Process Variables – Data from past literature.
\r\n\tOver the years, the concept of maintenance became more comprehensive, reducing fault occurrence and increasing industrial system availability. Besides, reliability, safety, and criticality requirements were associated with the system or equipment under analysis. Maintenance strategies or schemes can be classified as corrective (run-to-break), preventive (time-based), and predictive (condition-based maintenance). Corrective maintenance is only performed after an occurrence of a fault. Therefore, it involves unexpected breakdowns, high costs, changes in the production chain, and it could lead to catastrophic events. Preventive maintenance and interventions occur based on a scheduled maintenance plan or the equipment's mean time between failures. Although it is more effective than corrective maintenance, unexpected failure may still occur by preventing most failures. Additionally, the process cost is still high, especially the costs associated with labor, inventory, and unnecessary replacement of equipment or components.
\r\n\tOn the other hand, predictive maintenance analyses the equipment condition so that a possible fault can still be identified at an early stage. Predictive maintenance aims to identify a machine anomaly so that it does not result in a fault. Such maintenance involves advanced monitoring, processing, and signal analysis techniques, which are generally performed non-invasively and, in many cases, in real-time. In the case of machines or processes, these techniques can be developed based on vibration, temperature, acoustic emission, or electrical current signal monitoring. It should be noted that monitoring such signals or parameters to verify the operating condition is called condition monitoring. Condition monitoring aims to observe the machine's current operational condition and predict its future condition, keeping it under a systematic analysis during its remaining life. In this sense, a fault condition can be detected and identified from systematic machine condition monitoring. A diagnosis procedure can be established, whereby properly investigating the fault symptoms and prognosis.
\r\n\t
\r\n\tThis book will aim to merge all these ideas in a single volume, aggregate new maintenance experiences, apply new techniques and approaches, and report field experiences to establish new maintenance processes and management paradigms.
\r\n\t
We have only one earth and we must protect it. It is no more an option but an imperative that we adopt proactive measures to protect the earth and move towards Greener world. The official UN website lists 10 sectors for a greener planet. One of the sectors, is, Industries.
\n\t\t\tIndustries drive economic growth, but they also produce pollutants and can exhaust natural resources. They also generate a lot of waste. If we do not curb the same, the planet may soon become chocked with rubbish.
\n\t\t\tDespite all the developments, foundry industry is way far from green. The situation is worse in the case of sand foundries. Sand foundries, in addition to producing hazardous air pollutants in the form of dust and fumes, also generate a lot of used sand as waste. Sand disposal is a serious problem and expensive. Our planet is threatened to become a dump yard for used foundry sand unless some feasible solutions are developed.
\n\t\t\tSand foundries consume more energy too, thus resulting in higher fuel consumption, in turn leading to higher CO2 emissions. A Strong Energy Portfolio is needed for a strong economy of any nation.
\n\t\t\tPermanent molding (using a
This paper reviews in detail, the past developments in permanent mold technology for cast iron (including some research work done by the present authors). The present status of the technology is briefly discussed. Some plans for future work are suggested.
\n\t\t\tIn Permanent Molding Process the molten metal is poured repeatedly into a reusable, refractory coated, metal mold, to produce a large number of shaped castings. This is unlike all the variants of the conventional Sand Casting process (SC), which use a dispensable mold. The repeated usage of the mold is the main advantage of the PM process.
\n\t\t\t\tIt is very essential to make the following clarifications at the outset.
\n\t\t\t\t• The word Permanent does not mean that the molds last forever. In fact, the useful / service life of the mold depends largely on the pouring temperature, the material of the mold and the complexity of the component being cast [1]. The other factors are: casting weight, the thermal cycle, mold preheating, mold coating, gating design, cleaning, storage & handling, and, whether the operation is manual or automated. The end use of the casting also has a bearing (If the structural function of a casting is the only criteria, and not its appearance, a mold can be used longer before discarding) [2].
\n\t\t\t\t• Although, by and large, the permanent molds are metallic, graphite molds, used at times, also come under the category of Permanent Molds [2].
\n\t\t\t\t• The cores employed may be either metallic or made of sand. When sand cores are used, it is called a Semi-Permanent Molding ( SPM ) process.
\n\t\t\t\t• Permanent Molds are used in a number of variants of casting processes like Gravity Die Casting (GDC), Low Pressure Die Casting (LPDC), High Pressure Die Casting (HPDC), Centrifugal Casting (CFC), Squeeze Casting (SC) and Continuous Casting (CC).
\n\t\t\t\t• Throughout this paper, the terminology Permanent Molding is used to mean Gravity Die Casting only.
\n\t\t\t\t• Some foundrymen call it Chill Casting Process (CCP) since the metal mold cools the casting rapidly.
\n\t\t\tIn addition to the main advantage over the sand casting process as mentioned above, the PM process offers several other distinct advantages like:
\n\t\t\t\t• Higher productivity (7-10 tons / man / month as against 3.5 tons / man / month in the case of sand casting process) [3],
\n\t\t\t\t• Better repeatability, dimensional stability, geometric fidelity and near - net shaped castings.
\n\t\t\t\t• Denser castings (finer grain structure), and superior surface finish that reduces the post-casting cleaning operations. Better surface finish also renders improved static bending and fatigue properties.
\n\t\t\t\t• Closer dimensional tolerances and hence lower machining costs,
\n\t\t\t\t• Elimination of sand (less polluting) and hence no costly sand handling equipment (& its maintenance),
\n\t\t\t\t• Reduced floor space and the ease of mechanization for mass production,
\n\t\t\t\t• Better process control due to the flexibility in design for heating and cooling of any particular location in the mold;
\n\t\t\t\t• Possibilities of incorporating certain design features for achieving a higher casting yield.
\n\t\t\t\t• The process is more energy efficient than sand casting process since the heat remains within the process loop.
\n\t\t\tThere are several disadvantages in employing PM as compared to SC. The serious limitations are with regards to:
\n\t\t\t\t• The limitation on types of alloys that can be handled,
\n\t\t\t\t• Size, Shape and Section thickness of the castings,
\n\t\t\t\t• The batch size that can be economically handled. Since the tooling costs are relatively high, the process can be prohibitively expensive for low production quantities [2].
\n\t\t\tThe flowability (fluidity) and fillability of metal in metal molds is poorer compared to sand casting process. Permeability of the mold is
Due to the faster heat extraction, the rigidity of the metal mold (and metal cores), as also due to the thermal expansion / contraction problems associated with the metal molds (and metal cores), the stresses developed in the castings during the solidification is much higher than in the sand castings. This calls for a very careful mold and core design as well as proper casting extraction method.
\n\t\t\t\t\n\t\t\t\t\t
Unlike in the case of sand casting process, where the metal after preparation and treatment can be poured into several molds in one go, in the case of PM process the metal is often held for a while (sometimes for hours) for repeated pouring into a set of dies. Holding the metal for long has its own associated quality issues (temperature drops and fading effect of certain melt treatments).
\n\t\t\tAlthough Permanent Mold casting ranks second to sand casting in terms of popularity, the tonnage produced by the process is only a small percentage of that made by sand casting [2].
\n\t\t\tRecent years has witnessed some serious attempts made towards green foundry operations [5-10].
\n\t\t\t\tToday’s Global Green Initiative has prompted manufactures, including foundrymen, worldwide, to seriously look into Environmentally Benign Manufacturing (EBM) [5]. Foundry industry is one amongst a very few others that consume a lot of energy and also produce considerable amount of dusts & fumes, and wastes. The sector has an uphill task in going greener.
\n\t\t\t\tThe speech presented by Gigante, as the American Foundry Society Hoyt Memorial Lecture for 2010 touches upon the issue of The Green Assault in foundries [6].
\n\t\t\t\tThe 2002 Annual Report on Metal Casting Industry of the Future published by the US Department of Energy [7] says that as per the priorities outlined in the Metal casting Technology Roadmap of USA, 2/3rd of research funding goes toward improvements in manufacturing processes, where greatest opportunities for energy saving exist. Additional research funding is going to improvements in material performance (thereby reducing scrap and increasing yield), as well as to address environmental needs such as recycling of foundry spent sand. According to this report, Metal Casting is one of the most energy intensive industries in the United States and it is very critical to the to the U.S. economy as 90% of all manufactured goods contain one or more cast metal components and that the metal castings are integral in U.S. transportation, energy, aerospace, manufacturing, and national defence. Situations are likely to be similar in most other countries.
\n\t\t\t\tTechnikon LLC, a privately held contract research organization in California operates the Casting Emission Reduction Program (CERP), a cooperative initiative between the Department of Defence (U.S. Army) and the U.S. Council for Automotive Research (USCAR). During 2004 - 2007, Technikon has published a number of reports [8-10] based on detailed studies carried out on connected topics like:
\n\t\t\t\tthe sources of various Hazardous Air Pollutions or HAPs – both organic and inorganic (metallic), in different foundry operations[8], Monitoring Systems for HAPs [9], Energy Reduction in Foundry operations[10], the development of economically feasible permanent Mold system for high temperature alloys like iron, steel, Nickel, and Titanium[1]. The conclusions of these studies give a very good indication of the task ahead of foundry industry to become Green.
\n\t\t\t\tA study of the above reports give a hint that foundry industry will now be under a constant scanner and they will face never - ever - seen pressure due to stricter & newer environmental acts that are emerging globally. Foundries will be compelled to reduce emissions of fumes and dust so as to comply with these stricter norms. Further, their operations must be improved or changed to become more and more energy efficient to reduce the fuel consumption. It appears that all the future developments in the field of foundry will be dictated more by this Green Initiative than any other factor.
\n\t\t\tOn a worldwide average, sand castings account for almost 80% of the castings produced. Despite advancements in the foundry technology, sand casting operation is far from Green in the following respects and hence is a serious hindrance to
• Sand casting foundries emit a lot of dust and fumes causing environmental pollution and health hazard to operators. This is in addition to the problem of heat normally involved in any foundry (Inadequacy of labor force to work in such environment has already affected the foundry sector).
\n\t\t\t\t• Sand costs and sand transportation costs are constantly going up [1]. Sand mining may face restrictions in future.
\n\t\t\t\t• Sand reclamation systems are energy intensive and expensive to operate & maintain.
\n\t\t\t\t• Sand disposal is a serious problem and is expensive. Our planet is threatened to become a dump yard for used foundry sand unless some feasible solutions are developed.
\n\t\t\t\t• HAPs’ monitoring systems are also expensive to operate and maintain [1].
\n\t\t\t\t• Foundries in general, and sand casting foundries in particular, may be eventually forced to move to remote areas (where infrastructure may be inadequate). Sand transportation cost may also go up as a consequence.
\n\t\t\t\t• As mentioned earlier, sand casting operation is less energy efficient compared to PM process.
\n\t\t\t\t• As per the statistics available, mold & core making, and shot blasting operations consume almost 27% of the total energy cost in a foundry. This will be far less in the case of PM process. Even if PM process uses sand cores, the organic emissions would be relative only to the amount of core [8].
\n\t\t\t\tThese above mentioned issues are prompting foundrymen worldwide to seriously consider possibility / feasiblity of converting some sand castings to equivalent PM castings. Holmgren and Naystrom [11] strongly advocate that for a Green Foundry, one must not only use the Best Available Technique (BAT), but also evaluate and create better and better techniques (through Practice - Oriented R & D) for a good environment. One obvious approach is of course the increased utilization of Permanent Molds, which almost eliminates a sand waste stream [1]. In fact, for some castings, minor changes can permit conversion to PM castings thereby giving the above - mentioned benefits with regards to reducing HAPs, in addition to considerable cost savings [2]. The present authors firmly believe that in the very near future, such environmental issues will bring about
This brings us to our main topic of
The application of PM for ferrous alloys has been rather limited. The published literature on the subject is also very little. The subject is addressed only here and there in some publications, only occasionally, covering some very general aspects. It appears that a thorough understanding of the subject is somewhat lacking and that this subject has not been given its due attention. Most foundrymen raise their eyebrows in disbelief at the mention of cast iron production by PM process!!! This clearly shows that the technology has not been popularized to the extent it deserves and there is a serious lack of awareness.
\n\t\t\t\tHowever, it is well in place to mention here that there are a few publications [12,13] that give an indication that PM Cast Iron castings are produced in reasonable quantities in several countries of Former Soviet Union (almost 15 %), Eastern Europe, Germany and Japan, in a small way in USA and Canada, and a few Asian countries. Lerner [13] mentions that although the technology of PM of cast iron originated on the U.S. soil, the process has been more widely embraced overseas. According to him, in Europe, 6-8 % of all iron castings are made by PM, and, that the growing use of the process is also seen in China and India. However, beyond such general information and a minimal statistics quoted here and there, no detailed information is available on this technology, both in terms of research and practice.
