Major elements of the agricultural practices of winter wheat in different farming systems (1996-2011); source [59].
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"1938",leadTitle:null,fullTitle:"Advanced Wireless LAN",title:"Advanced Wireless LAN",subtitle:null,reviewType:"peer-reviewed",abstract:"The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN.",isbn:null,printIsbn:"978-953-51-0645-6",pdfIsbn:"978-953-51-5637-6",doi:"10.5772/2356",price:119,priceEur:129,priceUsd:155,slug:"advanced-wireless-lan",numberOfPages:148,isOpenForSubmission:!1,isInWos:1,hash:"e4d4c069bc97e5c0ad97e60e023b6827",bookSignature:"Song Guo",publishedDate:"June 5th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1938.jpg",numberOfDownloads:17699,numberOfWosCitations:6,numberOfCrossrefCitations:2,numberOfDimensionsCitations:7,hasAltmetrics:0,numberOfTotalCitations:15,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2011",dateEndSecondStepPublish:"June 16th 2011",dateEndThirdStepPublish:"October 21st 2011",dateEndFourthStepPublish:"November 20th 2011",dateEndFifthStepPublish:"March 19th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"15566",title:"Dr.",name:"Song",middleName:null,surname:"Guo",slug:"song-guo",fullName:"Song Guo",profilePictureURL:"https://mts.intechopen.com/storage/users/15566/images/system/15566.jpg",biography:"Song Guo received the Ph.D. degree in computer science from the University of Ottawa, Canada in 2005. He is currently a Senior Associate Professor at School of Computer Science and Engineering, the University of Aizu, Japan. His research interests are mainly in the areas of protocol design and performance analysis for computer and telecommunication networks, presently focusing on network modeling, security analysis, cross-layer optimization, and performance evaluation of wireless ad hoc and sensor networks for reliable, energy-efficient, and cost effective communications.\nDr. Guo is a senior member of IEEE and a member of ACM. He serves in many international journal editorial boards, including the prestigious IEEE\nTransactions on Parallel and Distributed Systems and Wireless Communications and Mobile Computing.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Aizu",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"540",title:"Wireless Communication Network",slug:"communications-and-security-wireless-communication-network"}],chapters:[{id:"37349",title:"Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN",doi:"10.5772/36886",slug:"sum-product-decoding-of-punctured-convolutional-code-for-wireless-lan",totalDownloads:2286,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Toshiyuki Shohon",downloadPdfUrl:"/chapter/pdf-download/37349",previewPdfUrl:"/chapter/pdf-preview/37349",authors:[{id:"110293",title:"Dr.",name:"Toshiyuki",surname:"Shohon",slug:"toshiyuki-shohon",fullName:"Toshiyuki Shohon"}],corrections:null},{id:"37350",title:"A MAC Throughput in the Wireless LAN",doi:"10.5772/36796",slug:"a-mac-throughput-in-the-wireless-lan",totalDownloads:7852,totalCrossrefCites:0,totalDimensionsCites:5,signatures:"Ha Cheol Lee",downloadPdfUrl:"/chapter/pdf-download/37350",previewPdfUrl:"/chapter/pdf-preview/37350",authors:[{id:"109858",title:"Dr.",name:"Ha Cheol",surname:"Lee",slug:"ha-cheol-lee",fullName:"Ha Cheol Lee"}],corrections:null},{id:"37351",title:"MAC-Layer QoS Evaluation Metrics for IEEE 802.11e-EDCF Protocol over Nodes' Mobility Constraints",doi:"10.5772/38196",slug:"qos-evaluation-metrics-for-ieee-802-11e-mac-protocol-over-nodes-mobility-constraints",totalDownloads:2150,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Khaled Dridi, Boubaker Daachi and Karim Djouani",downloadPdfUrl:"/chapter/pdf-download/37351",previewPdfUrl:"/chapter/pdf-preview/37351",authors:[{id:"80273",title:"Prof.",name:"Karim",surname:"Djouani",slug:"karim-djouani",fullName:"Karim Djouani"},{id:"115938",title:"Dr.",name:"Khaled",surname:"Dridi",slug:"khaled-dridi",fullName:"Khaled Dridi"},{id:"115963",title:"Prof.",name:"Boubaker",surname:"Daachi",slug:"boubaker-daachi",fullName:"Boubaker Daachi"}],corrections:null},{id:"37352",title:"Techniques for Preserving QoS Performance in Contention-Based IEEE 802.11e Networks",doi:"10.5772/36785",slug:"techniques-for-preserving-qos-performance-in-contention-based-ieee-802-11e-networks",totalDownloads:1983,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Alessandro Andreadis and Riccardo Zambon",downloadPdfUrl:"/chapter/pdf-download/37352",previewPdfUrl:"/chapter/pdf-preview/37352",authors:[{id:"109796",title:"Prof.",name:"Alessandro",surname:"Andreadis",slug:"alessandro-andreadis",fullName:"Alessandro Andreadis"},{id:"116556",title:"Dr.",name:"Riccardo",surname:"Zambon",slug:"riccardo-zambon",fullName:"Riccardo Zambon"}],corrections:null},{id:"37353",title:"QoS Adaptation for Realizing Interaction Between Virtual and Real Worlds Through Wireless LAN",doi:"10.5772/36967",slug:"qos-adaptation-for-realizing-interaction-between-virtual-and-real-worlds-through-wireless-lan",totalDownloads:1309,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Shinya Yamamoto, Naoki Shibata, Keiichi Yasumoto and Minoru Ito",downloadPdfUrl:"/chapter/pdf-download/37353",previewPdfUrl:"/chapter/pdf-preview/37353",authors:[{id:"15671",title:"Dr.",name:"Minoru",surname:"Ito",slug:"minoru-ito",fullName:"Minoru Ito"},{id:"110639",title:"Dr.",name:"Shinya",surname:"Yamamoto",slug:"shinya-yamamoto",fullName:"Shinya Yamamoto"},{id:"116552",title:"Dr.",name:"Naoki",surname:"Shibata",slug:"naoki-shibata",fullName:"Naoki Shibata"},{id:"116553",title:"Dr.",name:"Keiichi",surname:"Yasumoto",slug:"keiichi-yasumoto",fullName:"Keiichi Yasumoto"}],corrections:null},{id:"37354",title:"Custom CMOS Image Sensor with Multi-Channel High-Speed Readout Dedicated to WDM-SDM Indoor Optical Wireless LAN",doi:"10.5772/37286",slug:"custom-cmos-image-sensor-with-multi-channel-high-speed-readout-dedicated-to-wdm-sdm-indoor-optic",totalDownloads:2119,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Keiichiro Kagawa",downloadPdfUrl:"/chapter/pdf-download/37354",previewPdfUrl:"/chapter/pdf-preview/37354",authors:[{id:"112093",title:"Prof.",name:"Keiichiro",surname:"Kagawa",slug:"keiichiro-kagawa",fullName:"Keiichiro Kagawa"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"135",title:"Wireless Sensor Networks",subtitle:"Application - Centric Design",isOpenForSubmission:!1,hash:null,slug:"wireless-sensor-networks-application-centric-design",bookSignature:"Geoff V Merrett and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/135.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"137",title:"Sustainable Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"sustainable-wireless-sensor-networks",bookSignature:"Winston Seah and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/137.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3628",title:"Mobile and Wireless Communications",subtitle:"Network Layer and Circuit Level Design",isOpenForSubmission:!1,hash:null,slug:"mobile-and-wireless-communications-network-layer-and-circuit-level-design",bookSignature:"Salma Ait Fares and Fumiyuki Adachi",coverURL:"https://cdn.intechopen.com/books/images_new/3628.jpg",editedByType:"Edited by",editors:[{id:"3125",title:"Dr.",name:"Salma",surname:"Ait Fares",slug:"salma-ait-fares",fullName:"Salma Ait Fares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"97",title:"Cellular Networks",subtitle:"Positioning, Performance Analysis, Reliability",isOpenForSubmission:!1,hash:"ca45ba51c623c9aef3c0d25772413039",slug:"cellular-networks-positioning-performance-analysis-reliability",bookSignature:"Agassi Melikov",coverURL:"https://cdn.intechopen.com/books/images_new/97.jpg",editedByType:"Edited by",editors:[{id:"23032",title:"Dr.",name:"Agassi",surname:"Melikov",slug:"agassi-melikov",fullName:"Agassi Melikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"136",title:"Smart Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"smart-wireless-sensor-networks",bookSignature:"Hoang Duc Chinh and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/136.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3139",title:"Wireless Ad-Hoc Networks",subtitle:null,isOpenForSubmission:!1,hash:"5a8ce0920ae4a8c48e38a9bc60684aa1",slug:"wireless-ad-hoc-networks",bookSignature:"Hongbo Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/3139.jpg",editedByType:"Edited by",editors:[{id:"154490",title:"Dr.",name:"Hongbo",surname:"Zhou",slug:"hongbo-zhou",fullName:"Hongbo Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9219",title:"Recent Trends in Communication Networks",subtitle:null,isOpenForSubmission:!1,hash:"80b5339ac7ae4b7a91fd4e71b4d468e5",slug:"recent-trends-in-communication-networks",bookSignature:"Pinaki Mitra",coverURL:"https://cdn.intechopen.com/books/images_new/9219.jpg",editedByType:"Edited by",editors:[{id:"89103",title:"Prof.",name:"Pinaki",surname:"Mitra",slug:"pinaki-mitra",fullName:"Pinaki Mitra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7322",title:"Wireless Mesh Networks",subtitle:"Security, Architectures and Protocols",isOpenForSubmission:!1,hash:"db5ab870ec11f9d4d1ebb54c7dd6e2bf",slug:"wireless-mesh-networks-security-architectures-and-protocols",bookSignature:"Mutamed Khatib and Samer Alsadi",coverURL:"https://cdn.intechopen.com/books/images_new/7322.jpg",editedByType:"Edited by",editors:[{id:"22273",title:"Dr.",name:"Mutamed",surname:"Khatib",slug:"mutamed-khatib",fullName:"Mutamed Khatib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8662",title:"Data Service Outsourcing and Privacy Protection in Mobile Internet",subtitle:null,isOpenForSubmission:!1,hash:"697eadc7a3390023bb43d1d2406f0ebb",slug:"data-service-outsourcing-and-privacy-protection-in-mobile-internet",bookSignature:"Zhen Qin, Erqiang Zhou, Yi Ding, Yang Zhao, Fuhu Deng and Hu Xiong",coverURL:"https://cdn.intechopen.com/books/images_new/8662.jpg",editedByType:"Authored by",editors:[{id:"101193",title:"Dr.",name:"Hu",surname:"Xiong",slug:"hu-xiong",fullName:"Hu Xiong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64729",slug:"erratum-toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to",title:"Erratum - Toward the Development of a Monitoring and Feedback System for Predicting Poor Adjustment to Grief",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64729.pdf",downloadPdfUrl:"/chapter/pdf-download/64729",previewPdfUrl:"/chapter/pdf-preview/64729",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64729",risUrl:"/chapter/ris/64729",chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]}},chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]},book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10916",leadTitle:null,title:"Firm Value",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"0de75a8efe6a5f4c8d42858ca3016f08",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10916.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 25th 2020",dateEndSecondStepPublish:"December 16th 2020",dateEndThirdStepPublish:"February 14th 2021",dateEndFourthStepPublish:"May 5th 2021",dateEndFifthStepPublish:"July 4th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49291",title:"The Role of Biological Diversity in Agroecosystems and Organic Farming",doi:"10.5772/61353",slug:"the-role-of-biological-diversity-in-agroecosystems-and-organic-farming",body:'
In compliance with the Convention on Biological Diversity (CBD), adopted in Rio de Janeiro in 1992, biological diversity is the variability among living organisms inhabiting all environments and ecological systems [1]. Biodiversity may therefore be considered at genetic, species, and ecosystem levels. According to Clergue [2], biodiversity is a very complex issue. In agroecosystems, it serves three basic functions: genetic, agricultural, and ecological functions. The first function of biodiversity involves maintaining species gene pool, in particular, the endangered ones. The second function, connected with agricultural activity, contains increasing the resistance of agroecosystems to abiotic and biotic stresses, as well as maintaining their productive role. Biodiversity has also ecological functions, for example, creating habitats with different flora and fauna species that have specific significance in agroecosystems.
