ESC/EACTS recommendations for the type of revascularization in patients with left main coronary artery disease [30].
\r\n\tDiseases are caused by three distinct mechanisms - infection, intoxication, toxicoinfection. There are three main steps for the process of infection that is caused by bacteria. Process starts with attachment of bacteria to host cell that leads to entrance to host cell. After entrance of bacteria to the host cell, bacterial cells colonize, grow and multiply within the host cell. Then, pathogenic bacteria start to invade to host cells. Disease contributed by intoxication is caused by toxins released from dead bacteria such as endotoxins. Toxicoinfection occurs when bacteria producing toxin are ingested. Toxicoinfection is caused by not only alive bacteria but also toxins released by them (such as exotoxins).
\r\n\tPathogenic bacteria reveal their pathogenicity and cause infection by their virulence factors such as surface proteins that lead bacterial adherence to host cells, cell surface carbohydrates, peptidoglycan, lipopolysaccharides of Gram-negative bacteria, biofilm, toxins that lead bacteria to invade and damage host cells, hydrolytic enzymes, antibiotic resistance genes, antiphagocytic factors etc.. Virulence factors enable bacteria to survive and infect host cell. Bacterial pathogens have become the main problem in hospital and community-acquired infections. Antibacterial treatment strategies have been used to prevent bacterial adherence, invasion and infection. It is hard to treat the strains that are resistant to antibiotics, due to this causing recurrent and untreatable infections. In this book, we will also present examples of pathogenesis, virulence factors and treatment strategies.
Despite its short length, the left main coronary artery (LMCA) is still one of the most challenging areas of disease for both cardiovascular surgeons and interventional cardiologists today. Significant LMCA disease is defined as a greater than 50% angiographic narrowing of the vessel. LMCA disease is the highest-risk lesion subset of ischemic heart disease and until recent years, coronary artery bypass grafting (CABG) was the major choice of treatment. Although there is a marked increase in use of percutaneous coronary intervention (PCI) in LMCA disease, there are still some questions about its efficacy when compared with CABG operations. Starting from the traditional treatment options in LMCA disease, current treatment guideline recommendations canalized the treatment of this potentially lethal disease into PCI in selected patients who had low to intermediate anatomic complexity based on some scoring systems. Patient selection for both techniques is important and directly affects the clinical outcome. In this chapter, basic characteristics of the LMCA will be discussed with recommendations of treatment options under the highlights of recent studies and guidelines.
The LMCA emerges from the aorta within the sinus of Valsalva through the ostia of the left aortic cusp. It passes between the pulmonary trunk and the left atrial appendage and just under the appendage; the artery divides into the left anterior descending (LAD) and the left circumflex coronary arteries (LCx). In one third of the patients, LMCA bifurcates into LAD, LCx and ramus intermedius branches [1]. The LMCA is responsible for supplying about 75% of the left ventricular (LV) cardiac mass in patients with right dominant type and 100% in the case of left dominant type, and as a result, severe LMCA disease will significantly reduce blood flow to a large portion of the myocardium and place the patient at high risk for life-threatening events, such as LV dysfunction and arrhythmias [2].
Significant LMCA disease is defined as greater than 50% angiographic narrowing of the artery and was shown to be present in about 4–6% of all patients who underwent coronary angiography [3]. Besides, patients with unprotected LMCA (ULMCA) disease treated medically have a 3-year mortality rate of about 50% [4].
The LMCA is anatomically divided into three portions: origin of LMCA from the aorta (ostium), mid portion and the distal portion. The LMCA is different from the other coronary arteries because it has relatively greater elastic tissue content; this feature explains the elastic recoil and its high restenosis rate, following balloon angioplasty procedures [5]. Since one-third of patients have trifurcated LMCA, this anatomical feature is important because in distal LMCA stenosis, PCI is much more difficult in trifurcated lesions than the bifurcated ones [6]. In 1% of the population, the LMCA is absent, and the LAD and LCx arteries originate directly from the aorta via separate ostia.
As with other coronary artery disease, the most common cause of LMCA disease is atherosclerosis. Non-atherosclerotic causes of LMCA lesions are rare. Other reasons may be either obstructive or nonobstructive. Since it is originated directly from the aorta, any disease affecting the ascending aorta can also cause LMCA obstruction such as aortic dissection, external compression resulting from aortic aneurysm or tumor, iatrogenic injury resulting from coronary interventions or vasospasm, irradiation, syphilitic aortitis, Takayasu’s arteritis, rheumatoid arthritis, aortic valve disease including malposition of prosthesis, aneurismal dilatations such as Kawasaki disease and atherosclerotic aneurysms.
There is a relationship between the length of LMCA and the LMCA segment that is diseased. In short LMCAs (<10 mm), the stenosis are more frequently localized at the ostium and then at the distal bifurcation (55 vs. 38%), in contrast to long LMCA that develops stenosis more frequently near the distal bifurcation compared to near the ostium (77 vs. 18%). The mid segment of LMS is rarely affected (5–7% of patients). Ostial LMCA stenoses are more common in women (44 vs. 20%) [7].
Most patients with LMCA disease are symptomatic. Since occlusion of this vessel compromises about 75% of blood flow to the LV, patients are at high risk of major cardiovascular events unless protected by a collateral flow. The diagnosis of LMCA disease is usually made by coronary angiography. The use of noninvasive imaging studies does not specifically distinguish LMCA from other types of coronary artery disease. Certain findings on exercise testing or, in patients with acute coronary syndromes on the electrocardiogram (ECG), are suggestive of LMCA disease. These include diffuse and severe ST-segment deviation or significant ventricular arrhythmias on ECG monitoring or hypotension during exercise [8].
Coronary angiography remains the gold standard diagnostic technique for the diagnosis of clinically important LMCA disease, although small but significant number of false-positive and false-negative results is present with inter-observer variabilities. In order to avoid precipitating myocardial ischaemia in patients with severe LMCA disease, operators try to limit the number of angiographic shots, as well as keep dye injections to a minimum: this may have an impact on diagnostic accuracy of less experienced operators. Ostial LMCA stenosis is not well shown angiographically; the diagnosis relies on detection of pressure damping on engagement of the ostia with the catheter tip and the absence of reflux of dye into the coronary sinus on injection. Detecting and quantifying stenosis of the LMCA and bifurcation rely on a normal segment for comparison: the severity of concentric stenoses of the entire LMCA may therefore be underestimated. Angiography is also poor at assessing lesion calcification. This is important firstly because where visual assessment is inaccurate, it is often because of the presence of calcification, and secondly because the presence of calcification is an important risk factor for dissection following PCI [9]. Coronary angiographic views of some patients with diagnosis of LMCA disease is shown in Figure 1.
(a–b) Proximal LMCA stenosis at the level of aorto-ostial junction (in circles). (c–d) Acute MI patient with distal LMCA stenosis at the level of bifurcation and proximal part of LAD (in circle) and thrombosis of the RCA (arrow). (e) After thrombolytic infusion and balloon angioplasty flow in RCA is restored, patient is operated in elective conditions for left main disease.
In some cases, additional studies including intravascular ultrasound imaging (IVUS), fractional flow reserve (FFR) and coronary vasodilatory reserve (CVR) may be helpful for increasing diagnostic accuracy and decision-making.
IVUS is an intracoronary imaging modality that facilitates the anatomic visualization of the vessel lumen and characterizes plaques. It provides a 360° sagittal scan of the vessel from the lumen through the media to the vessel wall. It provides additional information such as minimal and maximal diameters, cross-sectional area and plaque area compared with coronary angiography alone [9]. IVUS detects calcification twice as often as angiography and is more sensitive at detecting significant LMCA stenosis than angiography alone. IVUS may have a role in the assessment of high-risk patients and in deciding whether patients with angiographically indeterminate LMCA lesions should undergo PCI or surgery [10]. Since IVUS is an effective method to examine the coronary architecture and extent of atherosclerotic plaque with changes in vessel dimensions, it should be considered in angiographically borderline lesions as a complimentary method.
FFR is the ratio of distal coronary pressure to aortic pressure measured during maximal hyperemia which represents fraction of normal blood flow through a stenotic artery. The normal FFR for all vessels under all hemodynamic conditions, regardless of the status of the microcirculation, is 1.0. FFR values <0.75 are associated with abnormal stress tests [10]. FFR may have a role in deciding whether patients with angiographically mild or moderate LMCA disease should undergo revascularization: 56% of patients with FFR <0.75 in one study had significant LMCA stenoses [11].
CVR is the ratio of hyperemic to basal flow and reflects flow resistance through the epicardial artery and the corresponding myocardial bed. Unlike FFR, the value is affected by the coronary microcirculation and hemodynamic conditions. Although of use in the further assessment of angiographically indeterminate lesions, no studies have specifically addressed the use of this diagnostic adjunct in assessment of LMCA disease [10].
A LM pattern on exercise nuclear testing is characterized by perfusion defects in the LAD and LCx territories (i.e., reduced nuclear tracer uptake in the septal, anterior and lateral walls). It may also be associated with a picture of “balanced” ischemia where there is uniform diminution of tracer uptake with stress, often indicative of LM with three-vessel disease. This may be accompanied by transient ischemic dilation (TID), which is considered present when the image of the left ventricular cavity appears to be significantly greater after stress as compared with that at rest [12].
More recently cardiac CT and MRI have been shown to have a high correlation with angiography for the diagnosis of LM disease. This may be particularly useful in surveillance imaging after revascularization of the LM often performed after stenting [12]. Multislice computed tomography (MSCT), also called multidetector coronary angiography, has rapidly gained in popularity and applicability. MSCT has a good diagnostic accuracy for detecting more than 50% luminal stenosis with a sensitivity of 97% (CI: 94–98%) and specificity of 86% (CI: 78–90%) compared with quantitative conventional coronary angiography [13, 14].
Cardiovascular magnetic resonance imaging (CMRI) has some advantages and limitations compared with cardiac CT imaging. Advantages of CMRI include the absence of ionizing radiation and contrast media, as well as no requirement for heart rate control with b-blockers [12]. Detection of coronary lesions in heavily calcified coronary segments by CMRI can be more reliable than by cardiac CT [15].
There is a strong association between LMCA disease and carotid artery stenosis. Carotid artery disease is present in almost 40% of patients undergoing angiography for evaluation of angina, with significant left main stem disease, compared with just 5% with single-vessel disease [16]. The AHA guidelines recommend screening all patients undergoing bypass surgery for left main stem disease to identify carotid artery disease [17].
There are three options for treating LMCA disease: optimal medical therapy, PCI, or surgical revascularization (CABG). All patients with LMCA disease should receive preventive therapies to decrease the risk of subsequent cardiovascular events. Preventive therapies include smoking cessation, exercise, lipid lowering therapy with stains, management of diabetes mellitus with proper oral antidiabetics or insulin and achievement of target blood pressure goals with suitable antihypertensive medications. In the 1970s and 1980s, three randomized controlled trials (the Veterans Affairs Cooperative Study [18], European Coronary Surgery Study [19], and CASS (Coronary Artery Surgery Study) [20]) established the survival benefit of CABG compared with contemporaneous medical therapy without revascularization in certain subjects with stable angina. They reported a survival rate of 80–88% for CABG and 63–68% for medical treatment only. Subsequently, a 1994 meta-analysis of 7 studies that randomized a total of 2649 patients to medical therapy for CABG showed that CABG offered a survival advantage over medical therapy for patients with LMCA disease or three-vessel coronary artery disease (CAD) [21]. The studies also established that CABG is more effective than medical therapy at relieving anginal symptoms.
In general, there are three options for the treatment of LMCA disease, which include optimal medical therapy, percutaneous revascularization, or surgical revascularization, either off-pump or on-pump. Hybrid procedures may also be applied according to patient’s clinical status or clinician’s choice for different scenarios.
As stated above, CABG offers a survival advantage over medical therapy for significant LMCA disease since medical therapy alone has been associated with poor outcomes. CABG surgery has been accepted as the standard revascularization method for LMCA disease for several decades. In the last decade, several randomized controlled trials have shown favorable results for PCI with drug-eluting stents (DES) compared with CABG. In this title of the chapter, scoring systems for decision making and treatment strategies for LMCA disease will be discussed, mainly focusing on the surgical treatment of LMCA disease.