\n\t\t\t\tConsidering the great potential that this technology has, particularly in the context of going Green as discussed above, there is an urgent need to work on improvements in the process. The very first step is to bring the awareness on this technology amongst the broader spectrum of foundry community. The authors of this paper are constantly working in this direction with reasonable success.
\n\t\t\t\tIn what follows, the authors present a brief review of the work done world over, in the past – in the chronological order. They share their own findings based upon their research and practice.
\n\t\t\t•
•
•
•
•
•
•
1. Progress made by Lamp Metals& Components Dept., General Electric Co., Cleveland on the Pressure Die Casting (PDC) of Ferrous materials (gray iron, malleable iron, ductile iron, and various steels) using molds made of unalloyed - pressed & sintered molybdenum [20-24].
\n\t\t\t2. Southern Research Institute, Birmingham, Alabama, USA successfully employed graphite permanent molds for gray and ductile iron castings [25]. The paper claims that the cost benefit and quality of end product of this process, as compared to sand casting process, is very attractive. This is in addition to lesser emission, better safety and lesser health hazards.
\n\t\t\t3. The successful development of pressure die casting of ferrous materials in Federal Die Casting Co., Chicago and its expansion unit in Ireland. Tungsten and molybdenum were used for the molds to overcome the temperature problems [26].
\n\t\t\t4. A publication from Poland [27] indicated the usage of Shaw Process for producing the permanent molds (molds for pouring both ferrous and non-ferrous alloys). Traditional methods of making the permanent molds by means of machining semi finished cast products with considerable allowances for machining are time consuming, expensive, requires specialists and special equipment. Reduction/elimination of machining of mold working surface brings about some savings in mold material, labor cost and investment cost. Considering the cost of molding materials used in Shaw Process, the ceramic slurry is used only for that part of the mold that is a direct reproduction of its working surface, which in turn corresponds to the outer surface of the final casting. This is a very useful information for implementation.
\n\t\t\t•
•
•
•
•
•
•
The analysis showed that the process of cast iron PM was still not fully exploited commercially, the progress appeared quite slow, and that there was still a vast lack of knowledge on the thermal and metallurgical aspects of permanent molded cast irons. The reasons for slow progress were attributed to the following.
\n\t\t\ta) The pouring temperatures involved are higher there by putting a higher demand on the metal for the mold.
\n\t\t\tb) Cast iron as an alloy, though very easy to cast, it is very difficult to understand in terms of the behavior. The structure and properties of cast iron not only depend upon the Chemical Composition, Melt Treatment and Heat Treatment but also vastly on the cooling rates during solidification. Cast iron is a section sensitive alloy. The matrix structure and the graphite morphology could vary from one extreme to the other. Further, It is possible for the same casting to have several combinations of graphite forms and matrix, at different locations, which means that the properties such as strength, ductility, machinabilty, wear resistance, damping capacity, and others could be subject to variation over rather wide limits. Since these properties are a consequence of the structure, which in turn is related to solidification (cooling rates), it was felt essential to generate knowledge on these aspects of PM of cast iron.
\n\t\t\tConsidering this gap in knowledge, the present authors, then at the Indian Institute of Science, initiated a 3 year long research project. The parameters studied included the size and shape factor of the casting, composition of the metal, the mold & pouring temperature, mold wall thickness, the coating material & thickness, and the melt treatment. The effect of these parameters on the solidification, structure of graphite & matrix and strength & hardness were studied in great depth.
\n\t\t\tThe magnitudes of the several process variables for the above research project were so chosen after a careful analysis of the earlier literature cited above, as to conform as closely as possible, with those employed by the previous investigators, as well as in industrial practice.
\n\t\t\tThe main data drawn from the earlier literature are summarized in Table 1. All the relevant details regarding the various experimental conditions employed in this research project are set out in Table 2 and 3.
\n\t\t\tOut of the above study, large amount of valuable data was generated on the effect of these parameters on the air gap formation time, solidification time, solidification rate, the mold temperature distribution, the heat extraction rate, the resulting microstructure, tensile and hardness properties. The microstructures were studied not only with optical microscope but also with Scanning Electron Microscope (SEM). The SEM studies revealed a lot more information. In addition to understanding the matrix and the graphite structure as separate entities, it was possible to understand the pattern of the interface between the matrix and the graphite and how smooth or otherwise the graphite – matrix interface is. The type of this interface appeared to have a strong influence on the strength properties. With slower solidification, although the graphite is coarser, the strength was higher presumably due to smoother interface that is likely to reduce the stress concentration.
\n\t\t\tThe findings of the above research have already been reported in several publications by the authors [37-42].
\n\t\t\tSince most of the data and the analysis of the above research have already been published, all those are not covered at length in this paper. Only a few important findings are presented in brief. Very large amount of data has been generated on the thermal behavior of the molds. It must be appreciated that this research was conducted in 1974-75, almost 37 year back. With the present day advancement in the various computer simulation techniques, one can generate these data fairly accurately. Hence, for these thermal aspects, only some typical graphical representations and a summary are given. However, many SEM microstructures (not exhibited in the earlier publications) are presented for the benefit of the readers, since the microstructure part cannot be so easily / accurately predicted by the use of a software.
\n\t\t\t1 | \n\t\t\t\t\t\tMaterial of cast iron poured | \n\t\t\t\t\t\tHypereutectic cast irons. (Carbon Equivalent, C.E in the range of 4.20 to 4.60) are invariably used for permanent molding [3,14-17,19,28-35] | \n\t\t\t\t\t
2 | \n\t\t\t\t\t\tMold Material | \n\t\t\t\t\t\tCast Iron [3,14-16,19,28-32,35]. In fact most recommend a cast iron of composition same as the alloy cast [15,16,19,28,32]. | \n\t\t\t\t\t
3 | \n\t\t\t\t\t\tMold Coating | \n\t\t\t\t\t\tMost investigators recommend a primary coating consisting of a mixture of China Clay, sodium silicate and water, with a secondary coating of Acetylene Soot [14-16,19,28-34]. | \n\t\t\t\t\t
4 | \n\t\t\t\t\t\tMold Temperature | \n\t\t\t\t\t\tMost recommend a temperature range of 150-250°C [14-16,19,35]. However some recommend slightly higher temperature of upto 350°C [3,32.] | \n\t\t\t\t\t
5 | \n\t\t\t\t\t\tPouring Temperature | \n\t\t\t\t\t\tMost recommend 1250-1350°C [14,32], while a few recommend upto 1400°C [3,17] \n\t\t\t\t\t\t | \n\t\t\t\t\t
6 | \n\t\t\t\t\t\tMold wall Thickness | \n\t\t\t\t\t\tThe normally employed mold wall thickness is 12.50 to 31.00 mm and the widely used Volume Ratio (Volume Of the Mold / Volume of the Casting) is about 5.00 [19]. | \n\t\t\t\t\t
7 | \n\t\t\t\t\t\tInoculation of the metal | \n\t\t\t\t\t\tInvariably all the melts are inoculated before pouring into the mold. | \n\t\t\t\t\t
8 | \n\t\t\t\t\t\tHeat Treatment of Castings | \n\t\t\t\t\t\tNormally castings are given annealing treatment (heat uniformly and rapidly to 860°C, hold sufficiently long to secure equilibrium between Austenite, Cementite and Graphite (normally about 75 min. for castings not exceeding 25 mm wall thickness), cool slowly to ensure breakdown of Cementite to Ferrite and Graphite – say at the rate of 3° per min., between 860°C and 600°C) [14,15,32]. Annealing results in uniformity in hardness and grain structure that gives many machining advantages like machining with greater feeds and speeds and longer tool life. Normally, it is difficult to retain a sharp corner or a smooth thread during machining of annealed gray cast iron due to the pullout of coarse graphite flakes. Such problems are not faced in PM cast iron castings owing to very finely dispersed under cooled graphite structure. | \n\t\t\t\t\t
Process Variables – Data from past literature.
1 | \n\t\t\t\t\t\tAlloys Poured | \n\t\t\t\t\t\t% C - 3:45, % Mn - 0.6, % P - 0.27, % S - 0.09 and % Si - (a) 2.42 *, (b) 3.00, (c) 3.62 * | \n\t\t\t\t\t
2 | \n\t\t\t\t\t\tMold Material | \n\t\t\t\t\t\t%C-3.5, % Si - 3.2, % Mn - 0.55, % P - 0.36, % S - 0.042. | \n\t\t\t\t\t
3 | \n\t\t\t\t\t\tMold Coatings | \n\t\t\t\t\t\ta) Primary coat: China clay : Sodium Silicate : Water (4:1:20 by weight)-0.2 mm thick. | \n\t\t\t\t\t
b) Secondary coat : Acetylene soot-0.1mm thick. | \n\t\t\t\t\t||
4 | \n\t\t\t\t\t\tTest Castings | \n\t\t\t\t\t\ta) Cylinders: 150mm heights. Cylinder dia ( D c, mm ) -- 37.5, 62.5, 87.5 and 112.5 **. | \n\t\t\t\t\t
b) Plates: 150mm width x 125mm height. Plate thickness (t p, mm) -12.5, 18.75, 25.00 and 31.25. | \n\t\t\t\t\t||
5 | \n\t\t\t\t\t\tTest Molds | \n\t\t\t\t\t\tMold Wall thickness(MWT),mm of plate & cylindrical molds-12.5, 18.75, 25.00 and 31.25. | \n\t\t\t\t\t
6 | \n\t\t\t\t\t\tMold Temperature, ( M.T, °C ): | \n\t\t\t\t\t\t150, 200, 250 (300 and 350 in a few cases only) | \n\t\t\t\t\t
7 | \n\t\t\t\t\t\tPouring Temperature, ( P.T, °C ): | \n\t\t\t\t\t\t1250, 1300 and 1350 | \n\t\t\t\t\t
Process variables employed in the Research Project.
% Si | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\t2.42 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t
M.T. °C | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t200 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t
P.T. °C | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t1300 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t
Notes: * % Si of 2.42 and 3.62 were used only for limited combinations as shown in Table 2. | \n\t\t\t\t\t|||||||
\n\t\t\t\t\t\t\t | \n\t\t\t\t\t
Combination of % Si, M.T, P.T. for different experiments.
A) Findings on Solidification, Structure and Properties of the Castings
\n\t\t\t\n
The plots of the solidification time of test castings ( T, sec. ) against the corresponding volume to surface area ratio ( V / SA ) indicated that there exists a relationship of the form T = K (V/SA)n ( where K is a constant ) as in [42] when the casting size alone is varied. The value of n is constant for a given casting shape, being 1.8 for plates and 1.6 for cylinders, irrespective of the mold wall thickness, mold temperature, pouring temperature and the silicon level. The value of K, however, increased with increase in initial mold and pouring temperatures and with decrease in mold wall thickness. Variations in the silicon level did not change the value of K. it is very well known that similar equation holds good in the case sand castings the value of n being 2, irrespective of shape.
\n\t\t\tThe relationships between the type of graphite and the solidification time, & the type of matrix and the solidification time are shown in Fig. 1 [42]. If solidification time is reckoned as a measure of the cooling rate of the casting, then it is evident from this figure that the type of graphite changes from under cooled type to flake type as the cooling rate is progressively decreased from a high value (Figs.2-3 and 4-6 and Table. 4).
\n\t\t\tIn addition, the matrix changes from predominantly ferritic to a mixture of ferrite and pearlite, and again to predominantly ferritic. At very high cooling rates however, some pearlite is associated with ferrite (Fig. 1).
\n\t\t\tThe observation of undercooled graphite at the surface in all castings but for those cooled very slowly, and the presence of flake graphite in gradually increased quantities towards the centre in larger castings in the present series of investigation, is in well in keeping with the trend noted above.
\n\t\t\tThe matrix also changes in a predictable manner from the surface to the centre on the basis of the above consideration. Thus the microstructures of these gray cast iron castings can be predicted with confidence on the basis of heat conduction considerations. It is interesting to note that the experimental results of Skrocki and Wallace [30] are in accordance with this in respect of castings poured into molds preheated to different temperatures.
