Factors affecting the outcome of HCV-related transplantation.
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
Anthocyanins are cell vacuole components, abundant flavonoid constituents, which are responsible for the varied colors (red, purple, and blue) of flowers, vegetables, or fruits. Apart from fruits and flowers, anthocyanins also are also accumulated in vegetative tissues where they are considered to confer protection against various biotic and abiotic stresses [1, 2, 3, 4]. They are the largest and the most important group of water-soluble plant pigments. Berries, grapes, apples, purple cabbage, black soybean, and black rice are some examples of rich anthocyanins fruits and vegetables. In their natural environments, plants are vulnerable because of multiple attacks by many different species of herbivores and also pathogens [5]. A vast spectrum of secondary metabolites have been demonstrated to act against their predators [6]. Among them are the phenolics, a large group of structurally diverse compounds, as well as certain flavonoids such as the anthocyanins. There are several ways anthocyanins assist plants in their defense against other organisms, such as chemical repellents and visual signals [7]. Along with other flavonoids, certain anthocyanins have demonstrable antiviral, antibacterial, and fungicidal activities. Also, it is generally accepted that the colors of flowers and fruits enhance reproductive success by facilitating communication between plants, their pollinators, and seed-dispersers [8]. Another positive propriety of anthocyanins is that they have demonstrated to exhibit antioxidant potential in vitro and in vivo. The antioxidant potential of anthocyanins have been demonstrated in vitro using several cell culture lines including ovarian, colon, endothelial liver, breast, leukemic cells, and keratinocytes [9, 10, 11, 12, 13, 14, 15, 16, 17]. Applied in vitro as treatment, anthocyanins have exhibited multiple antiproliferative and anticarcinogenic effects [18, 19]. The antioxidant activity of anthocyanins is a great property and was demonstrated that their chemical structure seems to be responsible for that [20, 21, 22, 23].
\nAnthocyanins occur naturally in fruits and vegetables as glycosides, having one or more sugar attached to an aglycone nucleus (anthocyanidin). Their aglycones share a C6-C3-C6 carbon skeleton, characterized by the presence of two benzyl rings (A and B) and a heterocyclic ring (C) [24].
\nAccording to hydroxylation and methylations on the different positions of the rings, there are close to 25 different aglycones [25]. They exist in natural products, mainly in a form combined with glucose, galactose, and rhamnose, the more common sugar moieties attached to the aglycone but others sugars are also frequently found, and can be divided into at least six common types, such as pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin, according to the different substituent groups on flavylium B-ring (Figure 1) [26, 27]. The sugars attached to the aglycone may in turn be further linked to other sugars through glyosidic bonds or acylated with organic aromatic or aliphatic acids [28]. One of the most striking properties linked to their chemical structure is that their color changes depending on the pH. They are natural pH indicators; they appear pink at low pH, purple in neutral conditions, and greenish-yellow in basics but the most stable form dominates at low pH [26].
\nChemical structure of the six most common anthocyanidins.
Since we consume a great amount of fruits, the daily intake of anthocyanins is highly variable and dependent on eating habits. Residents of the United States consume about 12.5 mg/day while in Europe, a highest consumption was found in Italy, about 64.9 mg/day [29, 30]. Many studies have suggested that anthocyanins have antioxidant, anti-inflammatory, and anticarcinogenic properties and lower the risk of cardiovascular disease, diabetes, arthritis, and cancer due, at least in part, to their antioxidant and anti-inflammatory activities (Figure 2) [19, 26, 31, 32].
\nAnticancer properties of anthocyanins.
Reactive oxygen species (ROS) are produced by all aerobic cells and are important to the immune system, cell signaling, and many other normal body functions. They can elicit cellular damage, leading to degenerative diseases such as inflammation, cardiovascular disease, cancer, and aging if ROS are excessively produced [33, 34, 35]. As we mention previously, anthocyanins are potent antioxidants and their effectiveness has been tested in vitro and in vivo. They quench free radicals and terminate the chain reaction that is responsible for the oxidative damage. Because of the pH in the human body, their antioxidant activity at a neutral pH has a particular importance [36]. To assess the in vivo antioxidant activity of anthocyanins, an anthocyanin mixture was administered to mice/rats that were subjected to psychological stress [37, 38]. It was noticed that anthocyanins have similar antioxidant potency as vitamin E (α-tocopherol). Dietary anthocyanins have the potential to increase serum antioxidant capacity and thereby protect against LDL oxidation and prevent cardiovascular diseases as demonstrated in a human trial [39]. Deposits oxidized cholesterol into the artery wall can lead to atherosclerosis and eventually cardiovascular diseases [40]. Several studies have shown that anthocyanins have anti-obesity effect on high-fat diets and consequently may contribute to the prevention of type 2 diabetes. One of the studies demonstrates that black soybean anthocyanins were found to effectively reverse the weight gain of high-fat diet group rats [41]. Moreover, a number of different reports indicate that consumption of fruits and vegetables, especially rich in polyphenols, decrease the incidence of type-2 diabetes, a condition associated with insulin resistance [42, 43]. Nevertheless, evidence in the use of anthocyanins to improve night vision was also revealed in other scientific articles [44, 45].
\nThe uncontrolled growth of cells which can invade and spread to distant sites of the body is a global health problem, called cancer, with high mortality. Prevention and routine monitoring are critical to early and accurate diagnosis. Most therapeutic options do not offer cure but rather a deceleration of cancer progression. They not only aim at life extension and the improvement of patients’ life quality but also often they have multiple side effects. In recent years, fruit and vegetables, including soft fruits such as berries, may represent a valid alternative than drugs with undesirable side and adverse effects, because of their chemopreventive or chemotherapeutic properties against certain diseases, such as cancer. Recent studies on the cancer preventative activities of the anthocyanins include results from in vitro cell culture and in vivo animal model tumor systems, as well as data from human epidemiological studies. Cancer cells differ from normal cells by a number of characteristics, thus being different in morphology and function. Anthocyanins can attack cancer cells due to these differences and cause a number of effects. A significant characteristic of cancer cells is their uncontrolled cell cycle, which leads to continuous division and proliferation. Pure anthocyanins and anthocyanin-rich extracts have demonstrated to inhibit cell proliferation by the ability of anthocyanins to block various stages of the cell cycle [46, 47]. Moreover, they can selectively inhibit the proliferation of cancer cells, but have little influence on the proliferation of normal cells [48, 49]. Anthocyanins have demonstrated to induce the apoptosis of cancer cells through the internal mitochondrial pathway and the external death receptor pathway. Usually, apoptosis, the programed cell death, in tumor cells is not present; therefore, dead cells cannot be eliminated normally. Cancer cells have deregulated several genes to avoid the apoptosis, such as p53, and these cells have high resistance to death compared with normal cells. In the intrinsic pathway, cytochrome c release and modulation of caspase-dependent anti- and proapoptotic proteins appear as an increase in mitochondrial membrane potential, because of anthocyanin treatment on cancer cells. In the extrinsic pathway, the expression of FAS and FASL is modulated by anthocyanins resulting apoptosis in cancer cells [50, 51, 52]. Lately, anthocyanins have been shown to suppress angiogenesis through several mechanisms such as: inhibition of H2O2 and tumor necrosis factor alpha (TNF-α)-induced VEGF expression in epidermal keratinocytes and by reducing VEGF and VEGF receptor expression in endothelial cells [53]. Angiogenesis is the physiological process of forming new blood vessels from the existing vascular network for the growth and metastasis of malignant tumors. The process of angiogenesis is controlled by multiple cytokines, of which the most important factor is vascular endothelial growth factor (VEGF); therefore, inhibiting the receptor of angiogenesis vascular endothelial growth factor receptor (VEGFR) could inhibit the metastasis of tumors effectively [18]. Anthocyanins were found to inhibit cancer cell invasion by reducing the expression of matrix metalloproteinase (MMP) and urokinase plasminogen activator (u-PA), both of which degrade extracellular matrix as part of the invasive process and, by stimulating the expression of inhibitors, both of which counteract the action of MMP and uPA [54]. There are two main aspects of cancer cells that threaten patient’s health and life: invasion and metastasis. Successful tumor cell extravasation is successful by facilitating degradation of the extracellular matrix barriers. The balance of activated proteases and their naturally occurring inhibitors determine the degradation of the basement membrane [55].
\nIn carcinogen-treated animals and also animals with a hereditary predisposition to cancer, anthocyanins have been shown to inhibit the development of cancer. Moreover, they have been proven effective in: esophageal cancer, colon cancer, skin cancer, and lung cancer. After treatment, administration in different forms, such as anthocyanin-rich tart cherry extract, black raspberry powder, lyophilized black raspberries or ethanol: H2O extract from berries, certain effects, were observed. All diets were equally effective in preventing the development of tumors, reducing tumor numbers by 42–47%, suggesting that anthocyanins in the fruits are important for their chemopreventive activity. A small summary of several types of cancer will be discussed further.
\nColon cancer is one of the most prevalent diseases across the world. In the United States, colon cancer is the second most prevalent cause of death from cancer in men and women after lung cancer, with approximately 50,310 causes of death [56]. In Europe, colorectal cancer is the second most common cancer, with 50,000 new cases diagnosed in 2012 [57]. The development of colon cancer is associated with high alcohol consumption, high-fat diet poor in fiber, red meat, obesity, smoking, lack of physical exercise, diabetes, inflammatory bowel disease, and some genetic and epigenetic alterations as: microsatellite instability, chromosomal instability, mutation of p53 gene is one of the familiar genetic changes in the development of colon cancer, and several others [58]. A very recent study published in 2017, used a mouse model, which treated them comparatively with azoxymethan (AOM)/dextran sodium sulfate (DSS) and anthocyanin-rich extract from bilberries for colon cancer development [59]. The anthocyanin extract administered to mice resulted in less inflammation of the colon and a reduced number of tumors than the control group. The formation and the growth of colorectal cancer in AOM/DSS-treated Balb/c mice were prevented by anthocyanins. Another in vivo study investigated the chemopreventive activity of commercially available anthocyanin-rich extracts of bilberry, chokeberry, and grape prepared for the food industry [60] Colon cancer male rats treated with a colon carcinogen, azoxymethane, had multiple biomarkers investigated such as: the number and multiplicity of colonic aberrant crypt foci, colonic cell proliferation, urinary levels of oxidative DNA damage, and expression of cyclooxygenase (COX) genes. Compared to the control group, rats fed with different extracts showed several changes. In rats fed with bilberry, chokeberry, and grape extracts, the number of large aberrant crypt foci was reduced. The bilberry and chokeberry diet decreased the colonic cellular proliferation, and the grape and bilberry diets had lower COX-2 mRNA expression of gene. These results clearly support the chemopreventive activity of tested extracts.