Compared with the early days, contemporary bypass surgery has been greatly refined. Cardiopreservation techniques have improved and nearly all patients with LMCA disease receive an internal mammary artery (IMA) graft. In addition, patients undergoing surgery are more aggressively treated medically. The outcomes are excellent. When comparing the results of CABG with PCI, the coronary stents must perform at least as well as surgery in terms of outcomes [22].
A percutaneous approach for revascularization in LMCA disease has both attractive and undesirable features. Surgery needs a long recovery period with significant potential morbidities including postsurgical atrial fibrillation, pleural effusions, infections, delayed wound healing, anemia and depression which have negative effects on patient’s quality of life. A percutaneous approach is clearly more palatable to patients than surgery. For the physician, LM stem is large and easily accessible for PCI techniques. However, especially for the patients with absent collateral vasculature, balloon inflation may lead to cardiovascular collapse with ischemia. Abrupt vessel closure or subsequent stent thrombosis involving the LM stem may be a fatal event. All of these factors must be taken into account and their effect clearly understood when comparing the two revascularization methods [22].
The assessment of patients with LMCA disease both as a candidate for surgery or PCI is often a complex procedure and best achieved by the “Heart Team” approach. When one method of revascularization is preferred over the other for improved survival, this consideration takes precedence over improved symptoms. ACCF/AHA guideline suggests that a Heart Team approach to revascularization is recommended in patients with unprotected LM or complex CAD (Class I recommendation, Level of evidence; C) [17].
Several risk stratification scores, based on either angiographic or clinical parameters, have been developed to evaluate outcomes in patients with LMCA disease who undergo bypass surgery. Despite the use of various objective scoring systems derived from hundreds of thousands of patients, an experienced surgeon who spends time evaluating the coronary angiogram, taking a detailed history and examining the patient may provide the most accurate assessment of operative risk [22].
The Synergy between PCI with TAXUS and Cardiac Surgery (SYNTAX) score includes factors of coronary angiographic complexity rather than clinical factors. Although the limitations of using the SYNTAX score for certain revascularization recommendations are recognized, the SYNTAX score is a reasonable surrogate for the extent of CAD and its complexity and serves as important information that should be considered when making revascularization decisions. Recommendations that refer to SYNTAX scores use them as surrogates for the extent and complexity of CAD [17].
ACCF/AHA guideline suggests that calculation of the SYNTAX and STS (The Society of Thoracic Surgeons) scores is reasonable in patients with unprotected LM and complex CAD (Class IIa recommendation, level of evidence; B). Variables which contribute to the determination of the score include dominance of the coronary artery system, number of lesions, segment involved per lesions and presence of chronic total occlusions, trifurcation, bifurcation, aorto-ostial lesions, tortuosity, calcification, thrombi, long lesions and/or diffuse disease. By the highlights of these variables, a separate number is calculated for each lesion. Then, these values are summed up to generate the total SYNTAX score. An online tool for easy calculation of the score may be found online at
Some of the steps illustrating the SYNTAX scoring system; available online at: http://www.syntaxscore.com.
SYNTAX trial is the largest, single published study to date, comparing the outcome of PCI vs. CABG in patients with 3-vessel coronary disease and LMCA disease [23]. The higher the score, the greater is the extent and the complexity of the disease. The SYNTAX trial stratified the entire randomized population (i.e., both patients with 3-vessel and patients with left main coronary artery disease) by tercile of SYNTAX score and found that the patients in the lowest tercile (score:0–22) fared just as well with PCI as surgery, whereas those in the highest tercile (score ≥ 33) clearly did better with surgery [22, 23]. Capodanno et al. applied the SYNTAX score to a registry of 819 patients undergoing LM PCI or surgery and found that the outcomes of patients with SYNTAX score ≥ 34 was better with surgery as compared with PCI but patients with SYNTAX score < 34 had similar outcomes with surgery or PCI in terms of 2-year mortality rates [24]. They concluded that a SYNTAX score threshold of 34 may usefully identify a cohort of patients with LMCA disease who benefit most from surgical revascularization in terms of mortality.
The SYNTAX study included a subset of 705 patients with LM stem disease and their 5-year outcomes have been published [25, 26]. For the overall group with LMCA disease, there was no significant difference in the rate of major adverse cardiac and cardiovascular events (MACCE), MI, or death at 5 years in patients treated with PCI compared with those treated with surgery [26]. The rate of stroke was lower in patients treated with PCI, and the rate of repeat revascularization was lower in patients treated with surgery. When the LM cohort was divided into two groups based on the SYNTAX score, striking differences between the treatment strategies became apparent. For the high SYNTAX score group (≥33), the rate of MACCE was significantly greater in the PCI group compared with surgery. Although not statistically powered for mortality, the rate of death trended alarmingly higher in the PCI group. By contrast, for patients with scores <33, there was no difference in MACCE. Interestingly, in this group with low or intermediate scores, there was actually a lower mortality rate with PCI [22, 25, 26].
By-time, not only the anatomical assessment, but also the clinical status of the patients was added for better evaluation of the risk stratification, mainly on the SYNTAX score. The clinical SYNTAX score is a combination of age, creatinine and ejection fraction (ACEF) model and SYNTAX scores, and subsequent development of a logistic model has provided better risk assessment [27]. The SYNTAX II score is a combination of anatomical and clinical factors (age, creatinine clearance, LV function, gender, chronic obstructive pulmonary disease, and peripheral vascular disease) and predicts long-term mortality in patients with complex three-vessel or LMCA disease [28]. It was found to be superior to the conventional SYNTAX score in guiding decision-making between CABG and PCI in the SYNTAX trial and subsequently validated in the drug-eluting stent for LMCA disease DELTA registry.
The STS score is a risk-prediction model, validated in patients undergoing cardiac surgery, with a specific model for CABG and combined CABG and valve surgery. It can be used to predict in-hospital or 30-day mortality and in-hospital morbidity [29]. ESC/EACTS guidelines on myocardial revascularization suggest STS score for CABG to assess short-term outcomes for CABG (Class IB recommendation) and SYNTAX score for both CABG and PCI to assess medium- to long-term (≥1 year) outcomes (Class IB recommendation) [30]. LMCA disease with low SYNTAX scores (≤22) should be treated either by CABG or PCI, whereas SYNTAX score > 32 is a contraindication for PCI. Recommendations of the ESC/EACTS guidelines for LMCA disease are summarized in Table 1.
Recommendations according to extent of coronary artery disease | CABG | PCI | ||
---|---|---|---|---|
Class | Level of evidence | Class | Level of evidence | |
Left main disease with a SYNTAX score ≤ 22. | I | B | I | B |
Left main disease with a SYNTAX score 23–32. | I | B | IIa | B |
Left main disease with a SYNTAX score > 32. | I | B | III | B |
Three vessel disease with a SYNTAX score ≤ 22. | I | A | I | B |
Three vessel disease with a SYNTAX score 23–32. | I | A | III | B |
Three vessel disease with a SYNTAX score > 32. | I | A | III | B |
ESC/EACTS recommendations for the type of revascularization in patients with left main coronary artery disease [30].
Although surgery was and still is the main treatment option for unprotected LMCA disease, the emerging practice in PCI techniques and new materials has led to almost routine therapeutic option for a subset group of patients with LMCA disease. PCI for treatment of unprotected LMCA disease has passed through several phases. The early published experiences of balloon angioplasty for LMCA disease were associated with a high procedural mortality and poor long-term survival. In the 1980s, O’Keefe et al. reported 9.1% procedural mortality and 36% 3-year survival rate for 127 acute and elective cases with LMCA disease for coronary angioplasty [31]. In the following years, coronary stents improved the safety of PCI and also reduced the incidence of restenosis and abrupt vessel closure. As a result, these techniques were also used for a subset group of patients with LMCA disease. Initial experiences were performed with bare-metal stents and highly variable results were demonstrated according to studied patient population. Worse outcomes were published with cardiogenic shock and who were not surgical candidates, whereas god results were obtained in elective patients who were good surgical candidates. The bare-metal stent era was characterized by high restenosis and repeat revascularization rates, and restenosis of the LM stents resulted in sudden cardiac deaths [22].
After clinical use of drug-eluting stents, a reduction in restenosis rates renewed enthusiasm for PCI in LMCA disease. At first, different series reported better outcomes with drug-eluting stents for LMCA disease but their results were limited by selection bias regarding the patient characteristics and the anatomical features of LM stem [32]. For better understanding of the results, finally properly designed, large-scale randomized controlled trials comparing PCI with drug-eluting stents to CABG surgery emerged and they provided important answers to the question of PCI vs. CABG surgery for LMCA disease [22].
PCI for LMCA may exist with a broad spectrum of clinical scenarios. The LM stem may eventually be injured and closed as a complication of diagnostic cardiac catheterization. This iatrogenic injury might not be suitable for emergency operation and this patient may suddenly become a candidate for PCI. In a similar fashion, coronary flow of the patient in the cath lab for acute MI who has an occluded LM stem may rapidly be restored by PCI rather than surgery and this may be life-saving. Different preoperative risk assessment and scoring systems may demonstrate high operative risk for the patient, or the patient himself may simply refuse the operation, which automatically puts the patient in the PCI group. The most controversial group is the group of patients who are good surgical candidates and willing to be operated. Currently, surgery is considered the standard of care for this group. Many clinicians feel that PCI should not yet be offered to this group until the results of properly performed clinical trials comparing the outcomes of surgery vs. PCI are available and show that PCI outcomes are at least equal to those with surgery [22]. If left main PCI is being considered, it should not be performed immediately after coronary arteriography. The patient should hear opinions from a multidisciplinary team prior to deciding on a revascularization strategy. Exceptions to this principle include patients who are unstable and need immediate revascularization in the catheterization laboratory or those in whom CABG is not an option for any reason [8].
In a study designed by Erglis et al. comparing drug eluting stents and bare metal stents for the treatment of unprotected LMCA disease, 103 patients with stable angina were assigned to receive either paclitaxel-eluting stent or bare-metal stent. All interventions were IVUS guided and CB pre-treated before stenting was performed in all patients. All patients were scheduled for 6-month follow-up. Follow-up analysis showed binary restenosis in 11 (22%) bare-metal stent and in 3 (6%) paclitaxel-eluting stent patients (p = 0.021). The findings demonstrated that implantation of paclitaxel-eluting stents was superior to bare-metal stent in the large-diameter LM vessel at 6 months [33]. By the highlights of studies and improving stent technology, drug-eluting stents are preferred in general use for LMCA disease.
In the LMCA disease, the results for distal LM were worse when compared to ostial or mid-shaft lesions. Although long-term outcomes in patients with ostial/shaft unprotected LMCA lesions were favorable, outcomes in patients with bifurcation lesions treated with stenting of both the main and side branches appeared unacceptable [34]. The distal LMCA is the usual site of restenosis and the circumflex origin is especially vulnerable to restenosis.
In the ostial involvement, delineating the aorto-ostium by coronary angiography may be difficult and optimal stent decision may be tricky. The implantation of the stent for ostial LMS stenosis must be done with a small protrusion into the aorta to ensure adequate ostium coverage. The aorto-ostium may be very rigid due to calcium and has a tendency to recoil. In case of heavy calcification, rotational thrombectomy may help reducing calcium load, so that it helps balloon and stent expansion and prevents recoil. In most cases of ostial disease, IVUS proves very helpful to ensure coverage and proper stent expansion [22].
Distal LMS stenosis can be treated by a single-stent or by a two-stent strategy. The choice of the strategy is based on: plaque distribution, the angle between the two branches, the diameter of LAD and LCx and the presence of side branch stenosis [6]. Although the data are challenging, patients with distal LM stenosis treated with single-stent strategy have a TVR rate relatively low (<5%), nearly equivalent to patients with ostial or mid-shaft LM stenosis treated by the same strategy [35]. Provisional T-stenting is the most frequent used strategy for single-stent strategy. It consists of the deployment of a single stent from LMCA to the LAD or LCx, whichever has the highest diameter. T-stenting has an advantage that it allows placement of a second stent into the side branch if it is severely narrowed. In two-stent strategy, two stents are planned and deployed in one of several different ways (culotte method, double kissing crush, etc.) to treat both the main branch and the side branch. The lack of randomized data in this area makes it difficult to advocate one strategy over another.
