabetes disease. This characteristic was already known by ancient Indian physicians some 2400 years ago which used barley to stabilize type 2 diabetes [42].
\nIn the food industry, barley may be blended into many food products at various levels, adding texture, flavor, aroma, and nutritional value to products [43, 44].
\nBarley undergoes treatments/processes before it can be used in the food sector. The diverse operations modify the chemical composition of the kernel due to the significant differences in the anatomy and composition of the various parts of the same.
\nThis determines a variation in the nutritional value of the kernel and a potential different product range [14]. \nFigure 9\n shows a simplified schematization of the main products and co-products derived from the treatments undergone by the barley.
\nMain products and co-products derived from barley milling process (source: personal author’s elaboration).
Whole barley grain is mostly used for feeding animals, whereas for food purposes, it is mainly used as a dehulled grain or high fiber content products. Commercial products derived from wholegrain include barley flakes, grits, and flour.
\nFood produced from barley is a good source for many nutrients such as protein, fiber, minerals, and B-vitamins [30].
\nFor this purpose, barley grain is first abraded to produce pot or pearled barley and may be further processed into grits, flakes, and flour.
\nThe most common method of processing hulled barley is pearling, which consists of the gradual removal of the outer tissues of the kernel by abrasion. As a result, pot and pearl barley are not considered wholegrains since they are high in β-glucan content. The hull represents about 10–13% of the dry weight of the kernel, but the commercial pearling method involves removing more than the hull in order to produce a white-colored, quick-cooking product. Pearling allows barley to have a longer shelf life since the lipid fraction, phenolic compounds, and enzymes contained in the germ are removed. These molecules cause rancidity and darkness barley. About 15% of the outer layers are eliminated in pot barley, whereas in pearl barley, more than 45%.
\nPot and pearl barley are not considered wholegrain because the bran layer and germ are removed. They are also used to make porridge, pie fillings, as an alternative to rice, pasta, or potatoes. Barley flakes are used as an ingredient in muesli or breakfast cereals.
\nCooked pearled barley is used in the preparation of many traditional dishes and also used to produce miso, barley tea, and rice extender in the Japanese market.
\nBarley flour, prepared from pearled grain through hammer milling or roller milling, can easily be used to produce bread, flat breads (pitas, tortillas, and chapatis), cakes, muffins, cookies, noodles, and extruded snack foods [14, 43, 44]. Barley flour can replace all or part of the wheat flour in a wide assortment of bakery products such as, for instance, pasta and noodles.
\nThe use of barley starch is also interesting for the food industry, where it is used as sweetener and binder. In the brewing industry, barley starch is used, together with barley malt, in the production of beer.
\n\nBarley for malt and beverages. The best known and most widespread use of barley for food purposes is related to the production of malt that is primarily used in the brewing industry, alcoholic and non-alcoholic beverages. Barley malt is mainly used for beer production while smaller amounts are used by the whisky distilling industry and by bakeries [25].
\nBarley malts, malt extracts, and syrups are used in small amounts in food products to improve some organoleptic characteristics such as flavor and color, for breakfast cereals, fermented and non-fermented bakery products (e.g., crackers, cookies, and muffins).
\nMalt extract is a source of soluble sugars, protein, and amylase in the dough and promotes the activity of yeast for better bakery products for texture, volume, etc.
\nThe history of alcoholic drinks including beer goes back to at least 8000 years ago in the Middle East and in Egypt [14, 45]. Barley is used to make most beers because its carbohydrates are particularly well suited for malting. The malting process breaks down carbohydrates into sugars which provide unique flavors and fuel for fermentation. Barley can also be used to make whiskey, quite popular in Ireland and Scotland.
\nStarch fermentation products are also distilled to pure grain alcohol for vodka-type products as well as industrial ethanol that is sold mainly to the pharmaceutical industry.
\nModest quantities of non-alcoholic drinks based on barley and malt are consumed in various parts of the world. A non-exhaustive list of non-alcoholic beverages based on barley is as follows:
\nBarley infusion: coffee substitute (contains no caffeine), obtained from toasted and ground grains, lyophilized or in pods prepared for espresso machines; barley coffee is very popular in Europe particularly in Italy.
\nBarley water: a drink that is made by boiling whole or pearled barley and then flavoring with various fruits. It is a flavorful drink that is enjoyed similar to soft drinks with healthy properties; barley water is used as a dairy substitute for drinks such as smoothies or hot chocolate, or to replace milk on breakfast cereals.
\nBarley tea is common in Asian countries (called mugicha) and is made by lightly roasting barley and then steeping in hot water.
\nMalted beverage: there are also various malted beverages available, often in the form of “malty milk” in which malt extract is blended with milk.
In this paragraph, both new technologies still under study or pre-commercial phase and niche uses of barley that could be developed in the near future are briefly presented. For instance, barley grain is currently utilized in United States of America and in European Union in bioethanol production when the cheapest starch sources such as corn or wheat are not available or a surplus of barley production is recorded [46, 47]. However, the possibility to utilize barley residues or leftover barley by-products (e.g. hulls and mostly dried distillers grain - DDGS) as sources in bio-energy industry is under study. So, hydrothermal liquefaction technology could be useful to obtain bio-oil for transport system or energy sector to produce heat and/or electricity [48]. Moreover, the potential exploitations of barley in non-feed and food fields are numerous and are strictly linked to barley composition, structure, and physicochemical properties of a single component of the plant. For example, the presently growing interest is focused on barley straw use as an alternative non-wood raw material in pulp and paper industry. Paper made from this agriculture residue presents great potential, in terms of paper sheet quality, compared with some wood species much commonly used such as P. sylvestris and E. camaldulensis [49, 50]. Moreover, the high concentration of biocompounds in barley grain and distillery and brewery byproducts (such as phenolics, vitamin E and β-glucan, sterols, fatty acids, and bioactive peptides) makes barley a potential source of row material in pharmaceutical and cosmetic industries. Also, lactic acid, xylitol, and microbial enzyme are products obtainable from barley and useful in different industrial sectors [51]. Barley collagen, for instance, is considered a good and profitable collagen vegetal source for cosmetic industry [52]. Furthermore, barley starch shows a suitable attitude to be modified, becoming an appropriate row material for numerous pharmaceutical applications or in the production of biodegradable materials useful in food packing industry [53, 54].