\nBreast cancer is the second most common cause of cancer-associated mortalities in women. The American Cancer Society estimated that 60,290 new cases of breast carcinoma in situ were expected to be diagnosed among women in the United States during 2015 [61]. Understanding the biology of the human epidermal growth factor receptor 2 (HER2) helps with the classification, prognosis, and treatment of breast cancer because of the overexpression of HER2 identified in 15–20% cases. HER2 is involved in proliferation, angiogenesis, invasion, and metastasis [62]. A group of scientists have used injection of cyaniding-3-glucoside and peonidin-3-glucoside to evaluate the effect on the tumors of the rats used in the experiments [63]. Compared with the control group, the tumors treated with cyanidin-3-glucoside and peonidin-3-glucoside expressed lower levels of HER2 as well as Ki67, a proliferation marker, demonstrated with histopathological studies. Also, the treated tumors expressed higher levels of caspase 3, showing the apoptotic effect of the treatment. A recent published study [64] evaluated the cytotoxicity of an anthocyanin-rich extract from black rice (AEBR) on breast cancer cells in vitro and in vivo. This study demonstrated that black rice extract has promising roles against breast cancer. The oral administration of anthocyanin-rich extract from black rice (100 mg/kg/day) on nude mice bearing MDAMB-453 cell xenografts, significantly suppressed tumor growth and angiogenesis, as well as antagonized VEGF activity.
\nLung cancer emerged as the most common cancer worldwide, with 1.8 million new cases in 2012 [57]. The treatment and prevention for lung cancer remains scarce, comparing too many other types of cancer (e.g., breast and prostate). Also, there are no standard practices for the prevention of lung cancer recurrence and metastasis, so there is a great need for some unconventional, user-friendly approaches to improve the treatment and prevent or delay the recurrent lung disease. A recent study published in 2016, investigated the tumor inhibitory activity of diet supplemented with blackberry, alone and in combination with black raspberry, against lung tumor xenograft using nude mice [65]. Their findings indicated that the mixture of blackberry and black raspberry resulted in higher inhibition of tumor growth vs. blackberry alone. Also, the combination between delphinidin (bioactive in blackberries) and punicalagin (bioactive in black raspberry, which gets converted to ellagic acid in vivo) determined a higher tumor growth inhibition than delphinidin alone. In another study, two bioactive compounds, peonidin 3-glucoside and cyanidin 3-glucoside, were isolated and identified the from Oryza sativa L. Moreover, those compounds were used to treat various cancer cells. They have demonstrated the inhibition on the growth of Lewis lung carcinoma cells in vivo [66].
\nMalignant melanoma of skin accounted for 232,000 new cases, and the regions affected are largely those with white populations [57]. Melanoma skin cancer originates in melanocytes, specialized pigment-producing cells found in both the basal layer of the epidermis. Solar UVB radiation has been implicated as the main cause for skin cancer [67]. Early diagnosis is the key for curing this potentially deadly disease. Also prevention is playing a crucial role in spotting melanomas at earlier and more curable stages [68]. Biochemotherapy, the coadministration of traditional chemotherapeutic drugs and biological agents, show a higher response rate for patients than classical treatments that are based only on chemotherapy alone [69, 70, 71, 72]. Most anticancer treatments are derived from natural resources such as marine, microbial, and botanical sources [72]. Natural supplements, a rich diet in antioxidants used as a complementary medication, become a common field of research in order to develop new products originating from natural sources with antioxidant and chemopreventive properties. The ability of anthocyanins to influence parameters of skin tumor development on mice was demonstrated in various studies. SKH-1 hairless mouse was used in order to investigate the photo-chemopreventive effect of delphinidin on UVB-induced biomarkers of skin cancer development [17]. After the treatment, the results suggest that delphinidin inhibited UVB-mediated oxidative stress and reduced DNA damage, thereby protecting the cells from UVB-induced apoptosis. The antitumor activity of the anthocyanins extract from Fructus Sorbi aucupariae on B-16 melanoma in C57BI/6 mice was also demonstrated [73]. The study revealed an increase in the counts of stromal progenitor cells in the tumor node and their accelerated maturation. The potentiation of the antimetastatic activity of the cytostatic was demonstrated as well. The inhibitory effects of mulberry anthocyanins on the metastasis of B16-F1 cells under noncytotoxic concentrations were investigated. The findings of the study have demonstrated that mulberry anthocyanins have strong anticancer effects by inhibiting the metastasis ability of B16-F1 cells. Further investigations revealed that the antimetastatic effect of these compounds was also evident in a C57BL/6 mice model.
\nProstate cancer is the most common malignancy in men and affects most men over the age of 50 and also presents one of the main causes of mortality. For the in vivo study, athymic nude mice are used. To highlight the effects of anthocyanins on tumor growth in vivo, DH145 tumor xenograft have been established in these mice. The group of animals treated with anthocyanins received an oral dose of 8 mg/kg per day. The effects of treatment were analyzed every 4 weeks. In the first 4 weeks after incubation, the difference between the control and the treated group was insignificant. In the second set of analyses (8 weeks), the difference between the groups was very clear, the control group tumors being much bigger. These differences were observed until the end of the experiment, demonstrating the ability of anthocyanins to reduce tumor growth [74]. Another study has found that delphinidin is effective in vitro on PC3 cells and has determined whether these results are also visible in in vivo models. The delphinidin doses were not toxic to the animals because they did not lose weight and did not affect the amount of food they consumed. After measurements for 12 weeks, the differences between the tumors of the two groups (control and treated) each week were significant, suggesting an antiangiogenic effect on tumor cells. At the end of the experiment, tumors were extirpated and analyzed, where effects similar to in vitro studies were observed [75].
\nAcute myeloid leukemia is a hematological malignancy that has numerous causes such as chromosomal abnormalities and various gene mutations. Fifty years ago, this type of cancer was incurable, but now around 35–40% of the cases is treatable [85]. Mice Balc/c has been used to identify in vivo benefits of mulberry anthocyanins. Leukemia mice treated with anthocyanins had a higher survival rate than the untreated ones, this survival being correlated with the concentration of treatment. All leukemia-induced mice had the spleen and liver measured at autopsy, indicating splenomegaly and hepatomegaly. The size of these organs was significantly reduced for those treated compared to the control group. The organs were evaluated histopathologically as well and again the treated group had less infiltrated tissue with leukemic cells. Taken all this into consideration, we can say that mulberry anthocyanins can improve or eliminate the leukemic mice disorder [86].
\nBased on the substitution pattern of anthocyanidins, a recent study reported that growth inhibition of HT29 cells (human colon cancer) was highly affected by delphinidin and malvidin, while pelargonidin exhibited the lowest growth inhibitory potential. Moreover, same study reported that malvidin could inhibit the activity of phosphodiesterase (PDE) and the hydrolysis of cAMP effectively in HT29 cells thereby inhibiting the MAPK signaling pathway [76]. Another research paper [77] investigated anthocyanin-rich extracts from grape (Vitis vinifera), bilberry (Vaccinium myrtillus L.), and chokeberry (Aronia melanocarpa E.) for their potential chemopreventive activity against colon cancer. The growth of colon-cancer-derived HT-29 and nontumorigenic colonic NCM460 cell lines exposed to semipurified anthocyanin-rich extracts (AREs) was monitored for up to 72 h. All extracts inhibited the growth of HT-29 cells, chokeberry extract being the most potent inhibitor. Most importantly, the growth of NCM460 cells was not inhibited at lower concentrations of all three extracts, illustrating better inhibition of colon cancer, as compared to nontumorigenic colon cells. Lately, another study [78] investigated and observed the effects of extracts from five cultivars of strawberries on the proliferation of colon cancer cells HT29 and breast cancer cells MCF-7. Using strawberry as a source of anthocyanins, they demonstrated that strawberry extracts decreased the proliferation of two cell lines in a dose-dependent manner.
\nHuman epidermal growth factor 2 (HER2) is a member of the epidermal growth factor receptor family which is overexpressed in breast cancer, and to study the in vitro effect of anthocyanins, the cell lines in breast cancer are usually HER2 positive; unfortunately, there are many other types of breast cancer that occur due to other causes. Regarding potential chemopreventive effects of anthocyanins, recently, it was demonstrated that black rice anthocyanins reduce the adhesion, migration, and invasion of HER2 MDA-MB-453 cells. The morphology of these cells was significantly altered, moving from a mesenchymal to an epithelial state. The western blot analysis shows an increase of the epithelial marker, E-cadherin, and decreased the expression of the mesenchymal markers, fibronectin and vimentin; this shows the effect that BRAC has on epithelial mesenchymal transition (EMT). EMT is a process by which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties which occurs in the initiation of metastasis in cancer progression [4]. An important role in the metastasis of MDA-MB-453 cells is the focal adhesion kinase (FAK)-signaling pathway. FAK promotes the increased expression of transcription factors associated with EMT. The cells used in certain analysis were treated with Y15 (FAK inhibitor) that inhibits the autophosphorylation site of FAK. The study shows that BRAC has a similar effect to Y15, and also BRAC decreases the activation and transduction of FAK signaling [79].