\n\t\t\tThere appear to be ramifications in a given type of graphite when the structure is observed by scanning electron microscopy. However changes within a given type of graphite (undercooled or flake) also occur in a predictable manner on the basis of heat conduction considerations. Thus, as the cooling rate is progressively decreased from a high value, heavily branched undercooled graphite (Fig.7-10, 17-18) changes to rounded undercooled graphite (Fig.13-14, 33). Further reduction in cooling rate results in the appearance of flake graphite with a moderate degree of branching (Fig.15-16, 19-24,27-28,38) and at very low cooling rates coarse flake graphite (Fig.25-26, 29-30, 34-36) and some with surface protuberances (Fig. 37) is observed in the microstructure.
\n\t\t\tThe SEM structures showed that in fact the graphite formed shows variety of interesting patterns like branching, curling, twisting, bending, folding, coarse graphite, smooth graphite, graphite with surface protuberances, etc., under various operating conditions. This is possibly a subject in itself, with a vast scope for further investigation. To give an idea to the readers on this aspect, several SEM pictures are presented. Those who are practicing PM of cast iron may be able to relate some of these features to their own observations, and throw some light.
\n\t\t\tThe matrix changes observed in the castings led to the postulation that diffusion distance, rate of diffusion of carbon, and surface area offered for the diffusion of carbon are all important considerations in determining the type of matrix present in a permanent mold gray cast iron casting.
\n\t\t\t\n\t\t\t\t
Plots of eutectic cell count values at the centre of the casting vs. solidification time show appreciable scatter especially at low solidification times [38]. It is nevertheless evident that the eutectic cell count decreases with decrease in cooling rate of the casting.
\n\t\t\t\n\t\t\t\t
Fig. 39 shows that the tensile strength gradually decreases with increase in solidification time until about 180 seconds and the decrease thereafter is much less marked. As seen in Fig. 1 castings with solidification times longer than 180s have a predominantly ferritic matrix associated with flake graphite at their centre. It is therefore evident that with this type of structure the tensile strength is not appreciably reduced despite the coarsening of the graphite as well as the matrix. One factor which could be of importance in leading to such behavior may be the smoothening of the leading edge of graphite which could be responsible for reduced notch sensitivity. Figure 40 shows the effect of variation of %Si on the tensile strength.
\n\t\t\tVariation in the graphite and matrix structure in gray cast iron [
Further it can be seen from Fig. 1 that castings with solidification times less than 180 sec. may have a variety of graphite - matrix combinations. Since the tensile strength falls continuously with increase in solidification time in this range (Fig. 39) it is to be surmised that factors tending to increase the notch sensitivity such as the coarseness of graphite of a given type, increased pearlite spacing, and coarseness of ferrite override the beneficial effect of the smoothening of the leading edge of a given type of graphite as the solidification time is increased in this range. Fig. 40 shows the effect of % Si on tensile strength. Lower the % Si, higher is the strength, in the range studied.
\n\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t|
2 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t100 | \n\t\t\t\t\t
3 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t100 | \n\t\t\t\t\t
4 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t300 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t100 | \n\t\t\t\t\t
5 | \n\t\t\t\t\t\tIntermediate | \n\t\t\t\t\t\t100 | \n\t\t\t\t\t||||||
6 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t100 | \n\t\t\t\t\t||||||
7 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
8 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
9 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
10 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
11 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
12 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
13 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t62.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
14 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
15 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tIntermediate | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
16 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
17 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
18 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
19 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
20 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
21 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
22 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
23 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t350 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
24 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
25 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
26 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
27 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t62.50 | \n\t\t\t\t\t\t18.75 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
28 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
29 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t62.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
30 | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t|||||||
31 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.5 | \n\t\t\t\t\t\t25.00 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
32 | \n\t\t\t\t\t\tPlate | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.62 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t420 | \n\t\t\t\t\t
33 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t112.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tSurface | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
34 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t112.50 | \n\t\t\t\t\t\t31.25 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
35 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1250 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
36 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
37 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t350 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t3.00 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
38 | \n\t\t\t\t\t\tCylinder | \n\t\t\t\t\t\t87.50 | \n\t\t\t\t\t\t12.50 | \n\t\t\t\t\t\t150 | \n\t\t\t\t\t\t1350 | \n\t\t\t\t\t\t2.42 | \n\t\t\t\t\t\tCentre | \n\t\t\t\t\t\t2100 | \n\t\t\t\t\t
Values of Casting Parameters applicable to microstructures (both Optical and SEM).
The Hardness values bear very similar relationship with solidification time (Figs. 41 and 42).
\n\t\t\tB) On The Thermal Behaviour Of Molds (Figures 43 to 46)
\n\t\t\tPoor life of the molds has been the major reason for the slow progress of PM of ferrous and other high temperature alloys. The life of the mold is basically governed by the thermal cycle. Hence, a thorough understanding of the thermal behavior of the molds as affected by the operating parameters is very vital for the process designer. The thermal behavior also governs the extent and location of the defects in a given casting.
\n\t\t\tStudies on the thermal behavior aspects of metal molds during cast iron solidification indicate that the Volume Ratio (VR) is an important parameter in determining the thermal behavior of the metal molds. All the thermal behavior aspects considered (the interface temperature prior to air gap formation and during the final stages of solidification, air-gap formation time and the heat absorbed by the mold at the end of solidification), decrease gradually with an increase in the volume ratio but this decrease is not significant beyond a particular volume ratio. At a given volume ratio, an increase in either the mold or the pouring temperature causes an increase in the magnitudes of the above, thermal behavior aspects whereas the thermal behavior aspects are not significantly affected by the silicon content of the iron poured, in the range studied.
\n\t\t\t•
Considerable effort and cost are involved in preparing the sand for Dump Worthiness. The advantages of PM process for ferrous castings on energy usage and environment were highlighted. He touched upon the various features of the Eaton Process. It was mentioned that although considerable efforts have been made to avoid chill formation in as-cast PM cast iron castings, no dependable practice has been obtained and for that reason all the castings need to be given an annealing treatment prior to machining / shipment. He quoted that Eaton and Kubota ltd. employ a high carbon equivalent (CE) for the permanent mold.
\n\t\t\tThe use of Molybdenum dies for PDC of steel casting, and the usefulness of Graphite molds for ferrous castings were covered in his lecture. It was mentioned that graphite has a very low coefficient of thermal expansion and that it does not crack either on heating or cooling, and it does not heat check under even the most severe heating cycles. The problem with graphite is fragility and hence needs careful handling. According to him, in the US, about 16% of all iron castings are made in metal molds, and about 12% of all steel castings are made in graphite molds. He concludes by saying that with the economic and ecological advantages of PM, efforts will continue to adapt it to a greater amount for ferrous casting production in the future.
\n\t\t\t•
•
Another paper [45] jointly published by Cast-Tec Ontario, and Russel Cast-Tec., UK, claims a substantial cost reduction in PM process, compared with high - speed sand molding both in the casting and the product finishing. Reduced maintenance cost and rejection level have also been reported. To a question posed - “The advantages claimed of PM sound like a foundryman’s dream. Why isn’t it in general use?“ - their answer was that in the past, many foundries were discouraged by high mold cost and poor mold life, and that has been the major hurdle. Their success, they claim, came from improvements in this area – one is the use of improved coatings and the other is the cleanliness of the iron poured that offers better fluidity that allows the mold to be filled easily at a lower temperature than the normal. This is a very significant point to be noted by those seeking similar improvements.
\n\t\t\t•
•
•
Test reports (from Germany) confirmed the superior properties and field reports confirmed superior performance of these PM products compared to sand cast equivalents. In the case of both brake rotors and drums, the users confirmed better braking efficiency.
\n\t\t\tA project on PM of cast iron, as a part of the Masters Degree Program, University of Nairobi, was carried out at the plant [49], and considerable data were generated under production conditions. The findings were presented in a workshop under UNIDO Innovation Technology Management Program in Nairobi, in 1977 [50].
\n\t\t\tDuring 1990 to 2002, PM cast iron tonnage poured at Allparts castings Limited was in excess of 15000 tons.
\n\t\t\t• All the components made were of hypereutectic cast iron, inoculated prior to pouring.
\n\t\t\t• Molds were made of desulfurized, hypereutectic cast iron with % S less than 0.05,
\n\t\t\t• Most mold were made of 2 parts, either top-bottom or left-right type.
\n\t\t\t• All the castings were top poured (through the riser). To improve die life, the portion where the metal stream first strikes the bottom mold, was made of a separate replaceable metal insert, and in some cases, made of a dispensable pad of Shell sand.
\n\t\t\t• The mold coating used was a water base silica flour spray, sprayed for each pour. Where situation demanded, a thick shell resin sand coating was employed to reduce the cooling rate.
\n\t\t\t• Mold temperature of 200-250°C, and Pouring temperature of 1300-1350°C was employed in most cases. However, in some special cases, to achieve a slower cooling rate, a higher mold temperature was employed through continuous external heating with gas.
\n\t\t\t• Draft angle provided in the casting was minimum 1° for easy extraction. Easy extraction meant less of stresses in the castings.
\n\t\t\t• The castings were removed from the mold in red - hot condition and cooled under a layer of sand. This was to get an annealing effect, without resorting to costly and time - consuming heat treatment process.
\n\t\t\t• Multi-Part metals cores were used in most cases. In some special cases, sand cores were used (hollow cores wherever strength of the core permitted, to reduce sand usage). In cases where the core was in contact with the working surface (like in the case of Brake Drums), the working surface of the metal core was provided with a large number of 1mm deep pockets, in thermosetting resin sand was filled (this resin sand layer was replaced for each pour). In such cases, each mold had two sets of metal cores.
\n\t\t\t• The mold failure was invariably due to thermal fatigue cracks (Fig 48). Where the mold crack area corresponded to machined surface of the casting, the mold was not discarded at the initial appearance of cracks, but continued in production until the cracks become too severe and unmanageable, or the die broke into pieces. Moreover, minor, hairline cracks get covered by the mold coating.
\n\t\t\tTensile Strength (Kg / Sq. cm) Versus Solidification Time, for both Plates and Cylinders. % Si = 3.00.
Tensile Strength (Kg / Sq. mm) Versus Solidification Time for both Cylinders and Plates, for Different Si %. M.T. = 150°C, P.T. = 1250°C.
Brinell Hardness Versus Solidification Time for both Plates and Cylinders, % Si = 3.00.
Brinell Hardness Versus Solidification time for both Cylinders and Plates, for different Si%, MT=150°C, PT=1250°C.
Interface Temperature (θif °C) During The Last Stages Of Solidification Versus Volume Ratio (VR). % Si=3.00,M.T. = 150°C, P.T. = 1250°C.
AirGap Formation Time (T, Sec) Versus Volume Ratio (VR). % Si=3.00, M.T.= 150°C, P.T.= 1250°C.
Interface Temperature, °C,Prior To Air Gap Formation (θia°C ) Versus Volume Ratio (VR). % Si= 3.00, M.T.= 150°C, P.T.= 1250°C.
Heat Absorbed by the mould at the end of solidification (K.Cal / Sq.M) Versus Volume Ratio.
A Brake Drum made by PM process.
Typical Thermal Fatigue Cracks in a PM.
• Considering the strength requirements of the mold during handling in hot condition, in most cases the mold wall thickness was kept more than demanded by thermal considerations. Hence most dies with cracks on the working surface were salvaged, by re-machining. Multiple salvaging was possible.
\n\t\t\t• The totally damaged mold were simply re-melted to make new molds.
\n\t\t\t• The casting yield was more than 95 %, and many cases, the castings were riser-less.
\n\t\t\t• The parts produced by this process showed a much higher wear resistance compared to equivalent sand cast part. An example of a brake rotor for Land Rover 110 is shown in Fig. 49.
\n\t\t\t• Where the specification demanded a little higher % of pearlite, addition of small % of Sb and Cu were tried as per the hints given in the literature [13,46] and the results were extremely encouraging.
\n\t\t\t• In some very thick castings, even under the fast cooling conditions, it was not possible to achieve predominantly Type D graphite on the working surface as specified. Here again, a hint given in one publication [13] came to the rescue – addition of 0.1 % Ti settled the matter to the fullest satisfaction.
\n\t\t\t• Generally Brake Rotors and Brake Drums made from sand castings are machined all over to achieve a good dynamic balancing. It was found that in PM castings, with machining on only working surface and the fitting surface, and leaving the rest as-cast, a good balancing was still possible. Even on the machined surfaces, the machining allowance in most cases was 1mm only.