The loss of biological diversity is one of the most important problems of the world and a threat to our civilization. The destruction of primary ecosystems, intensive farming, urbanization, and also infrastructure development cause depletion and weakening of the stability of ecosystems. Agroecosystems are the most at risk of losing biological diversity [3].
During the last decades, worldwide losses of biodiversity have occurred at an unprecedented scale and agricultural intensification has been a major driver of this global change [4]. The dramatic land use changes include the conversion of complex natural ecosystems to simplified ecosystems and the intensification of resource use, including application of more agrochemicals. The evaluation of ecosystems in the UK has shown a significant loss of biodiversity during the recent 50 years. Sixty-seven percent of 333 plant and animal species on agricultural lands have been endangered, mainly due to the intensification of farming [5].
The industrialization of agriculture has caused, directly and indirectly, a dramatic impoverishment of the fauna and flora compared to the situation a century ago [6–9]. This has contributed not only to the current biodiversity crisis in Europe as whole, but also to the decline in ecosystem services such as crop pollination and biological pest control [8]. As a result, the protection of farmland biodiversity has become a key issue in the EU and national agricultural and environmental policies, and large amounts of research and funding are devoted to biodiversity conservation, such as agri-environment schemes [3, 10–11].
Despite the commitment made by the Parties to the Convention on Biological Diversity to reduce the rate of biodiversity loss by 2010, global biodiversity indicators show continued decline at steady or accelerating rates, while the pressures behind the decline are steady or intensifying [12]. The main objective of the EU Biodiversity Strategy to 2020, which was adopted in 2011, is to maintain and strengthen ecosystems and their functions, and foster sustainable development of agriculture and forestry [13]. Biological diversity should also be preserved due to economic factors. Maintaining a high level of biological diversity makes agricultural production and the related activities more sustainable, which in turn, significantly affects human activities [14–15].
Biodiversity in agriculture can be perceived on two levels: the first is related to the diversity of species and cultivars, the breeds of farm animals, so the obtained "products"; and the second is related to the biodiversity connected with agricultural production, such as the diversity of plants and wild animals that accompany the crops, as well as the diversification of the agricultural landscape.
The progress in agriculture has led to the situation that in the recent 100 years, approximately 75% of genetic resources have been lost due to the transition of farmers from growing traditional, local cultivars of lower productivity and replacing them with intensive cultivars. Although in the world there are at least 12 thousands of edible plant species, humans use only 150 to 200 of them, and 75% of food products around the world are produced from only 12 species of plants and animal species. The three main species of plants such as rice, maize, and wheat provide about 60% of the energy consumed by humanity. Such a low diversity is a major issue to food safety. From the point of view of the conservation of biodiversity and human health, we should promote traditional and local species and cultivars of plants, as well as old breeds of animals [16].
The most appropriate way of protecting genetic resources of plants is their conservation in situ in the regions strictly related to their origin. This type of protection allows us not only to preserve a given form in its place of origin, but also to continue its cultivation and selection in the traditional way. The protection of genetic resources of crops, in addition to the primary task of maintaining biodiversity, has also practical aims of delivering rich genetic material for further breeding [6].
Old and local cultivars of crops are distinguished by unusual qualitative characteristics (e.g., good taste, favorable chemical composition), low technological requirements, better adaptation ability to environmental conditions, resistance to pests and diseases, and reliable yields. The cultivation of old cultivars and forms is often connected with using environmentally friendly production systems, such as organic farming. Old varieties are usually cultivated on a limited area, at a local or regional level. In Poland, we cultivate the tradition of growing old and local cultivars of tomato, cucumber, onion, carrots, beans, pumpkin, vetch, and many other orchard fruits and vegetables. In recent years, the rapidly-developing low-input methods of farming promotes a wider use of old and local cultivars of plants, as well as old plant species, such as spelt wheat, emmer, einkor wheat, and their processing on the farm [6].
Traditional orchards, also called backyard orchards, are of great importance for plant genetic resources. They usually satisfy only the needs of their owners and their family, unlike the commercial orchards where the production of which is destined primarily for sale. Traditional orchards became a characteristic element of the landscape of the Polish countryside. Due to the longevity of the trees, they have survived to this day. They are supported by an agri-environment scheme in Poland [17].
Native animal breeds are very important due to the role they played in the history of the development of the regions from which they originate. Due to their ecological, landscape, ethnographic, and socio-cultural functions, they must be regarded as evidence of tradition and culture of local communities, and preserved for future generations. The conservation of genetic variability guarantees a secure future of livestock production and helps maintain a healthy livestock [6].
In intensive conventional farming, special attention is paid to the negative aspects of wild flora in agrocenoses (called weeds), as they cause yield losses. Since the 1990s, however, due to the promotion of the concept of sustainable agriculture, the importance of wild plants growing on fields has been underlined. They have started to be perceived not only as competitors to arable crops, but also as an element that increases the biodiversity in agroecosystems [18–20].
Currently, the tendency in weed control is to limit the number of weeds to such a level that do not cause significant yield decreases. Such an approach is consistent with the objectives of sustainable agriculture, and particularly promoted in the system of organic farming. The harmfulness of weeds is not the same in all agrocenoses and depends on: the species and its biology, their abundance, competitive ability, the type of agricultural culture and the purpose of cultivation, as well as the soil type, weather, and agrotechnical factors [21].
The results of the research indicate a positive influence of wild flora in preserving overall biodiversity of agroecosystems [20, 22]. Elimination of wild plants from plant canopy, and thus weakening their reproductive potential interferes with the processes occurring in soil and relations between flora, fauna, and microorganisms [23]. Studies have shown that the decrease in the number of weeds as a result of the intensification of agriculture in Finland, Germany, Denmark, and the UK caused a decline of the populations of birds, pollinators, and other insects on agricultural areas [20, 22, 24]. The results of the monitoring of common breeding birds, which have been conducted in the UK since the 1990s and in Poland since 2000 indicate that the decrease in the number of the species such as tawny pipit, goldfinch, hoopoe, and lapwing, following the intensification of agriculture and the reduction in the diversity of weed flora [25]. The seeds of weeds, especially from the Polygonaceae, Chenopodiaceae, and Poaceae families, such as Chenopodium album, Polygonum aviculare, Echinochloa crus-galli, Rumex obtusifolius, and Stellaria media, are important food components for many bird species [20, 26].
Weeds constitute the source of food, as well as the habitats for animals, including useful, pollinating insects [15]. The nectar and pollen producing plants include: Anthemis arvensis, Cirsium arvense, Centaurea cyanus, Chenopodium album, Consolida regalis, Taraxacum officinale, Papaver rhoeas, and Sonchus arvensis [20–21]. Many common weed species are significant for the maintenance of the population of valuable beneficial invertebrates (pest predators and parasites), thus supporting the natural pest control [20].
Providing pest control is one of most important functions of biodiversity. There is a significant importance of predatory arthropods in agroecosystems. Many species of invertebrates are specialized in eating aphids and other pests. Others are generalist predators such as spiders or ground beetles. One of the most important natural enemies of pests are spiders. Almost all known species of spiders are predators. Many species are common in crops. The most effective in pest control are species families Licosidae, Linephidae, Salticidae, Tetragnatidae, Clubionidae, and Araneidae [27]. An important feature of spider biology is its resistance to long periods of hunger when a prey is absent. On the other hand, when prey is in abundance, they can consume a huge amount of it, often killing more prey than they can actually eat [28]. Another very important taxa is Coleoptera. There are many species of Coleoptera, that are generalist predators feeding on aphids and other pests. In an agroecosystem, the beetle families Carabidae, Staphylinidae, Coccinellidae, and Cantharidae are the most important invertebrates. The best known natural enemies of aphids are ladybirds Coccinellidae and ground beetles Carabidae [29]. Predatory beetles are more common in organic crops and in diverse landscapes [30]. They are also not dependent on pest population density, while specialist natural enemies are. They are also present on the field before pest population has developed. There are more generalist predators that can control the population of pests. These are insects such as bugs Hemiptera, robber flies Asilidae, wasps, and ants Hemiptera. More specialized in aphid control are parasitic wasps Apocrita-Parasitica, hoverflies Syrphidae, lacewings Chrysopidae, and Hemerobiidae. Both types of natural enemies are effective in controlling aphids, but they affect them in different ways. Generalist predators limit pest population, but doesn’t eliminate all individuals so there is still a possibility to rebuild pest population. Specialists influence pest population slowly, preventing the increase in the population [31]. Diversity and activeness of natural enemies depends on the type of crop, diversity of landscape, and system of farming.