\nInhibitory effect of anthocyanins on the migration and invasion of lung cancer was also studied. A previous study reported that glycosylated cyanidins isolated from mulberry exerted a dose-dependent inhibitory effect on the migration and invasion of metastatic A549 human lung carcinoma cells. Their results showed that the applied treatments could decrease the expressions of matrix matalloprotinase-2 (MMP-2) and urokinase plasminogen activator (u-PA) in a dose-dependent manner and also enhance the expression of tissue inhibitor of matrix matalloprotinase-2 (TIMP-2) and plasminogen activator inhibitor (PAI). Moreover, Western blot analysis revealed that anthocyanins treatment to A549 cells inhibited the activation of c-Jun (p48) and NF-kB (p65). Further, another study using anthocyanins from fruits of Vitis coignetiae Pulliat (AIMs) reported their anticancer effects on lung cancer cells. AIMs inhibited the growth; migration and invasion of A549 cells; and also some proteins involved with cancer effects are inhibited. AIMs suppressed MMP-2 (gelatinase-A) and MMP-9 (gelatinase-B), both involved in the proteolytic digestion of the ECM (extracellular matrix) and cell migration through the basement membranes to reach the circulatory system. Through the immunoblotting results, a large number of proteins have been demonstrated to be suppressed by AIMs. A couple of these proteins are involved in cancer proliferation (COX-2, cyclin D1), migration and invasion (MMP-2, MMP-9), as mentioned before, anti-apoptosis (XIAP), adhesion, and angiogenesis (VEGF). However, they were not able to identify in which signaling pathway is AIMs mainly involved. This study identifies that AIMs might have anticancer effects on human lung cancer [80].
\nSeveral studies have demonstrated that flavonoids are one of the candidates for prevention of the adverse effects of UV radiation due to their UV absorbing property, and antioxidant properties. In this context, a published study revealed that grape seed proanthocyanidins (GSP) inhibits cell growth, induces G1-phase arrest, promotes apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential [81]. Many other studies have also proved the antiproliferative and proapoptotic effects of anthocyanins on melanoma or others skin diseases [82, 83, 84]. Our latest published revealed that anthocyanins may inhibit melanoma cell proliferation, increase the level of oxidative stress, and diminished mitochondrial membrane potential [84].
\nCyanidin-3-O-β-glucopyranoside (C3G) is well known to be found in a lot of anthocyanin-rich fruits, like berries. To study its effect on cancer, two cells lines were used, LnCap and DU145. These cell lines were chosen because DU145 is a tumor cell line androgen-independent and LnCap is androgen-dependent. Androgen-dependent prostate cancer is characterized by the absence of the androgen receptor due to promoter methylation. In this case, the treatment is based on hormone elimination, yet other approaches are needed if the amount of hormones does not affect the development of cancer [79]. C3G causes a decrease in cell viability in both cell lines, and apoptosis is also induced, DU145 being more responsive in this aspect. The positive effect of treatment is demonstrated by the activation of caspase 3 and a significant increase in expression of p21 protein, evidence that cells undergo apoptosis [80]. Another study focuses on proteins that indicate the presence of apoptosis such as p53 and Bax. P53, or “the guardian of the genome” is a suppressor tumor protein that initiates apoptosis in degraded DNA cells, and Bax is a pro-apoptotic protein of the Bcl-2 family [81].
\nAn bilberry extract (Antho 50) was used to determine its effect on Jurkat cells. The main interest of this study is the result of Antho 50 on certain proteins, polycomb group (PcG), which are epigenetic regulators. These proteins reduce the expression of suppressor tumor genes, promoting the survival of tumor cells [81]. The aim is to see if the extract is able to inhibit these PcG proteins. The extract was able to downregulate the PcG and related proteins and induces apoptosis. All these events have an effect on the intracellular ROS formation, causing an increase, resulting in the death of tumor cells [82]. In another study, delphinidin and cyanidin, two major compounds in Hibiscus sabdariffa, were investigated. They are able to induce cell cycle arrest in human leukemia cell line HL-60. This effect occurs because of their action on signaling pathways whose role is to induce cell cycle arrest. This indicates promising anticarcinogenic effects [83].
\nInterests in anthocyanins have increased substantially during the past two decades. In this review, we discussed at what level anthocyanins act when talking about anticancer effects. In vitro, we saw that anthocyanins affect: the proliferation of the cancer cells, inhibiting of the ability of cancer cells to divide uncontrollably, the induction of apoptosis, the process of angiogenesis where tumors form new blood vessels, and the cancer cells invasion through healthy tissue. Also, a few of the in vivo studies demonstrate that dietary anthocyanins inhibit the growth of different types of tumors, angiogenesis, and show apoptotic effect against the cancer cells. It remains to be determined whether the anticancer activity of anthocyanins is due to anthocyanins or their metabolites.
\nThe authors indicate no potential conflicts of interest. “The authors declare no conflict of interest”; “the founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.”
This work was published under the frame of a national grant financed by Romanian National Authority for Scientific Research (UEFISCDI) project number PN-III-P2-2.1-PED-2016-1002, 186PED, 01/09/2017. The work of Dumitriţa Ruginǎ is sustained by the National Fellowship Program L’Oréal-UNESCO-For Women in Science.
ROS | reactive oxygen species |
PDE | phosphodiesterase |
ARE | anthocyanin-rich extract |
LC-MC | chromatography: liquid chromatography-mass spectrometry |
VEGF | vascular endothelial growth factor |
VEGFR | vascular endothelial growth factor receptor |
TNF-α | tumor necrosis factor alpha |
MMP | matrix metalloproteinase |
u-PA | urokinase plasminogen activator |
AOM | azoxymethan |
DSS | dextran sodium sulfate |
COX | cyclooxygenase |
HER2 | human epidermal growth factor receptor 2 |
UVB | ultraviolet B |
BRAC | black rice anthocyanins |
EMT | epithelial mesenchymal transition |
FAK | focal adhesion kinase |
Y15 | FAK inhibitor |
AIMs | anthocyanins from fruits of Vitis coignetiae Pulliat |
ECM | extracellular matrix |
GSP | grape seed proanthocyanidins |
C3G | cyaniding-3-O-β-glucopyranoside |
Antho 50 | bilberry extract |
PcG | polycomb group |
MAC | mulberry anthocyanins |
Hepatitis C virus (HCV) infection is one of the main indications for liver transplantation (LT) and is a major cause of liver related mortality [1, 2]. Patients transplanted for HCV-related cirrhosis have a worse 5-year survival than those with other indications [3, 4]. HCV eradication prior to LT will likely improve the outcome by eliminating the risk of post-transplant recurrence. Over the last decade, the development of highly effectively DAA agents has allowed for the safe and successful treatment of HCV, shrinking the number of recipients with chronic HCV and improving the post-transplant outcome [5].
Hepatitis C genotype 4 (HCV-G4) is the most prevalent genotype in the Middle East, and Northern Africa [6, 7, 8, 9]. Egypt is the most affected nation by HCV and HCV-G4 accounted for 94. 1% of infections. More than 90% of liver transplants in Egypt are for HCV –G4 [10]. Earlier studies from Saudi Arabia also demonstrated that HCV-G4 is the leading indication for liver transplantation [11]. On the other hand, HCV-G4 is a rare indication for liver transplantation in other parts of the world [12, 13].
The frequency of infection with HCV-G4 is also increasing in European countries, particularly among intravenous drug users and immigrants [14, 15, 16, 17]. HCV-G4 has not been adequately studied in prospective trials evaluating treatment outcomes and remains the least studied variant. However, over the past five years’ data on treatment outcomes of HCV-G4 in the DAA era has been accumulating.
The treatment outcome of HCV-G4 in the interferon era has been reported in multiple studies [18, 19, 20, 21, 22, 23]. A higher rate of spontaneous resolution after acute HCV-G4 infection has been reported [24, 25]. Other studies associated HCV-G4 infection with hepatic steatosis [26, 27]. These observations may have an impact on the natural history and treatment outcomes of HCV-G4.
Direct antiviral agents (DAAs) represent a breakthrough in the management of HCV. First generation DAAs (telaprevir, boceprevir) in post-liver transplant patients resulted in sustained virological response of up to 60% with telaprevir in HCV-G1. However, significant side effects including severe anemia, skin complications and significant drug interactions resulted in major concerns [28]. These agents are currently contraindicated and are not used anymore. Second line direct-acting antiviral DAAs have emerged with better safety and efficacy profiles, leading to dramatic changes in the practice of HCV management [29, 30, 31, 32, 33, 34, 35, 36]. An international, multicenter, long-term follow-up study of 530 patients with chronic HCV infection who received interferon based therapy demonstrated that among patients with advanced hepatic fibrosis, sustained virological response was associated with lower all-cause mortality [37]. The revolutionary discovery of DAAs makes chronic HCV infection a curable disease in patients with advanced liver disease. Liver function may improve after antiviral therapy in patients on the waiting list and could result in patient delisting. Following liver transplantation, DAA treatment is also highly effective so that postponing antiviral treatment to the post-transplant setting may be of benefit for certain patients. The, aim of this Chapter is to examine the natural history and treatment outcomes of HCV-G4 following liver transplantation. This review includes all published studies and abstracts involving HCV-G4 patients.
The introduction of DAAs is a significant therapeutic breakthrough in the management of HCV infection. With a very high cure rate, a large proportion of LT candidates and recipients can be cured of HCV infection by DAA therapies that are safe and well-tolerated. Due to the high efficacy of these drugs, a major decline was observed in the number of LT performed both in patients with decompensated cirrhosis with HCV and in those with hepatocellular carcinoma associated with HCV worldwide [38, 39, 40]. Furthermore, the survival of LT recipients with HCV-related liver disease has clearly improved because of treatment for HCV recurrence. The advent of efficacious DAA therapy to treat HCV recurrence, resulted in an increasing trend to use HCV seropositive donors for both HCV seropositive and seronegative recipients with excellent outcome [41].