\nFinally, the interesting use is barley straw as an inhibitor for the growth of algae to preserve water resources from algae proliferation [55, 56]. This new technology could help substitute the chemical products contributing to reduce the environmental impact of water treatment process.
\nBarley, as already underlined, has developed during its millennial evolution some interesting characteristics, allowing its diffusion and adaptability in a wide range of geographical locations and climatic conditions. This aspect is particularly interesting in an era of climate change whose effects are also reflected in agricultural production. In the recent years, there have been a significant and increasing number of studies on the effect of climate change on agriculture [57] through the use of specific models and software [58]. Climate change is one of the major concerns related to food supply for the increasing population. It has already generated significant impacts on the availability of resources, water, and food production. It is one of the most significant factors influencing crop production [59]. In fact, it affects yield and yield quality due to impacts on crop physiology and in alterations in nutrient mineralization; barley for its characteristics, even in adverse climatic conditions, could represent the right answer to the greater demand for food, feeds, etc., in a strongly dynamic world context [60].
\nBarley represents one of the ancient grain crops cultivated and used worldwide. Thanks to its high adaptability, this plant grows in different global climates where other cereals (i.e., maize, wheat, and rice) do not live such as in arctic and subarctic zone to subtropical region. This work has presented some interesting aspects of this grain, regarding especially the international market trend and use. The principal results from this overview are the following:
in the last 70 years, the harvesting area is decreased especially in the major barley production countries such as Russia (including all the countries from former USSR), United States, India, and China, probably due to the low income deriving from this culture with respect to others such as maize. However, this situation has been balanced by the yield improving, changed from about 1.4 t/ha in the years 1960 to 3 t/ha in 2017, which has pushed the barley production from almost 79 (1960) to 141 Gt (2017);
currently, the leader, in terms of production and area dedicated, is EU followed by Russian Federation, Ukraine, Australia, and Canada. In particular, Germany and France are the first and second European barley producers followed by Spain and United Kingdom which contribute more than 35% of the total EU production;
regarding the barley consumption in 2017, it was about 147 Mt, of which 70% is used for animal feed and 30% principally for the production of beer ingredient (malt) and a little quantity for other human food applications;
in the recent years, the high barley demand on the global markets not balanced by the world production has led on one side to a decrease of stocks in many countries producer and on the other side an increase of the barley price. This situation could get worse in the future due to the increase of its request in the global markets (principally China);
finally, the principal uses of this grain is to produce feed and beer, although recently it has been revaluated as food in the human diet, thanks to its significant benefits on the human health such as cholesterol lowering, blood sugar control, and improving of the colon health.
PID is regarded as the standard control structure of classical control theory. PID controllers are used successfully for single-input single-output (SISO) and linear systems due to their good performance and can be easily implemented. The control of complex dynamic systems using classic PID controllers is considered as a big challenge, where the stabilization of these systems requires applying a more robust controller technique. Many studies have proposed to develop a new hybrid PID controller with ability to provide better and more robust system performance in terms of transient and steady-state responses over the standard PID controllers. Lotfollahzade et al. [1] proposed a new LQR-PID controller to obtain an optimal load sharing of an electrical grid. The presented hybrid controller is optimized by Particle Swarm Optimization (PSO) to compute the gain parameters of the PID controller. A new hybrid control algorithm was presented by Lindiya et al. for power converters [2]. They adopted a conventional multi-variable PID and LQR algorithm for reducing cross-regulation in DC-to-DC converters. Sen et al. introduced a hybrid LQR-PID controller to regulate and monitor the locomotion of a quadruped robot. The gain parameters of the hybrid controller is tuned using the Grey-Wolf Optimizer (GWO) [3]. In [4] a new PID and LQR control system was proposed to improve a nonlinear quarter car suspension system.
\nThe intent of this study is to design a new hybrid PID controller based on an optimal LQR state feedback controller for stabilization of 3DOF helicopter system. To this end an improvement in the system performance has been achieved in both the transient and steady-state responses. In the proposed system the classical PID and optimal LQR controller have been combined to formulate a hybrid controller system. Simulations were implemented utilizing Matlab programming environment to verify the efficiency and effectiveness of the proposed hybrid control method.
\nIn this section, basics and theory of integer and fractional order PID controllers are presented. Theory of an intelligent LQR controller, which is used with PID controller to combine a hybrid control system, is also introduced.
\nA PID is the most popular controller technique that is widely used in industrial applications due to the simplicity of its structure and can be realized easily for various control problems as the gain parameters of the controller are relatively independent [5, 6]. Basically, the controller provides control command signals \n
where \n
FOPID is a special category of PID controller with fractional order derivatives and integrals. Its concept was introduced by Podlubany in 1997. During the last decade, this controller approach has attracted the attention of control engineers in both academic and industrial fields. Compared with the classical PID controller, it offers flexibility in dynamic systems design and more robustness.
\nFractional order calculus is an environment of calculus that generates the derivatives or integrals of problem functions to non-integer (fractional) order. This fractional order mathematical operation allows to establish a more accurate and concise model than the classical integer-order method. Moreover, the fractional order calculus can also produce an effective tool for describing dynamic behavior for control systems [7].
\nFractional order calculus is a generalization of differentiation and integration to non-integer order fundamental operator which is denoted by \n
Grunwald – Letnikov (GL) definition:
\nwhere \n
Riemann-Liouville definition:
\nwhere \n
Laplace transform of differ-integral operator \n
Where \n
Fractional order PID controller denoted by \n
The block diagram of a FOPID structure.