High plant species diversity increases the diversity of soil microflora and microfauna, including the organisms that are antagonistic against crop pathogens [32]. Certain wild flora species repel the crop pests or they act as trap plants for pests (e.g., Chenopodium album for black bean aphids). The allelopathic potential of many weed species has a stimulating or inhibiting effect on the development of crops and the presence of other weeds [21]. A large variety of flora and fauna is increasingly perceived as a valuable part of the agricultural landscape, especially in countries where intensification of agricultural production has led to a significant reduction of biodiversity of agroecosystems [19].
Ecosystem services have become a top research issue in ecology, natural resource management, and policy [33]. Ecosystem services can be defined as the benefits that humans obtain from ecosystems [34].
In the report of Millennium Ecosystem Assessment [35], ecosystem services were divided into four basic types:
provisioning (production of food, production of other raw materials such as wood, fuel, water supply, and others);
regulating (regulation of air composition, climate, extreme phenomena, contamination, and biological processes);
supporting (circulation of elements, primary production, soil formation, habitat function, hydrological cycle);
cultural (recreational, aesthetic, cultural, and educational functions).
Biodiversity plays a major role in each group of these ecosystem services. It is crucial for the functionality, stability, and productivity of every ecosystem. In dynamic, agricultural landscapes, only a diversity of insurance species may guarantee resilience (the capacity to reorganize after disturbance) [8]. The species that occur in agrocenoses differ in terms of their potential value and input into the ecosystem services [15, 36]. Thus, increasing the diversity of species richness increases the probability of the total pool containing a species that will significantly affect the functioning of the ecosystem.
Biodiversity and ecosystem services are complex issues, which is reflected in many different interpretations of the significance of biodiversity to the ecosystem. The connections between biodiversity and ecosystem services are perceived differently by different authors [37]. Some authors even treat these concepts as one, which means that if the ecosystem services are managed properly, biodiversity will be preserved and vice versa (“ecosystem services perspective”). However, others claim that biodiversity is one of the ecosystem services and the conservation of the diversity of wild species, especially the endangered ones, is one of the goods that the ecosystem should deliver (“conservation perspective”).
According to Fischer and Young [38], in biodiversity, everything is connected and contained in the same environment, but with no hierarchy. Mace et al. [37] suggest that the role of biodiversity in ecosystem services should be put into some order by assuming that different relationships exist at different levels of the hierarchy of ecosystem services. Following this concept, biodiversity may be the primary regulator of the ecosystem processes, as well as the final product and ecosystem service and good itself.
Biodiversity is considered one of the provision services that can supply: genetic resources for breeding new, more useful cultivars of plants or animal breeds; new active substances for medicine and pharmacology; or new ornamental plants [37]. Biodiversity in ecosystems determines most of the basic functions of the ecosystem, such as the distribution and circulation of elements in soil or the resistance of the ecosystem to pests and environmental conditions. It is generally considered that a more diverse ecosystem is a more stable ecosystem. The results of the studies indicate that an increased biodiversity at a given trophic level positively affects the productivity of this trophic level [39].
Ecosystems with high biological diversity provide many ecosystem services that concern, among others, provision of food, maintenance of pollinators, and biological control of pests [8, 15]. Pollination is one of the ecosystem services that are of special importance for humans. Recent studies estimate that 87 of major arable crops and 35% of the world crops are pollinated by animals [40]. The diversity of pollinators is essential for maintaining the provision of the services that Costanza et al. [34] evaluated at $14/ha/year. According to other authors, it amounts to $100 billion a year around the world [41]. The loss of biodiversity of agroecosystems, caused by the intensification of agricultural production and the loss of habitats, negatively affects the service of pollinators, which causes yield decrease [42].
The studies on the influence of biodiversity on ecosystem functions are difficult due to the complexity of the relationships within the ecosystem, the impact of agricultural production systems, and landscape. It is also difficult to generalize the results obtained in the given ecosystem over other ecosystems [43].
Meta-analysis carried out by Balvanera et al. [39] indicates that most of the published works show a positive influence of biodiversity on the functioning of ecosystem, the strongest at the level of communities. Costanza et al. [44] found a positive impact of biodiversity on the productivity of ecosystems in North America. According to these authors, 1% of the changes in biodiversity affects 0.5% of the changes in the value of ecosystem services. The research carried out in Europe provided evidence for the positive impact of biodiversity on the productivity of grasslands [45]. Lavelle et al. [46] pointed to the positive impact of diversity of soil organisms on plant productivity in agricultural ecosystems. Hillebrandt and Matthiessen [47] believe that the functioning of the ecosystem is dependent not only on biodiversity, measured by the number of species, but most of all, on species composition, and the abundance of individual species and functional groups. A recent review of the scientific literature concluded that most reported relationships between biodiversity attributes (such as species richness, diversity, and abundance) and ecosystem services were positive [48]. Despite rich evidence on the existence of the connection between biodiversity and ecosystem functioning, some authors still question this relationship [8, 49–50].
The protection of certain target species is the most socially recognized role of biodiversity, while its indirect role in processes occurring in ecosystems (such as the cycle of elements) is little known by a wider audience [37]. A higher perspective needs to deliver additional arguments for the protection of biodiversity, apart from the traditional arguments, connected with the protection of rare and charismatic species.
Authors of the report from ecosystem evaluation in the UK found that at present, we are not able to fully assess the relationship between biodiversity and ecosystem services that it provides [5]. Changes in the extent and condition of habitats may significantly affect biodiversity ecosystem services. Intensification of agriculture has caused agricultural production, along with provision services, to significantly increase, but at the same time, there was a reduction in the diversity of the landscape, the increase of soil erosion, the reduction of soil quality, and the decrease in the populations of birds and pollinators. Changes in ecosystems may have a positive or negative impact on human welfare. For example, the conversion of natural ecosystems into agricultural production areas increases farmers\' income, but at the same time, decreases habitats for recreation and the threat of atmospheric phenomena. According to the authors of the report [5], these types of assessments, in addition to economic values, should also take into account human health and social values.
Until now, ecosystem services were regarded as public goods, not as a market product that has a monetary value. According to some authors, the lack of valuation is the main cause of the degradation of ecosystems and loss of biodiversity [3]. If we want to maintain our environmental safety, we have to "measure" ecosystems and biodiversity. The article of Costanza et al. [34], “The value of the world’s ecosystem services and natural capital", published in Nature in 1997, was a breakthrough study in the subject of ecosystem services valuation. The authors assessed the value of 17 basic services produced by ecosystems all over the world. They evaluated them at $33 billion per year, so almost twice the amount of the gross national product of the USA ($18 billion). The concepts of ecosystem services flow and natural capital stocks are increasingly useful ways to highlight, measure, and value the degree of interdependence between humans and the rest of nature [51]. Economic assessment of the value of the services provided by the environment is difficult, time-consuming, and flawed. The valuation of each group of ecosystem services should be performed using different methods [52–53].
One of the most important factors affecting the agroecosystem biodiversity is the method of the agricultural management and land use. Agricultural systems that are used in modern agriculture may differently affect the environment, including biodiversity. Intensive agriculture is considered as the main reason of the decrease of flora and fauna species diversity and abundance in agroecosystems [14, 54]. The use of fertilizers and pesticides, removal of mid-field woody vegetation and bounds leading to fragmentation and degradations of habitats are among the most important threats of agricultural ecosystems [37]. Moreover, areas with worse conditions for agricultural production are abandoned or afforested.
Decreasing populations of the birds associated with the agricultural landscape in many European countries can serve as an example of the loss of biodiversity due to the intensification of methods of agricultural production and changes in the landscape [25]. Benton et al. [55] found a relationship between the changes in the population of birds associated with agricultural areas and the number of invertebrates and agricultural practices in Scotland. Intensive agriculture was also found to have a negative effect on other groups of organisms: soil microorganisms, weed flora, earthworms, insects, spiders, and mammals [19–20, 55–59]. The analyses performed by Storkey et al. [9] for 29 European countries showed a positive correlation between the yields of wheat and the number of endangered species. The study of the list of endangered or extinct species of wild plants in Germany showed that agriculture is responsible for the decrease of populations of 513 out of 711 species [19]. The endangered taxa included 10.8% of weeds. Fifteen species were considered extinct, which constituted 25% of all the extinct species. In Poland, about 60 percent of the 165 species of archeophytes that accompany crops are endangered, mainly due to the intensification of agriculture [60].
Species’ ability to tolerate human impacts: destruction, degradation and fragmentation of habitats, reductions of individual survival and fecundity through exploitation, pollution and introduction of alien species varies among taxonomic groups [61]. For instance, the proportion of species listed as threatened in the International Union for Conservation of Nature Red List is much bigger in amphibians than in birds [62].
Intensification of agricultural practices causes the loss of biodiversity, and thus influence important ecosystem services. It affects plant production, plant protection, pollination, decomposition processes, nutrient cycles, and the resistance to invasive organisms [15, 63–65]. In some cases, the intensification of agricultural production can lead to an increase in the population of some, or even rare, species. A higher productivity of agricultural areas in comparison with natural ecosystems means more feed (biomass of plants and fruit) for birds, mammals, and butterflies [8]. Söderström et al. [66] found a greater abundance of bird species on the areas used for agriculture and the reduction of the diversity in the period after the abandonment of farming, while Westphal et al. [67] found an increase in the population of bumblebees together with the increase in the area of rape cultivation. Habitat value is, therefore, often determined by food resources, which result from high productivity, which in turn may have other negative environmental consequences.
Negative impacts of conventional farming on the environment, the overproduction of food, and consumer dissatisfaction with the quality of the products obtained through such farming, caused the development of the concept of sustainable agriculture, which uses environmentally friendly methods of production [68–69]. Such assumptions are the basis of the development of alternative systems of agricultural production, such as integrated and organic farming.
An integrated production system uses technical and biological progress in the cultivation, fertilization, and plant protection in a harmonious way, which allows to obtain a stable efficiency and a proper level of agricultural income through the use of methods that do not pose a threat to the environment. It combines the most important elements of organic and conventional farming, and allows for simultaneous realization of economic, ecological, and social goals [69]. Integrated production ensures sustainable economic development of the farm, takes into account the needs of the environment, and it is also attractive for consumers due to the obtained quality of products. The results of the implementation of the integrated system in several European countries show that it managed to significantly reduce the use of chemical pesticides and synthetic nitrogen fertilizers, which led to, among others, an increase in the diversity of flora and fauna [68, 70]. The Directive on the sustainable use of pesticides (2009/128/EC) [71] has obliged all EU member states to prepare and implement integrated crop protection programs, which to some extent can protect the biodiversity of flora and fauna [72].