In the “Intracoronary Stenting and Angiographic Results: Drug-eluting Stents for Unprotected LM Lesions” (ISAR-LM) randomized trial, comparing PCI with sirolimus-eluting stent vs. paclitaxel-eluting stent, no significant differences were reported in the composite outcome of death, MI, and TLR at 12-month follow-up. No difference was reported also in restenosis and 2-year LM-specific revascularization [36].
The best available data for long-term outcomes with stenting of LMCAD come from the EXCEL and NOBLE randomized trials. EXCEL trial assigned 1905 patients with LMCA disease of low or intermediate complexity (SYNTAX score ≤ 32) to either PCI with everolimus-eluting stents or CABG [37]. The primary endpoint, a composite of death from any cause, stroke, or MI at 3 years, occurred at a similar rate in both groups. There were no significant between-group differences in the three-year rates of the components of the primary endpoint. The secondary endpoint of death, stroke, or MI at 30 days occurred less often in patients in the PCI group due mainly to a lower rate of MI. The secondary endpoint of death, stroke, MI, or ischemia driven revascularization at 3 years occurred more often with PCI. PCI with everolimus-eluting stents was noninferior to CABG with respect to the rate of the composite endpoint of death, stroke, or myocardial infarction at 3 years.
The NOBLE trial randomly assigned 1201 patients (without ST-elevation MI) to complete revascularization with either PCI, using a biolimus-eluting stent, or CABG [38]. The primary endpoint of major adverse cardiac or cerebrovascular events (a composite of all-cause mortality, nonprocedural MI, any repeat coronary revascularization, and stroke) at 5 years occurred more often with PCI attributable mainly to more frequent revascularization in the PCI group and a higher rate of stroke, the latter of which is not consistent with all other trials. The findings of this study suggest that CABG might be better than PCI for treatment of LM stem CAD.
Sometimes, a patient with acute MI and demonstrated three-vessel disease with involvement of LMCA disease may benefit from emergency coronary angioplasty. If the responsible vessel for acute MI is the RCA and complicated with cardiogenic shock, direct PTCA for RCA may significantly reduce in-hospital mortality and the patient may become a surgical candidate for LMCA after evaluation of the mitral valve for ischemic mitral insufficiency for possible interventions in a more stable status.
Most of the LM PCI does not require hemodynamic support, but during PCI for LMCA disease, the operator should be ready for any hemodynamic compromise, slow or no reflow or other procedural complications and take necessary precautions. These precautions include the placement of intraaortic balloon pump (IABP) or sometimes the support of percutaneous LV assist devices in poor LV functions, such as the Impella. Patients more likely to need support include those with severe LV dysfunction, occlusion of the right coronary artery, a left dominant circulation, and patients in whom the PCI procedure is likely to be complex and difficult, thus increasing the ischemic time [22]. In general, careful attention to patient’s baseline hemodynamic status before and during the procedure is necessary. Patient with instable hemodynamic status or those in whom even brief balloon inflations result in hemodynamic compromise may benefit from the support. As a member of the heart team, a cardiac surgeon should always be informed before the implementation of PCI for unprotected LMCA and the surgical team should be ready for any potential complications and eventually for emergency CABG.
Patients with a patent bypass graft to either the LAD or LCx, who are considered to be “protected,” may require LM intervention because of recurrent ischemia. Protected lesions are anatomically similar to those that are not previously bypassed. However, their physiology during treatment and the consequences of abrupt closure and restenosis are much more forgiving because of continued flow to the protected territory [8].
LMCA disease is an important independent risk factor for increased mortality and morbidity at all stages of diagnosis and treatment of CAD. For several decades, CABG was regarded as the standard of care for significant LMCA disease in patients eligible for surgery. More recently, PCI has emerged as a possible alternative method of treatment for revascularization in specifically selected, especially low risk group of patients, except for the life-saving emergency high-risk groups. Besides patient characteristics, lesion location is an important factor for the determination of treatment of choice as well as operator’s experience and technical considerations. Stenting of distal stem or bifurcation lesions is technically challenging and most of the patients are presented with three-vessel disease which makes them good surgical candidates. Although the improvement in stent technology and increased experience of PCI techniques by the operators sometimes make the surgery questionable, surgery is still the “gold standard” for treatment of LMCA disease [24]. The outcomes of patients with SYNTAX score ≥ 34 was better with surgery as compared with PCI CABG surgery, which improves survival in patients with significant LMCA disease, three-vessel (and possibly two-vessel) disease, or reduced ventricular function, and prolongs and improves the quality of life in patients with LM equivalent disease (proximal LAD and proximal LCx), but does not protects them from the risk of subsequent MI. In this section, patient selection and CABG methods, as well as technical considerations, will be discussed for surgical treatment of LMCA disease. Indications of surgery for LMCA disease in ACCF/AHA guideline is summarized in Table 2.
Class I indications | • CABG in Patients With Acute MI: Emergency CABG is recommended in patients with life-threatening ventricular arrhythmias (believed to be ischemic in origin) in the presence of LM stenosis ≥50% and/or 3-vessel CAD (LoE: C) • Life-Threatening Ventricular Arrhythmias: CABG is recommended in patients with resuscitated sudden cardiac death or sustained ventricular tachycardia thought to be caused by significant CAD (>50% stenosis of LMCA and/or >70% stenosis of 1, 2, or all 3 epicardial coronary arteries) and resultant myocardial ischemia (LoE: B) • CABG in Association With Other Cardiac Procedures: CABG is recommended in patients undergoing noncoronary cardiac surgery ≥50% luminal diameter narrowing of the LMCA or ≥70% luminal diameter narrowing of other major coronary arteries (LoE: C) • Heart Team Approach to Revascularization Decisions: A Heart Team approach to revascularization is recommended in patients with unprotected LM or complex CAD (LoE: C) • Left Main CAD Revascularization: CABG to improve survival is recommended for patients with significant (>50% diameter stenosis) left main coronary artery stenosis (LoE: B) |
Class IIa indications | • Calculation of the STS and SYNTAX scores is reasonable in patients with unprotected LM and complex CAD (LoE: B) • Left Main CAD Revascularization: 1. PCI to improve survival is reasonable as an alternative to CABG in selected stable patients with significant (>50% diameter stenosis) unprotected LMCAD with: (1) anatomic conditions associated with a low risk of PCI procedural complications and a high likelihood of good long-term outcome (e.g., a low SYNTAX score [<22], ostial or trunk left main CAD); and (2) clinical characteristics that predict a significantly increased risk of adverse surgical outcomes (e.g., STS-predicted risk of operative mortality >5%) (LoE: B) 2. PCI to improve survival is reasonable in patients with UA/NSTEMI when an unprotected LMCA is the culprit lesion and the patient is not a candidate for CABG (LoE: B) 3. PCI to improve survival is reasonable in patients with acute STEMI when an unprotected LMCA is the culprit lesion, distal coronary flow is <TIMI grade 3, and PCI can be performed more rapidly and safely than CABG (LoE: C) • Carotid artery duplex scanning is reasonable in selected patients who are considered to have high-risk features (i.e., age > 65 years, LMC stenosis, PAD, history of cerebrovascular disease (transient ischemic attack (TIA), stroke, etc.), hypertension, smoking, and diabetes mellitus) (LoE: C) • In the absence of severe, symptomatic aorto-iliac occlusive disease or PAD, the insertion of an IAB is reasonable to reduce mortality rate in CABG patients who are considered to be at high risk (e.g., those who are undergoing reoperation or have LVEF <30% or LMCAD) (LoE: B) |
Class IIb indications | • Left Main CAD Revascularization: PCI to improve survival may be reasonable as an alternative to CABG in selected stable patients with significant (>50% diameter stenosis) unprotected LMCAD with: (1) anatomic conditions associated with a low to intermediate risk of PCI procedural complications and an intermediate to high likelihood of good long-term outcome (e.g., low–intermediate SYNTAX score of <33, bifurcation LMCAD); and (2) clinical characteristics that predict an increased risk of adverse surgical outcomes (e.g., moderate–severe chronic obstructive pulmonary disease, disability from previous stroke, or previous cardiac surgery; STS-predicted risk of operative mortality >2%) (LoE: B) • CABG to improve survival rate may be reasonable in patients with end-stage renal disease undergoing CABG for LMCA stenosis of ≥50% (LoE: C) |
Class III indications (HARM) | • PCI to improve survival should not be performed in stable patients with significant (>50% diameter stenosis) unprotected LMCAD who have unfavorable anatomy for PCI and who are good candidates for CABG (LoE: B) |
ACCF/AHA guideline recommendations for left main coronary artery bypass graft surgery [17].
Abbreviations: CABG: coronary artery bypass graft; CAD: coronary artery disease; IAB: intraaortic balon; LM: left main; LMCAD; left main coronary artery disease; LoE: level of evidence; LVEF: left ventricle ejection fraction; NSTEMI: non-ST elevation myocardial infarction; PAD: peripheral artery disease; PCI: percutaneous coronary revascularization; UA; unstable angina.
By far, the most common known etiology of LMCA disease is atherosclerosis. Non-atherosclerotic causes of LMCA lesions are rare. Since atherosclerosis is a generalized disease affecting the whole arterial system in the body, its association should always be kept in mind such as carotid artery disease, cerebrovascular disease and peripheral artery disease as well as porcelain aorta which make the surgical procedure more challenging.
The incidence of sudden death in patients with critical LMCA disease means that these patients should never be thought as patients in the waiting list for elective surgery. Emergency CABG is recommended as Class I indication for patients with life-threatening ventricular arrhythmias, which is believed to be ischemic in origin, in the presence of ≥50 LMCA stenosis [17]. In a study by Maziak et al. [39], patients in the waiting list for CABG operations were evaluated. In this study, 281 patients over 2145 had critical (≥50%) LM stenosis. The average time from angiography to operation was shorter in patients with LMCA disease and the presence of LMCA disease did not influence operative mortality, the incidence of low cardiac output syndrome or the incidence of perioperative MI. To examine the effect of waiting time on outcomes, patients with LMS were divided into early (operation 10 days or less after angiography) and late revascularization groups (more than 10 days). Operative mortality, low output syndrome, and myocardial infarction were similar in the early and late groups. Patients in the early group were more likely to have NYHA functional Class IV symptoms, unstable angina, or a recent preoperative myocardial infarction. He concluded that carefully selected patients with significant LMS can safely wait for operation. But, it should be kept in mind that patients with severe symptoms and recently preoperative MI should be allocated for early surgical intervention.
The “Heart Team,” made up of clinical or noninvasive cardiologists, cardiac surgeons and interventional cardiologists, provides a balanced, multidisciplinary decision-making process. Formulation of the best possible revascularization approaches, also taking into consideration the social and cultural context, will often require interaction between these branches. Patients may need help in making decisions about their treatment and the most valuable advice will probably be provided to them by the Heart Team [40].
The hospital mortality rate for CABG surgery is approximately 1% in low-risk patients, with fewer than 3% of patients suffering perioperative myocardial infarction. The most consistent predictors of mortality after CABG are urgency of operation, age, prior cardiac surgery, female gender, low LV ejection fraction, degree of LM stenosis, and number of vessels with significant stenoses. The most common mode of early death after CABG is acute cardiac failure leading to low output or arrhythmias, owing to myocardial necrosis (often with features of reperfusion), postischemic dysfunction of viable myocardium, or a metabolic cause, such as hypokalemia. As in cardiac surgery, in general, the risk of perioperative MI increases with the degree of cardiomegaly, and in patients who have had preoperative infarction [41].
The objective of any type of myocardial management during cardiac surgery should target on decreasing injury to the myocardium by combination of hypothermia, electromechanical arrest, washout, oxygen and other substrate enhancement and buffering. There is no one specific method that ideally describes the myocardial protection as in the LMCA disease. It depends on surgeon’s preferences, surgical technique, and surgeon’s desire for complete bloodless area during the operation, sequence and timing of proximal anastomoses and costs. The optimum strategy for myocardial protection in severe LMCA disease remains unclear not only because of different regimens, but also the advanced stenosis of the LM stem resulting in uneven distribution of the preferred cardioplegic solution, slow diastolic arrest and delayed functional recovery due to pre- and perioperative functional status of the heart in critical LM stenosis and recent MI.