Re-infection of the graft is universal after liver transplantation regardless of genotype and has a negative impact on medium and long-term outcomes. [42]. Western studies evaluating the natural history of HCV- G4 in the pre DAA era suggested a worse outcome compared to other genotypes. Zekry et al. analyzed factors that predicted outcome of HCV-liver transplant recipients in the Australian and New Zealand communities. Among 182 patient transplanted for HCV including 16 patients infected with HCV-G4 and a median follow-up of 4 years. HCV-G4 was associated with an increased risk of re-transplantation and death in univariate and multivariate analyses. [43]. Whether this difference in outcomes was related to the pathogenicity of HCV-G4 or to other factors not examined in this study, including donor age, immunosuppression, and compliance with medications, is not clear (Table 1). Furthermore, patients infected with HCV-G4 in this study were older and more likely to have coexisting hepatocellular carcinoma. In a larger study Gane et al. investigated the impact of persistent HCV infection after liver transplantation on patient and graft survival and the effects of the HCV genotype on the severity of recurrent hepatitis. 149 patients with HCV including 14 patients with HCV-G4 infection were followed for a median of 36 months; 623 patients without HCV infection who underwent liver transplantation for end-stage chronic liver disease were used as a control group. Approximately 50% of HCV-G4 had progressive liver disease (moderate hepatitis or cirrhosis) during the follow-up period [44]. In the same study, patients infected with G1b had the worst outcome, whereas patients infected with G2 and G3 had less severe disease recurrence. A more detailed single center study from the UK aimed at studying the impact of HCV-G4 on transplant outcome. The study group included 128 patients who underwent transplantation for HCV infection: 28 patients, genotype 1; 11 patients, genotype 2; 19 patients, genotype 3; and 32 Middle Eastern patients with genotype 4 [45]. A significantly higher fibrosis progression rate was observed in HCV-G4 patients compared with non-G4 patients, although their rates of survival were similar. The five-year cumulative rates for the development of cirrhosis or severe fibrosis were 84% in HCV-G4-infected patients and 24% in patients infected with other genotypes. In the United Kingdom, those Middle Eastern patients maybe the recipients of donated organs only when available organs are declined by all UK transplant centers for UK-born patients. Thus, genotype-4 patients are more likely to receive marginal livers or livers from an older donor. This policy may have led to the selection of inferior grafts for the HCV-G4 patients, who were predominantly non-UK citizens, leading to inferior results in these patients. It has been clearly shown that advanced donor age has a negative impact on the transplant outcome including rapid progression to fibrosis and cirrhosis [46, 47, 48].
Factors affecting transplant outcome |
Viral load |
Genotype |
Coinfections |
Alcohol consumption |
Compliance |
Chronic kidney disease |
Sarcopenia |
Steatosis |
Donor Age |
Immunosuppression |
Rejection |
Factors affecting the outcome of HCV-related transplantation.
On the other hand, studies from the Middle East show a more favorable outcome. According to reports from Saudi Arabia and Egypt, overall graft and patient survival for HCV-G4 are comparable to rates reported in the international literature. Reports from Saudi Arabia reveal an overall three-year graft and patient survival rates of 90% and 80%, respectively [11, 49, 50, 51, 52, 53]. Similarly, in Egypt, where many active living–related liver transplant programs exist and HCV-G4 represents more than 90% of cases, graft and patient survival rates are approximately 86% [10].
Multiple recent studies from the Middle east evaluated the natural history of HCV-G4 following liver transplantation. A study from Saudi Arabia reported the results of patients who had biopsy-proven recurrent hepatitis C infection and made a comparison between patients with HCV-4 and non-HCV-4 genotype. They clearly demonstrated no significant differences between these two groups in terms of clinical, epidemiological, and histological factors and outcome. They found that in the initial liver biopsy, which was performed after a mean time from transplantation of more than 2 years, there were only four patients who had fibrosis scores greater than stage 3. Two of these patients progressed to cirrhosis on subsequent biopsies [54]. Among many factors included in that analysis, the only factor predictive of an advanced histological score was the HCV RNA level at the time of biopsy.
In studies published from Egypt reporting on living donor related liver (LDLT) transplantation of HCV-G4 patients, similar favorable outcomes were observed. Yosry et al. investigated the outcome of 74 Egyptian patients transplanted for HCV-G4. 31. 1% of patients developed HCV recurrence during a follow up period of 36 months. The majority of patients had mild recurrence, and 91% of the subjects had a fibrosis score of < or = F2. None of the transplanted patients developed cirrhosis or clinical decompensation. Recurrent hepatitis C virus infection was associated with a high pre and post-transplant viral load. The presence of antibodies to hepatitis B core antigen were also associated with disease recurrence [55]. In another study, recurrence was evaluated in 38 Egyptian patients infected with HCV-G4. Patient and graft survivals were 86.6% at the end of the 16 +/− 8.18 months (range, 4-35 months) follow-up period. Clinical HCV recurrence was observed in 10/38 patients (26. 3%). Similar to the previous study, none of the recipients developed cirrhosis or decompensation during the follow-up period [10]. Allam et al. compared the outcomes of Middle Eastern patients who received liver transplantation either in China or locally in Saudi Arabia, respective one- and three-year cumulative survival rates were 81% and 59% in patients transplanted in China compared with 90% and 84% for patients transplanted locally. The incidence of complications was significantly higher especially biliary complications, sepsis, metastasis and acquired HBV infection post-transplant in patients transplanted in China. Patients transplanted in Chine were more likely to undergo postoperative interventions and hospital admissions. This could be explained by the liberal recipient selection criteria, the use of donations after cardiac death, and to the limited post-transplant medical care [56].
HCV-G4 exhibits significant genetic diversity, and there are a number of viral subtypes. The impacts of the various subtypes have been demonstrated in recent studies; for example, HCV G1 subtype 1b patients were more likely to have a better post-transplant outcome compared with subtype 1a [57]. Studies performed in Egypt, where HCV-G4 subtypes 4a and 4b predominate, reveal a better antiviral treatment outcome compared with Saudi Arabia [58, 59, 60]. In a retrospective analysis of HCV-G4 patients, Roulot et al. reported better sustained virological response (SVR) in 4a subtype- compared with 4d subtype-infected individuals [61]. It is very important to point out the that the negative transplant outcome of HCV-G4 infected patients in the west is not accurate. The majority of recruited patients in these studies are older Egyptians, who have received marginal donor grafts. Co-morbidities, such as infection with schistosomiasis, and other unstudied variables may also have affected outcomes in these patients, leading to an impression that HCV-G4 is an aggressive virus. However, data originating from the Middle East, where HCV-G4 predominates, have revealed no significant difference in outcomes between G1 and G4.
More importantly the recent introduction of DAAs have changed the outlook for HCV-infected patients. The use of DAA agents in the liver transplantation setting has eliminated post-transplant HCV recurrence and improved graft and patient survival irrespective of many other factors including viral genotype.
Viral eradication or suppression prior to liver transplantation reduces post-transplant recurrence rates [62]. Interferon-based therapy was the only treatment option for HCV prior to the DAA era, however, interferon was contraindicated in patients with advanced liver cirrhosis. This negatively impacted the HCV outcome in cirrhotic and organ transplant patients [63, 64, 65].
The limited treatment options lead multiple groups to carefully evaluate Interferon based therapy in the pre transplant setting. Everson et al. evaluated the effectiveness, tolerability, and outcome of a low accelerating dose regimen (LADR) of pegylated interferon (PEG-IFN) therapy in the treatment of patients with advanced HCV. This approach was poorly tolerated especially in patients with decompensated disease. One hundred twenty-four patients were treated with LADR, Sustained virological response was achieved in less than 25% and only 12/15 patients who became HCV-RNA negative prior to transplantation remained HCV-RNA negative 6 months after transplantation [64]. In a more recent study patient with various genotypes were randomized 2: 1 to treatment (n = 31) or untreated control (n = 16). Of the patients who were treated, 23 underwent liver transplantation, and 22% achieved a post-transplantation virological response. Although pre-transplant treatment prevented post-transplant recurrence in 25% of cases, including patients infected with HCV-G4, this approach was poorly tolerated and resulted in life-threatening complications [66]. With the introduction of DAA all trials and evaluating interferon based therapies were discontinued and interferon use in this setting is currently contraindicated.
Previously treatment options for patients with recurrent HCV after transplantation were limited. IFN based therapy for patients with post-transplant recurrence were the only available option in the past, these regimens are difficult to tolerate and have disappointing efficacy with hard-to-manage drug interactions. Reported SVR rates for PEG-IFN combination therapy following liver transplantation are lower than those in the nontransplant population. Treatment regimens have been hindered by a high incidence of adverse effects, leading to treatment withdrawal.
Dabbous et al. evaluated 243 patients transplanted for HCV-G4-related cirrhosis. Patients with proven histological recurrence received PEG-IFN and ribavirin. Repeated liver biopsies were performed at 3, 6, and 12 months during treatment for the detection of immune-mediated rejection induced by interferon. Histopathological disease recurrence was high 56 (23%), and 42 patients completed the treatment. Five patients were excluded due to fibrosing cholestatic hepatitis; therefore, 37 patients were included in the study. Erythropoietin and granulocyte colony-stimulating factor were used in 70% of patients. SVR was achieved in 29 (78%) patients [67]. Ponziani et al. evaluated treatment responses in 17 Italian patients with HCV-G4 recurrence following liver transplantation. The observed overall survival after LT was 100% at 1 year and 83. 3% at 5 years. Thirty-five percent of patients achieved SVR. This study included patients treated with conventional interferon; the lack of aggressive management of hematological side effects and the inclusion of patients with advanced liver disease contributed to the low response rate [68]. Al-hamoudi et al. assessed the safety and efficacy of PEG-IFN alpha-2a in combination with RBV in the treatment of recurrent HCV genotype 4 after LT. Pretreatment liver biopsies were obtained from all patients. Five patients had advanced pretreatment liver fibrosis. Only 14 (56%) patients achieved SVR. The most common adverse effects were flu-like symptoms and cytopenia. One patient developed severe rejection complicated by sepsis, renal failure, and death. Other adverse effects included depression, mild rejection, impotence, itching, and vitiligo [69].