\n\t\t\t• Quality of both the castings and the machined components was extremely good - in most cases, the overall rejection was under 2%. Machinability was very good – higher speeds & feeds, good surface finish, retention of sharp corners and edges, smoother thread formation, reduced tool consumption, and so on. Normally Brake Rotors and Drums are removed from the vehicle many times during its life, for re-skimming the working surface. In the case of those with threaded bolt - holes, the threads get damaged easily during removing and fixing. The feedback from customers showed that such thread wearing in PM cast components was virtually absent, where as it was quite common in sand cast equivalent. The thread formation in PM castings is very smooth due to fine Type D graphite, where as in sand castings with coarse Type A graphite smooth threads are not possible due to graphite pullout [15].
\n\t\t\t• The PM components were at least 30 % cheaper than the equivalent sand cast components, as applicable to Kenyan conditions.
\n\n\t\t\t•
a) Gas and shrinkage porosity-free structures for leakage-free castings needed in hydraulic and gas components’ applications. Pressure tests routinely performed on these castings showed little or no rejection.
\n\t\t\tb) Reduced production time, reduced finishing costs, elimination of sand and sand handling, and improved dimensional accuracy and stability.
\n\t\t\tc) Castings have a history of exceptional machinability, very low rejection on machining, ability to hold close tolerances.
\n\t\t\tTypical example of relative wear pattern of a brake rotor of Land Rover 110 - cast in sand mold and permanent mold.
The author reports that PM gray iron castings can give 30000 psi tensile strength with 147- 201 BHN hardness in a fully ferritic matrix containing predominantly type D graphite. Basically the castings are strong yet machinable. For SG iron PM castings, the amount of Mg that has to be added is less than for sand castings. This results in lower residual content, which in turn results in controlled shrinkage, improved nodularity thus enhancing mechanical properties and better overall casting quality.
\n\t\t\tSome statistics provided by the author on the production volumes of PM castings world over is very useful indicator of the progress made in recent years. The figures are as follows:
\n\t\t\tEurope - 15 foundries with estimated annual production of 35000 tons, Eastern Block (former Soviet Union, Czech Republic, Poland, Hungary, Bulgaria) – 650000 tons, a new German owned foundry in Brazil – 12000 tons of gray iron and 6000 tons of ductile iron, Japan – at least 6 foundries, 18000 tons, two Japanese built foundries – one in Malaysia and the other in China with a combined production of 6000-8000 tons, two foundries in India with low volumes, a few foundries in Canada and U.S.A (including Perm Cast in Kentucky – the original Eaton Corp., Honda of America, Anna, Ohio).It is reported that Honda of America began producing ductile iron steering knuckles on an automatic FPM line ( Quick Cast Knuckle – QCK ) in the fall of 1995 and casting production via this process is of the order of 22 tons per day. The author has provided list of components made by these several above foundries in addition to a very detailed list of FPM castings made by former USSR.
\n\t\t\tThe author has also touched upon some metallurgical aspects PM cast irons. In addition to the value of C, Si, Mn, P and S specified for PM gray cast iron, he has touched upon the addition of small quantity of Ti (0.02 to 0.10 %). He states that Ti is essential for providing the under-cooling required to meet ASTM Specification A 823-84, that calls for predominantly type D graphite with some type A graphite associated with the center line or around sand cores. However, if desired cooling rate is can be obtained in the mold by using a more effective cooling system, the Ti content in the base iron may be on the lower side of the above mentioned range (This particular effect of Ti was in fact, experienced in the commercial production at Allparts Castings Ltd). A high CE (carbon equivalent) is needed to regulate chill depth and reduce sink / lap type defects. Inoculation, if used, is strictly for the chill control, as type A graphite is not desired, observes the author. All FPM mold castings are heat treated as per ASTM std. 823-84. Some castings are annealed at 843-927°C for 1 hr and furnace cooled to obtain fully ferritic matrix, while the rest are normalized at 816-927°C for 1 hr and air quenched. The microstructure of a normalized FPM usually has 10-30% pearlite. If a higher % of pearlite is required, it may be obtained by small additions of Antimony (Sb). Taking a hint from this, small Sb additions was practiced for some brake rotor castings at Allparts Castings Ltd.
\n\t\t\tAccording to the author, one major obstacle restricting the widespread adoption of FPM is the relatively short mold life encountered in casting ferrous alloys (this is a very significant point to note for future research work). This problem is reduced by the use of Lined Permanent Molds (LPM) where the working surface of the mold is lined with a thin layer of slurry or sand mixture depending upon the alloy poured. This practice not only increases the mold life, but also reduces / eliminates carbides in the structure (again, taking a hint from this paper, such methods were employed for some components at Allparts Castings Ltd., with a great degree of success). However, if high wear resistant chilled iron microstructure is desirable, like in automotive camshaft applications, the portions corresponding to the eccentrics are not lined and the molten metal comes directly in contact with mold. The author says that LPM process is quite popular in former Soviet nations.
\n\t\t\tThe author mentions that the thermal effects of the liquid metal flow in the mold are the major factors in determining the mold life as well as the casting quality. This fully justifies the earlier study conducted by the present authors on the thermal behavior of metal molds.
\n\t\t\tLearner adds that by and large, a gray iron with type A graphite is recognized as a good material for the mold. Research to improve mold life showed that the highest resistance to thermal shock was exhibited by Cr-Mo containing gray iron. The same was the experience at Allparts Castings Limited as mentioned earlier on. Type A graphite raises the thermal conductivity of the mold, while Cr and Mo increase the metallic matrix heat and thermal fatigue resistance.
\n\t\t\t•
\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t
Titanium | \n\t\t\t\t\t\t3270 | \n\t\t\t\t\t\t250 | \n\t\t\t\t\t
Iron | \n\t\t\t\t\t\t2802 | \n\t\t\t\t\t\t500 | \n\t\t\t\t\t
Nickel | \n\t\t\t\t\t\t2651 | \n\t\t\t\t\t\t700 | \n\t\t\t\t\t
Copper | \n\t\t\t\t\t\t1981 | \n\t\t\t\t\t\t4000 | \n\t\t\t\t\t
Aluminium | \n\t\t\t\t\t\t1220 | \n\t\t\t\t\t\t100000 | \n\t\t\t\t\t
Magnesium | \n\t\t\t\t\t\t1202 | \n\t\t\t\t\t\t110000 | \n\t\t\t\t\t
Zinc | \n\t\t\t\t\t\t787 | \n\t\t\t\t\t\t500000 | \n\t\t\t\t\t
Melting Temperature of Alloys Poured Versus Estimated Service Life (cycles) for Iron Molds.
•
Some of the microstructures (both Optical and SEM) observed in the various production castings are given in Figures 50 to 57.
\n\t\t\tFlake graphite adjacent to the core in a hollow cylindrical casting.
Eutectic Cells.
It becomes the sacred duty of all researchers and practitioners of foundry, to work together in this direction, create awareness and share their experiences to make the Permanent Molding of Cast Irons a totally viable process for mass production. Foundry industry has to work harder, to be recognized as a sustainability leader by other industries and the public.
\n\t\t\tAn International Expert Committee consisting of leading foundry personalities may be formed, to work out modalities to bring awareness on the subject, collect detailed statistics through world foundry associations, and to suggest practice based research programs, with some time bound plans of action. The development of better mold materials and ways to improve the mold life need to be tackled on priority.
\n\t\t\tFlake graphite in a pearlitic matrix adjacent to the core in a hollow cylindrical casting.
Pearlitic matrix adjacent the core in a hollow cylindrical casting.
Steadite, Pearlite and Ferrite.
Steadite and Pearlite.
Steadite.
Steadite network.
Stable isotope labeling with amino acids in cell culture (SILAC) is a polypeptide-labeling technology developed by the Thermo Fisher company of the United States in 2002 [1]. Heavy isotopes (13C or 15N) and light isotopes (12C or 14N) are used to label two essential amino acids (L-lysine and L-arginine) that are contained in a cell-cultured medium, respectively. After the cells were cultured with essential amino acids for 6–10 generations, all proteins were labeled with heavy isotopes or light isotopes. The cellular proteins stimulated by different treatment factors are analyzed by mass spectrometry (MS) to obtain the qualitative and quantitative proteome data [2]. SILAC generally allows heavy and light isotopes-labeled sample cells at the early stage of the experimental workflow, so the variability caused by the sample handling process was minimized [3]. SILAC was widely used in quantitative proteomics to study pathogenesis, drug target, protein modification and dynamics, protein-molecule interaction, and screen special functional proteins [4]. SILAC showed outstanding performance for quantification and dynamics of phosphosites in colorectal cancer with the treatment of the epidermal growth factor receptor (EGFR)-blocking antibody cetuximab, rendering it the effective method for cellular signaling study in cell culture models [5]. In terms of identification of protein-molecule interaction, SILAC combined with various affinity purifications of protein experimental setups could be used to distinguish specific complexes from nonspecific ones [6]. One study performed SILAC to overcome the most challenging problem in defining specific partners in protein complexes. The cells containing an affinity tagged protein were cultured in a light isotopic medium, while wild-type cells were grown in a heavy isotopic medium. The results of MS showed that specific partners appear as isotopically light [7]. SILAC also offers numerous opportunities to discover potential biomarkers and therapeutic targets for some drugs [8]. SILAC in combination with other developed approaches made SILAC more popular; for example, these SILAC labels in pulse or pulse-chase scenarios could be used to measure macromolecular dynamics on time scales of several hours [9]. An MS-based approach combining dynamic-SILAC labeling with isobaric mass tagging was well used to understand protein degradation and synthesis in cellular systems [10]. SILAC provided an effective scheme to comprehensively and systematically qualify and quantify complex mammalian cell proteome, which would promote progress in the medical field.
Ivermectin, marketed in 1981, was commonly used as a broad-spectrum antiparasitic compound. It was approved to treat onchocerciasis (150–200 μg kg−1 body weight), scabies (200 μg kg−1 body weight), lymphatic filariasis (150–200 μg kg−1 body weight), demodicosis (200 μg kg−1 body weight), strongyloidiasis (200 μg kg−1 body weight), pediculosis (400 μg kg−1 body weight), and filariasis (due to Mansonella ozzardi, 6 mg as a single dose) [11].
Because ivermectin mainly targets chloride-dependent channels (γ-aminobutyric acid and glutamate), its safety could be fine in higher animals. In humans, especially the blood-brain barrier can reduce ivermectin delivery to the central nervous system [12]. The safety of ivermectin has been proved with clinical studies on children, infants, and pregnant women. A study including 170 infants and children with the treatment of oral ivermectin (mean dose = 223 μg kg−1) showed good tolerance, and only seven subjects occurred mild adverse events [13]. A study including 893 pregnant women with the oral treatment of ivermectin also showed good tolerance, and no patients were reported to generate serious events (stillbirths, neonatal death, low birth weight, spontaneous abortions, preterm births, and congenital anomalies) [14]. Those studies proved that ivermectin was safe enough to be used in human diseases, but there was still insufficient evidence to prove no adverse side effects. The highest ivermectin dose was 200 μg/kg, which was approved by FDA. However, some patients without serious events have used 10 times more than the FDA-approved dose [15]. All those made ivermectin more likely to achieve success in clinical application. In recent days, studies found that ivermectin was effective in a completely new range of diseases, such as neurological disorders, antiviral (e.g., dengue, HIV, and encephalitis), antibacterial (e.g., Buruli ulcer and tuberculosis), anticancer (melanoma, lymphoid leukemia, lung cancer, glioblastoma, and breast cancer) [11]. The functions and mechanisms of ivermectin on anticancer generated interest and excitement in the scientific community. Ivermectin suppresses breast cancer by disrupting cellular signaling in the process and activating cytostatic autophagy through mediating PAK1 expression [16]. Ivermectin showed a synergistic effect with the chemotherapy agents by increasing cell death in leukemia cells. Some researchers, who aimed at overcoming cancer, claimed that ivermectin could be rapidly advanced into clinical trials [17]. Further study on molecular network, signaling pathway, and key biological processes of ivermectin would provide more useful information about this multifaceted “wonder” drug.
This chapter describes that SILAC identifies differentially expressed proteins (DEGs) in ivermectin-treated ovarian cancer cells in the following aspects: (i) ovarian cancer cell culture—TOV21G and labeled with heavy and light SILAC reagents; (ii) ivermectin treatment of SILAC-labeled TOV21G cells and protein preparation; (iii) the quality of SILAC-labeled protein samples with 1D SDS-PAGE; (iv) trypsin-digestion of SILAC-labeled proteins; (v) each fraction was subjected to LC-MS/MS analysis; and (vi) bioinformatics analysis (signaling pathway and biological process). SILAC can be a useful and effective method to detect protein alterations and dynamic changes in living cells, and the results would provide scientific data to further clarify molecular mechanisms of ivermectin in ovarian cancer.