One of the proposed solutions for combining productive and environmental functions of agriculture is an approach called "ecological intensification" [33]. For ecological intensification, the primary interest is in managing the processes and conditions that mediate yield levels. Ecological intensification entails the environmentally friendly replacement of anthropogenic inputs and/or enhancement of crop productivity, by including regulating and supporting ecosystem services management in agricultural practices. Research efforts and investments are particularly needed to reduce existing yield gaps by integrating context-appropriate bundles of ecosystem services into crop production systems.
The aim of organic farming is the production of high-quality food and, at the same time, the protection of the environment [73–74]. The ecological system is fundamentally different from other systems of agricultural production because it excludes the use of synthetic mineral fertilizers, growth regulators, chemical plant protection products, and synthetic feed additives. It is based on substances of natural origin, which are not technologically processed [74]. Organic farming system is based on the use of environmentally friendly production methods that include crop rotations with a large share of legumes, organic fertilizers, and non-chemical methods of plant protection. Due to the resignation from the application of synthetic mineral fertilizers and chemical plant protection products, organic farming has an even greater positive impact on the diversity of flora and fauna than the integrated system [19, 22, 56, 59, 75–77]. The results of many studies point to the positive effects of organic farming on diversity of flora and fauna on arable lands and grasslands [76–81].
Dynamic development of organic farming is observed in the EU, including Poland [82]. Some authors believe that the dissemination of ecological system on agricultural areas may help reverse the negative trend of the decline of biodiversity in the cultivated fields, which was caused by the intensification of agriculture [19, 82].
The most direct way to capture the effects of human activities on biodiversity is to analyze time-series data from ecological communities or populations, relating changes in biodiversity to changes in human activities. Such long-term research (1996–2011) on weed flora diversity in different crop production systems, organic, integrated, and conventional, were conducted in the Experimental Station of the Institute of Soil Science and Plant Cultivation – State Research Institute (IUNG-PIB) in Puławy, Poland [N: 51º28’, E: 22º04’] (Table 1).
\n\t\t\t\tItems\n\t\t\t | \n\t\t\t\n\t\t\t\tCrop production systems\n\t\t\t | \n\t\t|||
\n\t\t\t\tOrganic\n\t\t\t | \n\t\t\t\n\t\t\t\tIntegrated\n\t\t\t | \n\t\t\t\n\t\t\t\tConventional\n\t\t\t | \n\t\t\t\n\t\t\t\tMonoculture\n\t\t\t | \n\t\t|
Crop rotation | \n\t\t\tPotato Spring barley/spring wheat from 2005 + undersown crop Clovers and grasses (1st year) Clovers and grasses (2nd year) Winter wheat + catch crop | \n\t\t\tPotato Spring barley/spring wheat from 2005 + catch crop Faba bean or blue lupine Winter wheat + catch crop | \n\t\t\tWinter rape Winter wheat Spring barley/spring wheat from 2005 | \n\t\t\tWinter wheat | \n\t\t
Seed dressing | \n\t\t\t- | \n\t\t\t+ | \n\t\t\t+ | \n\t\t|
Organic fertilization | \n\t\t\tcompost (30 t·ha-1) under potato + catch crop | \n\t\t\tcompost (30 t·ha-1) under potato + 2 × catch crop | \n\t\t\trape straw, winter wheat straw | \n\t\t\twheat straw (every 2 years) | \n\t\t
Mineral fertilization (kg·ha-1) | \n\t\t\taccording to the results of soil analysis, allowed P and K fertilizers in the form of natural rock | \n\t\t\tNPK (85+55+65) | \n\t\t\tNPK (140+60+80) | \n\t\t|
Fungicide | \n\t\t\t- | \n\t\t\t2 x | \n\t\t\t2–3 x | \n\t\t|
Retardants | \n\t\t\t- | \n\t\t\t1–2 x | \n\t\t\t2 x | \n\t\t|
Weed control | \n\t\t\tweeder harrow 2–3 x | \n\t\t\tweeder harrow 1x herbicides 1–2 x | \n\t\t\therbicides 2–3 x | \n\t\t
Major elements of the agricultural practices of winter wheat in different farming systems (1996-2011); source [59].
The study showed that long-term management in organic system increased the diversity of weed flora accompanying crops (Figure 1). Simplifying the crop rotation from the integrated system, through the conventional system to monoculture of winter wheat, associated with the increased use of herbicides, led to the depletion of the species in weed communities. In the 16-year period, the average number of weed species in integrated and conventional systems, as well as in wheat monoculture was similar (6.1–6.8), while in the organic system by about 3.5 times higher (22 species). During the 16 years of research, the changes in weed communities in winter wheat cultivated in this farming system were found, especially involving the decreasing abundance of nitrophilous species: Chenopodium album and Galium aparine and the increasing density of more sensitive to herbicides taxa, Stellaria media, Capsella bursa-pastoris, Fallopia convolvulus, and species of the Vicia genus [59].
Weed plant diversity (± st. error) in winter wheat cultivated in different farming systems in years 1996–2011; source [59].
The agricultural practices applied in the compared farming systems (organic, integrated, conventional, and monoculture) of winter wheat differentiated the density of flora more than species composition. The largest number of weeds in the canopy of winter wheat at the dough stage was found in the organic system, 112 plants ⋅ m–2, and the smallest for the integrated system, 18 plants ⋅ m–2, on average (Figure 2). During the five years of the research (1997, 2001, 2002, 2007, 2008), the number of weeds in this treatment does not exceed 60 plants ⋅ m–2, and only in two years (1996, 1999) was higher than 150 plants ⋅ m–2, which means that it is possible to maintain weed infestation in organic cultivation of wheat at a relatively low level. Among the systems where herbicides were applied, the highest number of variability was observed in the monoculture of winter wheat.
Weed abundance (± st. error) in winter wheat cultivated in different farming systems in years 1996–2011; source [59].
Variability in species composition and abundance of weed flora throughout the years was influenced by the effectiveness of the applied methods of weed regulation and the weather conditions, which determined the germination of specific species of weeds and affected the density of wheat canopy and its competitiveness against weeds. In the systems where herbicides were applied, there were the highest fluctuations in the value of Shannon’s and Simpson’s indicators throughout the years (Figures 3 and 4). Shannon’s diversity index value was the highest for weed flora in organic system and increased from 0.75 in 1996 to 2.64 in 2007 (Figure 3).
Shannon’s diversity index values (± st. error) for weed communities in winter wheat cultivated in different farming systems in 1996–2011; source [59].
Simpson’s dominance index values (± st. error) for weed communities in winter wheat cultivated in different farming systems in years 1996–2011; source [59].
The dominance of some weed species in the community reflected in high Simpson’s dominance index could affect the wheat yield more than diversified weed flora. A large diversity of weed species with low their quantity within species is less dangerous due to the yield because in multi-species weed community interspecies competition takes place. Interactions between weeds and the crop depend on the competitiveness and abundance of occurring weed species and the competitive abilities of the crop. In addition, those relationships are affected by environmental factors including soil conditions, weather, as well as agronomic practices.
It was found that weed communities in winter wheat cultivated in the organic system were characterized with a high qualitative and quantitative similarity in years, which was confirmed by the results of the ordination analysis (Figure 5).
Ordination diagram of samples (represented weed flora communities in winter wheat cultivated in different crop production systems and years) in relation to first and second axes of Detrended Correspondence Analysis (DCA); source [59].
The comprehensive database that collates published, in-press, and other quality-assured spatial comparisons of community composition and site-level biodiversity from terrestrial sites around the world was created under the PREDICTS project (www.predicts.org.uk) [83]. Another example of a project that aimed to study the effect of different agricultural practices on diversity of flora, invertebrates, birds, and landscape in the east-south part of Poland and to prepare a geo-spatial database is the KIK/25 project (www. agropronatura.pl).
According to many research results, organic farming fulfills the promise to protect biodiversity better than conventional farming. Supporting farmers to convert their properties to organic land and to maintain organic farming within the scope of agri-environment schemes as a part of Common Agriculture Policy can have a significant impact in biodiversity as a result of management decisions farmers apply to their agricultural land [81].
A large proportion of European biodiversity today depends on habitat provided by low-intensity farming practices, yet this resource is declining as European agriculture intensifies. Within the European Union, particularly the central and eastern new member states have retained relatively large areas of species-rich farmland; but despite increased investment in nature conservation here in recent years, farmland biodiversity trends appear to be worsening [11].
In the Report of the EU [84], analysis of the trends in the spatial extent of ecosystems and in the supply and use of ecosystem services at the European scale between 2000 and 2010 were presented. In the EU, urban land and forests increased while cropland, grassland, and heathland decreased (Figure 6). Many provisioning services showed increasing trends. Food and fodder crop production increased, even when agricultural areas decreased. More organic food was produced. More timber was removed from forests with increasing timber stocks. Total number of grazing livestock decreased.
Change in the extent of surface area of ecosystems based on land cover data; source [84].
More area of natural environment was protected in 2010 than in 2000, but in contrast, the trends of two ecosystem services indicators that are directly related to biodiversity, pollination, and habitat quality were worsening (Figure 7). Crop production deficit was observed resulting from a loss of insect pollination. Habitat quality (regulation) slightly declined. There was a positive trend in the opportunity for citizens to have access to land with a high recreation potential.
Main trends in ecosystem services in the EU between 2000 and 2010: Habitat maintenance and pollination; source [84].
Comparative studies show greater ecosystem quality for biodiversity as well as higher levels of rare species occurrence and species richness in lowland farmland in the central and eastern new member states than in Northern and Western Europe [11, 85]. In contrast to much of lowland EU, the main challenge and opportunity for farmland biodiversity conservation in the new member states is that a large number of species of conservation concern often still exist, e.g., in Polish field margins [11, 86]. These target species may have different requirements, creating conflicts when prescribing management measures. Simple but rigid measures applied over large areas can therefore be worse than existing management [11].
According to the EU Report, different trends in agriculture, ecosystems, and ecosystem services in EU countries were recorded (Figures 8 and 9) [84]. For example, in Poland relatively small changes were noted (increasing biomass built up and slightly negative trends in several services, including pollination potential) (Figure 8).
Trends in ecosystems and ecosystem services between 2000 and 2010 in Poland; source [84].
In France, where agriculture historically was more intensive than in Poland, slight decreases or status quo for many indicators were observed while the area under organic farming, timber stock, and forest area was rising (Figure 9).
Trends in ecosystems and ecosystem services between 2000 and 2010 in France; source [84].
Generally we see the following trends at the EU scale [84]:
For provisioning ecosystem services:
More crops for food, feed, and energy are produced in the EU on less arable land. More organic food is grown. Textile crop production and the total number of grazing livestock have decreased.