The myocardial protection is achieved by either antegrade blood cardioplegia through the ascending aorta via right and left coronary ostia in the absence of severe aortic regurgitation or retrograde blood cardioplegia by a special cannula inserted into the coronary sinus through the right atrium. Severe obstructive manifestations of CAD are perhaps the best examples for the superiority of retrograde cardioplegia. These include LM lesions and acute coronary syndromes. In this specific concern of LMCA disease, the cardioplegia distribution is not even because of the proximal stenosis and may cause impaired myocardial protection. Although retrograde cardioplegia results in better distribution, myocardial cooling and more complete functional recovery of myocardium distal to coronary artery stenoses, the presence of veno-venous shunts and thebesian channels means that distribution of retrograde cardioplegia may not effectively protect the right ventricle and posterior septum [42]. A combined approach may be a better alternative for myocardial protection where antegrade blood cardioplegia and maintained with continuous retrograde blood cardioplegia has been shown to result in reduced postoperative serum troponin I levels and rates of atrial fibrillation, compared with approaches using solely antegrade cardioplegia in patients with significant LMCA disease [43]. Patients with LMCA disease also have high incidences of involvement of RCA occlusion; so, not only the left coronary system, but also the right coronary system is impaired during antegrade cardioplegia route.
A conscious decision to use both the antegrade and retrograde routes of cardioplegia routinely, delivered in either an alternating sequential fashion or simultaneously, has evolved in the practice of some institutions. In our daily practice, we use combined antegrade and retrograde cardioplegia technique. In lack of severe aortic insufficiency, half or two-thirds of the dose is given through the antegrade perfusion cannula and the remaining solution is given through the retrograde cannula. After performing the first distal anastomosis by saphenous graft to the LCx system (mainly the best obtuse marginal artery branch), we do not wait for completion of time and perfuse the LCx from directly through the anastomosed saphenous vein graft, if the stenosis of LMCA disease is severe (Figure 3). In the absence of LAD stenosis, direct perfusion of LCx also allows perfusion of LAD in retrograde fashion.
During on-pump bypass surgery, anastomosed saphenous vein grafts are perfused before LIMA-LAD anastomosis for better myocardial protection in left main coronary artery disease (in circle).
Sometimes slow continuous retrograde perfusion may also be applied for better protection. Our goal is primarily good protection of the heart with as short cross-clamp time as possible. After completion of LIMA-LAD anastomosis, hot-shot with warm blood cardioplegia is given and usually the proximal anastomoses of the saphenous vein grafts to the ascending aorta is performed after the heart began to beat by the aid of side-clamp. If the aorta is severely calcified, single-clamp strategy may be used. Also, for better recovery of the heart, we also go on perfusing the heart by a line derived from the arterial cannula inserted into each saphenous vein grafts during proximal anastomosis stage.
Other preoperative prophylactic or postoperative insertion of the IABP is sometimes advisable. In addition to its use in MI with low cardiac output or shock, preoperative insertion is often helpful in unstable angina, LM disease with ongoing ischemia, and ischemia leading to ventricular arrhythmias. In the era of more complex arterial revascularization for ischemic heart disease, IABP support is helpful intraoperatively for pre-bypass support of patients with low ejection fraction [44]. When an IABP is used, it is important to understand that it is not the final therapy in terms of mechanical support for the failing heart. If the shock state persists, as evidenced by a depressed cardiac index, then some form of direct mechanical support must be implemented so as to restore adequate end-organ perfusion. Failure to adequately treat a patient in cardiogenic shock will most assuredly result in the patient’s demise [41].
Since the first CABG was performed in the late 1960s, the standard surgical approach has included the use of cardiac arrest coupled with CPB, optimizing the conditions for construction of vascular anastomoses to all diseased coronary arteries without cardiac motion or hemodynamic compromise. Such on-pump CABG has become the gold standard and is performed in about 80% of subjects undergoing the procedure [17]. Despite the excellent results that have been achieved, the use of CPB and the associated manipulation of the ascending aorta are linked with certain perioperative complications, including myonecrosis during aortic occlusion, cerebrovascular accidents, generalized neurocognitive dysfunction, renal dysfunction, and systemic inflammatory response syndrome. To avoid these potential complications, off-pump surgical technique was developed by the aid of special cardiac stabilizing devices. This technique is also helpful in avoidance of touching the aorta which may be heavily calcified. In 2005, an AHA Scientific statement comparing the two techniques concluded that both procedures usually result in excellent outcomes and that neither technique should be considered superior to the other [45].
The LMCAD is known to be an important poor prognostic factor related to morbidity and mortality at various stages of CAD. In the past, LMCAD was accepted as a relative contraindication for off-pump CABG because of the hemodynamic compromise of the patient by changing the position of the heart. With evolving experience, some centers began to use off-pump technique in their routine daily practice and emerging number of reports in the literature have proven this method as a safe alternative to CPB. In a review article searching for studies comparing the results of on-pump CABG and off-pump CABG in patients with LMCAD, the outcomes, concerns and controversies were evaluated [46]. The majority of the studies identified showed favorable or equal outcomes of OFP when compared to conventional approach. All of the studies, apart from two, which showed lower incidence of postoperative deaths, demonstrated equal mortality rates. Stroke rates were found less in three studies. Less blood transfusions, inotropic use and length of study has been also demonstrated. The main concerns of off-pump surgery were hemodynamic instability and less complete revascularization. Main controversies were same or favorable outcomes, despite lower number of grafts with off-pump surgery, and less stroke rates, despite manipulation of aorta with side-clamping. Despite these concerns and controversies off-pump surgery has been proven to be feasible and safe as demonstrated by results from numerous studies.
Patients who have had recent MI with impaired LV and patients with dilated ventricles may not be ideal candidates for off-pump bypass procedures. Similarly, in patients with more than mild mitral insufficiency, grafting the branches of the LCx coronary artery may cause hemodynamic instability during the procedure. In such cases, surgery may be best managed by performing the revascularization procedure on the beating heart with cardiopulmonary support. The aorta is not clamped and cardioplegia is not administered. In such conditions, the heart is kept empty, providing optimal myocardial protection and hemodynamic stability (Figure 4).
Cardiopulmonary bypass-assisted beating heart surgery. Note that the aorta is not clamped and cardioplegia is not administered. In such conditions, the heart is kept empty, providing optimal myocardial protection and hemodynamic stability.
Anesthetic management is very important during off-pump surgery. The key to avoiding conversion to emergency CPB should be proactive by preventing hypotension and low cardiac output. Intravascular volumes should be replenished before positioning the heart. The most common reason for hypotension is venous return problems. To prevent this, Trendelenburg position with turning the patient right-side may be helpful. The most important part for positioning the heart is placement of the pericardial sutures. If the target vessel is on the left side, right side pericardial sutures should be left free and the deep pericardial sutures and the left pericardial sutures should be tightened. Generally, lifting the heart to a vertical position is relatively well tolerated. After carefully defining the target vessel, stabilizer device (e.g., Octopus System, Medtronic Inc. Minneapolis, MN) and their pads should be placed around the vessel at diastolic phase and be fixed. After the arteriotomy, placement of intra-arterial shunt provides myocardial blood flow continuity, minimizes distal bed ischemia and helps in correct suturing. During beating heart surgery, the operative field may become dirty because of bleeding; in that case silastic tape traction from proximal and distal portion of the arteriotomy may stop bleeding and help for a bloodless area. Carbondioxide mist blower is also helpful for clear view of the operating field.
Usually anterior and the most critic vessel should be anastomosed first. In LMCA disease, after preparation of the left internal mammarian artery (LIMA), direct anastomosis to LAD provides blood flow to LV. LAD artery is usually grafted at distal one-third to one-half where the artery normally emerges from the intramyocardial location if suitable. Other LCx obtuse marginal branches can be accessed with the heart in vertical position and rotated to the right. Use of apical suction devices may help positioning the heart. In LMCA disease, positioning of the heart may cause hemodynamic instability, especially after acute MI. After LAD anastomosis, if the hemodynamic instability persists, the patient may be a candidate for hybrid approach for future PCI. The goal of the surgery should be complete revascularization in normal conditions; but any unnecessary attempts to provide complete revascularization which threatens his life should be avoided.
The effectiveness of CABG in relieving symptoms and prolonging life is directly related to graft patency. Because arterial and venous grafts have different patency rates and modes of failure, conduit selection is important in determining the long-term efficacy of CABG. The LIMA is the conduit of choice for revascularization of LAD distal to the LMCA lesion. LIMA should be used to bypass the LAD artery when bypass of the LAD artery is indicated (Class I recommendation for ACCF/AHA guideline for CABG surgery) [17].Since the atherosclerosis is an active event, anastomosis should be performed to the best distal area. LIMA provides superior short- and long-term patency and clinical outcomes to alternative conduits. Unlike saphenous vein grafts, IMA’s are usually >90% patent after 10 years. They are resistant to atherosclerosis and release prostacyclin and nitric oxide, thereby causing vasodilation and inhibiting platelet function, by their endothelium studies suggesting an improved survival rate in patients undergoing CABG, when the LIMA is used rather than saphenous vein grafts to LAD. This survival benefit is independent of the patient’s sex, age, extent of CAD, and LV systolic function [47]. Apart from improving survival rate, LIMA grafting of the LAD artery reduces the incidence of late MI, hospitalization for cardiac events, need for reoperation and recurrence of angina [48].
Although arterial conduits such as the radial artery have been shown to offer superior long-term patency to saphenous vein grafts, the risk of arterial graft spasm in the immediate postoperative period has discouraged some surgeons from total arterial revascularization of LMCA lesions [9]. Tatoulis et al. who analyzed 8420 patients, including 849 with significant LMCA disease, did not report adverse sequelae attributable to graft spasm in patients with LMCA disease who underwent total arterial grafting [49]. Patients should be informed before radial artery harvesting. Usually, the radial artery is harvested from the non-dominant arm of the patient. We routinely perform Doppler ultrasonography for evaluation of radial artery. The radial artery diameter >2 mm is usually suitable for a good quality conduit. Dominance of the ulnar artery in hand should also be evaluated by modified Allen test [50]. Radial artery graft patency is best when used to graft a left-sided coronary artery with >70% stenosis and worst when it is used to bypass the right coronary artery with a stenosis of only moderate severity [51]. In technical aspects, we use radial artery grafts for >90% lesions and, during harvest, we use ultrasonic/harmonic scissors to avoid heat trauma to the vessel. After harvesting the graft, all the fasciae over the radial artery is also cleared longitudinally to prevent vasospasm (Figure 5). This maneuver also helps us making a better bleeding control from the side branches and provides better vessel diameter. Topical papaverine is also a good option for prevention of vasospasm.
Radial artery harvesting with the fascia over the artery opened longitudinally to prevent vasospasm.
Combination of LIMA, right IMA and radial artery may be used for full arterial revascularization processes. Some centers also prefer gastroepiploic artery either in case of inappropriate LIMA or in combination with LIMA and RIMA for full arterial revascularization concept (Figure 6).
Arterial-only revascularization with LIMA-OM2 and RIMA-LAD anastomoses.
Besides these arterial grafts, reversed saphenous vein grafts are commonly used in patients undergoing CABG surgery. Their disadvantage is a declining patency with time: about 10–25% of saphenous vein grafts occlude within 1 year of CABG [52]. An additional 1–2% occlude each year during the 1–5 years after surgery; and 4–5% occlude each year between 6 and 10 years postoperatively. Therefore, 10 years after CABG, 50–60% of saphenous vein grafts are patent, only half of which have no angiographic evidence of atherosclerosis [53].
Patient’s age, stenosis degree of the affected coronary artery and hemodynamic status of the patient are important factors for overall graft selection. If possible, all patients with LMCA disease who are candidates for surgery deserve LIMA-LAD anastomosis either with on-pump or off-pump CABG surgery. Any surgeon should always target on full revascularization, but PCI should also be kept in mind. The heart team should also be in contact with LMCA patients not only before the operation, but also after the operation for future interventions or medical treatment plan.