The human ovarian cell line (TOV-21G) was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) and 5% CO2 at 37°C. (i) Ovarian cell line used here was TOV-21G, which was obtained from Keibai Academy of Science (Nanjing, China) [18]. (ii) RPMI 1640 was used without glutamine, lysine, and arginine. (iii) FBS was brought from Gibco® Certified Thermo Fisher Scientific. (iv) The growing states of TOV-21G were observed, and the medium was changed in every 2 days.
SILAC “light” or “heavy” labeling growing medium (Thermo Fisher Scientific, US) was used to culture TOV-21G cells for 10 passages, to ensure a high level of stable isotope replacing original amino acids [8]. (i) “Light” labeled amino acids: 50 mg L-arginine HCl (Arg0), 50 mg L-lysine HCl (Lys0). “Heavy” labeled amino acids: 50 mg L-arginine-13C6,15N4 HCl (Arg10), 50 mg L-lysine-13C6,15N2 HCl (Lys8). (ii) A total of 1 L RPMI 1640 without glutamine, lysine, and arginine. (iii) For SILAC experiments, 50 mg Arg0 and 50 mg Lys0 (“light” labeling reagent) were added into 500 mL RPMI 1640 medium to form SILAC “light” labeling growing medium. A total of 50 mg Arg10 and 50 mg Lys8 (“heavy” labeling reagent) were added to 500 mL RPMI 1640 medium to form SILAC “heavy” labeling growing medium. (iv) The growing states of TOV-21G were observed, and the medium was changed in every 2 days. TOV-21G cells were cultured and passaged for 10 generations in 10-cm culture flasks.
When SILAC-labeled TOV21G cells achieved 80% cell density in 10-cm culture flasks, 20 μM ivermectin was added to TOV-21G cells in SILAC “heavy” labeling growing medium, and 0.1% DMSO was added to TOV-21G cells in SILAC “light” labeling growing medium for 24 h [19]. (i) Ivermectin (C48H74O14, purity ≥ 95%): The drug was brought from Solarbio (http://www.solarbio.com/goods-3911.html). (ii) TOV-21G cells were counted, and 8000 cells/well were seeded in 96-well plates. Ivermectin was added into each well in different drug concentrations (0 μM, 10 μM, 20 μM, 30 μM, 40 μM, and 50 μM) for 24 h. CCK8 (10 μL) was added into each well for 1 h to measure absorbance values (OD) at a wavelength of 450 nm. Lethal concentration 50 (IC50) was calculated according to OD values of each well in different ivermectin concentrations. (iii) Ivermectin treatment group: 20 μM ivermectin was added to TOV-21G cells in SILAC “heavy” labeling growing medium for 24 h. Control group: 0.1% DMSO was added to TOV-21G cells in SILAC “light” labeling growing medium for 24 h.
Ivermectin treatment and 0.1% DMSO treatment TOV-21G cells were collected and lysed by protein isolation buffer, respectively. (i) TOV-21G cells collection: A total of 500 μL trypsin was added to each 10-cm culture flasks for several minutes and collected with centrifugation (800 × g, 5 min). TOV-21G cells were washed with ice-cold phosphate buffer solution (PBS) for three times. (ii) Protein isolation buffer: 2 mM thiourea, 4% CHAPS (3-[(3-cholamidopropyl)-dimethylammonio] -1-propane), 7 M urea, 100 mM dithiothreitol (DTT), and 2% ampholyte. (iii) TOV-21G cells lysis: A total of 200 μL protein isolation buffer was added to each 10-cm culture flasks for 30 min (ice-cold) and then oscillated with five vortex cycles. (iv) SILAC-labeled protein collection: Protein isolation buffer was centrifuged (13,000 × g, 20 min, 4°C), and the SILAC-labeled protein samples were collected from the supernatants in new tubes. (v) Protein concentrations measurement: Protein concentrations of the SILAC-labeled protein samples were measured with the 2-D quant protein assay kit (Bio-Rad, US).
The “heavy”- and “light”-SILAC-labeled proteins were mixed and loaded onto 1X SDS-PAGE to check the quality. SDS-PAGE-separated proteins were further analyzed with MS/MS as a preliminary experiment to check the labeling efficiency. (i) The loading sample preparation: According to the 1:1 ratio, the “heavy”- and “light”-SILAC-labeled proteins were mixed in a 5X loading buffer. (ii) Electrophoresis: The mixed SILAC-labeled proteins were loaded onto SDS-PAGE gel (gel concentration: 12.5%) with the amount of 20 μg/lane by constant current (14 mA, 90 min). (iii) Coomassie brilliant blue staining: Prepare Coomassie brilliant blue stain and destain solutions. Filter the stain solution through Whatman 1 filter paper. (iv) MS/MS: Proteins were separated from SDS-PAGE bands, and then were reduced, alkylated, and trypsin-digested. The tryptic peptides were analyzed with MS/MS.
The main reagents and methods included: (i) Reducing agent: 100 mM DTT was added to SILAC-labeled protein sample. (ii) Uranyl acetate (UA) buffer: The UA buffer contained 8 M urea and 0.1 M Tris/HCL. The SILAC-labeled protein sample with DTT was filtered by a 10-kD ultrafiltration centrifuge tube for two times. (iii) Isolation mixture reacted: A total of 100 μL of 0.05 M iodoacetamide was added to the isolation mixture following centrifugalization (14,000 × g, 15 min). A total of 25 mM ammonium bicarbonate (NH4HCO3) was added to the mixture following centrifugalization (14,000 × g, 15 min). (iv) Trypsin buffer: 2 μg trypsin in 40 μL 100-mM NH4HCO3. (v) Tryptic peptide content: A volume of trypsin buffer (40 μL) was added to the mixture from last step and shaken by 600 rpm for 1 min. Enzymatic hydrolysis of the mixture was done for 16–18 h at 37°C. A volume (40 μL) of 25 mM NH4HCO3 was added to the mixture and that mixture was centrifuged (14,000 × g, 15 min); the filtrate was collected.
The instrument and materials are as follows: (i) MS instrument, for example, Q Exactive mass spectrometer (Thermo Fisher Scientific); (ii) Easy nLC system, for example, Proxeon Biosystems (Thermo Fisher Scientific); (iii) Thermo scientific EASY column: Acclaim PepMap, 100 μm × 2 cm, nanoViper, 5 μm-C18; (iv) analytical column: Thermo scientific EASY column (75 μm * 100 mm 3 μm-C18); (v) solvent A: 0.1% formic acid in H2O; and (vi) solvent B: 0.1% formic acid, 84% acetonitrile in H2O.
The main parameters are following [20]: Main search ppm: 6; missed cleavage: 2; MS/MS tolerance ppm: 20; de-isotopic: TRUE; enzyme: trypsin/P; database: uniprot_Homo_sapiens_169753_20190313; fixed modification: carbamidomethyl (C); lables: Lys(8), Arg(10); variable modification: oxidation (M), acetyl (protein N-term) decoy database; pattern: reverse; peptide FDR: 0.01; and protein FDR: 0.01.
Several bioinformatics analyses were used, which are as follows: (i) The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was performed with R package clusterProfiler-KEGG (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). (ii) The enrichment of biological processes (BPs) was analyzed with Cytoscape ClueGO. (iii) The level of statistical significance was set as p < 0.05 and adjusted p value < 0.05. For KEGG and BPs enrichment analyses, a Benjamini-Hochberg multiple text was used to adjust p value.
The flow chart of SILAC quantitative proteomics was shown to summarize the overall analysis process for the identification of ivermectin-related proteins (Figure 1).
The flow chart of SILAC quantitative proteomics analysis of ovarian cancer cells treated with and without ivermectin.
In total, 4447 proteins were identified with SILAC quantitative proteomics in human ovarian cancer cells treated with ivermectin. The ratio of “heavy”/“light” labeling samples was obtained, including 97.91% proteins with ratio < 1, and 2.09% proteins with ratio > 1. The MS/MS spectra of tryptic peptides EYQDLLNVK (Figure 2A) and VVQGSLDSLPQAVR (Figure 2B) are taken as examples. For peptide EYQDLLNVK (gene name = NEFM), the excellent b-ion and y-ion series were obtained with high signal-to-noise (S/N) (Figure 2A). For peptide VVQGSLDSLPQAVR (gene name = PKC1), the excellent b-ion and y-ion series were also obtained with high signal-to-noise (S/N) (Figure 2B).
The MS/MS spectra of tryptic peptides with SILAC labeling. (A) MS/MS spectrum of tryptic peptide EYQDLLNVK (gene name = NEFM). (B) MS/MS spectrum of tryptic peptide VVQGSLDSLPQAVR (gene name = PKC1).
The fold-changes of some identified proteins were very striking; for example, those upregulated proteins (ratio > 2), including histone H2A, progranulin, cathepsin Z, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1, beta-mannosidase, GRAM domain-containing 1C, BMP-2-inducible protein kinase, ribosomal protein L3, ubiquitin-conjugating enzyme E2, PIK3R1, LIM domain-containing protein 1, retinal guanylyl cyclase 1, telomerase-binding protein EST1A, and COX7A2L protein. Some of them have been reported in ovarian cancers. For example, recent studies demonstrated that PI3K/AKT/mTOR and ERK1/2 signaling pathways were involved in this chemoresistance. Progranulin was upregulated in epithelial ovarian cancer cell lines and associated with cisplatin resistance through regulating AKT/mTOR and ERK1/2 signaling pathways [21]. Progranulin is also involved in the process of cartilage development, progression, wound healing, and inflammation in ovarian cancer [22]. Additionally, one study showed that progranulin could directly activate cancer-associated fibroblasts to induce the epithelial-mesenchymal transition process of epithelial ovarian cancer cells [23]. Copy number loss of PIK3R1 most commonly occurs in ovarian cancer, which would activate AKT and p110-independent JAK2/STAT3 signaling and renders ovarian cancer cells vulnerable to AKT inhibitors [24]. CD97 can activate NF-κB-dependent JAK2/STAT3 pathway, consequently playing an important role in migratory, invasive capacity, and drug-resistant in ovarian cancer cells [25].
Some downregulated proteins (ratio < 0.1) were also very striking; for example, anion exchange protein, Rho guanine nucleotide exchange factor 16, dynein assembly factor 1, glucoside xylosyltransferase 1, glutamine synthetase, insulin-like growth factor-binding protein 2, microtubule-associated protein RP/EB family member 3, myelin proteolipid protein, neurochondrin, neurofilament medium polypeptide, phosphoenolpyruvate carboxykinase, ANKUB1, and TASOR 2. Some of them play an important role in the pathogenesis of ovarian cancer. For example, the most prominent effects of insulin-like growth factor-binding protein 2 in ovarian cancer include promoting driving invasion, proliferation, and suppressing apoptosis. The area under the ROC curve of insulin-like growth factor-binding protein 2 in detecting ovarian cancer was 0.815 (95% CI: 0.721–0.910, P < 0.001), further studies are needed to confirm its diagnostic performance at an early stage of ovarian cancer [26].
The glutamine metabolism could be a novel therapeutic target against cisplatin resistance in various cancers. Glutamine synthetase can take part in the reprogramming of glutamine metabolism to induce cisplatin resistance in A2780 ovarian cancer cells [27]. Anion exchanger 2 is a sodium-independent chloride/bicarbonate transporter, which is implicated in the regulation of membrane potential and intracellular potential of hydrogen (pH value). Anion exchanger 2 was highly expressed in ovarian cancer tissues compared to adjacent non-tumor lesions with quantitative proteomics analysis [28]. Those identified proteins in ovarian cancer cells treated with and without ivermectin with SILAC quantitative proteomics discovered reliable and effective biomarkers and drug targets for the anticancer process of ivermectin [8].