The treatment of chronic hepatitis C has been revolutionized with the introduction of DAAs. New oral DAAs have emerged with better safety and efficacy profiles, leading to dramatic changes in the practice of HCV management. The goal of HCV treatment is to reduce mortality and liver complications through virologic cure. The end point is sustained virological response (SVR), which is an undetectable viral load at least 12 weeks after completing treatment. The DAAs target various proteins throughout the HCV replication cycle [70]. These choices include sofosbuvir based therapy plus weight-adjusted RBV, ombitasvir/paritaprevir/ritonavir, elbasvir-grazoprevir and glecaprevir/pibrentasvir. The choice between them depends primarily on potential for drug interactions, availability, and cost. Data on the use of these new agents in cirrhotic G4 patients awaiting liver transplantation are limited. Up-to-date studies evaluating the safety and efficacy of these agents in HCV-G4 patients are summarized below.
Sofosbuvir (SOF) is a novel pangenotypic nucleotide analog inhibitor that inhibits HCV RNA replication. SOF is administered orally and inhibits the HCV NS5B polymerase. SOF exerts potent antiviral activity against all HCV genotypes [71, 72, 73, 74, 75].
Curry et al. conducted a trial to determine whether sofosbuvir and RBV treatment before liver transplantation could prevent HCV recurrence afterward. They included 61 patients with child A cirrhosis and HCV of any genotype. All involved patients were on waitlists for liver transplantation for hepatocellular carcinoma and received up to 48 weeks of sofosbuvir (400 mg) and RBV before liver transplantation. Of 46 patients who were transplanted, 43 had HCV-RNA levels of less than 25 IU/ml at the time of transplantation. Of these 43 patients, 30 (70%) exhibited a post-transplantation virological response at 12 weeks [76]. Another study evaluated the efficacy and safety of SOF in combination with RBV in HCV-G4 patients in patients of Egyptian ancestry. 60 patients were included and half of them were treatment-naïve. Patients were treated for 12 weeks (n = 31) or 24 weeks (n = 29). Overall, 23% of patients had cirrhosis. SVR was achieved by 68% of patients in the 12-week group, and by 93% of patients in the 24-week group. Treatment was well tolerated and none of the patients discontinued treatment due to an adverse event [77]. Doss et al. evaluated the efficacy and safety of SOF in combination with ribavirin in HCV-G4 patients in Egypt. 103 patients were included and received a combination of SOF and weight-adjusted RBV. 17% of the study population were cirrhotic. Patients with cirrhosis at baseline had lower rates of SVR (63% at 12 weeks, 78% at 24 weeks) than those without cirrhosis (80% at 12 weeks, 93% at 24 weeks). The most common adverse events were fatigue, headache, insomnia, and anemia. Two patients experienced serious adverse events. No adverse events resulted in treatment discontinuation [78]. In a more recent study, 2400 Egyptian patients with liver cirrhosis due to chronic HCV infection were treated with SOF and RBV for 24 weeks. The majority of included patients were treatment-naive. The overall SVR rate was 71. 2%. The most common adverse events were fatigue, myalgia, headache, insomnia, and anemia. Only 5.6% of patients discontinued treatment due to the appearance of significant complications [79]. In another study 14 409 patients received either dual therapy, SOF/RBV for 6 months (group1) or triple therapy with SOF/peg-IFN-alfa-2a/RBV for 3 months (group 2), in a cohort of patients treated in National Treatment Programme affiliated centres in Egypt. In group 1, the SVR at week 12 was 94% and in group 2 the SVR was 78.7% [80].
The efficacy of this combination following LDLT was also evaluated in Saudi Arabia. Ajlan et al. reported the safety and efficacy data on 36 post liver transplant patients who received SOF and RBV ± peg-IFN. All patients were infected with HCV-G4, mean age was 56 years, and the cohort included 24 males and one patient had cirrhosis. The majority of patients had advanced fibrosis. 28 patients were treated with PEG-IFN and RBV in addition to SOF for 12 weeks and the remaining were treated with SOF and RBV only for 24 weeks. By week 4, only four (11. 1%) patients had detectable HCV RNA [81]. In another study 39 Egyptian liver transplant recipients were treated for recurrent HCV-G4 after transplantation with SOF and ribavirin for 6 months. SVR was achieved in 76% of recipients. SVR was significantly higher in treatment-naïve patients and in recipients with a low stage of fibrosis [82]. A prospective multicenter study enrolled 40 patients with compensated recurrent HCV infection of any genotype following liver transplantation. All patients received 24 weeks of SOF 400 mg daily and RBV. Of the 40 patients enrolled and treated, 40% had biopsy proven cirrhosis, and 88% received prior interferon treatment. SVR was achieved by 28 of 40 patients. Relapse accounted for all cases of virological failure, including the only patient with HCV-G4. No deaths, graft losses, or episodes of rejection occurred. No interactions with any concomitant immunosuppressive agents were reported [83]. Forns et al. conducted a post-transplantation study in which SOF and RBV were provided on a compassionate-use basis to patients with severe recurrent HCV, including those with fibrosing cholestatic hepatitis (FCH) and decompensated liver cirrhosis with a life expectancy of less than one year. Patients received SOF and RBV for 24–48 weeks, PEG-IFN was added in some patients. The study population included patients infected with HCV- G4. The overall SVR rate was 59% and was higher (73%) in those with early severe recurrence. 123 serious adverse events occurred in 49 patients (47%). Severe adverse events associated with hepatic decompensation were the most frequent, with 26 adverse events occurring in 19 patients (18%) [84]. However, with the emergence of other treatment options this combination is not considered the best treatment option (Table 2).
Study | Sample size | Genotypes | SVR | Treatment protocol |
---|---|---|---|---|
Ajlan [81] | 36 | 4 | 91.6% | SOF+RBV+PEG-INF for 12 weeks or SOF+RBV for 24 weeks |
Dabbous [82] | 39 | 4 | 76% | SOF+RBV 24 weeks |
Forns [95] | 104 | 1, 2, 3, 4 | 59% | SOF+RBV for 24–48 weeks |
Abaalkhail [93] | 50 | 4 | 86% | LDV-SOF+/-RBV 12-24 weeks |
Mann [94] | 227 | 1,4 (n=27) | 92.5% | SOF+LDV+RBV 12-24 weeks |
Dumortier [108] | 125 | All(11 G4) | 92% | SOF/DCV+/-RBV 12-24 weeks |
Coilly [107] | 137 | All (12 G 4) | 96% | SOF+DAC |
Leroy [102] | 23 (all with FCH) | All (3 G4) | 96% | SOF+DCV for 24 weeks |
Reau [128] | 100 | All (3 G4) | 100% for G4 | Glecaprevir/Pibrentasvir for 12 weeks |
Agarwal [131] | 79 | 1,4 (n=4) | 100% for G4 | SOF/VEL |
Prospective studies that included HCV-G4 patients following liver transplantation.
SVR = sustained virological response, SOF = sofosbuvir, RBV = ribavirin, LDV = ledipsavir, DCV = daclatasvir, SIM = simeprevir, FCH = fibrosing cholestatic hepatitis, Peg-INF = pegylated interferon.
Colombo et al. evalaluated the safety and efficacy of LDV-SOF in kidney transplant recipients with chronic genotype 1 or 4 HCV infection and included patients with cirrhosis. Ten patients in this trial were infected with HCV-G4 and all included patients achieved SVR. Treatment with LDV-SOF for 12 or 24 weeks was well-tolerated and seemed to have an acceptable safety profile among kidney transplant recipients with HCV genotype 4 infection [85]. In a recently published study real-world effectiveness of LDV-SOF was evaluated. 135 patients infected with G4 were included, the overall SVR rate was 89.6% including treatment experienced and cirrhotic patients [86]. Charlton et al. (SOLAR-1) assessed treatment with LDV, SOF, and RBV in patients infected with HCV-G1 or HCV-G4. This study included a cohort of patients with cirrhosis who had not undergone liver transplantation. The SVR rate in the cirrhotic group was 86–89% [87]. Kohli et al. evaluated 12 weeks of combination therapy with LDV and SOV for patients with chronic HCV-G4 infections. 20 (95%) of 21 patients completed 12 weeks of treatment and achieved SVR (95% CI 76-100), including seven patients with cirrhosis. One patient was non-adherent to study drugs and withdrew from the study, but was included in the intention-to-treat analysis. No patients discontinued treatment because of adverse events [88]. Crespo et al. investigated the effectiveness and safety of DAAs in patients with HCV-G4 infection in routine practice. 130 patients with HCV-G4 were treated with LDV/SOV, SVR was achieved in 93. 2% of cirrhotic patients [89]. Abergel et al. also evaluated the efficacy and safety of therapy with LDV and SOF in patients with HCV-G4. Forty-four patients (22 treatments naïve and 22 treatment experienced) received a fixed-dose combination tablet of 90 mg LDV and 400 mg SOV orally once daily for 12 weeks. Ten patients (23%) had compensated cirrhosis. The SVR rate was 93% and was similar in treatment-naïve (95%, 21/22) and treatment-experienced (91%, 20/22) patients. Treatment was well tolerated with no serious adverse events [90]. Sanai et al. assessed real-world safety and efficacy of LDV/SOF with or without RBV in HCV-G4 infected patients with compensated and decompensated cirrhosis. This observational cohort (n = 213) included HCV-G4 treatment-naïve (59.6%) and -experienced (40.4%) patients with advanced fibrosis (F3, Metavir; n = 30), compensated (F4, n = 135) and decompensated cirrhosis (n = 48) treated for 12 (n = 202) or 24 weeks (n = 11) with LDV/SOF. RBV was dosed by physician discretion between 600 and 1200 mg daily. Patients with prior DAA failure were excluded from the analysis. Overall, 197 (92.5%) of the patients achieved SVR [91]. The SVR rate was as high as 98% for genotype 4 when using this combination to treat treatment-niave cirrhotic patients for 12 weeks [92]. Abaalkhail et al. evaluated prospectively the safety and efficacy of LDV-SOF for 12 to 24 weeks with or without RBV in treating HCV-4 infected patients with cirrhosis (cohort A) or post-liver transplantation (cohort B). A total of 111 patients (61 cirrhotic; 50 postliver transplants) with HCV genotype 4 were included. SVR was achieved in 91.8% and 86% of cohorts A and B, respectively. There were no treatment-related mortality or significant side effects [93].