LMCA disease is still one of the most challenging areas of disease for both cardiovascular surgeons and interventional cardiologists today. CABG offers a survival advantage over medical therapy for significant LMCA disease since medical therapy alone has been associated with poor outcomes. CABG surgery has been accepted as the standard revascularization method for LMCA disease for several decades. In the last decade, several randomized controlled trials have shown favorable results for PCI, and the emerging practice in PCI techniques and new materials has led to almost routine therapeutic option for a subset group of patients with LMCA disease. LMCA disease with low SYNTAX scores (≤22) can be treated either by CABG or PCI, whereas SYNTAX score > 32 is an indication for only CABG. The heart team should always be in collaboration, give therapeutic options to patients and decide the best treatment strategy for the welfare of the patient.
Hemorrhagic shock develops as a result of intravascular volume loss due to bleeding out of the body or into the anatomical spaces inside, causing insufficient oxygen delivery to the cells. Hemorrhagic shock is a type of hypovolemic shock. If the bleeding does not stop, inadequate oxygen supply may lead to death. Hemorrhagic shock in trauma patients is a predictor of worse outcomes and contributes to early mortality [1]. Intracellular synthesis of anaerobic metabolites impairs hemostasis, resulting in cell death, apoptosis, or necroptosis. Shock may develop due to several reasons including trauma, maternal hemorrhage, gastrointestinal hemorrhage, perioperative hemorrhage, or ruptured aneurysms [2]. Mortality due to bleeding is substantial on a global scale. Annually, 60,000 people in the US and 1.9 million people in the world lose their lives due to hemorrhage and its consequences. Out of them, 1.5 million people die of physical trauma around the world each year [3]. Unexpectedly, trauma affects young people; 1.5 million deaths per year cause an approximate loss of 75 million life year. In addition, functional outcomes are poor, and the long-term mortality rates are high in the hemorrhage survivors [4, 5].
Hemorrhage and hemorrhagic shock treatment is quite difficult and complex procedure as mentioned above. Although our knowledge related to hemorrhagic shock physiopathology has increased, our success in the treatment is limited by failure in injuries and still has high mortality rates. Control of bleeding should be the first priority, but resuscitation should be conducted through crystalloid fluids in the way that it will not form coagulopathy in order to protect hypoxia at the cellular level and so tissues and organs in case where the control cannot be assumed. Crystalloid solutions do not have superiority over each other, and there is not any type of treatment which is absolutely recommended apart from that they are kept limited.
As proposed by the historians, the first written definition of shock is made by Celsus (AD 20) after a penetrating heart injury as "The pulse fades away, the color is extremely pallid, cold and malodorous sweats break out the body as if the body has been wetted by dew, the extremities become cold and death quickly follows" [6]. LeDran, a military surgeon, derived a word from shock as "The bullet thrown from the gunpowder acquires such rapid force that the whole animal participates in the jarring (shock and agitation)" in his article in 1743 [7].
The emergence of biochemistry at the beginning of the twentieth century started serious scientific studies on the pathogenesis of circulatory shock. A number of physiologists agreed on the existence of a toxin released in response to injury, and it was identified to be histamine by Walter Cannon in the US and by Sir Henry Dale in England [8, 9]. However, neither histamine nor other identified vasoactive amines could successively mimic the picture of shock. In the late 1920s and 1930s, Blalock suggested an alternative hypothesis for shock and defined it as direct fluid loss from blood circulation culminating in peripheral vascular failure, a persistence of poor peripheral perfusion. After the proposal of this hypothesis, fluid replacement has become the principal therapy for circulatory shock.
Compilation of Artz and Fitts on that blood and fluids with salt are needed for closing the volume gap occurring after hemorrhage was not commonly appreciated [10]. This concept was supported by highlighting that saline solution should be given in ongoing hemorrhage later [11]. Kinney and Wells criticized the current immediate therapeutic attention to the many problems associated with trauma without regard to the patient’s ventilation. Their article established a new objective: therapy in all injured patients should look beyond blood pressure so as to ensure provision and maintenance of effective gas exchange of tissues [12]. While Lansing et al. defended the need for vasoactive medicines for perfusion of vital organs, Nickerson and Gourzis defended the disadvantages of vasoconstriction [13, 14].
The term “golden hour” is widely attributed to R. Adams Cowley, founder of Baltimore’s renowned Shock Trauma Institute, who in a 1975 article stated, “the first hour after injury will largely determine a critically injured person’s chances for survival”—this was in an era characterized by a lack of an organized trauma system and inadequate prehospital care. The validity of this concept remains controversial. An analogous concept, the “platinum 10 minutes” places a time constraint on the prehospital care of seriously injured patients: no patient should have more than 10 min of scene-time stabilization by the prehospital team prior to transport to definitive care at a trauma center [15].
Early theories suggesting that hemorrhagic shock resulted from nervous system dysfunction or from a toxin released from ischemic tissue have been disproved completely. The current view for the underlying mechanism of hemorrhagic shock states that the blood loss leads to an insufficient oxygen delivery to the tissues and consequently activates several homeostatic mechanisms in order to maintain vital organ perfusion [2]. The metabolic changes observed in hemorrhagic shock sustain energy homeostasis to ensure cell vitality [16]. When looking at the cellular and tissue level and if whole organism is taken into consideration, it is observed that the complexity of these events is clarified via the physical trauma-related tissue damage and by the relative effects of hypoperfusion due to hemorrhage. Sufficient oxygen to meet the metabolic requirements of the tissues cannot be supplied due to hemorrhagic shock. Cells switch from aerobic to anaerobic respiration due to hypoperfusion. Lactic acid, inorganic phosphates, and oxygen radicals begin to accumulate as a result of the mounting oxygen debt [17]. In 1877, Claude Bernard discovered that hemorrhage stimulated liver to provide glucose from the lasting glycogen stores [18]. The Second World War enforced the investigators to better understand the pathophysiology of shock. Cuthbertson described the metabolic alterations in two phases: “ebb” phase and “flow” phase. The former representing the reduction in the requirement for both oxygen and temperature followed by the latter is characterized by increase in energy and temperature requirement with consequent elevation of body temperature [19]. With fatal injuries or blood loss, a stage called “necrobiosis” occurs prior to death as defined by Stoner, where the oxygen consumption is reduced and the body temperature decreases [20, 21, 22]. Hypoxia due to shock leads to reduction in energy consumption and leads to a hypermetabolic state, where neurohumoral homeostasis increases glucose uptake to supply muscles. If shock persists, glycogen stores are depleted, and glucose is supplied by gluconeogenesis stimulated by hormones. If this process fails, the hyperglycemia turns into hypoglycemia. Pearce and Drucker suggest that glucose infusion during hemorrhagic shock is the cause for extension of life span, since homeostasis uses glucose as an energy substrate for its defense mechanisms [23]. Gann and Foster provided an alternative explanation by defining nonmetabolic role of glucose that is a critical factor. The glucose level is elevated rapidly as a result of hormonal response to injury and this causes the intracellular fluids to move to facilitate restoration of blood volume [24].
The release of damage-associated molecular patterns (DAMPs or alarmins) containing mitochondrial DNA and formyl peptides triggers systemic inflammatory response (SIRS) [25]. Eventually, the cellular homeostasis collapses by depletion of ATP resources, and membrane rupture results in necrosis, apoptosis or necroptosis and cell death [2]. At the tissue level, hypovolemia and vasoconstriction cause hypoperfusion and end organ damage in kidneys, intestines, and skeletal muscles, leading to a multiorgan failure. In the body, pulselessness occurs after a blood loss due to a severe hemorrhage and causes hypoperfusion to the brain and the myocardium, resulting in consequent cerebral anoxia and fatal arrhythmias developing in minutes [26]. Hemorrhage also causes substantial alterations in the vascular endothelium all over the body. Blood and endothelium act together for forming thrombus in the bleeding area [27].
Hemorrhage and shock continue, and both adaptive and maladaptive changes begin to occur in the blood. The coagulation cascade and platelets are activated to form a hemostatic plug in the hemorrhage source [28]. Probably to prevent the development of microvascular thrombosis, fibrinolytic activity increases away from hemorrhage site [29]. The mounting oxygen debt and the elevated catecholamine levels cause a sort of endotheliopathy due to the systemic degradation of the endothelial glycocalyx barrier. Autoheparinization due to increased plasmin activation and glycocalyx degradation result in hyperfibrinolysis and diffuse coagulopathy [27, 29, 30]. A hypercoagulable phenotype is present in almost half of the trauma patients [30]. Reduced platelet activity and margination contribute to hemorrhage and decreased platelet counts, increasing the mortality [31, 32]. Excessive fluid crystalloid resuscitations reduce the coagulation factor levels and decrease oxygen transfer capacity. Cold infusions increase hemorrhagic heat loss, cause energy store depletion, and reduce enzyme functions in the coagulation cascade [33]. Acidosis caused by hypoperfusion becomes more intense due to the excessive administration of the acidic crystalloid solutions. This eventually impairs the functioning of the coagulation factors and results in a vicious cycle, where coagulopathy, hypothermia, and acidosis occur [34].
The valid opinion is that the first response to a serious injury and shock is a robust and innate SIRS followed by a relative immunosuppression state called as compensatory anti-inflammatory response syndrome (CARS), bringing along a period of recovery. If a complication occurs, the cycle will repeat with a newly formed SIRS followed by CARS. While the innate proinflammatory and anti-inflammatory immunity genes are upregulated after the injury, the adaptive immunity genes are downregulated simultaneously. During the recovery period of patients without complications, these responses rapidly decrease to baseline. On the other hand, in patients with complications, the reduction of the excessive response to normal levels occurs more slowly [35].
Physiopathologic alterations in hemorrhage and hemorrhagic shock.
For restoration of impaired energy metabolism, reduced intravascular volume should be replaced immediately. Baue et al. have found out that both colloidal and erythrocyte free fluids meet the requirements for the oxidative metabolism to take place; however, the rapid dilution of hematocrit increases the cardiac output, cardiac workload, and the peripheral circulation [36]. The intravascular circulating volume is more effective in maintaining the energy metabolism compared to the circulating erythrocyte mass [37]. An acute loss in the circulating volume of less than 25% requires an urgent attention since the hematocrit level can be reduced more than 50% before a critical shortage of red blood cells becomes evident. The restoration of the plasma volume after a long duration of hemorrhage has been attributed to the osmotic activity in the capillary bed, induced by the hyperglycemia occurring as a result of hypovolemic shock; however, this has not been proven to be true because a transcapillary osmotic gradient does not develop. Monitoring the cardiac output is a reliable method to evaluate the reduction in the blood flow and to observe the effects of the oxidative metabolism and catecholamine response [38]. Consistent with the observations of Blalock, at the beginning of the shock, blood pressure is an insufficient parameter to demonstrate the status of the circulation. Similarly, no correlations have been found out among the blood glucose levels, hemodynamic changes, and the levels of plasma insulin during hypovolemia [16].
Maintaining the blood volume after the hemorrhage occurs in two phases. The first is initiated by a fall in the capillary of hydrostatic pressure, stopping until when the sum of the capillary hydrostatic pressure and the oncotic pressures equals the sum of interstitial hydrostatic and oncotic pressures. In the second phase, albumin is moved to the capillaries in response to the increase in interstitial pressure. This increase of osmotic pressure in the interstitial space is maintained by the osmotic gradient in the cell membrane caused by the presence of extracellular glucose. While glucose is produced due to the effects of counter-regulatory hormones including cortisol, glucagon, catecholamines, vasopressin, and angiotensin, insulin secretion is inhibited concomitantly. Blockage of any of these hormones will impair the restoration of blood volume. Cortisol is the most critical hormone because the absence of it, the restoration of the blood volume will fail completely [39].