In total, 89 statistically significant molecular pathways were enriched based on those 4447 ivermectin-related proteins with KEGG pathway analysis (Table 1).
hsa00010 | Glycolysis/gluconeogenesis | 2.03E−03 |
hsa00020 | Citrate cycle (TCA cycle) | 7.38E−11 |
hsa00030 | Pentose phosphate pathway | 3.51E−04 |
hsa00052 | Galactose metabolism | 6.04E−03 |
hsa00062 | Fatty acid elongation | 1.09E−02 |
hsa00071 | Fatty acid degradation | 1.39E−05 |
hsa00190 | Oxidative phosphorylation | 3.47E−12 |
hsa00230 | Purine metabolism | 1.08E−02 |
hsa00240 | Pyrimidine metabolism | 2.55E−03 |
hsa00270 | Cysteine and methionine metabolism | 8.93E−07 |
hsa00280 | Valine, leucine and isoleucine degradation | 2.06E−08 |
hsa00480 | Glutathione metabolism | 1.05E−03 |
hsa00510 | N-Glycan biosynthesis | 4.31E−03 |
hsa00513 | Various types of N-glycan biosynthesis | 5.15E−03 |
hsa00520 | Amino sugar and nucleotide sugar metabolism | 1.04E−07 |
hsa00620 | Pyruvate metabolism | 1.11E−07 |
hsa00630 | Glyoxylate and dicarboxylate metabolism | 4.09E−03 |
hsa00640 | Propanoate metabolism | 1.16E−05 |
hsa00920 | Sulfur metabolism | 4.45E−03 |
hsa01040 | Biosynthesis of unsaturated fatty acids | 1.09E−02 |
hsa01200 | Carbon metabolism | 3.96E−16 |
hsa01212 | Fatty acid metabolism | 1.74E−08 |
hsa01230 | Biosynthesis of amino acids | 3.09E−08 |
hsa03008 | Ribosome biogenesis in eukaryotes | 3.34E−04 |
hsa03010 | Ribosome | 7.07E−22 |
hsa03013 | RNA transport | 8.04E−20 |
hsa03015 | mRNA surveillance pathway | 4.28E−08 |
hsa03018 | RNA degradation | 2.24E−07 |
hsa03030 | DNA replication | 8.18E−09 |
hsa03040 | Spliceosome | 5.79E−24 |
hsa03050 | Proteasome | 1.50E−14 |
hsa03410 | Base excision repair | 1.22E−02 |
hsa03420 | Nucleotide excision repair | 4.72E−06 |
hsa03430 | Mismatch repair | 4.33E−04 |
hsa04012 | ErbB signaling pathway | 6.27E−03 |
hsa04066 | HIF-1 signaling pathway | 1.31E−05 |
hsa04071 | Sphingolipid signaling pathway | 9.01E−03 |
hsa04110 | Cell cycle | 4.03E−03 |
hsa04120 | Ubiquitin mediated proteolysis | 1.82E−06 |
hsa04130 | SNARE interactions in vesicular transport | 1.18E−04 |
hsa04137 | Mitophagy—animal | 9.07E−03 |
hsa04141 | Protein processing in the endoplasmic reticulum | 1.07E−13 |
hsa04142 | Lysosome | 3.81E−06 |
hsa04144 | Endocytosis | 9.24E−15 |
hsa04145 | Phagosome | 8.66E−07 |
hsa04152 | AMPK signaling pathway | 3.49E−03 |
hsa04210 | Apoptosis | 1.07E−03 |
hsa04213 | Longevity regulating pathway—multiple species | 4.46E−03 |
hsa04216 | Ferroptosis | 4.75E−04 |
hsa04510 | Focal adhesion | 2.57E−05 |
hsa04520 | Adherens junction | 2.04E−05 |
hsa04530 | Tight junction | 6.21E−05 |
hsa04540 | Gap junction | 3.14E−03 |
hsa04611 | Platelet activation | 4.03E−03 |
hsa04666 | Fc gamma R-mediated phagocytosis | 2.41E−03 |
hsa04714 | Thermogenesis | 1.08E−09 |
hsa04720 | Long-term potentiation | 7.22E−03 |
hsa04721 | Synaptic vesicle cycle | 2.29E−04 |
hsa04810 | Regulation of actin cytoskeleton | 4.94E−06 |
hsa04910 | Insulin signaling pathway | 2.90E−04 |
hsa04919 | Thyroid hormone signaling pathway | 5.20E−03 |
hsa04922 | Glucagon signaling pathway | 3.38E−04 |
hsa04931 | Insulin resistance | 1.26E−02 |
hsa04932 | Nonalcoholic fatty liver disease (NAFLD) | 1.44E−07 |
hsa04961 | Endocrine and other factor-regulated calcium reabsorption | 1.83E−03 |
hsa04962 | Vasopressin-regulated water reabsorption | 9.81E−03 |
hsa05010 | Alzheimer disease | 3.09E−07 |
hsa05012 | Parkinson disease | 5.32E−23 |
hsa05014 | Amyotrophic lateral sclerosis (ALS) | 2.55E−03 |
hsa05016 | Huntington disease | 7.93E−13 |
hsa05100 | Bacterial invasion of epithelial cells | 5.95E−10 |
hsa05110 | 6.22E−06 | |
hsa05120 | Epithelial cell signaling in | 1.07E−04 |
hsa05130 | Pathogenic | 6.13E−09 |
hsa05131 | Shigellosis | 2.10E−07 |
hsa05132 | Salmonella infection | 7.10E−14 |
hsa05134 | Legionellosis | 1.05E−03 |
hsa05135 | Yersinia infection | 4.64E−06 |
hsa05163 | Human cytomegalovirus infection | 5.57E−05 |
hsa05165 | Human papillomavirus infection | 4.68E−03 |
hsa05169 | Epstein-Barr virus infection | 2.03E−05 |
hsa05170 | Human immunodeficiency virus 1 infection | 4.59E−08 |
hsa05203 | Viral carcinogenesis | 6.98E−05 |
hsa05205 | Proteoglycans in cancer | 2.44E−05 |
hsa05211 | Renal cell carcinoma | 2.65E−03 |
hsa05212 | Pancreatic cancer | 6.79E−03 |
hsa05220 | Chronic myeloid leukemia | 1.31E−02 |
hsa05230 | Central carbon metabolism in cancer | 1.18E−03 |
hsa03060 | Protein export | 8.73E−05 |
Statistically significant pathways identified with ivermectin-related proteins with KEGG pathway enrichment analysis.
These molecular pathways demonstrated that ivermectin was involved in multiple cancer-related molecular pathways, such as mismatch repair process, ErbB signaling pathway, HIF-1 signaling pathway, cell-cycle regulation, ubiquitin-mediated proteolysis, AMPK signaling pathway, apoptosis, ferroptosis, proteoglycans, and central carbon metabolism in cancer. These molecular pathways also indicated that ivermectin was involved in multiple cancer pathogenesis, such as energy metabolism pathways, immunity-related pathways, stromal element-related pathways, RNA regulation pathways, hormone signaling pathways, and biosynthesis of substances. Different pathways enriched different proteins, whereas some pathways shared the same proteins. These data showed that ivermectin has a complex influence on various signaling pathways. The results were consistent with many studies previously. Ivermectin induced PAK1-mediated cytostatic autophagy both
A total of 61 statistically significant biological processes were enriched based on those 4447 ivermectin-related proteins with GO analysis (Figure 3). These biological processes indicated that ivermectin was involved in multiple cancer-related biological processes, such as negative/positive regulation of canonical Wnt signaling pathway, cysteine-type endopeptidase activity involved in the apoptotic process, innate immune response-activating signal transduction, protein targeting to membrane, T-cell receptor signaling pathway, regulation of protein ubiquitination, activation of protein kinase activity, regulation of transcription by RNA polymerase II, and DNA-binding transcription factor activity. These results were consistent with many studies previously. For example, CTNNB1 (catenin beta 1, IMPβ1) in the biological process of protein polyubiquitination, was responsible for the nuclear entry of cargoes. Ivermectin can impact thermal stability and α-helicity of IMPα and IMPβ1 by binding to the IMPα armadillo repeat domain [35]. CASP3 in the biological process of protein kinase regulator activity is a member of the cysteine-aspartic acid protease (caspase) family. SK-MEL-28 cells were treated with different concentrations of ivermectin (2.5 μM, 5 μM, and 10 μM). Ivermectin enhanced the apoptosis effect by the upregulation of caspase-3 activity [36]. Also, PAK1 in the biological process of protein kinase regulator activity binds to and inhibits the activity of cyclin-cyclin-dependent kinase 2 or -cyclin-dependent kinase 4 complexes, and thus functions as a regulator of cell-cycle progression at G1. Ivermectin inhibited cancer stem cells formation by regulating the binding of PAK1/Stat3 complex and the IL-6 promoter [37]. YAP1 in the biological process of positive regulation of canonical Wnt signaling pathway was involved in the development, growth, repair, and homeostasis of multiple cancers. Ivermectin inhibited YAP1 nuclear expression and nuclear accumulation in gastric cancer cells. Moreover, in xenografts of gastric cancer cells, ivermectin suppressed tumor growth by regulating YAP1 nuclear expression [38]. Those identified proteins in ovarian cancer cells treated with and without ivermectin based on the SILAC method play important roles in multiple cellular signaling pathways and have broad biological activities. Those findings provide basic data for further study of ivermectin in ovarian cancer.
Statistically significant biological processes (BPs) identified with ivermectin-related proteins with GO enrichment analysis.
Stable isotope labeling with amino acids in cell culture (SILAC) was an effective quantitative proteomics method to identify differentially expressed proteins or differentially modified proteins in cultured cells between two different conditions. In this study, ovarian cancer cells TOV-21 under two different conditions were cultured with the “heavy” labeling medium that contained 50 mg L-lysine-2HCl [13C6, 15N2] and 50 mg L-arginine-HCl [13C6, 15N4] in 500 mL RPMI 1640 medium, and the “light” labeling medium that contained 50 mg L-lysine-2HCl [12C6, 14N2] and 50 mg L-arginine-HCl [12C6, 14N4] in 500 mL RPMI 1640 medium for 10 passages, respectively. Then TOV-21G cells with SILAC “heavy” or “light” labeling were treated with or without 20 μM ivermectin for 24 h. The heavy- and light-stable isotope-labeled proteins were equally mixed (1:1), digested with trypsin, and analyzed with LC-MS/MS. A total of 4447 proteins were identified in ivermectin-treated TOV-21G cells relative to controls, and these proteins were significantly enriched in 89 molecular pathways, and 62 biological processes. These findings offer important data to study ivermectin-mediated molecular pathway network changes and discover effective ivermectin-related biomarkers and therapeutic targets for ivermectin treatment of ovarian cancer.
The authors acknowledge the financial supports from the Shandong First Medical University Talent Introduction Funds (to X.Z.), and the Hunan Provincial Hundred Talent Plan (to X.Z.).
We declare that we have no financial and personal relationships with other people or organizations.
N.L. analyzed the data, prepared figures, and wrote the manuscript. X.Z. conceived the concept, designed the manuscript, wrote and critically revised the manuscript, and was responsible for the correspondence work and financial support.