Cohort B of the SOLAR-1 study enrolled patients who had undergone liver transplantation and included patients with post-transplant liver cirrhosis. Patients were randomly assigned to receive a fixed-dose combination tablet containing LDV and SOF plus RBV for 12 or 24 weeks. The cohort included 108 post-transplant patients. SVR was achieved in 96–98% of patients without cirrhosis or with compensated cirrhosis, in 85%–88% of patients with moderate hepatic impairment, in 60%–75% of patients with severe hepatic impairment, and in all six patients with FCH. [87]. Similarly, an open-label study at 34 sites in Europe, Canada, Australia, and New Zealand evaluated treatment outcome in the pre and post-transplant settings. Cohort A included patient with cirrhosis who had not undergone liver transplantation. Cohort B included post-transplantation patients who had either no cirrhosis; CTP-A, CTP-B, or CTP-C cirrhosis; or fibrosing cholestatic hepatitis. Patients in each group were randomly assigned to receive 12 or 24 weeks of LDV (90 mg) and SOF (400 mg) once daily, plus RBV (600–1200 mg daily). The majority of patients were infected with HCV genotype 1 and only 37 were infected with genotype 4. Among all patients with genotype 4 HCV, SVR was achieved by 14 of 18 (78%) patients (12 weeks’ treatment) and 16 of 17 (94%) patients (24 weeks’ treatment) [94]. SOF/LDV combination was also evaluated in the post-transplant setting in a recently published German study that included both genotypes 1, 4. An overall SVR was achieved in 97% of patients [95].
The safety profile of LVD/SOF with RBV was evaluated in a pooled analysis of SOLAR-1 and -2 studies. These two studies included cirrhotic or post–liver transplantation patients infected with genotypes 1 and 4 and were randomized to 12 or 24 weeks of treatment. Treatment in the two trials was well tolerated and safe. RBV-associated anemia was the most common adverse effect, representing over 50% of reported drug-related adverse events [96].
DCV is a pangenotypic NS5A inhibitor with a very low potential for drug interaction and a favorable safety profile. EL-khayat et al. investigated the efficacy and safety of SOF/DCV for treatment of patients with HCV-G4 induced cirrhosis. This was a multicenter study involving 551 patients with HCV-G4 related cirrhosis; 432 naïve patients and 119 treatment-experienced patients. All patients received SOF/DCV/RBV for 12 weeks and when RBV is contraindicated the treatment duration was extended to 24 weeks. SVR rate was 92% in naïve cirrhotic patients and 87% in previous treated patients [97]. In a French study, 176 HCV-G4 patients were treated with SOF and DCV. All the patients enrolled had advanced stages of liver fibrosis. The overall SVR rate was 90%, with the highest rate (97%) reached in cirrhotic patients treated with RBV, a the lowest (88%) in those treated without RBV [98]. In another recently published study involving only HCV-G4 patients, SVR was achieved in 100% of patients who received SOF/DCV with or without RBV. This study included patients with advanced fibrosis and cirrhosis. Adverse events occurred in 32% of patients, but none discontinued treatment [99]. The Phase II, open-label, nonrandomized IMPACT study assessed the efficacy of three DAAs (simeprevir, sofosbuvir, and daclatasvir) in HCV genotype 1/ 4-infected cirrhotic patients with portal hypertension or decompensated liver disease. All patients received simeprevir (SIM) 150 mg, DCV 60 mg, and SOF 400 mg once-daily for 12 weeks. All 40 patients included in the study achieved SVR and the combination was well tolerated [100]. The outcome of SOF/DCV/RBV in non-responders to prior sofosbuvir-based therapy was evaluated in a large Egyptian study that included 1014 patients in which 47% were cirrhotic. Overall SVR was 90.6% with no major side effects [101].
Multiple other studies showed high SVR rates among genotype 4 infected patients [102, 103, 104, 105, 106].
Data on the use of DCV in the post-transplant setting for HCV-G4-infected patients are limited.
In a multicenter prospective study 137 patients with post-transplant HCV recurrence received SOF and DCV. This cohort included 12 patients infected with HCV-G4. The SVR rate after completing treatment was 96% under the intention-to treat analysis. No clinically relevant drug–drug interactions were noted, but 52% of patients required a change to the dosage of immunosuppressive drugs [107]. A recent prospective multicenter study evaluating SOF based therapy in the post liver transplant setting was conducted and included all genotpes. The main combination regimen was SOF/DCV (73.6%). SVR was 92.8% (on an intent-to-treat basis) [108]. Leroy et al. analyzed data from 23 patients with FCH who participated in a prospective cohort study in France and Belgium to assess the effects of antiviral agents in patients with recurrence of HCV infection after liver transplantation. Three patients with G4 infection were included in this study and all 3 achieved SVR [109].
SIM is a NS3/4A protease inhibitor with antiviral activity against G1, G2, G4, G5, and G6.
An open-label, multicentre, phase IIa study evaluated the outcome of SIM plus SOF for eight or 12 weeks in HCV-G4 infected patients. This study included 23 cirrhotic patients who received a 12 week course of therapy. Treatment comprised SIM 150 mg and SOF 400 mg daily. All cirrhotic patients achieved SVR and the treatment was well tolerated [110]. In a phase III, open-label, single-arm study the efficacy and safety of 12 weeks of SIM plus SOF in treatment-naïve and experienced HCV-G4 infection, including cirrhotic patients was conducted. All patients achieved SVR including the cirrhotic patients. No serious adverse events were reported and no patients discontinued study treatment [111]. The combination of SIM/SOF in a recently published Egyptian study involving genotype 4 infected patients resulted in a SVR rate of 92% in 100 treated patients [112]. The Phase II IMPACT study was conducted in HCV genotype 1- or 4-infected cirrhotic patients with portal hypertension or decompensated liver disease and assessed the combination of the three direct-acting antivirals SIM, DCV and SOF. All 40 patients achieved SVR [113]. Multiple other studies that included cirrhotic and treatment experienced patients treated with SIM and SOF revealed high SVR rates [114, 115, 116].
The efficacy and safety of SOF-based regimens in the real world among a cohort of Egyptian patients with recurrent HCV post LDLT was evaluated in HCV-G4 infected patients. 190 patients were included. Out of 190, 119 received SOF/RBV, 38 SOF/SIM, 22 SOF/DCV)/ ± RBV, and 11 received SOF/LDV/ ± RBV. SVR rates were as follow: 84.9% in SOF/RBV group, 94.7% in SOF/SIM, 100% in SOF/DCV, and 100% in SOF/LDV. Treatment was well tolerated with no significant drug–drug interactions [117]. The outcome of the combination SIM + SOF ± RBV in a group of liver transplant patients with HCV genotype 4 infection in Spain was evaluated in a real life study. This was a multicenter retrospective study, including 28 HCV genotype 4 patients from 11 liver transplant centers. The SVR was 95.23% including patients with advanced fibrosis and cirrhosis [118].
The combination of ombitasvir, ritonavir and paritaprevir was evaluated in multiple studies involving compensated cirrhotic HCV-G4 patients and revealed high SVR rates reaching 100% in some studies [119, 120, 121, 122, 123, 124]. In a recent meta-analyses, 20 cohorts across 12 countries were identified, totaling 5158 patients infected with G1 and 4. The overall SVR rates were 98.9% for HCV-G4 infected patients [125]. The regimen is contraindicated in Child Pugh classes B and C cirrhosis, therefor its use in the pre transplant setting is limited.
The EXPEDITION-1 trial enrolled 146 patients with compensated cirrhosis, 16 (11%) patients were infected with HCV-G4. Patients in this trial received a fixed dose of glecaprevir (300 mg)/pibrentasvir (120 mg) for 12 weeks. SVR was 100% for patients infected with HCV-G4 [126].
EXPEDITION-8 is a randomized trial that enrolled 343 patients with HCV Genotypes 1–6 and compensated cirrhosis. All patients received an 8-week course of Glecaprevir/Pibrentasvir. Of 343 patients, 13 had HCV-G4. The SVR12 rate in HCV-G4 was 100% [127].
On the other hand, MAGELLAN-2 trial was a phase 3, open-label trial for patients at least 3 months post transplantation. The study enrolled 100 patients of HCV. Three patients with genotype 4 underwent LT. After a 12-week course, all HCV-G4 infected patients achieved SVR 12 [128].
Immunosuppressive therapy should be monitored closely due to the possibility of drug–drug interaction when used with protease inhibitors.
In 2015, ASTRAL-1 evaluated the efficacy and safety of 12-week course of VEL and SOF. Of the 624 patients, 116 (19%) had genotype 4. One fourth of genotype 4 patients had cirrhosis. After a 12-week course of SOV/VEL, all patients (100%) with HCV-G4 achieved SVR [129].