Based on the above equation, it can be expected that the FOPID controller can enhance the performance of the control system due to more tuning knobs introduced. Taking the Laplace transform of Eq. (9), the system transfer function of the FOPID controller is given by:
\nWhere \n
PID controllers with fraction orders. (a) Classical. (b) Fractional order.
Linear quadratic regulator is a common optimal control technique, which has been widely utilized in various manipulating systems due to its high precision in movement applications [11]. This technique seeks basically a tradoff betwwen a stable performance and acceptable control input [12]. Using the LQR controller in the design control system requires all the plant states to be measurable as it bases on the full state feedback concept. Therefore, using the LQR controller to stabilize the 3DOF helicopter system based on the assumption that the system states are considered measurable. LQR approach includes applying the optimal control effort:
\nWhere \n
Where \n
Where \n
For \n
Based on the above expression, the control effort \n
so that the cost function Eq. (12) can be reformulated as in Eq. (16).
\nWhere \n
In this study, GA tuning approach has been invoked to tune the gain matrix of LQR controller used to approximate the gain parameters of PID controller for 3DOF helicopter system. GA is a global search optimization technique bases on the strategy of natural selection. This optimization method is utilized to obtain an optimum global solution for more control and manipulating problems. The procedure of GA approach includes three basic steps: selection, crossover and mutation, that constitute the main core of GA with powerful searching ability.
\nSelection: This step includes choosing individual genomes with high adaptive value from the current population to create mating pool. At present, there mainly are: sequencing choice, adaptive value proportional choice, tournament choice and so on. In order to avoid the best individuals of current population missing in the next generation due to destruction influence of crossover and mutation or selection error, De Jong put forward to the cream choice strategy [3xxx];
\nCrossover: This operation is the process of mimicking gene recombination of natural sexual reproduction, through combining the
Mutation: In this process one or more indivisual values in a chromosome are altered from its initial state. This can result in entirely new gene values being added to the gene pool. This stage is also important by the view of preventing the genes local optimal points.
\nApplying these main operations creates new individuals which could be better than their parents. Based on the requirements of desired response, the sequence of GA optimization technique is repeated for many iterations and finally stops at generating optimum solution elements for the application problems. The sequence of the GA tuning method is presented in Figure 3 [13, 14]. The steps of the GA loop are defined as follows:
Initial set of population.
Choose individuals for mating.
Mating the population to create progeny.
Mutate progeny.
Inserting new generated individuals into populations.
Are the system fitness function satisfied?
End search process for solution.
Process loop of GA optimization method.
In this study, the aim of using GA optimization method is to tune the elements of the state weighting matrix \n
PID controller is a simple manipulating technique that can be successfully implemented for one dimension control systems. For multi dimensions systems it can use a multi channel PID controller system to control the dynamic behavior of these systems. Currently, there is a considerable interest by many researchers in development new control approaches using PID controller. Xiong and Fan [15] proposed a new adaptive PID controller based on model reference adaptive control (MRAC) concept for control of the DC electromotor drive. They presented an autotuning algorithm that combines PID control scheme and MRAC based on MIT rule to tune the controller parameters. Modified PI and PID controllers are introduced to regulate output voltage of DC-DC converters using MRAC manipulating technique [16, 17]. The parameters of the controllers are adapted effectively using MIT rule. Based on the adapted controllers parameters an improvement in the regulation behavior of the converters has been investigated.
\nFurther improvement in the performance of the standard PID controller is also achieved by involving an integrator of order \n
In the last decades, a new hybrid controller scheme using PID technology is proposed in [18, 19, 20] for different applications. The structure of the presented hybrid controller system is constructed by combination between conventional PID controller and state feedback LQR optimal controller. The gain parameters of the PID controller used to achieve desired output response are determined based on optimal LQR theory.
\nIn this chapter, a hybrid PID controller based on LQR optimal technique is designed to stabilize 3DOF helicopter system. The proposed hybrid LQR-PID controller is optimized using GA optimization method, which is used to tune its gain parameters.
\nThe conceptual platform of 3DOF helicopter scheme is presented in Figure 4. It consists of an arm mounted on a base. The main body of the helicopter constructed of propellers driven by two motors mounted are the either ends of a short balance bar. The whole helicopter body is fixed on one end of the arm and a balance block installed at the other end.
\nPrototype model of 3DOF helicopter system.
The balance arm can rotate about the travel axis as well as slope on an elevation axis. The body of the helicopter is free to roll about the pitch axis. The system is provided by encoders mounted on these axes used to measure the travel motion of the arm and its elevation and pitch angle. The propellers with motors can generate an elevation mechanical force proportional to the voltage power supplied to the motors. This force can cause the helicopter body to lift off the ground. It is worth considering that the purpose of using a balance block is to reduce the voltage power supplied to the propellers motors. In this study, the nonlinear dynamics of 3DOF helicopter system is modelled mathematically based on developing the model of the system behavior for each of the axes.
\nThe free body diagram of 3DOF helicopter system based on elevation axis is shown in Figure 5. The movement of the elevation axis is governed by the following differential equations:
\nSchematic diagram of elevation axis model for 3DOF helicopter system.
Where \n
Consider the pitch schematic diagram of the system in Figure 6. It can be seen from the figure that the main torque acting on the system pitch axis is produced from the thrust force generated by the propeller motors. When \n
Schematic diagram of the pitch axis model for 3DOF helicopter scheme.
Where \n
Based on the assumption that the pitch angle \n
The free body diagram of the helicopter system dynamics based on the travel axis is presented in Figure 7. In this model, when \n
Schematic diagram of the travel rate axis model for 3DOF helicopter scheme.