The EU has used water in a slightly more resource-efficient way. Reported water abstractions decreased in both absolute and relative terms (relative to the naturally available water).
Timber removals have increased and so, did the total timber stock.
For regulating ecosystem services:
There is a substantial increase in net ecosystem productivity.
Several regulating services, in particular those that are related to the presence of trees, woodland, or forests, increased slightly. This is the case for water retention, forest carbon potential, erosion control, and air quality regulation.
Pollination potential and habitat quality show a negative trend.
For cultural ecosystem services:
More land is protected and there is a positive trend in the opportunity for citizens to have access to land with a high recreation potential.
Costanza et al. [51] estimated the loss of global ecosystem services from 1997 to 2011 due to land use change at $4.3–20.2 billion/year, depending on which unit values were used. The biodiversity benefits for Europe and other countries of existing low-intensity farmland should be harnessed before they are lost. Instead of waiting for species-rich farmland to further decline, target research and monitoring to create locally appropriate conservation strategies for these habitats are needed now [11].
The protection of ecosystems and biodiversity is an important task and a key challenge to the world. The benefits of biodiversity conservation are difficult to notice in a short period of time or to economical evaluation. The benefits of the conservation of the species from extinction are important for future generations, because there may serve substances for medicine, genes useful in breeding, and others. At present, we do not know which plants may prove to be valuable in the future, which is why it is important to preserve as much gene pool as possible. Agriculture can contribute to the conservation of high-biodiversity systems, which may provide important ecosystem services such as pollination and biological control. Interdependencies between different groups of organisms, as well as the interaction between human activities and biodiversity require, however, further research. These studies should be conducted by experts from different disciplines in order to properly assess the value of biodiversity and ecosystem services, and create a strategy for the development of environmentally friendly agriculture and sustainable development of rural areas.
Publication was elaborated under the project “Protection of species diversity of valuable natural habitats on agricultural lands on Natura 2000 areas in the Lublin Voivodeship” (KIK/25) co-financed from the Swiss-Polish Cooperation Funds and multi-annual program of Institute of Soil Science and Plant Cultivation–State Research Institute, task 3.2. Assessment of the directions and agricultural production systems and the possibilities of their implementation in the regions and farms.
It is well-known that the seafood has been one of the most important parts of the human nutrition for a long time. According to reports obtained from FAO, the annual discard from global marine capture between 2010 and 2014 was 9.1 million tons. This huge amount of by-products represents 10.8% (10.1% –11.5%) of the annual average catch of 2010 to 2014 [1]. Utilizing this discarded part of the fishery industries could be environmentally and economically profitable.
\nSeveral value added products can be generated from seafood processing by-products depending on which kind of seafood is processed. Based on this, this chapter is divided into 3 major parts; (I) fish by-products, (II) crustaceans, and (III) seaweeds. This study has provided a review of use of fish by-products to produce some value added products including proteins, peptides, and oil. These products are the most important major products that have a promising future in global market. During last decades, different efforts have been done to utilize the seafood by-products to generate these value added products [2]. Obtaining proteins and peptides as functional and nutritional compounds from seafood by-products have been the objective of many researches [3, 4, 5, 6, 7, 8].
\nAlgae are an important renewable source of food, medicines and fertilizers and their utilization have increased in all around the world. They are considered to possess a high nutritional value and their metabolites, and associated biological activities, have particular significance for multiple nutraceutical, cosmetic and pharmaceutical applications [9]. Seaweed consumption has a long tradition in Asian countries and has increased in European countries in over recent decades, due to increased awareness of their beneficial effects [10]. Thus, development of way for the utilization of marine algae for food, feed, and bioenergy is essential. One of the best way is conversion of biomass into a variety of valuable products which is known as biorefinery [11].
\nIn recent years, numerous compounds with biological activities or pharmacological properties such as antibacterial, anti-inflammatory, anticancer, antiviral and anticoagulant are discovered in algae. Algae by-products can be used for human and animal as food, animal feed and ingredients of dietary supplements. Sulfated polysaccharides, pigments, proteins and lipid are the main by-products of algae [10].
\nThis chapter focuses on important value added bioactive chemicals identified in seafood by products over the last years and describes the range of biological activities as well as industrial applications for which they are responsible.
\nFish by-products obtained from seafood processing industries contain huge amounts of head, skin, scales, bones, fins, viscera, and dark muscle. The protein content of these by-products is approximately 15%, which is similar to that of fish fillets. The muscle which is attached to this by-product contains two distinct type of proteins including structural (myofibrillar) (approximately 70–80%) and sarcoplasmic proteins (approximately 20–30%). These high nutritional value proteins (even more than red meat and milk casein) indicate remarkable functional and technological properties like water holding capacity, emulsifying activity, film forming ability, foam forming capacity, and gel forming ability [12, 13, 14, 15]. Commercial gelatins are mostly obtained from mammalian (porcine and bovine) skins and bones. As the researches confirm, the substitution of mammalian gelatin with fish gelatin is an appropriate and appealing due to increasing concerns of researchers and consumers about the risks of transmission of the pathogenic vectors such as prions. Albeit, number of committees like the Scientific Steering Committee of the European Union, have stated that consumption of bovine bone gelatin is safe [16], researchers are still debating on this.
\nNowadays, researches have become to notice on a unique protein which can be easily extracted from fish by-products especially skin, scales, bones, and fins. This valuable protein is collagen/gelatin. Collagen is the most abundant protein in tissues including skin and bones (approximately 30% of the total protein). The structural investigates show that collagen is a triple helix with three identical polypeptide chains. The primary structure of this protein is continuous repeating of the Gly-X-Y-sequence. The positions of X and Y are mostly proline and hydroxyproline, respectively. Different types of collagen (29 distinct types) have been discovered so far, which have right-handed triple helical conformation. The difference among these types is due to the variety in their amino acid sequences as a result of genetic variants [17, 18, 19]. Fish gelatin could be extracted from its by-products by a partially denaturation of collagen usually performed by hot water. Before extraction of fish by-products, some pretreatments are needed to ready them for being used as a gelatin source. The pretreatment step is ordinarily an alkaline and/or and acidic swelling process. The alkaline and/or acidic pretreatment is used to partial cleavage of rigid cross-links in the collagen and remove non-collagenous materials. The enzymatic aided chemical pretreatments are those which can be supplemented or replaced by enzymatic reaction. The “conditioning process” is the known name of this step by manufacturers of gelatin. Afterward, the gelatin (warm water soluble) will be extracted from collagen (not soluble) by hot water at a specific temperature and time. There are lots of studies performed in this research area. In a paper authored by Mirzapour-Kouhdasht, Moosavi-Nasab [20], gelatin was optimized at different levels of time and temperature using the response surface methodology (RSM). The responses including yield, protein content, gel strength, and viscosity indicated that the optimum conditions were 70.71°C and 5.85 h. Rheological, structural, and functional experiments showed that the gelatin characteristics were acceptable compared to the commercial bovine gelatin. The pretreatment in these experiments was performed by alkaline solution. In another study [21], gelatin was produced from Common carp wastes using alkaline protease from Bacillus licheniformis PTCC 1595. The enzymatic reaction was performed in 5, 10, 15, 20, and 25 units per gram of wastes. The molecular weight distribution of the gelatin (Figure 1) showed that this gelatin could be successively replace the commercial gelatin.
\nMolecular weight distribution analysis by SDS-PAGE for gelatins. CG (commercial gelatin) and FG (fish wastes gelatin) (a) and for protease (b). Adapted from [21].
In some researches also fish gelatin is modified by some functional groups or chemical agents to improve the functional characteristics. In a study performed by [22], rheological, emulsifying, and structural properties of phosphorylated fish gelatin was investigated. The results of this study revealed that phosphorylation in a short time, enhances gel and rheological behavior of fish gelatin. Phosphorylation could improve the emulsions stability of fish gelatin as well. Authors stated that the structural properties of fish gelatin were significantly affected by this modification Figure 2.
\nMicrographs of control and phosphorylated fish gelatin. SEM (A) and AFM (B). Adapted from [22].
Peptides obtained from seafood processing by-products have been reported to have potent biological activities including antioxidant activity [23, 24, 25, 26, 27, 28, 29], antihypertensive, anticancer, anti-inflammatory, and anticoagulant properties [20, 30, 31, 32, 33, 34, 35]. Among all these researches, the use of gelatin derived from fish by-products has been well investigated as a source of bioactive peptides with various biological activities. In a study performed by Jin, Teng [36], salmon skin collagen was hydrolyzed by different proteolytic enzymes including pepsin, trypsin, papain, and Alcalase 2.4 L. Hydrolysates obtained from trypsin hydrolysis reaction indicated the highest dipeptidyl peptidase IV (DPP-IV) inhibitory activity (66.12%). After fractionation and identification processes, a bioactive peptide with sequence of LDKVFR for DPP-IV inhibitory activity was detected to be responsible for this activity (IC50 value of 0.1 ± 0.03 mg/mL). In another research conducted by Mirzapour-Kouhdasht and Moosavi-Nasab [37], gelatin extracted from Scomberomorus commerson skin in combination with its hydrolysates obtained by Actinidin from kiwifruit was used to extent the shelf-life of whole shrimp (Penaeus merguiensis). The results revealed that the gelatin hydrolysates can be applied as a preservative coating agent for whole shrimp.
\nNowadays, of the most important nutritional substances which have gained much attention are Omega-3 long-chain polyunsaturated fatty acids (LCPUFA). These LCPUFA are necessary for human and animal physiology due to their structural and regulatory functions [38]. Fish by-products are a good natural source of LCPUFA, especially EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Fish oil is rich in vitamins (E, D, A). Due to these valuable components, fish oil consumption could be a promising way to impede some health risks such as inflammation, coronary heart diseases, obesity, arthritis, autoimmune disorders, and cancer [39, 40, 41, 42].
\nGenerally, the extraction of oils from fish by-products can be divided in two categories including conventional and modern methods. Generally, in conventional methods the raw material (fish by-products obtained from fish processing industries) are first cooked. After the cooking, the by-products are sieved followed by pressing for oil extraction. Subsequently the extracted slurry is decanted and the oil is stored in oil storing tanks [43].