ASTRAL-4 trial enrolled 267 patients with decompensated cirrhosis, CPT B. The study was open label with 3 arms that included: SOF/VEL for 12 weeks, SOF/VEL in addition to RBV for 12 weeks, or SOF/VEL for 24 weeks. In this trial, 8 (3%) patients had genotype 4. Regardless of the assigned arm, all genotype 4 patients (100%) achieved SVR. In this study, 81% of patients with MELD score above 15 had improvement after completion of treatment. This study was one of the earliest trials to evaluate SOV/VEL for decompensated cirrhotic patients [130].
In a recent trial 79 post liver transplant patients with HCV-G 1 and 4 received SOF/VEL daily for 12 weeks. In this trial, 4 patients were infected with HCV-G4. All patients with genotype 4 achieved SVR. There were no deaths or rejection episodes during the study period [131].
POLARIS-1 trial assessed the safety and efficacy of SOF/VEL/VOX taken for 12 weeks vs. placebo. Patients with cirrhosis represented 46% of the study population. All patients with genotype 4 (22) were in the active treatment arm. By the end of the study period, 20 patients (91%) achieved SVR. One cirrhotic patient developed NS5A Y93H resistance-associated substitution and the other one did not receive treatment.
In the POLARIS-4 trial, patients were assigned to either SOF/VEL/VOX or SOF/VEL once daily for 12 weeks. All genotype 4 patients received SOF/VEL/VOX. The SVR rate was 100% for HCV-G4 infected patients [132].
The use of combined SOF/VEL/VOX is not recommended in patients with advanced liver disease CPT C. There are no currently strong data to support SOF/VEL/VOX use post liver transplantation. Case reports showed favorable outcome in the post-transplant setting [133].
A randomized controlled open label trial assessed the effectiveness of EBR/GZR with or without RBV for 12 or 16 weeks. The study population was 420 patients out of whom 36 had HCV-G4. The SVR for HCV-G4 patients was 89% which improved with a longer duration of treatment [134].
Jacobson et al. published the integrated analysis of 6 clinical trials. The analysis included 402 patients who received EBR/GZR once daily +/− RBV, for 12-18 weeks. Twenty-three patients with HCV-G4 were included in the analysis. Six patients were treatment naïve and they all achieved SVR. In the treatment experienced group, 4 patients (100%) achieved SVR after 16-18 week of treatment. However, the success rate was lower in treatment experienced patients with a 12-week course without RBV (66.7%) or with RBV (80%) [135].
Data for this combination in the post-transplant setting is limited.
Despite the high SVR rate associated with DAA in HCV-G4 infected patients, a small percentage of patients do not respond to treatment. In the early era of DAA the most common approach was to add RBV or in some studies PEG-IFN and extend the treatment duration. However, with the emergence of new DAA choices, changing to another DAA became the most common approach. Yousif et al. conducted a prospective cohort study to assess the safety and efficacy of 12 weeks’ retreatment with either combination of SOF/DCV/SMV/RBV (45 patients) or SOF/OBV/PTV/r/RBV (163 patients) in patients who had previously failed NS5A inhibitors-based regimens. The overall SVR rates in the two groups were 98. 1% [136]. In another study, patients who failed SOF/DCV were retreated successfully with other DAAs [137]. In a recently published study quadruple regimen of (sofosbuvir, daclatasvir, and simeprevir with a weight-based ribavirin) in chronic HCV-G4 DAAs-experienced patients was successful in eradicating the virus [138]. Multiple other studies revealed similar results [139, 140].
The management of hepatitis C virus (HCV) infection in patients with decompensated cirrhosis has evolved dramatically. DAAs have shown to be safe and effective in patients with decompensated cirrhosis with high SVR rates. However, it is still debatable on when to initiate treatment in patients with advanced liver disease. Krassenburg et al. evaluated the impact of SVR in a large international multicenter cohort study, including a large number of patients with HCV-related cirrhosis treated with DAAs. Achievement of SVR was independently associated with a 2. 5-fold lower risk of cirrhosis-related complications or death in patients with compensated cirrhosis. On the other hand, no clinical benefit was apparent with HCV eradication in patients with decompensated liver disease. Among patients with CP-B/C cirrhosis, the event-free survival and LT-free survival did not differ between those with SVR and those without SVR. Furthermore, MELD score improvement did not translate to a beneficial clinical outcome in these subset of patients. Thus, DAA therapy may lower prioritization for LT through MELD score reduction, which is likely to primarily affect those with a more urgent need liver transplantation [141]. Other recently published studies assessed the impact of DAAs on patients awaiting liver transplant. They evaluated whether patients can be first inactivated due to clinically improvement and subsequently delisted in a real life setting. Treated patient had a significant improvement in the median MELD and Child Pugh score. They concluded that all oral DAAs were able to reverse liver dysfunction and may result in delisting of about 20-30% of patients. Patients with lower MELD scores had higher chances to be delisted. However, the longer term benefits of therapy need to be ascertained [142, 143]. Similarly, Afdahl et al. evaluated the outcome of DAA in compensated and decompensated cirrhotic patients. They also measured the hepatic venous pressure gradient before and after treatment in fifty patients with Child-Pugh-Turcotte (CPT) A and B cirrhosis and portal hypertension. They observed a clinically meaningful improvement in portal hypertension in addition to improvements in liver biochemistry, Child–Pugh score and Model for End-Stage Liver Disease scores [144]. The potential benefits of treating patients on the waiting list include potential improvements in overall clinical status that may salvage these patients from liver transplantation; reducing post-transplant recurrence; and avoiding possible post-transplant drug–drug interactions. One concern is that treating these patients may lower their MELD scores and drive them down the transplant list, thus delaying transplantation despite persistent portal hypertensive complications.
IntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"178"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"54",title:"Human Genetics",slug:"human-genetics",parent:{title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:31,numberOfAuthorsAndEditors:1019,numberOfWosCitations:1067,numberOfCrossrefCitations:413,numberOfDimensionsCitations:1019,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"human-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8073",title:"Chromosomal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"6a9d3c58434edf5e65f9849a6858edfe",slug:"chromosomal-abnormalities",bookSignature:"Tülay Aşkın Çelik and Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/8073.jpg",editedByType:"Edited by",editors:[{id:"74041",title:"Dr.",name:"Tulay",middleName:null,surname:"Askin Celik",slug:"tulay-askin-celik",fullName:"Tulay Askin Celik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6920",title:"Cytogenetics",subtitle:"Past, Present and Further Perspectives",isOpenForSubmission:!1,hash:"d72001eed508dfa72d9a68e1de28bb4b",slug:"cytogenetics-past-present-and-further-perspectives",bookSignature:"Marcelo Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/6920.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6719",title:"Genetic Diversity and Disease Susceptibility",subtitle:null,isOpenForSubmission:!1,hash:"0c9919347cc7cb1dcbc245ce8684eee7",slug:"genetic-diversity-and-disease-susceptibility",bookSignature:"Yamin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/6719.jpg",editedByType:"Edited by",editors:[{id:"201887",title:"Ph.D.",name:"Yamin",middleName:null,surname:"Liu",slug:"yamin-liu",fullName:"Yamin Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7204",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription Toward the Establishment of Novel Therapeutics",isOpenForSubmission:!1,hash:"10030057b2e2dee7d800ff27658c3a69",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-toward-the-establishment-of-novel-therapeutics",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/7204.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6435",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription From General Aspects",isOpenForSubmission:!1,hash:"8573c44c537def5c800a0f6d4ed844d6",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-from-general-aspects",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/6435.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5784",title:"Antibody Engineering",subtitle:null,isOpenForSubmission:!1,hash:"2c8c3e133140fbc7f563918285e7c3c2",slug:"antibody-engineering",bookSignature:"Thomas Böldicke",coverURL:"https://cdn.intechopen.com/books/images_new/5784.jpg",editedByType:"Edited by",editors:[{id:"176804",title:"Dr.",name:"Thomas",middleName:null,surname:"Böldicke",slug:"thomas-boldicke",fullName:"Thomas Böldicke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5986",title:"The Role of Matrix Metalloproteinase in Human Body Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"ef3e8940d7f0b229028d6fb71b1e0927",slug:"the-role-of-matrix-metalloproteinase-in-human-body-pathologies",bookSignature:"Francesco Travascio",coverURL:"https://cdn.intechopen.com/books/images_new/5986.jpg",editedByType:"Edited by",editors:[{id:"172239",title:"Dr.",name:"Francesco",middleName:null,surname:"Travascio",slug:"francesco-travascio",fullName:"Francesco Travascio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5817",title:"Embryo Cleavage",subtitle:null,isOpenForSubmission:!1,hash:"11de486fcf8fe42d4359c65e71a8f1da",slug:"embryo-cleavage",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/5817.