In order for blood volume to be completely restored, all cardiovascular variables, including the cardiac output, are required to be reestablished [40, 41]. In hemorrhage up to a blood loss of 25% of the whole volume, reestablishment of the parameters takes approximately 48 hours. If the hemorrhage-associated blood loss exceeds 26% or more of the blood volume, the restoration of the blood volume will fail [42]. Na/K ATPase pump is essential for the sustainability of the cellular transmembrane potential; however, the activity of this pump is inhibited in all kinds of circulatory shock. This inhibition is considered to be associated with the impairment in the oxygen delivery. The disturbances in the Na/K ATPase activity cannot only be due to the impairments in the oxygen delivery since erythrocytes do not consume oxygen. The findings of Shire show that intravascular volume loss more than 26% indicates the same threshold value as that of an experimental reduction in the transmembrane potential. This phenomenon is initially observed in the muscle cells followed by the observation in the erythrocytes as well [43, 44].
Evans et al. have reported a protein, which occurs in the first 20 minutes of serious hemorrhage in the rats, depolarizing several cells in a number of species [45]. Boulanger et al. have confirmed this finding in dogs with serious hemorrhage [46]. Jones et al. noted that this substance reduced both the contractility and velocity in the isolated and perfused rat hearts, reporting that this depolarizing protein was potentially effective in the development of cardiogenic shock [47]. This led to the conclusion that this hypothetical protein should be the similar underlying cause for three types of circulatory shock.
The experiments testing this hypothesis and looking for the significant consequences of cell depolarization isolated adenosine as the stimulating factor [48]. It was demonstrated that adenosine enhanced the ATPase activity and provided survival for hours during the experimental hemorrhagic shock in rats. Following these results, the stimulation of the Na/K ATPase pump showed the significance of inhibition in shock states. The inhibition of the pump should have a critical effect on mortality [49] (Figure 1).
The early recognition of hemorrhagic shock and stopping hemorrhage is lifesaving as it takes only 2 hours from its start until death [50]. In order to limit the severity level and duration of shock and to replace mounted oxygen debt, a prompt control of the origin of hemorrhage and the restoration of the intravascular volume and oxygen transfer capacity is essential [51].
Traumatic injuries are the fourth and are the first reason for deaths under the age of 45 in the United States. About 80% of traumatic injuries are blunt and the majority of the deaths progress as secondary following the hypovolemic shock. Intraperitoneal bleeding occurs in 12% of blunt traumas, and it is essential to be promptly detected. The optimal test should be rapid, accurate, and noninvasive. Diagnostic peritoneal lavage (DPL) was historically conducted in the diagnosis of hemoperitoneum. While DPL is extremely sensitive (96–99%) and specific (98%), it is an invasive procedure with a complication rate more than 1%. However, it is quite confusing to assess hemodynamically unstable patients for whom it is late and who are brought out of the emergency service [52].
In an emergency situation, ultrasonography can provide guiding insights into a patient’s condition or injury pattern and is considered to be a highest priority technological tool that deserves evaluation. The ultrasound protocols used comprised focused assessment with sonography for trauma (FAST), prehospital lung ultrasound (PLUS), and focused echocardiography in emergency life support (FEEL). By combining the standard examination according to the FAST protocol (detection of internal bleeding) with pleural and lung ultrasound (PLUS) and echocardiography (FEEL), important life-threatening conditions, such as pneumothorax and cardiac tamponade, can be ruled out [53].
In irreversible shock, sodium accumulates within the cell due to the inhibition of Na/K ATPase pump. The direction of exchange of sodium and calcium is reversed, and calcium starts accumulating within the cells. Increasing levels of intracellular calcium causes proteolytic enzyme activation leading to degradation of the organelles of cells and at end cell death [54]. This definitely irreversible condition was first observed by Holden et al. under the electron microscope [55].
The recently introduced physiological or therapeutic classification of hemorrhagic shock is based on basic physiological principles. It takes the fluid-blood replacement resistant hypotension and natural hemostatic mechanisms of the body into account as well as considering the role of the I-R and SIR triggered by ischemia [56].
In critical shock conditions, the circulating blood volume is insufficient, and brain and heart internal circulations are merely holding as a result of the systemic vasoconstriction from chemoreceptor and central nervous system receptor stimulation. Although the endogenous vasomotor/vasoconstrictor compensatory mechanisms are impaired in severe shock, blood volume sufficient to maintain the perfusion exists. In moderate shock, the compensatory mechanism is ongoing, while a mild shock state means only a little blood loss [56].
The total blood volume in relation to body weight is determined to be 70 ml/kg in adults, 80 ml/kg in infants, and between 80 and 90 ml/kg in newborns. Transfusion blood or erythrocyte suspension of 10 U or more in volume is defined as a massive blood transfusion, receiving more attention how to determine the required amount. Cancio et al. pointed out the need for identifying logistic requirements during combat to prevent mortality [57].
To measure the efficacy of fluid replacement, it was attempted to measure the diameter of the vena cava by ultrasound before and after the fluid resuscitation. A failure of an increase in the diameter suggested an inadequate treatment [58]. Ferrada et al. examined the inferior vena cava in echocardiography in order to quantify the volume status in severely injured patients. They used this technique to determine pharmacological interventions and monitor the fluid treatment [59].
It is difficult to identify the signs and symptoms of hemorrhagic shock, especially if hemorrhage is originated from occult source. The presence of hypotension is an insensitive marker due to compensatory mechanisms until the blood volume loss reaches up to 30% of the total blood volume. Early posttrauma hypotension is associated with multiple organ failure (MOF) and development of infectious complications [60]. Nonspecific clinical symptoms including anxiety, tachypnea, and weakened peripheral pulses and mottled, pale, and cold extremities can be more indicative for diagnosis of shock. In regard to classification for severity of shock, for a 70-kg male patient in Class I shock, the blood volume loss is less than 750 ml, which accounts for 15% of the total blood volume, and the only clinical symptom may be a mild form of anxiety. Class II hemorrhage involves blood volume loss to 1500 ml, accounting for 30% of total blood volume. Patients look moderately anxious with a narrow pulse around 120 beats per minute. The respiratory rate is increased and reached over 20 breaths per minute. In Class III hemorrhage, blood volume loss is up to 2000 cc, accounting for 40% of total blood volume. The patient has tachycardia with a heart rate up to 140 beats/min, while the blood pressure is reduced. The patient is observed to be severely anxious, and the loss of consciousness may occur. Class IV patients are lethargic with severe hypotension and tachycardia. The respiration rate is over 35/min. Promising technologies, such as portable incident darkfield microscopy allowing for a simultaneous assessment of the compensatory reserve index and the microvascular bed, may help clinicians to promptly diagnose the patients in shock [2, 61, 62].
Potential bleeding source, such as hematemesis or hematochezia, significant vaginal bleeding, or bleeding from an aneurysm of the abdominal aorta should be identified. Bleeding from the extremities can easily be observed after trauma; however, the intensity of bleeding may not be severe in shock states. The body regions including the proximal thigh and retroperitoneal region can accumulate large amounts of blood, and this volume loss can easily be missed unless it is examined during the initial assessments. The intracavitary spaces in the body like the chest, abdomen, and the pelvis should immediately be examined after trauma by radiologic imaging [2]. An immediate examination of these cavities with chest and pelvic radiograms and focused assessment with sonography for trauma (FAST) can help diagnose the potential sites of bleeding [63]. Ultrasound is also used in the diagnostic evaluation of ectopic pregnancies, abdominal aortic aneurysm ruptures, and uterine hemorrhages, which may remain hidden as bleeding foci. Echocardiography is used for assessing cardiac filling and contractility [64] (Table 1).
Summary of hemorrhage/hemorrhagic shock and treatment modalities.
Blood gas analysis and the markers of hypoperfusion may help quantify the base deficit and the lactate levels. The ratio of heart rate to systolic arterial pressure termed as shock index and better predicts massive transfusion compared with traditional vital signs in trauma patients. In a retrospective study including 302 primary postpartum hemorrhage patients, Sohn et al. confirmed that an increased initial shock index is associated with the need for massive transfusion, and also lactate is a better predictor for blood requirements in trauma patients. Also, it is a robust predictor of requirement for massive transfusion in hemodynamically stable shock patients [65].
In a study, Lee et al. lactate has a prognostic role in patients with nonvariceal upper gastrointestinal bleeding higher lactate clearance rate (%/hr) within 24 hours after admission was associated with lower 30-day rebleeding rate. Higher initial, maximal, and average lactate levels within 24 hour after admission were associated with higher 30-day mortality rate and a more frequent admission over 7 days [66].
Hemoglobin and international normalized ratio (INR) values are used to determine the need for a massive blood transfusion in patients with severe hemorrhage [67]. Thrombocyte count and fibrinogen levels should be examined and treated to return to normal levels. Electrolyte levels, especially the levels of calcium and potassium, should be monitored at frequent intervals because fluctuations may occur during resuscitation with blood or blood products [33, 68]. Finally, any presence of coagulopathies should be diagnosed and resuscitation with blood products should be monitored by evaluating the clot-formation kinetics by means of viscoelastic testing such as thromboelastography or rotational thromboelastometry [69]. All these tests allow for determining the severity of shock, the extent to which the blood bank resources will be used, and will identify the type of coagulopathy.
A computed tomography scan, which is commonly used for diagnostic means, should be immediately performed in critical patients for whom the origin of the bleeding cannot be identified once the clinical picture is stable. CT remains the gold standard for diagnosing intra-abdominal injuries detecting as little as 100 cc of intraperitoneal fluid [52]. CT prompt approaches with intraoperative exploration, angiography, embolization, or gastrointestinal endoscopy may help in achieving better diagnostic and treatment outcomes [2].
Ultrasound has severe benefits on evolution and treatment of trauma patients. Bedside examination, easy way and cheap, never needs contrast and radiation source, reproducibility are advantages of it. In Europe, during the 1970s, the use of ultrasound to detect intraperitoneal fluid was first described. FAST is an ultrasound protocol for assessing hemoperitoneum and hemopericardium. Sensitivity of this protocol is 85–96% and specificity is over 98%. In the subset of hypotensive trauma patients, the sensitivity of the FAST exam approaches 100%. Experienced physicians perform the FAST exam less than 5 minutes, and its use decreases time to surgical intervention, patient length of stay, and rates of CT and DPL. Recently, many institutions have introduced the Extended FAST (eFAST) protocol into their trauma algorithms. The eFAST examines each hemithorax for the presence of hemothoraces and pneumothoraces [52].
Time is everything. Causa prima: optimization should be performed in cardiogenic shock, and treatment should be aimed at the underlying cause in hemorrhagic and septic shock. Survival of the patients with time-sensitive disorders like myocardial infarction or stroke can be made possible with prehospital arrangements, which should be performed in the patients with severe hemorrhage as well [70]. Minimizing the bleeding and limiting fluid resuscitation with large peripheral vascular access and immediate transfer to a center for ultimate treatment are limited options for prehospital care. Recent findings have demonstrated that when the patient can immediately be transported to the healthcare center for treatment, applying tourniquets to the proximal extremities to the origin of bleeding is lifesaving without leading to dysfunction or amputation of the extremities [71, 72]. Recent guidelines accept application of tourniquets in patients in whom direct compression cannot be performed during the first-aid procedures or during the prehospital interventions [73, 74]. In large injuries or injuries in joints such as groin and axilla, where tourniquets cannot be applied, a group of newly introduced homeostatic dressings have been demonstrated to be of benefit [75]. Canon demonstrated that, in a patient with a penetrating injury in the torso, delaying the intravenous fluid treatment starting from the urban treatment center until admission to the hospital for final treatment contributes to survival probably by preventing the development of dilutional coagulopathy [76].
Bickell et al. compared the outcomes of immediate and delayed fluid therapies in hypotensive patients with penetrating injuries and found out that survival rates at 62 and 70% were higher and serious complication rates from 30 to 23% were lower in delayed fluid treatment. In contrast to the predictions, the delayed fluid treatment was not disadvantageous but timesaving. The principal motivation of the treatment is to ensure a fast recovery in the patient with an acute injury favoring the transport of the patient compared to primary stabilization [77]. A number of experimental studies on animals’ standard resuscitation associated with decreased oxygen delivery, increased rates of hemorrhage, reperfusion injuries, organ failures, and coagulopathies [16].
Duton et al. challenged the findings reported by Bickel et al. and suggested to limit the fluid therapy maintain systolic blood pressure around 70 mmHg using an intermediate approach rather than 100 mmHg as it is in the conventional standard methods. The results did not demonstrate any significant benefit in mortality [78].