The thrust forces of the two propeller motors \n
Where \n
Based on the assumption that the coupling dynamics, gravitational torque (\n
In order to design a state feedback controller based on LQR technique for 3DOF helicopter system, the dynamics model of the system should be formulated in state space form. In this study, the proposed hybrid control algorithm is investigated for the purpose of control of pitch angle, elevation angle and travel rate of 3DOF helicopter scheme by regulating the voltage supplies to the front and back motors. Let \n
Based on Eqs. (31)-(33), choosing these state variables yields the following system state space model:
\nThe general state and output matrix equations describing the dynamic behavior of the linear-time-invariant helicopter system in state space form are as follows:
\nWhere \n
In this study, for the purpose of control system design, the model of the system is formulated in state space form using the physical parameters values listed in Table 1 [21]. Based on Eq. (37) and using the parameters values in Table 1, the state equation of the system is given by Eq. (39):
\nSymbol | \nPhysical unit | \nNumerical values | \n
---|---|---|
\n\n | \nkg m2\n | \n1.8145 | \n
\n\n | \nkg m2\n | \n1.8145 | \n
\n\n | \nkg m2\n | \n0.0319 | \n
\nW\n | \nN | \n4.2591 | \n
\n\n | \nm | \n0.88 | \n
\n\n | \nm | \n0.35 | \n
\n\n | \nm | \n0.17 | \n
\n\n | \nN/V | \n12 | \n
Values of physical parameters of 3DOF helicopter system.
Based on step input, a hybrid controller is designed for the following desired performance parameters: rise time (\n
Under the assumption that the desired system states are zero the block diagram of the proposed helicopter control system based on the LQR controller is shown in Figure 8. The control system is analysed mathematically and then simulated using Matlab software tool to validate the proposed hybrid controller. Based on the desired performance parameters, which include rise and settling time, overshoot and error steady state, the fitness function of the control problem is formulated as follows:
\nLQR controller based on GA for 3DOF helicopter system.
where, \n
In this subsection, the gain parameters \n
GA tuning method. For this application, analyzing Eq. (15) yields the following control effort [22]:
\nwhere \n
If \n
In this study, for elevation angle, the control equation is based on the following PID control equation:
\nWhile the pitch angle is controlled by the following PD control equation:
\nThe travel rate is gonverned by the following PI control equation:
\nWhere \n
Summing the rows of (41) results the following [21]:
\nThe above equation can be written as
\nIt is obvious that Eqs. (43) and (49) have the same structure, this means that the gain parameters of the pitch PID controller can be obtained from the gain elements of the LQR controller. Thus, comparing Eq. (43) with Eq. (49), yields the following gain relationships:
\nThe block diagram of closed-loop control system for 3DOF helicopter system based on hybrid LQR-PID controller is shown in Figure 9. Taking Laplace transform for elevation axis model Eq. (31) yields the following equation:
\nControl system block diagram for helicopter elevation, pitch and travel axis using PID controller.
The transfer function of the elevation axis plant is given by:
\nThe transfer function of the PID controller is as follows:
\nwhere \n
Based on Eqs. (52) and (53), the open loop elevation transfer function becomes:
\nThe closed loop transfer function for elevation angle control is as follows:
\nSimilarly, the difference of the rows of Eq. (41) results in
\nSubstitution Eq. (47) in Eq. (45) results,
\nIt is clear that Eqs. (58) and (59) have exactly the same structure. Then, by comparing these equations, it can obtain the feedback gains for the PID controller from the LQR gains parameters as follows:
\nTaking Laplace transform for pitch axis model Eq. (32) yields:
\nThe transfer function for pitch axis model is given by:
\nThe transfer function of the PD controller is as follows:
\nwhere \n
The closed loop transfer function of pitch angle is given by:
\nTaking Laplace transform for travel axis model Eq. (33) results:
\nThe transfer function for travel axis model is given by:
\nThe transfer function of the PI controller is as follows:
\nwhere \n
The closed loop transfer function for travel angle is as follows:
\nIn order to validate the proposed helicopter stabilizing system, the LQR controller is analysed mathematically using Matlab tool. Based on objective function (J) and using the Matlab command “lqr” the elements of the LQR weighting matrices Q, R are tuned using GA optimization method. For this application, each chromosome in GA tuning approach is represented by nine cells which correspond to the weight matrices elements of the LQR controller as shown in Figure 10. By this representation it can adjust the LQR elements in order to achieve the required performance. The parameters of the GA optimization approach chosen for the tuning process of the helicopter control system are listed in Table 2. Converging elements of the LQR weight matrices \n
Definition of GA chromosome.
GA property | \nValue/Method | \n
---|---|
Population Size | \n20 | \n
Max No. of Gen. | \n100 | \n
Selection Method | \nNormalized Geo. Selection | \n
Crossover Method | \nScattering | \n
Mutation Method | \nUniform Mutation | \n
Parameters of GA tuning method.
PID parameters | \nRelationship | \nAbsolute Value | \n
---|---|---|
\n\n | \n\n\n | \n10.6463 | \n
\n\n | \n\n\n | \n2.3438 | \n
\n\n | \n\n\n | \n0.3302 | \n
\n\n | \n\n\n | \n5.3634 | \n
\n\n | \n\n\n | \n1.4799 | \n
\n\n | \n\n\n | \n0.7678 | \n
\n\n | \n\n\n | \n0.3230 | \n
Values of gain parameters for PID, PD and PI controllers.
Number of generation of GA-LQR parameters Q and R.
Based on the proposed fitness function stated in Eq. (40), the LQR weighting matrices \n
The feedback gain matrix of the LQR controller can be mathematically calculated using Eq. (13), where P matrix is the stabilizing solution of the Riccati equation stated in Eq. (14).