BPs | biological processes |
CTNNB1 | catenin beta 1 |
ICD | immunogenic cell death |
DTT | dithiothreitol |
EGFR | epidermal growth factor receptor |
IC50 | lethal concentration 50 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LC | liquid chromatography |
MS | mass spectrometry |
MS/MS | tandem mass spectrometry |
OD | absorbance values |
PBS | phosphate buffer solution |
SILAC | stable isotope labeling with amino acids in cell culture |
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-F-0-T2"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11872",title:"Peripheral Arterial Disease - The Challenges of Revascularization",subtitle:null,isOpenForSubmission:!0,hash:"80be3d16e4c8f89f3501ed408729f695",slug:null,bookSignature:"Prof. Ana Terezinha Guillaumon, Dr. Daniel Emilio Dalledone Siqueira and Dr. Martin Geiger",coverURL:"https://cdn.intechopen.com/books/images_new/11872.jpg",editedByType:null,editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11533",title:"Advances in Green Electronics Technologies",subtitle:null,isOpenForSubmission:!0,hash:"209fb1d781e97e58e1b2098b8976e2c3",slug:null,bookSignature:"Dr. Albert Sabban",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg",editedByType:null,editors:[{id:"16889",title:"Dr.",name:"Albert",surname:"Sabban",slug:"albert-sabban",fullName:"Albert Sabban"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11842",title:"Altimetry - Theory, Applications and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"b2b6e7b58333453ef7b73416d8fdfaf3",slug:null,bookSignature:"Prof. Tomislav Bašić",coverURL:"https://cdn.intechopen.com/books/images_new/11842.jpg",editedByType:null,editors:[{id:"343125",title:"Prof.",name:"Tomislav",surname:"Bašić",slug:"tomislav-basic",fullName:"Tomislav Bašić"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12104",title:"Viral Outbreaks - Global Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"60828f26feed5832a47a13caac706c08",slug:null,bookSignature:"Prof. Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/12104.jpg",editedByType:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12108",title:"Clinical Trials - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"79472fc7310e9655a881c6d2ad7128b0",slug:null,bookSignature:"Dr. Xianli Lv",coverURL:"https://cdn.intechopen.com/books/images_new/12108.jpg",editedByType:null,editors:[{id:"153155",title:"Dr.",name:"Xianli",surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11733",title:"Injury and Sports Medicine",subtitle:null,isOpenForSubmission:!0,hash:"e2fdeca45129f6d5ba446f502c5a6373",slug:null,bookSignature:"M.D. Thomas Wojda and Dr. Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/11733.jpg",editedByType:null,editors:[{id:"415286",title:"M.D.",name:"Thomas",surname:"Wojda",slug:"thomas-wojda",fullName:"Thomas Wojda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11831",title:"Novel Topics in the Diagnosis, Treatment, and Follow-Up of Nephritis, Nephrotic Syndrome, and Nephrosis",subtitle:null,isOpenForSubmission:!0,hash:"738f177168051e90f566ddc7c23b0862",slug:null,bookSignature:"Prof. Hulya Çiçek, Dr. Mustafa Yıldırım, Dr. Necat Yilmaz and Dr. Mehmet Solakhan",coverURL:"https://cdn.intechopen.com/books/images_new/11831.jpg",editedByType:null,editors:[{id:"466717",title:"Prof.",name:"Hulya",surname:"Çiçek",slug:"hulya-cicek",fullName:"Hulya Çiçek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:20},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:405},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"26",title:"Agricultural Engineering",slug:"agricultural-and-biological-sciences-agricultural-engineering",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:231,numberOfWosCitations:53,numberOfCrossrefCitations:74,numberOfDimensionsCitations:126,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"26",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10899",title:"Postharvest Technology",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ce6f836b93e9e456c0f87a46deca8937",slug:"postharvest-technology-recent-advances-new-perspectives-and-applications",bookSignature:"Md Ahiduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/10899.jpg",editedByType:"Edited by",editors:[{id:"321606",title:"Dr.",name:"Md",middleName:null,surname:"Ahiduzzaman",slug:"md-ahiduzzaman",fullName:"Md Ahiduzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10454",title:"Technology in Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"dcfc52d92f694b0848977a3c11c13d00",slug:"technology-in-agriculture",bookSignature:"Fiaz Ahmad and Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/10454.jpg",editedByType:"Edited by",editors:[{id:"338219",title:"Dr.",name:"Fiaz",middleName:null,surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8939",title:"Urban Horticulture",subtitle:"Necessity of the Future",isOpenForSubmission:!1,hash:"5db1ff90f7e404baf4e42cdfbe0b9755",slug:"urban-horticulture-necessity-of-the-future",bookSignature:"Shashank Shekhar Solankey, Shirin Akhtar, Alejandro Isabel Luna Maldonado, Humberto Rodriguez-Fuentes, Juan Antonio Vidales Contreras and Julia Mariana Márquez Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/8939.jpg",editedByType:"Edited by",editors:[{id:"210702",title:"Dr.",name:"Shashank Shekhar",middleName:null,surname:"Solankey",slug:"shashank-shekhar-solankey",fullName:"Shashank Shekhar Solankey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8308",title:"Agricultural Economics",subtitle:"Current Issues",isOpenForSubmission:!1,hash:"138b8e4117a40c74fc41ec72d552fa9f",slug:"agricultural-economics-current-issues",bookSignature:"Surendra N. Kulshreshtha",coverURL:"https://cdn.intechopen.com/books/images_new/8308.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6265",title:"Automation in Agriculture",subtitle:"Securing Food Supplies for Future Generations",isOpenForSubmission:!1,hash:"397d9aa9d63ecac6048c1c2274f35704",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",bookSignature:"Stephan Hussmann",coverURL:"https://cdn.intechopen.com/books/images_new/6265.jpg",editedByType:"Edited by",editors:[{id:"6250",title:"Prof. Dr.-Ing.",name:"Stephan",middleName:null,surname:"Hussmann",slug:"stephan-hussmann",fullName:"Stephan Hussmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5227",title:"Urban Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"722ebe60b63f7c01577d063a3e39c36a",slug:"urban-agriculture",bookSignature:"Mohamed Samer",coverURL:"https://cdn.intechopen.com/books/images_new/5227.jpg",editedByType:"Edited by",editors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"57703",doi:"10.5772/intechopen.71582",title:"The Fourth Industrial Revolution and Precision Agriculture",slug:"the-fourth-industrial-revolution-and-precision-agriculture",totalDownloads:3007,totalCrossrefCites:13,totalDimensionsCites:19,abstract:"The Fourth Industrial Revolution will see the convergence of artificial intelligence and data technology as a new solution to address industrial and social problems across the globe, by integrating cyber and physical fields. The Fourth Industrial Revolution will send a ripple effect of far-reaching repercussions throughout the labor-intensive field of agriculture. Combining artificial intelligence and big data will evolve into a high-tech industry that operates itself. These technologies allow for precision agriculture, such as yield monitoring, diagnosing insect pests, measuring soil moisture, diagnosing harvest time, and monitoring crop health status. In particular, the Internet of things (IoT) will measure the temperature, humidity, and amount of sunlight in production farms, making it possible for remote control via mobile devices. It will not only boost the production of the farms but also add to their value.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Jehoon Sung",authors:[{id:"210240",title:"Dr.",name:"Jehoon",middleName:null,surname:"Sung",slug:"jehoon-sung",fullName:"Jehoon Sung"}]},{id:"59242",doi:"10.5772/intechopen.73622",title:"Review of Variable-Rate Sprayer Applications Based on Real- Time Sensor Technologies",slug:"review-of-variable-rate-sprayer-applications-based-on-real-time-sensor-technologies",totalDownloads:2073,totalCrossrefCites:12,totalDimensionsCites:15,abstract:"Precision variable rate spray is one of the research hotspots in the field of modern agriculture spraying applications. Variable rate spraying of the canopy allows growers to apply adjusted volume rate of pesticides to the target, based on canopy size, and to apply plant protection products in an economical and environmentally sound manner. In the field of pesticide application, knowledge of the geometrical characteristics of plantations will guarantee a better adjustment of the dosage of the agrochemicals applied. This technology is integrated with intelligent real-time sensors, which have a high potential for agricultural precision spray applications. This book chapter presents the foundations and applications in agriculture of the primary systems used for real-time spray target detection of the geometrical characterization of tree plantations. Systems based on infrared, ultrasonic, light detection and ranging (LIDAR), and stereo vision sensors were discussed, respectively, on their performances to detect spray targets. Among them, laser scanners and stereo vision systems are probably the most promising and complementary techniques for achieving three-dimensional (3D) pictures and maps of plants and canopies. The advantages of data fusion applied in real-time target detection and its accuracy in density estimation of the plants were stressed.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Zhihong Zhang, Xiaoyang Wang, Qinghui Lai and Zhaoguo Zhang",authors:[{id:"227982",title:"Dr.",name:"Zhihong",middleName:null,surname:"Zhang",slug:"zhihong-zhang",fullName:"Zhihong Zhang"},{id:"239622",title:"Mr.",name:"Xiaoyang",middleName:null,surname:"Wang",slug:"xiaoyang-wang",fullName:"Xiaoyang Wang"},{id:"239624",title:"Prof.",name:"Qinghui",middleName:null,surname:"Lai",slug:"qinghui-lai",fullName:"Qinghui Lai"},{id:"239625",title:"Prof.",name:"Zhaoguo",middleName:null,surname:"Zhang",slug:"zhaoguo-zhang",fullName:"Zhaoguo Zhang"}]},{id:"71024",doi:"10.5772/intechopen.91133",title:"Implication of Urban Agriculture and Vertical Farming for Future Sustainability",slug:"implication-of-urban-agriculture-and-vertical-farming-for-future-sustainability",totalDownloads:1841,totalCrossrefCites:5,totalDimensionsCites:9,abstract:"Urban agriculture (UA) is defined as the production of agricultural goods (crop) and livestock goods within urban areas like cities and towns. In the modern days, the urbanization process has raised a question on the sustainable development and growing of urban population. UA has been claimed to contribute to urban waste recycling, efficient water use and energy conservation, reduction in air pollution and soil erosion, urban beautification, climate change adaptation and resilience, disaster prevention, and ecological and social urban sustainability. Therefore, UA contributes to the sustainability of cities in various ways—socially, economically, and environmentally. An urban farming technology that involves the large-scale agricultural production in the urban surroundings is the vertical farming (VF) or high-rise farming technology. It enables fast growth and production of the crops by maintaining the environmental conditions and nutrient solutions to crop based on hydroponics technology. Vertical farms are able to grow food year-round because they maintain consistent growing conditions regardless of the weather outside and are much less vulnerable to climate changes. This promises a steady flow of products for the consumers and a consistent income for growers. Various advantages of VF over traditional farming, such as reduced farm inputs and crop failures and restored farmland, have enabled scientists to implement VF on a large scale.",book:{id:"8939",slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Anwesha Chatterjee, Sanjit Debnath and Harshata Pal",authors:[{id:"312477",title:"Dr.",name:"Harshata",middleName:null,surname:"Pal",slug:"harshata-pal",fullName:"Harshata Pal"},{id:"316680",title:"Dr.",name:"Anwesha",middleName:null,surname:"Chatterjee",slug:"anwesha-chatterjee",fullName:"Anwesha Chatterjee"},{id:"316681",title:"Dr.",name:"Sanjit",middleName:null,surname:"Debnath",slug:"sanjit-debnath",fullName:"Sanjit Debnath"}]},{id:"59402",doi:"10.5772/intechopen.73861",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:2786,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",middleName:"A.",surname:"Hameed",slug:"ibrahim-hameed",fullName:"Ibrahim Hameed"},{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",middleName:null,surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",middleName:null,surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}]},{id:"69221",doi:"10.5772/intechopen.89279",title:"Social Value of Urban Rooftop Farming: A Hong Kong Case Study",slug:"social-value-of-urban-rooftop-farming-a-hong-kong-case-study",totalDownloads:994,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"As cities densify, areas available for agriculture within the city become increasingly small and infeasible for mass production. In parallel, many cities have seen a rapid rise in establishing community-based micro-farming, operating within marginal spaces of uncertain ownership or regulations. Prominently in Hong Kong, more than 60 urban rooftop farms have spontaneously appeared in the last 10 years on buildings. High application rates for renting plots in these informal farms suggest a strong demand in the population. Motivations cited by participants of rooftop farms are typically social, although social values have yet to be specifically defined or objectively measured. Hong Kong Special Administrative Region Government’s new agricultural policy conceives urban agriculture as a commercially productive practice. In consequence, urban rooftop farming lies awkwardly between formal city planning and informal community practices. A study of five rooftop farms in Hong Kong found, through participant opinion surveys and cost-benefit analysis, that the social benefits to participants were multifaceted with a preference on personal socialization and that they were willing to pay for the experience. The results suggest that if the products of rooftop farming could be conceived as being social, rather than food production, individual motivations and state interests could be aligned and the available roof space activated to achieve a more sustainable city.",book:{id:"8308",slug:"agricultural-economics-current-issues",title:"Agricultural Economics",fullTitle:"Agricultural Economics - Current Issues"},signatures:"Ting Wang and Mathew Pryor",authors:[{id:"289674",title:"Ph.D. Student",name:"Ting",middleName:null,surname:"Wang",slug:"ting-wang",fullName:"Ting Wang"},{id:"289677",title:"Prof.",name:"Mathew",middleName:null,surname:"Pryor",slug:"mathew-pryor",fullName:"Mathew Pryor"}]}],mostDownloadedChaptersLast30Days:[{id:"59402",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:2786,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",middleName:"A.",surname:"Hameed",slug:"ibrahim-hameed",fullName:"Ibrahim