\nIn comparison with conventional extraction method, the modern extraction methods such as supercritical fluid extraction (SFE) could be useful for reducing the oxidation of LCPUFA. In a research performed by Rubio-Rodríguez and coworkers [44], SFE method with carbon dioxide under moderate conditions (25 MPa and 313 K) was used to extract oil from different fish by-products. They resulted that SFE is an advantageous method for oil extraction from fish by-products. The authors stated that the SFE can impede lipid oxidation and reduce extraction of impurities. In another study conducted by Sabzipour and others [45], quality of rainbow trout (Oncorhynchus mykiss) by-products oil was investigated. However, the aim of this study was to determine the effect of different postmortem processing times and blanching methods. The authors presented that the degradation of fish by-products oil occurs faster than the fish tissue oil. So they surveyed the effect of different treatments on the quality of the fish by-products oil. According to their report, salt blanching could decrease the effects of delayed processing and led to a higher quality.
\nHowever, the limitation of fish oil for utilization in food and pharmaceutical industries is related to the low stability and strong fishy flavor. The solution for this problem is to encapsulate the fish oil using different strategies to cover the off-flavor and also increase the stability. In a research performed by Drusch et al. [46], fish oil with was microencapsulated by spray-drying in a matrix of n-octenylsuccinate-derivatized starch and sugars. The results of this study indicated that this protocol can increase the oxidative stability of fish oil without any significant changes in physicochemical properties of the oil such as particle size, oil droplet size, and true density. Another study conducted by Chen et al. [47], the fish oil co-encapsulated with phytosterol ester and limonene, prepared by spray-drying and freeze-drying methods. The wall material used for encapsulation were whey protein isolate and soluble corn fiber. Sensory analysis of the encapsulated fish oil showed that the addition of limonene could cover the fishy flavor. The authors also reported that this procedure could significantly enhance the oxidative stability of the fish oil during 168 h of storage.
\nTremendous amounts of shrimp processing by-products (head and body carapace) are discarded annually, which could be an important source of bioactive molecules. The amount of by-products generated during processing is about 48–56% of the whole shrimp depending on the species. The major composition of these by-products are protein (35–50%), polysaccharide (predominantly chitin) (15–25%), minerals (10–15%), and a few percent carotenoids [48]. Recently production of bioactive peptides from shrimp by-products has gained attentions. Several researchers found that this source of by-products could be a good one to generate bioactive peptides with especial activities such as angiotensin converting enzyme inhibitory (ACE inhibitory) [49, 50], antimicrobial activity [51], antioxidant activity [50, 52], etc. More investigations are required to characterize the biological and functional properties of these peptides.
\nThe major value added product obtained from crustaceans is chitin which has the second position among frequent and used biopolymers in the world after cellulose [53, 54]. In fact, chitin is a polymer of β-(1 → 4)- N -acetyl- D–glucosamine units which is extracted mainly from shrimp and crabs. This polysaccharide could be found in arthropods exoskeleton or in the cell walls of fungi and yeast as the major prominent structural component [55, 56, 57, 58, 59, 60, 61, 62, 63]. Chitosan is a linear polysaccharide derived from chitin deacetylation [64]. Chitin and chitosan have attained lots of attentions due to their non-toxicity, biocompatibility, biodegradability, and low cost [54, 65]. Chitosan is known as a biologically active component in many fields such as food and pharmaceutical applications. A number of activities of this polysaccharide such as making delivery systems [66], tissue engineering [67], food packaging and film forming [68, 69], and antimicrobial and wound healing [70] are investigated.
\nOne of the most important characteristics of chitosan which can affect its pharmaceutical and functional properties is the degree of acetylation. In case of designing delivery systems, the molecular weight of this bioactive molecule becomes more important due to changing the encapsulation efficiency [71]. It is very important to know that chitosan has a higher solubility in lower pH values due to protonation of the amino groups of the molecule [72]. Permeation enhancers substances can increase the absorption of encapsulated biological active compounds in the gastrointestinal tract. One of the mechanisms of this action is opening the tight junctions of the epithelium cells [73, 74]. Chitosan has a muco-adhesive nature and capable to open epithelial connections (tight junctions) of the epithelium cells [75, 76]. Figure 3 shows a schematically the action place of permeation enhancers to increase the absorbance of bioactive components in gastrointestinal tract.
\nThe action place of permeation enhancers to increase the absorbance of bioactive components in gastrointestinal tract.
Phycocolloids or hydrocolloids are polysaccharides have been one of the most accessible and widely used in food industry as thickening and gel forming agent. Indeed, numerous sulfated polysaccharides from algae including agars, carrageenans and fucoidan (Figure 4) are the main bioactive components that have been determined to possess significant various biological activities [77].
\nThe chemical structure of (a) agar; (b) carrageenan, (c) fucoidan and (d) Rhamnan sulfate.
Agar is polysaccharide comprised of two major components, agarose and agaropectin and has been extracted from seaweeds for industrial purposes in pharmaceutical, cosmetics and food industry as gelling and thickening agent [78]. The commercially used seaweeds for the extraction of agar are mainly Gracilaria and Gelidium species [79].
\nIn addition, carrageenan is another linear sulfated polysaccharides that extracted from red seaweed and exhibits several applications in food industries as gelling, thickening, and emulsifying attributes, clarification of beer and wines. Carrageenan mainly obtain from two algae Kappaphycus and Eucheuma [80].
\nFucoidans, a complex sulfated groups with fucose which found mainly in cell-wall matrix of brown macroalgae [81]. In addition to fucose, fucoidan contain other monosaccharides such as glucose, galactose, rhamnose, xylose, mannose and uronic acids [82]. Numerous brown seaweeds have been used for fucoidan extraction including Sargassum [83, 84], Undaria [85], Laminaria [86], Cladosiphon [87], Fucus [88], Saccharina [89] and Ascophyllum [90]. Several investigations have been confirmed the biological activities of fucoidan including antitumor, anticoagulant, antioxidant, immunomodulatory, anti-inflammatory, antiviral, antithrombotic, and hepatoprotective effects [91, 92]. This bioactivity of fucoidan is depend on its molecular weight, the monosaccharide composition, the sulfate content, the position of the sulfate ester group, the extraction technique, and fucoidan structure [92]. Thus, several extraction techniques are used such as conventional methods (hot water) [93] and non-conventional methods such as pressurized liquid extraction [82], ultrasound [94], enzyme assisted [88], microwave assisted [95] and subcritical water [89] extraction.
\nSubsequently, the green algae Monostroma nitidum is the commercial source of a sulfated polysaccharide named rhamnan sulfate [96]. Rhamnan sulfate found in cell wall of M. nitidum and structurally consists of rhamnose with a sulfate-group substituent that forms main chains with branched side chains [96, 97].
\nThis polysaccharide is extracted by hot water, though is poorly water soluble [98]. Several studies exhibit its biological activities such as antiviral, anticoagulant, antitumor, anti-inflammatory, anti-hypercholesterolemic, anti-obesity and anti-hypertensive properties. Further, M. nitidum-derived rhamnan sulfate is considered to promote the human health [98].
\nCalcium spirulan (Ca-SP) is another novel sulfated polysaccharide isolated from blue-green alga Spirulina platensis. Ca-SP is an attractive candidate therapeutic agent for viral infectious diseases because of its antivirus and antitumor activities [99, 100].
\nCarotenoids and chlorophylls are generally wasted together with the residual biomass during the extraction of phycocyanin or sulfated polysaccharide, while can isolate as valuable product from algae [101].
\nCarotenoids are the most widespread class of pigments that are characterized as natural colorant and antioxidants with healthy effects including anti-cancer, anti-diabetic anti-obesity and eye diseases. The bio-functional properties of algal carotenoids make them potentially to use in nutraceuticals, cosmeceuticals and feed supplements in aquaculture sectors. Carotenoids divided into primary and secondary based on their metabolism and function. Primary carotenoids are structural and functional components in the photosynthetic apparatus, which take direct part in photosynthesis. Secondary carotenoids refer to extra-plastidic pigments produced in large quantities, through carotenogenesis, after exposure to specific environmental stimuli [102].
\nMicroalgae are a potential renewable resource of primary and secondary carotenoids. α-carotene, β-carotene, lutein, fucoxanthin, violaxanthin, zeaxanthin, and neoxanthin, are characterized as primary carotenoids while astaxanthin, canthaxanthin, and echinenone are secondary carotenoids. Astaxanthin, zeaxanthin, fucoxanthin and lutein receive much attention as commercial carotenoids [102].
\nSeaweeds are the important sources of bioactive compounds which have several human health benefits. The most predominant seaweed carotenoids, such as fucoxanthin, lutein, β-carotene and siphonaxanthin have remarkable biological functions and applications [103]. Pigments are waste during the polysaccharide extraction process. Thus, carotenoids are recovered from microalgae and seaweeds by different approaches including conventional solvent extraction, non-conventional methods including pulsed electric field [104, 105], moderate electric field [106], supercritical fluid extraction [107], pressurized liquid extraction [108], microwave ssisted extraction [109, 110], ultrasound assisted extraction [111], high pressure homogenization [112].
\nFucoxanthin (C42H58O6) is the predominant carotenoid in brown algae (Sargassum angustifolium, Laminaria japonica and Undaria pinnatifida) and some microalgae (Phaeodactylum tricornutum, Isochrysis galbana, Odontella aurita) that accounting for more than 10% of the estimated total natural production of carotenoids. This yellowish-brown pigment exhibit remarkable biological properties, including anticancer, anti-inflammatory, antiobesity and neuroprotective activity [113, 114, 115]. Moreover, fucoxanthin extraction can be by-product of fucoidan extraction process as Yip et al., [116] obtained the fucoxanthin-rich extract from S. binderi with yield of 7.4 ± 0.4 mg/g.
\nAstaxanthin as king of antioxidant is found in microalgae such as Haematococcus. H. pluvialis is rich in astaxanthin and provide a natural and inexpensive source of astaxanthin [117]. The antioxidant activity of astaxanthin is 100 and 10 times greater than those of vitamin E and β-carotene. Moreover, astaxanthin has a superior preventive effect toward photo-oxidative compared with canthaxanthin, and β-carotene [118].