In regard to damage control resuscitation (DCR), Holcomb suggested an exchange of plasma with limited amounts of volume and crystalloids and proposed an early use of plasma with limited support for systolic blood pressure [79]. Plasma helps prevent coagulopathy due to acidosis and hypothermia. In the daily clinical practice, the patients treated with conventional methods were compared with the patients to whom DCR was applied, resulting in findings favoring DCR. Increasing the blood volume may prevent the development of both acidosis and hypothermia. Plasma contains coagulation factors activated by temperature and brings the hydrogen ion concentrations to normal levels [80].
There is not any proof on that fluids are superior over each other in patients with trauma in the literature. Due to the fact that colloidal fluids quickly increase oncotic pressure, they are much faster than the plasma expansion colloidal fluids. Although crystalloids are cheap, benefits of colloid applications on survival could not be proved in the studies [81]. In a review of clinical studies dating back to 2002 with safety data documented in ICU patients who received hydroxyethyl starch (HES), gelatin, dextran, or albumin, Groeneveld et al. showed that impaired coagulation, clinical bleeding, and acute kidney injury were frequently reported after HES infusion [82].
Although blood to plasma ratios have not been definitely established yet, their increase from 1:8 to 1:1.4 provided a decrease in the mortality rates from 64 to 9% in injured patients with approximately the same severity [83]. Kashuk et al. reported that blood-plasma ratios of 1:2 improved the mortality rates and that fluid replacements with lactated ringer solution resulted in increased international normalized ratios [84]. A multi-center study reported that the daily clinical use of plasma-red blood cell ratios at 1:1 or more in civilians reduced the 24-hour mortality rates by half [85].
In the treatment of hemorrhagic shock, Velasco et al. brought resuscitation with hypertonic saline solution (HTS) to the forefront. Their studies were conducted both on animals and on the patients in hemorrhagic or septic shock using either HTS alone or HTS and 6% dextrane combination [86]. Vassar et al. reported the efficacy of the latter combination in injured patients in their country [87]. The purpose of this combination lied on the fact that HTS moved the intracellular fluid to the extracellular space, while dextrane kept a significant amount of that fluid in the vascular bed. The relative efficacy of 7.5% NaCl did not cause a significant change in the survival rates regardless of its use either alone or in combination with dextrane; however, it has been demonstrated that this mode of treatment increased the costs [88]. The Resuscitation Outcomes Consortium found out that neither HTS nor hypertonic dextrane solution provided benefits compared to the fluid resuscitation with normal saline solution during the prehospitalization period in a mixed population of patients with either penetrating or blunt injuries [89]. Similarly, albumin did not provide any benefits over crystalloid solutions [90]. A recent retrospective analysis of a cohort, where trauma patients in the war were compared, demonstrated that a prehospital transfusion of an erythrocyte suspension or plasma or a combination of both, all provided significant benefits on survival. However, a number of studies being conducted currently have reported that they do not provide benefits in the daily practice [91]. Current practice shows that the radial pulse should be maintained in the patients with serious hemorrhage in the prehospital interventions, and crystalloid solutions should be used in relatively smaller quantities to keep the patients conscious [92].
A successful resuscitation requires to stop the hemorrhage at all sources and to replace the intravascular volume immediately. These allow for preventing the mounting oxygen debt and replacing it [51]. In the trauma patients, a combination of damage-control surgery and damage-control resuscitation helps to achieve these objectives. In several hemorrhage cases except trauma, the patients similarly benefit from controlling the bleeding upon identifying the hemorrhage source and from resuscitation with blood and blood products [93, 94, 95].
The arrival of a patient with hemorrhage at the hospital first requires restoration of the intravascular volume with fluid replacement and hemorrhage control. The strategies in replacing the intravascular volume include the conventional fluid resuscitation with plasma, platelet, red blood cells, or whole blood. Massive blood transfusion can be performed with universal blood products including packed red cells, plasma, platelets, and cryoprecipitate in predetermined volumes accompanied with the administration of several pharmaceutical agents like calcium and tranexamic acid at the patient bedside. These treatment protocols provide benefits for patients with acute hemorrhage in regard to survival [95]. Multiple scoring systems guide the therapeutic teams in identifying the need for massive blood transfusion. Any delays in actualizing the treatment protocols increase the mortality rates [96].
A panel moderated by Sheldon et al. announced a warning stating that blood is the most dangerous drug we have ever used [97]. Potentially, the best alternative to replace the blood is the crystalloid solutions without colloid; its use should be followed by type-specific blood according to the specific need of a patient. The required multiple component therapy is provided by transfusing a single unit of whole blood. Increasing the hematocrit levels over 30% provides no benefits in injuries [98]. In a review evaluating the use of whole blood and blood expanders during the Vietnam war, Sheldon et al. suggested the use of type-specific fresh whole blood preferably [99]. Although the experts in the area agree that blood is the best fluid replacement therapy in hemorrhagic patients, blood transfusion is not free of risks. Therefore, the use of “blood substitutes” or administration of a blood component therapy or acellular oxygen carriers should be considered [98]. Gervin and Fischer have reported type-specific noncross-matched blood as a safer alternative option to the use of cross-matched blood [100].
Red blood cell, plasma, and platelet ratios provide clinical values; however, the ratios have not been definitely established yet. A systemic review and two prospective studies reported that plasma, platelet, and red blood cell ratios around 1:1:1 were safe and decreased the mortality rates in trauma-associated hemorrhages. The general use is to administer six units of plasma and one unit of platelets processed by apheresis for each six units of red blood cells, which constitute an equivalent to six units of pooled thrombocytes [95, 101, 102]. A platelet to red blood cell ratio of over 1:2 has been demonstrated to reduce the mortality in the first 48 hours; however, plasma use at these ratios has not provided any benefits [103]. Barry et al. a total of 17 studies were included in this meta-analysis and including total of 10,610 patients. High fresh frozen plasma (FFP) to packed red blood cell ratios result low posthemorrhage mortality; however, the need for further optimization is highlighted as evidenced by reported increase in post-damage control resuscitation (DCR) sepsis, MOF, and hospital lengths of stay among survivors [104].
All of these blood products contain citrate as an anticoagulant, which is metabolized rapidly by a healthy human liver. However, the use of high volumes of blood products may reach toxic doses in the patients in hemorrhagic shock and may lead to the development of life-threatening hypoglycemia and progressive coagulopathy [68, 105]. Empirically, 1 gram of calcium chloride infusion can be administered following four units of blood product infusion, and the electrolyte levels should be monitored at frequent intervals.
Resuscitation with isotonic crystalloids has been in use for decades since the historical treatments for hemorrhage. However, isotonic crystalloids provide no intrinsic benefits other than increasing the intravascular volume temporarily. Complication rates are increased after high-volume infusions of isotonic crystalloids. The potential complications may include respiratory failure, compartment syndromes in the abdomen or in the extremities, and coagulopathy. In acute hemorrhagic trauma patients, it is recommended to administer crystalloid infusions in the first 6 hours of admission to the hospital, but the volume of infusion should not exceed 3 l [106]. Blood products are not included in this limit. No benefits of prehospital resuscitation with colloid, dextran, and hypertonic saline infusions have been demonstrated as discussed previously.
Pruit et al. found out that fluid resuscitation with normal saline was sufficient to replace both the blood loss and the sequestrated extravascular fluid in males with a moderate level of hemorrhage [107]. Lactated ringer’s solution has found to be superior probably because it does not contain acetate or magnesium, and its chlorine content is low [108]. Recent studies stress that infusion of normal saline may lead to hyperchloremic acidosis. In addition, caution is advised against uncontrolled use of crystalloids [109, 110]. The experiences during the times of war showed that administration of blood in combination with protein-free fluids did not cause edema and did not lower the serum albumin levels in severely injured persons [111].
Procoagulant hemostatic such as activated recombinant factor VII, tranexamic acid, prothrombin complex concentrate, and fibrinogen concentrate can be included in the treatment in patients with hemorrhage [112] The use of procoagulant hemostatic is off-label in patients receiving warfarin and in patients with hemophilia except for the use of prothrombin complex concentrate in the former group of patients and the use of activated recombinant factor VII and tranexamic acid in the latter, respectively. Vasopressin, included in the treatment of patients in hemorrhagic shock, reduces the need for administering blood products and fluids [113].
Prolonged hemostasis in pelvic fractures or in patients with a ruptured aneurysm of aorta or with gastrointestinal bleeding causes an increased need for blood transfusion, elevates the risk levels for mortality, or it may cause both of them simultaneously [114, 115, 116]. The duration of emergency department stay should be less than 10 minutes to make a diagnosis and start the initial treatment for trauma patients with hemorrhage in the body in order to keep the mortality risk at a relatively lower level [116]. Patients bleeding out of their extremities, who were applied tourniquets, should be immediately operated to perform a vascular exploration. In a patient bleeding into more than one space in the body, vascular exploration should be performed in the space where most of the bleeding occurs in order to reduce mortality [117].
Regardless of the origin of bleeding, the patients with abdominal or pelvic hemorrhage may benefit from the endovascular occlusion of the aorta as a temporary measure. This approach is called as resuscitative endovascular balloon occlusion of aorta (REBOA). In severe bleeding, this approach reduces the perfusion pressure distal to the origin of bleeding, increases the afterload, and the remaining blood volume is redirected especially to the brain and heart. REBOA reduces intraoperative mortality in patients with a ruptured aneurysm of the abdominal aorta [118]. The method can also be used in gastrointestinal bleeding or in peripartum hemorrhages [119].
Aoki et al. reported that the use of vasopressor agents increases mortality in the traumatic hemorrhagic shock in the retrospective cohort study [120].
The definite treatment of hemorrhage is to stop the bleeding in its source as soon as possible. However, almost all of these hemorrhages occur at locations away from the hospitals. The time from the start of the bleeding until the time of intervention and the ultimate treatment is critical in the management of hemorrhages occurring due to an illness or due to trauma. Then, the primary approach should aim to shorten this period. Critical time is considerably exceeded when the time required for fluid resuscitation is added to the time elapsed at the scene where hemorrhage occurred. Crystalloid solutions are always at our disposal, and they are cheap and available fluids for intravenous use. Physiological saline administration in high volumes is a cause for increased mortality. No kinds of crystalloid fluids are superior to the other. What can be their alternatives? Type-specific blood and blood products have limitations in their supply, storage, and transport to the event scene. If the supply of these products and their storage can be achieved especially in the absence of cold chain facilities, they can provide solutions to the existing issues; however, the near future is not promising at all in this respect. There is continuing research on the use of 0-type whole blood and the use of freeze-dried plasma in the management of patients with trauma-associated hemorrhage [121, 122].
Systems, preventing the blood loss mechanically, such as REBOA can be developed. Generally, the first people to arrive at the scene are paramedics and young doctors. The required time and feasibility of applying these systems to a patient with weakened or no peripheral pulses in the adverse conditions of the scene during the induced sense of panic should be reviewed and estimated in detail.
We may suggest that hemorrhage and hemorrhagic shock has been an issue since the initial existence of humanity. Initiated by a toxin hypothesis, the understanding in physiopathology of shock has already been advanced; however, our achievements in terms of creating solutions to the existing problems are still limited. Technology progresses at a faster pace in terms of creating a trauma, causing injuries, and killing people compared to its advances in maintaining survival.