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4588",title:"New Discoveries in Embryology",subtitle:null,isOpenForSubmission:!1,hash:"2d40aace9724b9c451a8d8168acd0169",slug:"new-discoveries-in-embryology",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4588.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4594",title:"胚胎移植新进展",subtitle:"Advances in Embryo Transfer",isOpenForSubmission:!1,hash:"32b738c0d0cbce7a61a3ea63b5d43ed0",slug:"advances-in-embryo-transfer-translation-chinese",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4594.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1907",title:"Reviews on Selected Topics of Telomere Biology",subtitle:null,isOpenForSubmission:!1,hash:"5f4f25ba706645403bab2aa721a0809b",slug:"reviews-on-selected-topics-of-telomere-biology",bookSignature:"Bibo Li",coverURL:"https://cdn.intechopen.com/books/images_new/1907.jpg",editedByType:"Edited by",editors:[{id:"109879",title:"Dr.",name:"Bibo",middleName:null,surname:"Li",slug:"bibo-li",fullName:"Bibo Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2518",title:"Binding Protein",subtitle:null,isOpenForSubmission:!1,hash:"6e70c7a9b0007d8f78ae4f3effba9664",slug:"binding-protein",bookSignature:"Kotb Abdelmohsen",coverURL:"https://cdn.intechopen.com/books/images_new/2518.jpg",editedByType:"Edited by",editors:[{id:"144861",title:"Dr.",name:"Kotb",middleName:null,surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:31,mostCitedChapters:[{id:"38236",doi:"10.5772/50129",title:"Extrinsic and Intrinsic Apoptosis Signal Pathway Review",slug:"extrinsic-and-intrinsic-apoptosis-signal-pathway-review",totalDownloads:10544,totalCrossrefCites:33,totalDimensionsCites:61,book:{slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Zhao Hongmei",authors:[{id:"146795",title:"Dr.",name:"Zhao",middleName:null,surname:"Hongmei",slug:"zhao-hongmei",fullName:"Zhao Hongmei"}]},{id:"35489",doi:"10.5772/37107",title:"MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies",slug:"mm-gb-pb-sa-calculations-of-protein-ligand-binding-free-energies",totalDownloads:8040,totalCrossrefCites:9,totalDimensionsCites:45,book:{slug:"molecular-dynamics-studies-of-synthetic-and-biological-macromolecules",title:"Molecular Dynamics",fullTitle:"Molecular Dynamics - Studies of Synthetic and Biological Macromolecules"},signatures:"Joseph M. Hayes and Georgios Archontis",authors:[{id:"102666",title:"Dr.",name:"Joseph",middleName:"M.",surname:"Hayes",slug:"joseph-hayes",fullName:"Joseph Hayes"},{id:"111282",title:"Prof.",name:"Georgios",middleName:null,surname:"Archontis",slug:"georgios-archontis",fullName:"Georgios Archontis"}]},{id:"38806",doi:"10.5772/48277",title:"Bacterial Two-Component Systems: Structures and Signaling Mechanisms",slug:"bacterial-two-component-systems-structures-and-signaling-mechanisms",totalDownloads:4694,totalCrossrefCites:14,totalDimensionsCites:28,book:{slug:"protein-phosphorylation-in-human-health",title:"Protein Phosphorylation in Human Health",fullTitle:"Protein Phosphorylation in Human Health"},signatures:"Shuishu Wang",authors:[{id:"141519",title:"Dr.",name:"Shuishu",middleName:null,surname:"Wang",slug:"shuishu-wang",fullName:"Shuishu Wang"}]}],mostDownloadedChaptersLast30Days:[{id:"62578",title:"DNA Polymorphisms: DNA-Based Molecular Markers and Their Application in Medicine",slug:"dna-polymorphisms-dna-based-molecular-markers-and-their-application-in-medicine",totalDownloads:3132,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"genetic-diversity-and-disease-susceptibility",title:"Genetic Diversity and Disease Susceptibility",fullTitle:"Genetic Diversity and Disease Susceptibility"},signatures:"Salwa Teama",authors:[{id:"249329",title:"Dr.",name:"Salwa",middleName:null,surname:"Teama",slug:"salwa-teama",fullName:"Salwa Teama"}]},{id:"59173",title:"Separation of Monoclonal Antibodies by Analytical Size Exclusion Chromatography",slug:"separation-of-monoclonal-antibodies-by-analytical-size-exclusion-chromatography",totalDownloads:2846,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Atis Chakrabarti",authors:[{id:"199389",title:"Ph.D.",name:"Atis",middleName:null,surname:"Chakrabarti",slug:"atis-chakrabarti",fullName:"Atis Chakrabarti"}]},{id:"56481",title:"Detailed Protocols for the Selection of Antiviral Human Antibodies from Combinatorial Immune Phage Display Libraries",slug:"detailed-protocols-for-the-selection-of-antiviral-human-antibodies-from-combinatorial-immune-phage-d",totalDownloads:1369,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Philipp Diebolder and Adalbert Krawczyk",authors:[{id:"198001",title:"Dr.",name:"Adalbert",middleName:null,surname:"Krawczyk",slug:"adalbert-krawczyk",fullName:"Adalbert Krawczyk"},{id:"198002",title:"Dr.",name:"Philipp",middleName:null,surname:"Diebolder",slug:"philipp-diebolder",fullName:"Philipp Diebolder"}]},{id:"38804",title:"The Prp4 Kinase: Its Substrates, Function and Regulation in Pre-mRNA Splicing",slug:"the-prp4-kinase-its-substrates-function-and-regulation-in-pre-mrna-splicing",totalDownloads:2303,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"protein-phosphorylation-in-human-health",title:"Protein Phosphorylation in Human Health",fullTitle:"Protein Phosphorylation in Human Health"},signatures:"Martin Lützelberger and Norbert F. Käufer",authors:[{id:"141382",title:"Prof.",name:"Norbert",middleName:"F.",surname:"Käufer",slug:"norbert-kaufer",fullName:"Norbert Käufer"},{id:"144512",title:"Dr.",name:"Martin",middleName:null,surname:"Lützelberger",slug:"martin-lutzelberger",fullName:"Martin Lützelberger"}]},{id:"49200",title:"Human Embryology",slug:"human-embryology",totalDownloads:2688,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"new-discoveries-in-embryology",title:"New Discoveries in Embryology",fullTitle:"New Discoveries in Embryology"},signatures:"Shigehito Yamada, Mark Hill and Tetsuya Takakuwa",authors:[{id:"49486",title:"Prof.",name:"Shigehito",middleName:null,surname:"Yamada",slug:"shigehito-yamada",fullName:"Shigehito Yamada"},{id:"90205",title:"Prof.",name:"Tetsuya",middleName:null,surname:"Takakuwa",slug:"tetsuya-takakuwa",fullName:"Tetsuya Takakuwa"},{id:"175453",title:"Dr.",name:"Mark",middleName:null,surname:"Hill",slug:"mark-hill",fullName:"Mark Hill"}]},{id:"58467",title:"Generation of Antibody Diversity",slug:"generation-of-antibody-diversity",totalDownloads:2024,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Oliver Backhaus",authors:[{id:"177685",title:"M.Sc.",name:"Oliver",middleName:null,surname:"Backhaus",slug:"oliver-backhaus",fullName:"Oliver Backhaus"}]},{id:"40892",title:"Control of Telomere Length in Drosophila",slug:"control-of-telomere-length-in-drosophila",totalDownloads:1455,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"reviews-on-selected-topics-of-telomere-biology",title:"Reviews on Selected Topics of Telomere Biology",fullTitle:"Reviews on Selected Topics of Telomere Biology"},signatures:"Sergey Shpiz and Alla Kalmykova",authors:[{id:"115829",title:"Dr.",name:"Alla",middleName:null,surname:"Kalmykova",slug:"alla-kalmykova",fullName:"Alla Kalmykova"},{id:"117877",title:"Dr.",name:"Sergey",middleName:null,surname:"Shpiz",slug:"sergey-shpiz",fullName:"Sergey Shpiz"}]},{id:"39204",title:"Modulation of Gene Expression by RNA Binding Proteins: mRNA Stability and Translation",slug:"modulation-of-gene-expression-by-rna-binding-proteins-mrna-stability-and-translation",totalDownloads:4940,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"binding-protein",title:"Binding Protein",fullTitle:"Binding Protein"},signatures:"Kotb Abdelmohsen",authors:[{id:"144861",title:"Dr.",name:"Kotb",middleName:null,surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}]},{id:"19303",title:"Archaeal DNA Repair Nucleases",slug:"archaeal-dna-repair-nucleases",totalDownloads:2322,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"dna-repair-on-the-pathways-to-fixing-dna-damage-and-errors",title:"DNA Repair",fullTitle:"DNA Repair - On the Pathways to Fixing DNA Damage and Errors"},signatures:"Roxanne Lestini, Christophe Creze, Didier Flament, Hannu Myllykallio and Ghislaine Henneke",authors:[{id:"44844",title:"Dr.",name:"Hannu",middleName:null,surname:"Myllykallio",slug:"hannu-myllykallio",fullName:"Hannu Myllykallio"},{id:"51718",title:"Dr.",name:"Ghislaine",middleName:null,surname:"Henneke",slug:"ghislaine-henneke",fullName:"Ghislaine Henneke"},{id:"57263",title:"Dr.",name:"Rosane",middleName:null,surname:"Lestini",slug:"rosane-lestini",fullName:"Rosane Lestini"},{id:"57264",title:"Dr.",name:"Christophe",middleName:null,surname:"Creze",slug:"christophe-creze",fullName:"Christophe Creze"},{id:"57265",title:"Dr.",name:"Didier",middleName:null,surname:"Flament",slug:"didier-flament",fullName:"Didier Flament"}]},{id:"38242",title:"Cell Death and Cancer, Novel Therapeutic Strategies",slug:"cell-death-and-cancer-novel-therapeutic-strategies",totalDownloads:3117,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Silvina Grasso, M. Piedad Menéndez-Gutiérrez, Estefanía Carrasco-García, Leticia Mayor-López, Elena Tristante, Lourdes Rocamora-Reverte, Ángeles Gómez-Martínez, Pilar García-Morales, José A. Ferragut, Miguel Saceda and Isabel Martínez-Lacaci",authors:[{id:"145739",title:"Dr.",name:"Isabel",middleName:null,surname:"Martinez-Lacaci",slug:"isabel-martinez-lacaci",fullName:"Isabel Martinez-Lacaci"}]}],onlineFirstChaptersFilter:{topicSlug:"human-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/liver-transplantation-and-hcv-genotype-4",hash:"",query:{},params:{chapter:"liver-transplantation-and-hcv-genotype-4"},fullPath:"/online-first/liver-transplantation-and-hcv-genotype-4",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()