\nPhycobiliproteins are natural fluorescent dyes which participate in photosynthesis. These pigments are assembled large, distinct granules as phycobilisomes, which are attached to the thylakoid membrane of chloroplast. These pigment-protein complex plays an important role in light-harvesting in cyanobacteria, red algae cryptomonads, glaucophytes and some pyrrophyceae [119, 120]. Phycobiliproteins are divided into two main groups; phycoerythrin (PE –bright pink red), phycocyanin (PC –deep blue). The main components of phycocyanins are C-phycocyanin (C-PC), R-phycocyanin (R-PC), and allophycocyanin (AP – bluish green) [119, 120]. Moreover, there are differences between in their structural position. PE is at the tip of the rod-like phycobilisomes, PC is in the middle, while AP forms a core attached to the reaction and energy transfer proceeds successively from PE to PC to AP and to chlorophyll [121]. The other classification of phycobiliproteins is based on their spectral attributes which including phycoerythrobilin (PEB, A max 560 nm), phycocyanobilin (PCB, A max 620–650 nm), phycobiliviolin (PXB, A max 575 nm) and phycourobilin (PUB, A max 498 nm) [121]. These biopigments have attracted much attention in medicines, foods, cosmetics and fluorescent materials. The recent research has brought attention to the use of phycobiliproteins as food colorant, health drink and coloring agent in confectionary and cosmetics because they are hydrophilic and stable at low temperature with some preservative like citric acid, in acidic and basic solutions [119, 121]. Moreover, phycobiliproteins are used in diagnostic kits in immunology as fluorescent tracer of antibodies [121] and gel electrophoresis and gel exclusion chromatography as marker because of their high molecular absorptivity at visible wavelengths [120].
\nPhycocyanins have an apparent molecular mass of 140–210 kD and two subunits, α and β [122]. C-Phycocyanin is found in cyanobacteria strains such as Spirulina sp. (freshwater), Phormidium sp. (marine water) and Lyngbya sp. (marine water) [123]. However, the commercial source of this pigment is Spirulina which consists of about 20% of the dry weight of this algae [124]. Further, the other new source of phycocyanin is Anabaena oryzae SOS13 [122, 125].
\nRecent studies have demonstrated the role of C-PC as antioxidant, anti-inflammatory, hepatoprotective, and as well as free radical scavenger [126, 127]. Various techniques are used to extract phycocyanin from Arthrospira platensis (Spirulina) biomass including in various approaches such as physical (freeze–thaw) or an enzymatic (lysozyme) [122], supercritical fluid extraction [128] andsonication and microwave [129].
\nPhycoerythrin also have numerous health benefits, however, the absorption spectrum of cyanobacteria phycoerythrin is deferent from red algae. The cyanobacteria phycoerythrin exhibits a single peak at 565 nm in the visible wavelength region, while the absorption spectrum of red algae phycoerythrin includes three peaks in the visible wavelength region at 500, 550 and 565 nm (R-phycoerythrin) [121].
\nAllophycocyanin is a light-harvesting pigment protein complex found mainly in A. platensis. This water-soluble pigment is broadly used in biochemical techniques such as a fluorescent probe, especially for flow cytometry. Further, allophycocyanin has promising applications as antioxidative, anti-inflammatory, antitumor, anti-enterovirus and hepatoprotective [130]. Despite its potential biochemical and therapeutic benefits, there are some challenges in its downstream processing including difficulty in primary extraction and purification, containing lower proportion of phycobiliprotein rather than phycocyanin and the resistance of cell membrane to disruption cause extraction of 50–60% of A-PC by conventional methods. Moreover, the main objective of pigment extraction form spirulina is C-PC, consequently, remaining high content of A-PC (about 40–50%) in biomass after C-PC extraction [131].
\nAlgae protein waste is a by-product derived from water-extraction process of microalgae, during algae essence manufacturing. The underutilized algae wastes, containing above 50% protein, have low economical value to be used as animal feed. The pepsin hydrolysate from algae protein waste exhibited antioxidative activity in preliminary experiments, indicating that algae waste might become a new protein source for selection of novel antioxidative peptides [132].
\nFurthermore, protein hydrolysates from marine sources such as algae by-products, have generally been used to produce seafood flavorings. A high flavor quality is difficult to ensure for seafood flavoring that is produced from marine animal sources because of their high susceptibility to lipid oxidation and the high cost of removing excess fat. Seaweed by-products after agar extraction are good sources of plant protein and contain taste-active amino acids, such as aspartic acid, glutamic acid, arginine, and lysine, in addition to a low fat content [133].
\nA seaweed protein hydrolysate using 10% bromelain for 3 h, resulted in high level of arginine, lysine, and leucine as free amino acids. These amino acids exhibited an umami taste and a seaweed odor [133].
\nMost microalgae contain high level of protein which discarded or damaged during biofuels production, while are good candidate for protein extraction and consequently, obtain lipid-rich product as by-product as feedstock for biofuels production. Even though proteins are major algae biomass component, usually they are undervalued compared to minor components such as omega fatty acids, pigments or other possible valuable buy-products [134].
\nFor instance, Garcia-Moscoso et al. [134] extracted more than 60 wt% of nitrogen content of Scenedesmus sp. by subcritical water medium then the lipid-rich residue used as suitable feedstock for biofuel production.
\nThere are numerous investigations about algae protein waste and extraction of peptides or amino acids with functional properties. For instance, the antioxidative peptide of VECYGPNRPQF was isolated by pepsin from Chlorella vulgaris. This peptide had some bioactivity such as DNA protective effect against hydroxyl radicals, gastrointestinal enzyme-resistance, and strong antioxidant properties. Fractionation of proteins exhibited the high level of aspartic acid, glutamic acid, leucine and lysine [132]. This amino acid sequence (VECYGPNRPQF) can act as cheap and natural anticancer peptide because had antiproliferation and induced a post-G1 cell cycle arrest in AGS cells with no cytotoxicity effect in WI-38 lung fibroblasts cells [135].
\nMoreover, protein isolation, as valuable by-product, from defatted Nannochloropsis, can be obtained after lipid extraction during biofuel production. Defatted and non-defatted Nannochloropsis contained 56.9% and 40.5% protein respectively. The protein yields by alkaline (pH 11 and 60 C) extraction method were 16% and 30% respectively. These isolated proteins had a high molecular weight approximately 250 kDa [136].
\nMacroalgae are also a suitable protein source and rich in protein after extraction of their polysaccharide, lipid and polyphenols. Among three seaweed Porphyra umbilicalis, Ulva lactuca, and Saccharina latissimi, the highest protein isolated using pH- shift method (71%) was related to the P. umbilicalis. Furthermore, among different extraction methods including pH-shift method, accelerated solvent extraction and sonication in water and precipitation by ammonium sulfate, pH shift process is promising approach. However, the yield and extraction approach are influence by type and species of seaweed [137].
\nBrown algae such as Laurencia filiformis, L. intricata, Gracilaria domingensis and Gracilaria. birdiae can supply dietary proteins for human and animals because their protein content reported 18.3, 4.6, 6.2 and 7.1% respectively [138].
\nCombination of acid-alkaline process is another protein isolation from algae. First acid and then alkaline extraction is an alternative extraction by 59% protein recovery from brown seaweed Ascophyllum nodosum. The obtained protein had about 2–4 kDa molecular weight [139].
\nThis chapter indicated that seafood by-products are one of the most important sources of value added products that can play an important role in the global market due to the increasing growth of demands for health beneficiary products [140, 141]. Through this opportunity and based on our research background for many years, we decided to provide important information about some value-added products obtained from seafood by-products. Proteins and peptides are a major part of the seafood by-products composition that can easily provide essential amino acids and bioactive peptides with health beneficent. Fish oil is another valuable product that could be extracted from seafood by-products. This source is rich in LCPUFA and decreases the risks of chronic diseases such as cardiovascular issues, thereby directly related to our health. Marine algae are a versatile, abundant, and valuable source of many compounds that have been widely used for many industries. The presence of bioactive compounds such as sulfated polysaccharide, carotenoid, and protein makes them a suitable candidate in biomedical applications. It seems, they will play an important role in human life because of their broad applications in food, pharmaceutical, and cosmetic industries.
\nThe authors declare no conflict of interest.
Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"203",title:"Telemedicine",slug:"telemedicine",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:6,numberOfAuthorsAndEditors:197,numberOfWosCitations:99,numberOfCrossrefCitations:87,numberOfDimensionsCitations:180,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"telemedicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8332",title:"Telehealth",subtitle:null,isOpenForSubmission:!1,hash:"dd9601c901f7fe3803ae69dbd571feba",slug:"telehealth",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/8332.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3269",title:"Telemedicine",subtitle:null,isOpenForSubmission:!1,hash:"16571516432b37129c1a7ef56c4cf3aa",slug:"telemedicine",bookSignature:"Ramesh Madhavan and Shahram Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/3269.jpg",editedByType:"Edited by",editors:[{id:"158803",title:"Dr.",name:"Ramesh",middleName:null,surname:"Madhavan",slug:"ramesh-madhavan",fullName:"Ramesh Madhavan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2824",title:"eHealth and Remote Monitoring",subtitle:null,isOpenForSubmission:!1,hash:"fee1441d7fee8b6585fb3b4e43452da0",slug:"ehealth-and-remote-monitoring",bookSignature:"Amir Hajjam El Hassani",coverURL:"https://cdn.intechopen.com/books/images_new/2824.jpg",editedByType:"Edited by",editors:[{id:"17524",title:"Dr.",name:"Amir",middleName:null,surname:"Hajjam El Hassani",slug:"amir-hajjam-el-hassani",fullName:"Amir Hajjam El Hassani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"199",title:"Telemedicine",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"0f4c17e1a24003fb78612525315af711",slug:"telemedicine-techniques-and-applications",bookSignature:"Georgi Graschew and Stefan Rakowsky",coverURL:"https://cdn.intechopen.com/books/images_new/199.jpg",editedByType:"Edited by",editors:[{id:"11262",title:"Dr.",name:"Georgi",middleName:null,surname:"Graschew",slug:"georgi-graschew",fullName:"Georgi Graschew"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1403",title:"Advances in Telemedicine",subtitle:"Applications in Various Medical Disciplines and Geographical Regions",isOpenForSubmission:!1,hash:"a8e4b1e59964db023e14fe11b26a232d",slug:"advances-in-telemedicine-applications-in-various-medical-disciplines-and-geographical-regions",bookSignature:"Georgi Graschew and Theo A. Roelofs",coverURL:"https://cdn.intechopen.com/books/images_new/1403.jpg",editedByType:"Edited by",editors:[{id:"11262",title:"Dr.",name:"Georgi",middleName:null,surname:"Graschew",slug:"georgi-graschew",fullName:"Georgi Graschew"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"43",title:"Advances in Telemedicine",subtitle:"Technologies, Enabling Factors and Scenarios",isOpenForSubmission:!1,hash:"45f56e0955035bdce490c5383a06792f",slug:"advances-in-telemedicine-technologies-enabling-factors-and-scenarios",bookSignature:"Georgi Graschew and Theo A. Roelofs",coverURL:"https://cdn.intechopen.com/books/images_new/43.jpg",editedByType:"Edited by",editors:[{id:"11262",title:"Dr.",name:"Georgi",middleName:null,surname:"Graschew",slug:"georgi-graschew",fullName:"Georgi Graschew"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"14328",doi:"10.5772/14352",title:"Telemedicine in Dentistry (Teledentistry)",slug:"telemedicine-in-dentistry-teledentistry-",totalDownloads:5217,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"advances-in-telemedicine-applications-in-various-medical-disciplines-and-geographical-regions",title:"Advances in Telemedicine",fullTitle:"Advances in Telemedicine: Applications in Various Medical Disciplines and Geographical Regions"},signatures:"Branko Mihailovic, Milan Miladinovic and Biljana Vujicic",authors:[{id:"17551",title:"Dr.",name:"Milan",middleName:null,surname:"Miladinovic",slug:"milan-miladinovic",fullName:"Milan Miladinovic"},{id:"17555",title:"Dr.",name:"Branko",middleName:null,surname:"Mihailovic",slug:"branko-mihailovic",fullName:"Branko Mihailovic"},{id:"17556",title:"Dr.",name:"Biljana",middleName:null,surname:"Vujicic",slug:"biljana-vujicic",fullName:"Biljana Vujicic"}]},{id:"16882",doi:"10.5772/16362",title:"A 2.4GHz Non-Contact Biosensor System for Continuous Monitoring of Vital-Signs",slug:"a-2-4ghz-non-contact-biosensor-system-for-continuous-monitoring-of-vital-signs",totalDownloads:3809,totalCrossrefCites:8,totalDimensionsCites:13,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Donald Lie, Ravi Ichapurapu, Suyash Jain, Jerry Lopez, Ronald Banister, Tam Nguyen and John Griswold",authors:[{id:"24852",title:"Prof.",name:"Donald",middleName:null,surname:"Lie",slug:"donald-lie",fullName:"Donald Lie"},{id:"119104",title:"Dr.",name:"Ravi",middleName:null,surname:"Ichapurapu",slug:"ravi-ichapurapu",fullName:"Ravi Ichapurapu"},{id:"119105",title:"Dr.",name:"Suyash",middleName:null,surname:"Jain",slug:"suyash-jain",fullName:"Suyash Jain"},{id:"119106",title:"Dr.",name:"Jerry",middleName:null,surname:"Lopez",slug:"jerry-lopez",fullName:"Jerry Lopez"},{id:"119107",title:"Dr.",name:"Ronald",middleName:null,surname:"Banister",slug:"ronald-banister",fullName:"Ronald Banister"},{id:"119108",title:"Dr.",name:"Tam",middleName:null,surname:"Nguyen",slug:"tam-nguyen",fullName:"Tam Nguyen"},{id:"119109",title:"Dr.",name:"John",middleName:null,surname:"Griswold",slug:"john-griswold",fullName:"John Griswold"}]},{id:"64650",doi:"10.5772/intechopen.81723",title:"Barriers to Development of Telemedicine in Developing Countries",slug:"barriers-to-development-of-telemedicine-in-developing-countries",totalDownloads:1294,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"telehealth",title:"Telehealth",fullTitle:"Telehealth"},signatures:"Surya Bali",authors:null}],mostDownloadedChaptersLast30Days:[{id:"64650",title:"Barriers to Development of Telemedicine in Developing Countries",slug:"barriers-to-development-of-telemedicine-in-developing-countries",totalDownloads:1294,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"telehealth",title:"Telehealth",fullTitle:"Telehealth"},signatures:"Surya Bali",authors:null},{id:"16881",title:"Clinical Decision Support Systems",slug:"clinical-decision-support-systems",totalDownloads:9147,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Dejan Dinevski, Uroš Bele, Tomislav Šarenac, Uroš Rajkovič and Olga Šušteršic",authors:[{id:"15129",title:"Prof.",name:"Dejan",middleName:null,surname:"Dinevski",slug:"dejan-dinevski",fullName:"Dejan Dinevski"},{id:"63337",title:"Dr.",name:"Uroš",middleName:null,surname:"Bele",slug:"uros-bele",fullName:"Uroš Bele"},{id:"63338",title:"MSc",name:"Tomislav",middleName:null,surname:"Sarenac",slug:"tomislav-sarenac",fullName:"Tomislav Sarenac"},{id:"63339",title:"Dr.",name:"Uroš",middleName:null,surname:"Rajkovi?",slug:"uros-rajkovi",fullName:"Uroš Rajkovi?"},{id:"63340",title:"Dr.",name:"Olga",middleName:null,surname:"Šušterši?",slug:"olga-sustersi",fullName:"Olga Šušterši?"}]},{id:"16889",title:"Telemedicine for Chronic Digestive Diseases: A Systematic Qualitative Review",slug:"telemedicine-for-chronic-digestive-diseases-a-systematic-qualitative-review",totalDownloads:2821,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Raymond Cross and Sandra Quezada",authors:[{id:"32822",title:"Dr.",name:"Raymond",middleName:null,surname:"Cross",slug:"raymond-cross",fullName:"Raymond Cross"},{id:"44475",title:"Dr.",name:"Sandra",middleName:null,surname:"Quezada",slug:"sandra-quezada",fullName:"Sandra Quezada"}]},{id:"16875",title:"Pervasive Homecare Monitoring Technologies and Applications",slug:"pervasive-homecare-monitoring-technologies-and-applications",totalDownloads:3251,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Demosthenes Vouyioukas and Alexandros Karagiannis",authors:[{id:"40966",title:"MSc",name:"Alexandros",middleName:null,surname:"Karagiannis",slug:"alexandros-karagiannis",fullName:"Alexandros Karagiannis"},{id:"43110",title:"Prof.",name:"Demosthenes",middleName:null,surname:"Vouyioukas",slug:"demosthenes-vouyioukas",fullName:"Demosthenes Vouyioukas"}]},{id:"16890",title:"Teledermatology: Outcomes and Economic Considerations",slug:"teledermatology-outcomes-and-economic-considerations",totalDownloads:2553,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Akhilesh Pathipati and April Armstrong",authors:[{id:"32510",title:"Dr.",name:"April",middleName:"Wang",surname:"Armstrong",slug:"april-armstrong",fullName:"April Armstrong"},{id:"37945",title:"Mr",name:"Akhilesh",middleName:"Srinivas",surname:"Pathipati",slug:"akhilesh-pathipati",fullName:"Akhilesh Pathipati"}]},{id:"16882",title:"A 2.4GHz Non-Contact Biosensor System for Continuous Monitoring of Vital-Signs",slug:"a-2-4ghz-non-contact-biosensor-system-for-continuous-monitoring-of-vital-signs",totalDownloads:3809,totalCrossrefCites:8,totalDimensionsCites:13,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Donald Lie, Ravi Ichapurapu, Suyash Jain, Jerry Lopez, Ronald Banister, Tam Nguyen and John Griswold",authors:[{id:"24852",title:"Prof.",name:"Donald",middleName:null,surname:"Lie",slug:"donald-lie",fullName:"Donald Lie"},{id:"119104",title:"Dr.",name:"Ravi",middleName:null,surname:"Ichapurapu",slug:"ravi-ichapurapu",fullName:"Ravi Ichapurapu"},{id:"119105",title:"Dr.",name:"Suyash",middleName:null,surname:"Jain",slug:"suyash-jain",fullName:"Suyash Jain"},{id:"119106",title:"Dr.",name:"Jerry",middleName:null,surname:"Lopez",slug:"jerry-lopez",fullName:"Jerry Lopez"},{id:"119107",title:"Dr.",name:"Ronald",middleName:null,surname:"Banister",slug:"ronald-banister",fullName:"Ronald Banister"},{id:"119108",title:"Dr.",name:"Tam",middleName:null,surname:"Nguyen",slug:"tam-nguyen",fullName:"Tam Nguyen"},{id:"119109",title:"Dr.",name:"John",middleName:null,surname:"Griswold",slug:"john-griswold",fullName:"John Griswold"}]},{id:"38847",title:"Phonocardiogram Signal Processing Module for Auto-Diagnosis and Telemedicine Applications",slug:"phonocardiogram-signal-processing-module-for-auto-diagnosis-and-telemedicine-applications",totalDownloads:2392,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"ehealth-and-remote-monitoring",title:"eHealth and Remote Monitoring",fullTitle:"eHealth and Remote Monitoring"},signatures:"Ali Moukadem, Alain Dieterlen and Christian Brandt",authors:[{id:"144059",title:"Dr.",name:"Ali",middleName:null,surname:"Moukadem",slug:"ali-moukadem",fullName:"Ali Moukadem"},{id:"144067",title:"Prof.",name:"Alain",middleName:null,surname:"Dieterlen",slug:"alain-dieterlen",fullName:"Alain Dieterlen"},{id:"144068",title:"Dr.",name:"Christian",middleName:null,surname:"Brandt",slug:"christian-brandt",fullName:"Christian Brandt"}]},{id:"16878",title:"QoS in Telemedicine",slug:"qos-in-telemedicine",totalDownloads:3098,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Phumzile Malindi",authors:[{id:"38001",title:"Dr.",name:"Phumzile",middleName:null,surname:"Malindi",slug:"phumzile-malindi",fullName:"Phumzile Malindi"}]},{id:"16884",title:"Clinical Psychology and Medicine for the Treatment of Obesity in Out-patient Settings: The TECNOB Project",slug:"clinical-psychology-and-medicine-for-the-treatment-of-obesity-in-out-patient-settings-the-tecnob-pro",totalDownloads:1722,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Gianluca Castelnuovo, Gian Mauro Manzoni , Stefania Corti, Paola Cuzziol, Valentina Villa and Enrico Molinari",authors:[{id:"35298",title:"Prof.",name:"Gianluca",middleName:null,surname:"Castelnuovo",slug:"gianluca-castelnuovo",fullName:"Gianluca Castelnuovo"}]},{id:"16893",title:"Telemedical Solutions - Practical Approach in Bulgaria",slug:"telemedical-solutions-practical-approach-in-bulgaria",totalDownloads:1933,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"telemedicine-techniques-and-applications",title:"Telemedicine",fullTitle:"Telemedicine Techniques and Applications"},signatures:"Polina Mihova",authors:[{id:"27174",title:"Dr.",name:"Polina",middleName:"Mihova",surname:"Mihova",slug:"polina-mihova",fullName:"Polina Mihova"}]}],onlineFirstChaptersFilter:{topicSlug:"telemedicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/innovation-in-the-seafood-sector-through-the-valorization-of-by-products",hash:"",query:{},params:{chapter:"innovation-in-the-seafood-sector-through-the-valorization-of-by-products"},fullPath:"/online-first/innovation-in-the-seafood-sector-through-the-valorization-of-by-products",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()