There is no conflict of interest
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5314},{group:"region",caption:"Middle and South America",value:2,count:4818},{group:"region",caption:"Africa",value:3,count:1466},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108152},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6842",title:"Aerosols",subtitle:null,isOpenForSubmission:!0,hash:"efe043290c576559ee15f293bc924f65",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6842.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems - Design, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7395",title:"Atmospheric Pressure Plasma",subtitle:null,isOpenForSubmission:!0,hash:"6deb4387910df1691c5b8d0d3260cbd5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7395.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7416",title:"Compound Engine",subtitle:null,isOpenForSubmission:!0,hash:"e7901967cd17843e83c855abd4014838",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7416.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7638",title:"Massive Multiple-input Multiple-output Systems",subtitle:null,isOpenForSubmission:!0,hash:"f6e96802bc79d6b8b0bab9ad24980cbc",slug:null,bookSignature:"Dr. Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/7638.jpg",editedByType:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7741",title:"Organic Field-Effect Transistors",subtitle:null,isOpenForSubmission:!0,hash:"787c5b02acbbf3f4efda634be5e6f3c0",slug:null,bookSignature:"Dr. Jonathan Sayago",coverURL:"https://cdn.intechopen.com/books/images_new/7741.jpg",editedByType:null,editors:[{id:"198513",title:"Dr.",name:"Jonathan",surname:"Sayago",slug:"jonathan-sayago",fullName:"Jonathan Sayago"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7771",title:"Dependability Engineering",subtitle:null,isOpenForSubmission:!0,hash:"37247080c87485c80a9fc393b2bdc50e",slug:null,bookSignature:"Dr. Leo Dimitrios Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/7771.jpg",editedByType:null,editors:[{id:"111582",title:"Dr.",name:"Leo",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7772",title:"Systems of Systems - Engineering, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"677fbbd5fc2550e8be540f40c0969a62",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7772.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7783",title:"Polyimide for Electronic and Electrical Engineering Applications",subtitle:null,isOpenForSubmission:!0,hash:"736e80c9bf791829c9a74ac05abb04b7",slug:null,bookSignature:"Dr. Sombel Diaham",coverURL:"https://cdn.intechopen.com/books/images_new/7783.jpg",editedByType:null,editors:[{id:"57115",title:"Dr.",name:"Sombel",surname:"Diaham",slug:"sombel-diaham",fullName:"Sombel Diaham"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8031",title:"Pavement Engineering",subtitle:null,isOpenForSubmission:!0,hash:"1d8ae1b3b3a208c2b16c1ff852e14207",slug:null,bookSignature:"Dr. Sameh Zaghloul",coverURL:"https://cdn.intechopen.com/books/images_new/8031.jpg",editedByType:null,editors:[{id:"269407",title:"Dr.",name:"Sameh",surname:"Zaghloul",slug:"sameh-zaghloul",fullName:"Sameh Zaghloul"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8084",title:"Mechanical Properties of Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"93a82c83d0f81eace906cc1f99809495",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8084.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:33},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:141},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:109},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1328,numberOfAuthorsAndEditors:37014,numberOfWosCitations:8877,numberOfCrossrefCitations:7528,numberOfDimensionsCitations:20549,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editedByType:"Edited by",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8616",title:"Contemporary Rhinoplasty",subtitle:null,isOpenForSubmission:!1,hash:"f7a86c6856333a9498fa701968842175",slug:"contemporary-rhinoplasty",bookSignature:"Sebastian Torres Farr",coverURL:"https://cdn.intechopen.com/books/images_new/8616.jpg",editedByType:"Edited by",editors:[{id:"177686",title:"M.D.",name:"Sebastian",middleName:null,surname:"Torres Farr",slug:"sebastian-torres-farr",fullName:"Sebastian Torres Farr"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7865",title:"Type 2 Diabetes",subtitle:"From Pathophysiology to Modern Management",isOpenForSubmission:!1,hash:"f8b817f1959240ca2551ece7b8d03d75",slug:"type-2-diabetes-from-pathophysiology-to-modern-management",bookSignature:"Mira Siderova",coverURL:"https://cdn.intechopen.com/books/images_new/7865.jpg",editedByType:"Edited by",editors:[{id:"242582",title:"Associate Prof.",name:"Mira",middleName:null,surname:"Siderova",slug:"mira-siderova",fullName:"Mira Siderova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7846",title:"Universal Health Coverage",subtitle:null,isOpenForSubmission:!1,hash:"03f74e6a4e925b7368b87e813bc29e1f",slug:"universal-health-coverage",bookSignature:"Aida Isabel Tavares",coverURL:"https://cdn.intechopen.com/books/images_new/7846.jpg",editedByType:"Edited by",editors:[{id:"196819",title:"Prof.",name:"Aida Isabel",middleName:null,surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1328,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:8930,totalCrossrefCites:84,totalDimensionsCites:171,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"43874",doi:"10.5772/55925",title:"Residual Transmission of Malaria: An Old Issue for New Approaches",slug:"residual-transmission-of-malaria-an-old-issue-for-new-approaches",totalDownloads:3735,totalCrossrefCites:54,totalDimensionsCites:116,book:{slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",title:"Anopheles mosquitoes",fullTitle:"Anopheles mosquitoes - New insights into malaria vectors"},signatures:"Lies Durnez and Marc Coosemans",authors:[{id:"152754",title:"Prof.",name:"Marc",middleName:null,surname:"Coosemans",slug:"marc-coosemans",fullName:"Marc Coosemans"},{id:"169018",title:"Dr.",name:"Lies",middleName:null,surname:"Durnez",slug:"lies-durnez",fullName:"Lies Durnez"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:7328,totalCrossrefCites:32,totalDimensionsCites:91,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]}],mostDownloadedChaptersLast30Days:[{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:4490,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"48148",title:"The Six Rs of Head and Neck Cancer Radiotherapy",slug:"the-six-rs-of-head-and-neck-cancer-radiotherapy",totalDownloads:9638,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"contemporary-issues-in-head-and-neck-cancer-management",title:"Contemporary Issues in Head and Neck Cancer Management",fullTitle:"Contemporary Issues in Head and Neck Cancer Management"},signatures:"Loredana G. Marcu, Iuliana Toma Dasu and Alexandru Dasu",authors:[{id:"85953",title:"Prof.",name:"Loredana",middleName:"G.",surname:"Marcu",slug:"loredana-marcu",fullName:"Loredana Marcu"},{id:"173151",title:"Prof.",name:"Iuliana",middleName:null,surname:"Dasu",slug:"iuliana-dasu",fullName:"Iuliana Dasu"},{id:"173152",title:"Prof.",name:"Alexandru",middleName:null,surname:"Dasu",slug:"alexandru-dasu",fullName:"Alexandru Dasu"}]},{id:"26491",title:"Homeopathy: Treatment of Cancer with the Banerji Protocols",slug:"homeopathy-treatment-of-cancer-with-the-banerji-protocols",totalDownloads:50500,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"a-compendium-of-essays-on-alternative-therapy",title:"A Compendium of Essays on Alternative Therapy",fullTitle:"A Compendium of Essays on Alternative Therapy"},signatures:"Prasanta Banerji and Pratip Banerji",authors:[{id:"79939",title:"Dr",name:"Prasanta",middleName:null,surname:"Banerji",slug:"prasanta-banerji",fullName:"Prasanta Banerji"},{id:"79943",title:"Dr.",name:"Pratip",middleName:null,surname:"Banerji",slug:"pratip-banerji",fullName:"Pratip Banerji"}]},{id:"54472",title:"Physiotherapy and Mental Health",slug:"physiotherapy-and-mental-health",totalDownloads:6325,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"clinical-physical-therapy",title:"Clinical Physical Therapy",fullTitle:"Clinical Physical Therapy"},signatures:"Michel Probst",authors:[{id:"186905",title:"Prof.",name:"Michel",middleName:null,surname:"Probst",slug:"michel-probst",fullName:"Michel Probst"}]},{id:"58916",title:"Factors Affecting the Attitudes of Women toward Family Planning",slug:"factors-affecting-the-attitudes-of-women-toward-family-planning",totalDownloads:3613,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"family-planning",title:"Family Planning",fullTitle:"Family Planning"},signatures:"Nazli Sensoy, Yasemin Korkut, Selcuk Akturan, Mehmet Yilmaz,\nCanan Tuz and Bilge Tuncel",authors:[{id:"216377",title:"Associate Prof.",name:"Nazli",middleName:null,surname:"Sensoy",slug:"nazli-sensoy",fullName:"Nazli Sensoy"},{id:"216589",title:"Dr.",name:"Yasemin",middleName:null,surname:"Korkut",slug:"yasemin-korkut",fullName:"Yasemin Korkut"},{id:"216595",title:"Dr.",name:"Selcuk",middleName:null,surname:"Akturan",slug:"selcuk-akturan",fullName:"Selcuk Akturan"},{id:"216596",title:"Dr.",name:"Canan",middleName:null,surname:"Tuz",slug:"canan-tuz",fullName:"Canan Tuz"},{id:"216598",title:"Dr.",name:"Bilge",middleName:null,surname:"Tuncel",slug:"bilge-tuncel",fullName:"Bilge Tuncel"},{id:"216599",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yilmaz",slug:"mehmet-yilmaz",fullName:"Mehmet Yilmaz"}]},{id:"59779",title:"Effective Communication in Nursing",slug:"effective-communication-in-nursing",totalDownloads:3048,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nursing",title:"Nursing",fullTitle:"Nursing"},signatures:"Maureen Nokuthula Sibiya",authors:[{id:"73330",title:"Dr.",name:"Nokuthula",middleName:null,surname:"Sibiya",slug:"nokuthula-sibiya",fullName:"Nokuthula Sibiya"}]},{id:"61138",title:"Herbal Medicine Use during Pregnancy: Benefits and Untoward Effects",slug:"herbal-medicine-use-during-pregnancy-benefits-and-untoward-effects",totalDownloads:2184,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Tariku Laelago",authors:[{id:"211130",title:"Mr.",name:"Tariku",middleName:null,surname:"Laelago",slug:"tariku-laelago",fullName:"Tariku Laelago"}]},{id:"25184",title:"Headache in Pheochromocytoma",slug:"headache-in-pheochromocytoma",totalDownloads:9233,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pheochromocytoma-a-new-view-of-the-old-problem",title:"Pheochromocytoma",fullTitle:"Pheochromocytoma - A New View of the Old Problem"},signatures:"Masahiko Watanabe",authors:[{id:"63168",title:"Dr.",name:"Masahiko",middleName:null,surname:"Watanabe",slug:"masahiko-watanabe",fullName:"Masahiko Watanabe"}]},{id:"55812",title:"Postural Restoration: A Tri-Planar Asymmetrical Framework for Understanding, Assessing, and Treating Scoliosis and Other Spinal Dysfunctions",slug:"postural-restoration-a-tri-planar-asymmetrical-framework-for-understanding-assessing-and-treating-sc",totalDownloads:3476,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"innovations-in-spinal-deformities-and-postural-disorders",title:"Innovations in Spinal Deformities and Postural Disorders",fullTitle:"Innovations in Spinal Deformities and Postural Disorders"},signatures:"Susan Henning, Lisa C. Mangino and Jean Massé",authors:[{id:"204825",title:"Dr.",name:"Susan",middleName:null,surname:"Henning",slug:"susan-henning",fullName:"Susan Henning"},{id:"206242",title:"Dr.",name:"Lisa C",middleName:null,surname:"Mangino",slug:"lisa-c-mangino",fullName:"Lisa C Mangino"},{id:"206245",title:"Dr.",name:"Jean",middleName:null,surname:"Massé",slug:"jean-masse",fullName:"Jean Massé"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:2357,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"70243",title:"Living with a Severe Spinal Deformity: An Innovative and Personal Patient Account of Self-Management Using a Corset, Postural Correction, and Exercises",slug:"living-with-a-severe-spinal-deformity-an-innovative-and-personal-patient-account-of-self-management-",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.90294",book:{title:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Andrej Gogala"},{id:"70353",title:"Patient-Report Outcome Measures for Ankle-Related Functionality",slug:"patient-report-outcome-measures-for-ankle-related-functionality",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.89509",book:{title:"Ankle Injuries"},signatures:"Tarcísio Santos Moreira"},{id:"70344",title:"REAHs and REAH-Like Lesions: Underdiagnosed lesions Often Misconfused with Nasal Polyps",slug:"reahs-and-reah-like-lesions-underdiagnosed-lesions-often-misconfused-with-nasal-polyps",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.90327",book:{title:"Sino-Nasal Disorders"},signatures:"Ph. Eloy, C. Fervaille and M.C. Nollevaux"}],onlineFirstChaptersTotal:795},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"onlineFirst.detail",path:"/online-first/hemorrhagic-shock",hash:"",query:{},params:{chapter:"hemorrhagic-shock"},fullPath:"/online-first/hemorrhagic-shock",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()