\nIn this application, by using the state matrix\n
Based on the feedback gain matrix and using Eq. (11), the LQR control effort vector for the 3DOF helicopter system is dertermined as follows:
\nBased on Eqs. (50), (60) and (71), the absolute values of PID, PD and PI gain parameters for elevation, pitch and travel axis model respectively for helicopter
\nsystem are listed in Table 3 [21]. Using the values in Table 1 and 3, the closed-loop transfer function of elevation, pitch and travel axis Eqs. (56), (65) and (70) become as in Eqs. (72), (73) and (74) respectively:
\nBased on bounded input signal, the elevation, pitch and travel axis model of 3DOF helicopter system are unstable as they give unbounded outputs. The output responses for elevation, pitch and travel angle are illustrated in the Figure 12. It can be say that the open loop helicopter system without control action is unable to provide a stable output response.
\nOpen loop response of Helicopter system.
In this study, in order to achieve a stable output, a hybrid control system using LQR based PID controller for 3DOF helicopter system is proposed to control the dynamic behaviour of the system. To validate the proposed helicopter stabilization system, the controller is simulated using Matlab programming tool. Three axis, elevation, pitch, travel rate, are considered in the simulation process of the control system. The performance of the helicopter balancing system is evaluated under unit step reference input using rise, settling time overshoot and steady state error parameters for the elevation, pitch and travel angles to simulate the desired command given by the pilot.
\nThis section deals with the simulation of LQR based PID controller used to control the position of helicopter elevation model. The parameters of the hybrid controller are tuned using GA optimization method. Figure 13 presents a tracking control curve of the demand input based on the PID controller using optimized gain parameters listed in Table 3 for helicopter elevation angle.
\nClosed-loop response of the elevation model system.
The simulation results show that the controller successed to guide the system output through the desired input trajectory effectively with negligible overshoot, short rise and settling time of 0.1 ms and 0.3 ms respectively.
\nIn this section, an optimized LQR-PD controller based on GA tuning approach is designed to control the dynamic model of helicopter pitch angle. Based on the optimized PD parameters stated in Table 3, the output response of the proposed helicopter tracking system is illustrated in Figure 14. It is obvious from the minifigure of the system response that the LQR-PD controller succeeded to force the pitch angle state of the helicopter system to follow the desired trajectory effectively without overshoot, shorter rise and settling time and zero steady state tracking error.
\nClosed-loop response of the pitch model system.
The control of the travel rate for the 3DOF helicopter system is governed by a GA-LQR based PI controller. The time response of the optimized PI tracking system using optimum gain parameters which are listed in Table 3. is shown in Figure 15. It can be noted from the miniplot of the system response that the optimised hybrid LQR-PI controller enabled the system output state to track the desired input trajectory without overshoot, and shorter rise and settling time with minimal steady state tracking error.
\nClosed-loop response of the travel model system.
The control inputs supplied to the propellers motors of the proposed 3DOF helicopter system are shown in Figure 16. Consequently, it can say that the control performance of optimised GA-LQR based PID, PD and PI controllers for helicopter elevation, pitch and travel axis model respectively was acceptable through tracking the system output states for the reference input efficiently. Based on the minifigures of Figures 13 and 14 and Figure 15, the performance parameters of PID, PD and PI controller for helicopter elevation, pitch and travel axis are listed in Table 4. From the response data of the controlled helicopter system in Table 4 it can be said that the hybrid controllers were able to provide robust and good tracking performance in both the transient and steady state responses.
\nConrol input of 3DOF helicopter control system.
Controller | \n\n\n | \n\n\n | \n\n\n | \n
---|---|---|---|
Elevation PID | \n0.343 | \n0.535 | \n1.1 | \n
Pitch PD | \n0.582 | \n1.05 | \n0 | \n
Travel PI | \n1.17 | \n12.4 | \n5.29 | \n
Values of performance elements s of controllers.
In this study, a new hybrid control methodology has been developed for complex dynamical systems through combinig the LQR optimal technique with traditional PID controller. An efficient hybrid control system has been designed to stabilize 3DOF helicopter systems. The dynamics of elevation, pitch and travel axis for a helicopter system is modeled mathematically and then formulated in state space form to enable utilizing state feedback controller technique. In the proposed helicopter stabilizing scheme, a combination of a conventional PID control with LQR state feedback controller is adopted to stabilize the elevation, pitch and travel axis of the helicopter scheme. The gain parameters of the traditional PID controller are determined from the gain matrix of state feedback LQR controller. In this research, the LQR controller is optimized by using GA tuning technique. The GA optimization method has been adopted to find optimum values for LQR gain matrix elements which are utilized to find best PID gain parameters. The output response of the optimized helicopter control system has been evaluated based on rise time, setting time, overshoot and steady state error parameters. The simulation results have shown the effectiveness of the proposed GA-LQR based PID controller to stabilize the helicopter system at desired values of the elevation and pitch angle and travel parameters.
\nIntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science",subtitle:null,isOpenForSubmission:!0,hash:"b6091426454b1c484f4d38efc722d6dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"193",title:"Pathology",slug:"medicine-pathology",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:12,numberOfAuthorsAndEditors:366,numberOfWosCitations:78,numberOfCrossrefCitations:80,numberOfDimensionsCitations:177,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-pathology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9135",title:"Rare Diseases",subtitle:null,isOpenForSubmission:!1,hash:"607a44edc1c494df4d5d126af71ca89c",slug:"rare-diseases",bookSignature:"Zhan He Wu",coverURL:"https://cdn.intechopen.com/books/images_new/9135.jpg",editedByType:"Edited by",editors:[{id:"226446",title:"Dr.",name:"Zhan He",middleName:null,surname:"Wu",slug:"zhan-he-wu",fullName:"Zhan He Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6790",title:"Fluid and Electrolyte Disorders",subtitle:null,isOpenForSubmission:!1,hash:"5f74d43da90463b17a26bbf2fb7a09ed",slug:"fluid-and-electrolyte-disorders",bookSignature:"Usman Mahmood",coverURL:"https://cdn.intechopen.com/books/images_new/6790.jpg",editedByType:"Edited by",editors:[{id:"183337",title:"Dr.",name:"Usman",middleName:null,surname:"Mahmood",slug:"usman-mahmood",fullName:"Usman Mahmood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7009",title:"Hypoxia and Anoxia",subtitle:null,isOpenForSubmission:!1,hash:"80148bd84e86e5fe1c7527637e8e3be8",slug:"hypoxia-and-anoxia",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6297",title:"Histopathology",subtitle:"An Update",isOpenForSubmission:!1,hash:"395c889b2d2cc4f452fe7e1ad8226fe4",slug:"histopathology-an-update",bookSignature:"Supriya Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6297.jpg",editedByType:"Edited by",editors:[{id:"85273",title:"Dr.",name:"Supriya",middleName:null,surname:"Srivastava",slug:"supriya-srivastava",fullName:"Supriya Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5906",title:"Pathophysiology",subtitle:"Altered Physiological States",isOpenForSubmission:!1,hash:"b277409ee570d9c47798ff5b42638603",slug:"pathophysiology-altered-physiological-states",bookSignature:"David C. Gaze",coverURL:"https://cdn.intechopen.com/books/images_new/5906.jpg",editedByType:"Edited by",editors:[{id:"71983",title:"Dr.",name:"David C.",middleName:null,surname:"Gaze",slug:"david-c.-gaze",fullName:"David C. Gaze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6025",title:"Temporomandibular Joint Pathology",subtitle:"Current Approaches and Understanding",isOpenForSubmission:!1,hash:"6663d492aea23855b9fdcf753089981e",slug:"temporomandibular-joint-pathology-current-approaches-and-understanding",bookSignature:"Yusuf Emes, Buket Aybar and Gühan Dergin",coverURL:"https://cdn.intechopen.com/books/images_new/6025.jpg",editedByType:"Edited by",editors:[{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5955",title:"Chronic Kidney Disease",subtitle:"from Pathophysiology to Clinical Improvements",isOpenForSubmission:!1,hash:"b371e3b8f0d78aa871934011fa0860c7",slug:"chronic-kidney-disease-from-pathophysiology-to-clinical-improvements",bookSignature:"Thomas Rath",coverURL:"https://cdn.intechopen.com/books/images_new/5955.jpg",editedByType:"Edited by",editors:[{id:"67436",title:"Dr.",name:"Thomas",middleName:null,surname:"Rath",slug:"thomas-rath",fullName:"Thomas Rath"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2619",title:"Histopathology",subtitle:"Reviews and Recent Advances",isOpenForSubmission:!1,hash:"fe380d20a204de277654d4d89459cfc4",slug:"histopathology-reviews-and-recent-advances",bookSignature:"Enrique Poblet Martinez",coverURL:"https://cdn.intechopen.com/books/images_new/2619.jpg",editedByType:"Edited by",editors:[{id:"157748",title:"Dr.",name:"Enrique",middleName:null,surname:"Poblet",slug:"enrique-poblet",fullName:"Enrique Poblet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"788",title:"Topics in Renal Biopsy and Pathology",subtitle:null,isOpenForSubmission:!1,hash:"ff37da307f4471516e16d5801fbb9164",slug:"topics-in-renal-biopsy-and-pathology",bookSignature:"Muhammed Mubarak and Javed I. Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/788.jpg",editedByType:"Edited by",editors:[{id:"119854",title:"Dr.",name:"Muhammed",middleName:null,surname:"Mubarak",slug:"muhammed-mubarak",fullName:"Muhammed Mubarak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"733",title:"Muscle Biopsy",subtitle:null,isOpenForSubmission:!1,hash:"6d793e898675e9191a913e63cfebab37",slug:"muscle-biopsy",bookSignature:"Challa Sundaram",coverURL:"https://cdn.intechopen.com/books/images_new/733.jpg",editedByType:"Edited by",editors:[{id:"75812",title:"Dr.",name:"Challa",middleName:null,surname:"Sundaram",slug:"challa-sundaram",fullName:"Challa Sundaram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"985",title:"Prostate Biopsy",subtitle:null,isOpenForSubmission:!1,hash:"2d821ee10598f9f1022eda0fe588f035",slug:"prostate-biopsy",bookSignature:"Nabil Kaddis Bissada",coverURL:"https://cdn.intechopen.com/books/images_new/985.jpg",editedByType:"Edited by",editors:[{id:"92564",title:"Dr.",name:"Nabil K.",middleName:null,surname:"Bissada",slug:"nabil-k.