Hameed"},{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",middleName:null,surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",middleName:null,surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}]},{id:"70662",title:"Automation and Robotics Used in Hydroponic System",slug:"automation-and-robotics-used-in-hydroponic-system",totalDownloads:2800,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Hydroponic system requires periodic labor, a systematic approach, repetitive motion and a structured environment. Automation, robotics and IoT have allowed farmers to monitoring all the variables in plant, root zone and environment under hydroponics. This research introduces findings in design with real time operating systems based on microcontrollers; pH fuzzy logic control system for nutrient solution in embed and flow hydroponic culture; hydroponic system in combination with automated drip irrigation; expert system-based automation system; automated hydroponics nutrition plants systems; hydroponic management and monitoring system for an intelligent hydroponic system using internet of things and web technology; neural network-based fault detection in hydroponics; additional technologies implemented in hydroponic systems and robotics in hydroponic systems. The above advances will improve the efficiency of hydroponics to increase the quality and quantity of the produce and pose an opportunity for the growth of the hydroponics market in near future.",book:{id:"8939",slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Alejandro Isabel Luna Maldonado, Julia Mariana Márquez Reyes, Héctor Flores Breceda, Humberto Rodríguez Fuentes, Juan Antonio Vidales Contreras and Urbano Luna Maldonado",authors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",middleName:null,surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"},{id:"215230",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Vidales Contreras",slug:"juan-antonio-vidales-contreras",fullName:"Juan Antonio Vidales Contreras"},{id:"220744",title:"MSc.",name:"Héctor",middleName:null,surname:"Flores Breceda",slug:"hector-flores-breceda",fullName:"Héctor Flores Breceda"},{id:"252026",title:"Dr.",name:"Humberto",middleName:null,surname:"Rodríguez-Fuentes",slug:"humberto-rodriguez-fuentes",fullName:"Humberto Rodríguez-Fuentes"},{id:"299825",title:"Dr.",name:"Julia Mariana",middleName:null,surname:"Márquez Reyes",slug:"julia-mariana-marquez-reyes",fullName:"Julia Mariana Márquez Reyes"},{id:"303920",title:"Prof.",name:"Urbano",middleName:null,surname:"Luna Maldonado",slug:"urbano-luna-maldonado",fullName:"Urbano Luna Maldonado"}]},{id:"77112",title:"Advancements of Spraying Technology in Agriculture",slug:"advancements-of-spraying-technology-in-agriculture",totalDownloads:610,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Plant protection activities are most important practices during crop production. Application of maximum pesticide products with the sprayer. The application of fungicides, herbicides, and insecticides is one of the most recurrent and significant tasks in agriculture. Conventional agricultural spraying techniques have made the inconsistency between economic growth and environmental protection in agricultural production. Spraying techniques continuously developed in recent decades. For pesticide application, it is not the only sprayer that is essential, but all the parameters like the type and area of the plant canopy, area of a plant leaf, height of the crop, and volume of plants related to plant protection product applications are very important for obtaining better results. From this point of view, the advancement in agriculture sprayer has been started in last few decades. Robotics and automatic spraying technologies like variable rate sprayers, UAV sprayers, and electrostatic sprayers are growing to Increase the utilization rate of pesticides, reduce pesticide residues, real-time, cost-saving, high compatibility of plant protection products application. These technologies are under the “umbrella” of precision agriculture. The mechanized spraying system, usually implemented by highly precise equipment or mobile robots, which, makes possible the selective targeting of pesticide application on desire time and place. These advanced spraying technologies not only reduces the labour cost but also effective in environmental protection. Researchers are conducting experimental studies on the design, development and testing of precision spraying technologies for crops and orchards.",book:{id:"10454",slug:"technology-in-agriculture",title:"Technology in Agriculture",fullTitle:"Technology in Agriculture"},signatures:"Fiaz Ahmad, Aftab Khaliq, Baijing Qiu, Muhammad Sultan and Jing Ma",authors:[{id:"199381",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sultan",slug:"muhammad-sultan",fullName:"Muhammad Sultan"},{id:"338219",title:"Dr.",name:"Fiaz",middleName:null,surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"},{id:"346652",title:"MSc.",name:"Aftab",middleName:null,surname:"Khaliq",slug:"aftab-khaliq",fullName:"Aftab Khaliq"},{id:"349757",title:"Prof.",name:"Qiu",middleName:null,surname:"Baijing",slug:"qiu-baijing",fullName:"Qiu Baijing"},{id:"349778",title:"Dr.",name:"Jing",middleName:null,surname:"Ma",slug:"jing-ma",fullName:"Jing Ma"}]},{id:"77058",title:"Solar Technology in Agriculture",slug:"solar-technology-in-agriculture",totalDownloads:587,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Promotion of sustainable agriculture is one of the most priority development goal set by United Nations for achieving the food security to meet the ever-increasing global population food demand. Because of extreme importance of agriculture sector, significant technological developments have been made that played pivotal role for sustainable agriculture by value addition in agricultural products and meeting energy demands for machinery and irrigation. These developments include improved cultivation practices, processing units for agricultural products and operation of machinery and irrigation systems based on solar energy. Moreover, the emergence of new technologies and climate smart solutions with reduced carbon footprints have significantly addressed the ever-increasing fuel costs and changing climate needs. PV based solar irrigation pumps and agricultural machinery is typical example of this. Because, awareness of these technological development is essential to overcome energy issues, availability of energy to perform agricultural activities for sustainable agriculture at farm level and socioeconomic uplift of farming community to meet food requirements needs in the future. Therefore, this chapter attempts at providing the introduction of technologies for direct and indirect use of solar energy in the agriculture sector. The typical examples of direct use of solar energy like greenhouses or tunnel farming for cultivation of crops and vegetables and use of solar dryers for drying agricultural products have been comprehensively discussed. Similarly, the solar powered tubewells, tractors, and lights, etc. are few important examples of indirect use of solar energy and have also been discussed in this chapter. The indirect use is made possible by converting solar energy into electrical energy with the help of photovoltaic devices, called “solar cells”. Also radio frequency (RF)-controlled seed sowing and spreading machines are discussed, which provide an eco-friendly method. Moreover, comprehensive discussion is made on solar based technologies in general as well regional context in view of their potential to scale-up and to address anticipated issues. The use of photovoltaics in agriculture is expected to be significant contribution in the near future that require urgent planning for the potential benefits and efficient use at the farm level. Therefore, the co-existence of “agrovoltaics” will be essential for the developments of agriculture and agroindustry.",book:{id:"10454",slug:"technology-in-agriculture",title:"Technology in Agriculture",fullTitle:"Technology in Agriculture"},signatures:"Ghulam Hasnain Tariq, Muhammad Ashraf and Umar Sohaib Hasnain",authors:[{id:"324017",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ashraf",slug:"muhammad-ashraf",fullName:"Muhammad Ashraf"},{id:"343829",title:"Dr.",name:"Ghulam Hasnain",middleName:null,surname:"Tariq",slug:"ghulam-hasnain-tariq",fullName:"Ghulam Hasnain Tariq"},{id:"415545",title:"Mr.",name:"Umar Sohaib",middleName:null,surname:"Hasnain",slug:"umar-sohaib-hasnain",fullName:"Umar Sohaib Hasnain"}]},{id:"79822",title:"Stored Grain Pests and Current Advances for Their Management",slug:"stored-grain-pests-and-current-advances-for-their-management",totalDownloads:226,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"During the offseason, when fresh food is not available, humans have to consume stored grain food. Unfortunately, these stored grains are later infested with many pests. Foods stored in bags and bins are very much susceptible to infestation with several pests which can cause extensive post-harvest losses, spoilage, and less demand in markets, causing a huge economic crisis. Hence, successful management of stored grain pests becomes necessary to prevent these from insect pests. Current approaches for their management are one of the promising goals, as it includes preventive practices, monitoring, sanitation, and identification of main pathogens. Different management strategies of all the common stored grain pests viz. grain weevils, grain borers, grain moths, flour moths, mealworms, grain and flour beetles, booklice, mites, and parasites are enlisted here.",book:{id:"10899",slug:"postharvest-technology-recent-advances-new-perspectives-and-applications",title:"Postharvest Technology",fullTitle:"Postharvest Technology - Recent Advances, New Perspectives and Applications"},signatures:"Rayees Ahmad, Shafiya Hassan, Showkat Ahmad, Syed Nighat, Yendrambamb K. Devi, Kounser Javeed, Salma Usmani, Mohammad Javed Ansari, Sait Erturk, Mustafa Alkan and Barkat Hussain",authors:[{id:"319667",title:"Dr.",name:"Barkat",middleName:null,surname:"Hussain",slug:"barkat-hussain",fullName:"Barkat Hussain"},{id:"444975",title:"Dr.",name:"Rayees",middleName:null,surname:"Ahmad",slug:"rayees-ahmad",fullName:"Rayees Ahmad"},{id:"444976",title:"Dr.",name:"Shafiya",middleName:null,surname:"Hassan",slug:"shafiya-hassan",fullName:"Shafiya Hassan"},{id:"444977",title:"Dr.",name:"Showkat",middleName:null,surname:"Ahmad",slug:"showkat-ahmad",fullName:"Showkat Ahmad"},{id:"444978",title:"Dr.",name:"Syed",middleName:null,surname:"Nighat",slug:"syed-nighat",fullName:"Syed Nighat"},{id:"444979",title:"Dr.",name:"Yendrambamb",middleName:null,surname:"K. Devi",slug:"yendrambamb-k.-devi",fullName:"Yendrambamb K. Devi"},{id:"444980",title:"Dr.",name:"Kounser",middleName:null,surname:"Javeed",slug:"kounser-javeed",fullName:"Kounser Javeed"},{id:"444981",title:"Dr.",name:"Salma",middleName:null,surname:"Usmani",slug:"salma-usmani",fullName:"Salma Usmani"},{id:"444982",title:"Dr.",name:"Mohd Javid",middleName:null,surname:"Ansari",slug:"mohd-javid-ansari",fullName:"Mohd Javid Ansari"},{id:"444983",title:"Dr.",name:"Sait",middleName:null,surname:"Erturk",slug:"sait-erturk",fullName:"Sait Erturk"},{id:"444984",title:"Dr.",name:"Mustafa",middleName:null,surname:"Alkan",slug:"mustafa-alkan",fullName:"Mustafa Alkan"}]}],onlineFirstChaptersFilter:{topicId:"26",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:159,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79866",title:"Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants",doi:"10.5772/intechopen.101582",signatures:"Yosra Ahmed Soltan and Amlan Kumar Patra",slug:"ruminal-microbiome-manipulation-to-improve-fermentation-efficiency-in-ruminants",totalDownloads:215,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78998",title:"Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds",doi:"10.5772/intechopen.100142",signatures:"Mardiati Zain, Rusmana Wijaya Setia Ningrat, Heni Suryani and Novirman Jamarun",slug:"effect-of-various-feed-additives-on-the-methane-emissions-from-beef-cattle-based-on-an-ammoniated-pa",totalDownloads:142,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:7,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus Between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80753",title:"Toward Safe Food Systems: Analyses of Mycotoxin Contaminants in Food and Preventive Strategies Thereof for Their Formation and Toxicity",doi:"10.5772/intechopen.101461",signatures:"Dikabo Mogopodi, Mesha Mbisana, Samuel Raditloko, Inonge Chibua and Banyaladzi Paphane",slug:"toward-safe-food-systems-analyses-of-mycotoxin-contaminants-in-food-and-preventive-strategies-thereo",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80388",title:"Social Resilience in Local Food Systems: A Foundation for Food Security during a Crisis",doi:"10.5772/intechopen.101998",signatures:"Tanya Zerbian, Mags Adams and Neil Wilson",slug:"social-resilience-in-local-food-systems-a-foundation-for-food-security-during-a-crisis",totalDownloads:52,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80098",title:"Bundling Weather Index Insurance with Microfinance: Trekking the Long Road between Expectations and Reality. A Study on Sub-Saharan Africa",doi:"10.5772/intechopen.101742",signatures:"Dorcas Stella Shumba",slug:"bundling-weather-index-insurance-with-microfinance-trekking-the-long-road-between-expectations-and-r",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"79696",title:"How to Build Food Safety Resilience in Commercial Restaurants?",doi:"10.5772/intechopen.101481",signatures:"Rayane Stephanie Gomes De Freitas and Elke Stedefeldt",slug:"how-to-build-food-safety-resilience-in-commercial-restaurants",totalDownloads:107,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"79604",title:"Perspective Chapter: Food System Resilience - Towards a Joint Understanding and Implications for Policy",doi:"10.5772/intechopen.99899",signatures:"Bart de Steenhuijsen Piters, Emma Termeer, Deborah Bakker, Hubert Fonteijn and Herman Brouwer",slug:"perspective-chapter-food-system-resilience-towards-a-joint-understanding-and-implications-for-policy",totalDownloads:121,totalCrossrefCites:1,totalDimensionsCites:2,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.jpg",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 9th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:6,numberOfPublishedChapters:86,numberOfPublishedBooks:8,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},subseries:[{id:"22",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",annualVolume:11418,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",annualVolume:11419,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",annualVolume:11420,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",annualVolume:11421,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer",middleName:"P.",surname:"Dadios",fullName:"Elmer Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",annualVolume:11422,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",annualVolume:11423,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/80484",hash:"",query:{},params:{id:"80484"},fullPath:"/online-first/80484",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()