-bissada",fullName:"Nabil K. Bissada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"287",title:"Liver Biopsy",subtitle:null,isOpenForSubmission:!1,hash:"9856c3e2c382494e27f34c5264f50fd4",slug:"liver-biopsy",bookSignature:"Hirokazu Takahashi",coverURL:"https://cdn.intechopen.com/books/images_new/287.jpg",editedByType:"Edited by",editors:[{id:"40534",title:"Dr",name:"Hirokazu",middleName:null,surname:"Takahashi",slug:"hirokazu-takahashi",fullName:"Hirokazu Takahashi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:12,mostCitedChapters:[{id:"18773",doi:"10.5772/20110",title:"Ishak versus METAVIR: Terminology, Convertibility and Correlation with Laboratory Changes in Chronic Hepatitis C",slug:"ishak-versus-metavir-terminology-convertibility-and-correlation-with-laboratory-changes-in-chronic-h",totalDownloads:33114,totalCrossrefCites:9,totalDimensionsCites:18,book:{slug:"liver-biopsy",title:"Liver Biopsy",fullTitle:"Liver Biopsy"},signatures:"Gamal Shiha and Khaled Zalata",authors:[{id:"37453",title:"Prof.",name:"Gamal",middleName:null,surname:"Shiha",slug:"gamal-shiha",fullName:"Gamal Shiha"}]},{id:"18781",doi:"10.5772/19224",title:"Transient Elastography for Assessment of Non-Alcoholic Fatty Liver Disease",slug:"transient-elastography-for-assessment-of-non-alcoholic-fatty-liver-disease",totalDownloads:2559,totalCrossrefCites:0,totalDimensionsCites:9,book:{slug:"liver-biopsy",title:"Liver Biopsy",fullTitle:"Liver Biopsy"},signatures:"Ludovico Abenavoli",authors:[{id:"34117",title:"Prof.",name:"Ludovico",middleName:null,surname:"Abenavoli",slug:"ludovico-abenavoli",fullName:"Ludovico Abenavoli"}]},{id:"25595",doi:"10.5772/33534",title:"Generation and Use of Cultured Human Primary Myotubes",slug:"generation-and-use-of-cultured-human-primary-myotubes",totalDownloads:2954,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"muscle-biopsy",title:"Muscle Biopsy",fullTitle:"Muscle Biopsy"},signatures:"Lauren Cornall, Deanne Hryciw, Michael Mathai and Andrew McAinch",authors:[{id:"96027",title:"Dr.",name:"Andrew",middleName:null,surname:"McAinch",slug:"andrew-mcainch",fullName:"Andrew McAinch"}]}],mostDownloadedChaptersLast30Days:[{id:"59286",title:"Surgical Approaches to the Temporomandibular Joint",slug:"surgical-approaches-to-the-temporomandibular-joint",totalDownloads:5359,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"temporomandibular-joint-pathology-current-approaches-and-understanding",title:"Temporomandibular Joint Pathology",fullTitle:"Temporomandibular Joint Pathology - Current Approaches and Understanding"},signatures:"Mohammad Esmaeelinejad and Maryam Sohrabi",authors:[{id:"172188",title:"Dr.",name:"Mohammad",middleName:null,surname:"Esmaeelinejad",slug:"mohammad-esmaeelinejad",fullName:"Mohammad Esmaeelinejad"},{id:"240723",title:"Dr.",name:"Maryam",middleName:null,surname:"Sohrabi",slug:"maryam-sohrabi",fullName:"Maryam Sohrabi"}]},{id:"41363",title:"Molecular Histopathology",slug:"molecular-histopathology",totalDownloads:6047,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"histopathology-reviews-and-recent-advances",title:"Histopathology",fullTitle:"Histopathology - Reviews and Recent Advances"},signatures:"Hussein A. Kaoud",authors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}]},{id:"58358",title:"Internal Derangements of the Temporomandibular Joint: Diagnosis and Management",slug:"internal-derangements-of-the-temporomandibular-joint-diagnosis-and-management",totalDownloads:2059,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"temporomandibular-joint-pathology-current-approaches-and-understanding",title:"Temporomandibular Joint Pathology",fullTitle:"Temporomandibular Joint Pathology - Current Approaches and Understanding"},signatures:"Ufuk Tatli and Vladimir Machon",authors:[{id:"203864",title:"Associate Prof.",name:"Ufuk",middleName:null,surname:"Tatli",slug:"ufuk-tatli",fullName:"Ufuk Tatli"},{id:"204401",title:"Dr.",name:"Vladimir",middleName:null,surname:"Machon",slug:"vladimir-machon",fullName:"Vladimir Machon"}]},{id:"58425",title:"Inflammation and Chronic Kidney Disease: Current Approaches and Recent Advances",slug:"inflammation-and-chronic-kidney-disease-current-approaches-and-recent-advances",totalDownloads:1503,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"chronic-kidney-disease-from-pathophysiology-to-clinical-improvements",title:"Chronic Kidney Disease",fullTitle:"Chronic Kidney Disease - from Pathophysiology to Clinical Improvements"},signatures:"Simona Mihai, Elena Codrici, Ionela Daniela Popescu, Ana-Maria\nEnciu, Laura Georgiana Necula, Gabriela Anton and Cristiana\nTanase",authors:[{id:"76152",title:"Dr.",name:"Cristiana",middleName:null,surname:"Pistol-Tanase",slug:"cristiana-pistol-tanase",fullName:"Cristiana Pistol-Tanase"},{id:"80114",title:"Dr.",name:"Gabriela",middleName:null,surname:"Anton",slug:"gabriela-anton",fullName:"Gabriela Anton"},{id:"215418",title:"Dr.",name:"Ana-Maria",middleName:null,surname:"Enciu",slug:"ana-maria-enciu",fullName:"Ana-Maria Enciu"},{id:"216223",title:"Dr.",name:"Elena",middleName:null,surname:"Codrici",slug:"elena-codrici",fullName:"Elena Codrici"},{id:"216226",title:"Dr.",name:"Ionela Daniela",middleName:null,surname:"Popescu",slug:"ionela-daniela-popescu",fullName:"Ionela Daniela Popescu"},{id:"216227",title:"Dr.",name:"Simona",middleName:null,surname:"Mihai",slug:"simona-mihai",fullName:"Simona Mihai"},{id:"223988",title:"Dr.",name:"Laura Georgiana",middleName:null,surname:"Necula",slug:"laura-georgiana-necula",fullName:"Laura Georgiana Necula"}]},{id:"41355",title:"Ossifying Fibromas of the Craniofacial Skeleton",slug:"ossifying-fibromas-of-the-craniofacial-skeleton",totalDownloads:3180,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"histopathology-reviews-and-recent-advances",title:"Histopathology",fullTitle:"Histopathology - Reviews and Recent Advances"},signatures:"Bruno Carvalho, Manuel Pontes, Helena Garcia, Paulo Linhares and Rui Vaz",authors:[{id:"140061",title:"Dr.",name:"Bruno",middleName:null,surname:"Carvalho",slug:"bruno-carvalho",fullName:"Bruno Carvalho"},{id:"142266",title:"Dr.",name:"Manuel",middleName:null,surname:"Pontes",slug:"manuel-pontes",fullName:"Manuel Pontes"},{id:"142267",title:"Dr.",name:"Paulo",middleName:null,surname:"Linhares",slug:"paulo-linhares",fullName:"Paulo Linhares"},{id:"142268",title:"Prof.",name:"Rui",middleName:null,surname:"Vaz",slug:"rui-vaz",fullName:"Rui Vaz"},{id:"142958",title:"Dr.",name:"Helena",middleName:null,surname:"Garcia",slug:"helena-garcia",fullName:"Helena Garcia"}]},{id:"62184",title:"Hyponatremia and Psychotropic Drugs",slug:"hyponatremia-and-psychotropic-drugs",totalDownloads:1011,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fluid-and-electrolyte-disorders",title:"Fluid and Electrolyte Disorders",fullTitle:"Fluid and Electrolyte Disorders"},signatures:"Mireia Martínez Cortés and Pedro Gurillo Muñoz",authors:null},{id:"18778",title:"The Current Status of Non-Invasive Assessment of Liver Fibrosis: Real Time Tissue Elastography",slug:"the-current-status-of-non-invasive-assessment-of-liver-fibrosis-real-time-tissue-elastography",totalDownloads:3115,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"liver-biopsy",title:"Liver Biopsy",fullTitle:"Liver Biopsy"},signatures:"Hiroyasu Morikawa and Norifumi Kawada",authors:[{id:"34696",title:"Prof.",name:"Norifumi",middleName:null,surname:"Kawada",slug:"norifumi-kawada",fullName:"Norifumi Kawada"},{id:"53289",title:"Dr.",name:"Hiroyasu",middleName:null,surname:"Morikawa",slug:"hiroyasu-morikawa",fullName:"Hiroyasu Morikawa"}]},{id:"62764",title:"Thyroid Nodules in Diagnostic Pathology: From Classic Concepts to Innovations",slug:"thyroid-nodules-in-diagnostic-pathology-from-classic-concepts-to-innovations",totalDownloads:841,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"histopathology-an-update",title:"Histopathology",fullTitle:"Histopathology - An Update"},signatures:"Ilze Fridrihsone, Ilze Strumfa, Boriss Strumfs, Andrejs Vanags, Dainis\nBalodis, Arvids Jakovlevs, Arnis Abolins and Janis Gardovskis",authors:[{id:"54021",title:"Prof.",name:"Ilze",middleName:null,surname:"Strumfa",slug:"ilze-strumfa",fullName:"Ilze Strumfa"},{id:"159998",title:"Dr.",name:"Arnis",middleName:null,surname:"Abolins",slug:"arnis-abolins",fullName:"Arnis Abolins"},{id:"160000",title:"Prof.",name:"Janis",middleName:null,surname:"Gardovskis",slug:"janis-gardovskis",fullName:"Janis Gardovskis"},{id:"174929",title:"Dr.",name:"Andrejs",middleName:null,surname:"Vanags",slug:"andrejs-vanags",fullName:"Andrejs Vanags"},{id:"202252",title:"Dr.",name:"Arvids",middleName:null,surname:"Jakovlevs",slug:"arvids-jakovlevs",fullName:"Arvids Jakovlevs"},{id:"202253",title:"Dr.",name:"Dainis",middleName:null,surname:"Balodis",slug:"dainis-balodis",fullName:"Dainis Balodis"},{id:"203012",title:"Dr.",name:"Ilze",middleName:null,surname:"Fridrihsone",slug:"ilze-fridrihsone",fullName:"Ilze Fridrihsone"},{id:"205692",title:"MSc.",name:"Boriss",middleName:null,surname:"Strumfs",slug:"boriss-strumfs",fullName:"Boriss Strumfs"}]},{id:"55576",title:"The Roles of Indoxyl Sulphate and p-Cresyl Sulphate in Patients with Chronic Kidney Disease: A Review of Therapeutic Options",slug:"the-roles-of-indoxyl-sulphate-and-p-cresyl-sulphate-in-patients-with-chronic-kidney-disease-a-review",totalDownloads:782,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"chronic-kidney-disease-from-pathophysiology-to-clinical-improvements",title:"Chronic Kidney Disease",fullTitle:"Chronic Kidney Disease - from Pathophysiology to Clinical Improvements"},signatures:"Melissa Nataatmadja, Yeoungjee Cho, Katrina Campbell and David\nW. Johnson",authors:[{id:"50425",title:"Prof.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"183338",title:"Dr.",name:"Yeoungjee",middleName:null,surname:"Cho",slug:"yeoungjee-cho",fullName:"Yeoungjee Cho"},{id:"205845",title:"Dr.",name:"Melissa",middleName:null,surname:"Nataatmadja",slug:"melissa-nataatmadja",fullName:"Melissa Nataatmadja"},{id:"205846",title:"Dr.",name:"Katrina",middleName:null,surname:"Campbell",slug:"katrina-campbell",fullName:"Katrina Campbell"}]},{id:"41354",title:"Neuronal and Mixed Neuronal-Glial Tumors of the Central Nervous System",slug:"neuronal-and-mixed-neuronal-glial-tumors-of-the-central-nervous-system",totalDownloads:3810,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"histopathology-reviews-and-recent-advances",title:"Histopathology",fullTitle:"Histopathology - Reviews and Recent Advances"},signatures:"Mohammed M.A. Al Barbarawi, Mohammed Z. Allouh and Suhair M.A. Qudsieh",authors:[{id:"139562",title:"Dr.",name:"Mohammed",middleName:null,surname:"Barbarawi",slug:"mohammed-barbarawi",fullName:"Mohammed Barbarawi"},{id:"141645",title:"Dr.",name:"Suhair",middleName:null,surname:"Qudsieh",slug:"suhair-qudsieh",fullName:"Suhair Qudsieh"},{id:"154721",title:"Dr.",name:"Mohammed",middleName:null,surname:"Allouh",slug:"mohammed-allouh",fullName:"Mohammed Allouh"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-pathology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/100957/gad-lotan",hash:"",query:{},params:{id:"100957",slug:"gad-lotan"},fullPath:"/profiles/100957/gad-lotan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()